 e6639117d6
			
		
	
	
	e6639117d6
	
	
	
		
			
			Add calibration_delay_done() call and dummy implementation. This allows architectures to stop accepting registrations for new timer based delay functions. Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com> Acked-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Stephen Warren <swarren@nvidia.com>
		
			
				
	
	
		
			315 lines
		
	
	
	
		
			8.5 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			315 lines
		
	
	
	
		
			8.5 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* calibrate.c: default delay calibration
 | |
|  *
 | |
|  * Excised from init/main.c
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/timex.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/percpu.h>
 | |
| 
 | |
| unsigned long lpj_fine;
 | |
| unsigned long preset_lpj;
 | |
| static int __init lpj_setup(char *str)
 | |
| {
 | |
| 	preset_lpj = simple_strtoul(str,NULL,0);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("lpj=", lpj_setup);
 | |
| 
 | |
| #ifdef ARCH_HAS_READ_CURRENT_TIMER
 | |
| 
 | |
| /* This routine uses the read_current_timer() routine and gets the
 | |
|  * loops per jiffy directly, instead of guessing it using delay().
 | |
|  * Also, this code tries to handle non-maskable asynchronous events
 | |
|  * (like SMIs)
 | |
|  */
 | |
| #define DELAY_CALIBRATION_TICKS			((HZ < 100) ? 1 : (HZ/100))
 | |
| #define MAX_DIRECT_CALIBRATION_RETRIES		5
 | |
| 
 | |
| static unsigned long calibrate_delay_direct(void)
 | |
| {
 | |
| 	unsigned long pre_start, start, post_start;
 | |
| 	unsigned long pre_end, end, post_end;
 | |
| 	unsigned long start_jiffies;
 | |
| 	unsigned long timer_rate_min, timer_rate_max;
 | |
| 	unsigned long good_timer_sum = 0;
 | |
| 	unsigned long good_timer_count = 0;
 | |
| 	unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
 | |
| 	int max = -1; /* index of measured_times with max/min values or not set */
 | |
| 	int min = -1;
 | |
| 	int i;
 | |
| 
 | |
| 	if (read_current_timer(&pre_start) < 0 )
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * A simple loop like
 | |
| 	 *	while ( jiffies < start_jiffies+1)
 | |
| 	 *		start = read_current_timer();
 | |
| 	 * will not do. As we don't really know whether jiffy switch
 | |
| 	 * happened first or timer_value was read first. And some asynchronous
 | |
| 	 * event can happen between these two events introducing errors in lpj.
 | |
| 	 *
 | |
| 	 * So, we do
 | |
| 	 * 1. pre_start <- When we are sure that jiffy switch hasn't happened
 | |
| 	 * 2. check jiffy switch
 | |
| 	 * 3. start <- timer value before or after jiffy switch
 | |
| 	 * 4. post_start <- When we are sure that jiffy switch has happened
 | |
| 	 *
 | |
| 	 * Note, we don't know anything about order of 2 and 3.
 | |
| 	 * Now, by looking at post_start and pre_start difference, we can
 | |
| 	 * check whether any asynchronous event happened or not
 | |
| 	 */
 | |
| 
 | |
| 	for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
 | |
| 		pre_start = 0;
 | |
| 		read_current_timer(&start);
 | |
| 		start_jiffies = jiffies;
 | |
| 		while (time_before_eq(jiffies, start_jiffies + 1)) {
 | |
| 			pre_start = start;
 | |
| 			read_current_timer(&start);
 | |
| 		}
 | |
| 		read_current_timer(&post_start);
 | |
| 
 | |
| 		pre_end = 0;
 | |
| 		end = post_start;
 | |
| 		while (time_before_eq(jiffies, start_jiffies + 1 +
 | |
| 					       DELAY_CALIBRATION_TICKS)) {
 | |
| 			pre_end = end;
 | |
| 			read_current_timer(&end);
 | |
| 		}
 | |
| 		read_current_timer(&post_end);
 | |
| 
 | |
| 		timer_rate_max = (post_end - pre_start) /
 | |
| 					DELAY_CALIBRATION_TICKS;
 | |
| 		timer_rate_min = (pre_end - post_start) /
 | |
| 					DELAY_CALIBRATION_TICKS;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the upper limit and lower limit of the timer_rate is
 | |
| 		 * >= 12.5% apart, redo calibration.
 | |
| 		 */
 | |
| 		if (start >= post_end)
 | |
| 			printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
 | |
| 					"timer_rate as we had a TSC wrap around"
 | |
| 					" start=%lu >=post_end=%lu\n",
 | |
| 				start, post_end);
 | |
| 		if (start < post_end && pre_start != 0 && pre_end != 0 &&
 | |
| 		    (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
 | |
| 			good_timer_count++;
 | |
| 			good_timer_sum += timer_rate_max;
 | |
| 			measured_times[i] = timer_rate_max;
 | |
| 			if (max < 0 || timer_rate_max > measured_times[max])
 | |
| 				max = i;
 | |
| 			if (min < 0 || timer_rate_max < measured_times[min])
 | |
| 				min = i;
 | |
| 		} else
 | |
| 			measured_times[i] = 0;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the maximum & minimum - if they differ too much throw out the
 | |
| 	 * one with the largest difference from the mean and try again...
 | |
| 	 */
 | |
| 	while (good_timer_count > 1) {
 | |
| 		unsigned long estimate;
 | |
| 		unsigned long maxdiff;
 | |
| 
 | |
| 		/* compute the estimate */
 | |
| 		estimate = (good_timer_sum/good_timer_count);
 | |
| 		maxdiff = estimate >> 3;
 | |
| 
 | |
| 		/* if range is within 12% let's take it */
 | |
| 		if ((measured_times[max] - measured_times[min]) < maxdiff)
 | |
| 			return estimate;
 | |
| 
 | |
| 		/* ok - drop the worse value and try again... */
 | |
| 		good_timer_sum = 0;
 | |
| 		good_timer_count = 0;
 | |
| 		if ((measured_times[max] - estimate) <
 | |
| 				(estimate - measured_times[min])) {
 | |
| 			printk(KERN_NOTICE "calibrate_delay_direct() dropping "
 | |
| 					"min bogoMips estimate %d = %lu\n",
 | |
| 				min, measured_times[min]);
 | |
| 			measured_times[min] = 0;
 | |
| 			min = max;
 | |
| 		} else {
 | |
| 			printk(KERN_NOTICE "calibrate_delay_direct() dropping "
 | |
| 					"max bogoMips estimate %d = %lu\n",
 | |
| 				max, measured_times[max]);
 | |
| 			measured_times[max] = 0;
 | |
| 			max = min;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
 | |
| 			if (measured_times[i] == 0)
 | |
| 				continue;
 | |
| 			good_timer_count++;
 | |
| 			good_timer_sum += measured_times[i];
 | |
| 			if (measured_times[i] < measured_times[min])
 | |
| 				min = i;
 | |
| 			if (measured_times[i] > measured_times[max])
 | |
| 				max = i;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
 | |
| 	       "estimate for loops_per_jiffy.\nProbably due to long platform "
 | |
| 		"interrupts. Consider using \"lpj=\" boot option.\n");
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static unsigned long calibrate_delay_direct(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This is the number of bits of precision for the loops_per_jiffy.  Each
 | |
|  * time we refine our estimate after the first takes 1.5/HZ seconds, so try
 | |
|  * to start with a good estimate.
 | |
|  * For the boot cpu we can skip the delay calibration and assign it a value
 | |
|  * calculated based on the timer frequency.
 | |
|  * For the rest of the CPUs we cannot assume that the timer frequency is same as
 | |
|  * the cpu frequency, hence do the calibration for those.
 | |
|  */
 | |
| #define LPS_PREC 8
 | |
| 
 | |
| static unsigned long calibrate_delay_converge(void)
 | |
| {
 | |
| 	/* First stage - slowly accelerate to find initial bounds */
 | |
| 	unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
 | |
| 	int trials = 0, band = 0, trial_in_band = 0;
 | |
| 
 | |
| 	lpj = (1<<12);
 | |
| 
 | |
| 	/* wait for "start of" clock tick */
 | |
| 	ticks = jiffies;
 | |
| 	while (ticks == jiffies)
 | |
| 		; /* nothing */
 | |
| 	/* Go .. */
 | |
| 	ticks = jiffies;
 | |
| 	do {
 | |
| 		if (++trial_in_band == (1<<band)) {
 | |
| 			++band;
 | |
| 			trial_in_band = 0;
 | |
| 		}
 | |
| 		__delay(lpj * band);
 | |
| 		trials += band;
 | |
| 	} while (ticks == jiffies);
 | |
| 	/*
 | |
| 	 * We overshot, so retreat to a clear underestimate. Then estimate
 | |
| 	 * the largest likely undershoot. This defines our chop bounds.
 | |
| 	 */
 | |
| 	trials -= band;
 | |
| 	loopadd_base = lpj * band;
 | |
| 	lpj_base = lpj * trials;
 | |
| 
 | |
| recalibrate:
 | |
| 	lpj = lpj_base;
 | |
| 	loopadd = loopadd_base;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do a binary approximation to get lpj set to
 | |
| 	 * equal one clock (up to LPS_PREC bits)
 | |
| 	 */
 | |
| 	chop_limit = lpj >> LPS_PREC;
 | |
| 	while (loopadd > chop_limit) {
 | |
| 		lpj += loopadd;
 | |
| 		ticks = jiffies;
 | |
| 		while (ticks == jiffies)
 | |
| 			; /* nothing */
 | |
| 		ticks = jiffies;
 | |
| 		__delay(lpj);
 | |
| 		if (jiffies != ticks)	/* longer than 1 tick */
 | |
| 			lpj -= loopadd;
 | |
| 		loopadd >>= 1;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * If we incremented every single time possible, presume we've
 | |
| 	 * massively underestimated initially, and retry with a higher
 | |
| 	 * start, and larger range. (Only seen on x86_64, due to SMIs)
 | |
| 	 */
 | |
| 	if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
 | |
| 		lpj_base = lpj;
 | |
| 		loopadd_base <<= 2;
 | |
| 		goto recalibrate;
 | |
| 	}
 | |
| 
 | |
| 	return lpj;
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(unsigned long, cpu_loops_per_jiffy) = { 0 };
 | |
| 
 | |
| /*
 | |
|  * Check if cpu calibration delay is already known. For example,
 | |
|  * some processors with multi-core sockets may have all cores
 | |
|  * with the same calibration delay.
 | |
|  *
 | |
|  * Architectures should override this function if a faster calibration
 | |
|  * method is available.
 | |
|  */
 | |
| unsigned long __attribute__((weak)) calibrate_delay_is_known(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Indicate the cpu delay calibration is done. This can be used by
 | |
|  * architectures to stop accepting delay timer registrations after this point.
 | |
|  */
 | |
| 
 | |
| void __attribute__((weak)) calibration_delay_done(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| void calibrate_delay(void)
 | |
| {
 | |
| 	unsigned long lpj;
 | |
| 	static bool printed;
 | |
| 	int this_cpu = smp_processor_id();
 | |
| 
 | |
| 	if (per_cpu(cpu_loops_per_jiffy, this_cpu)) {
 | |
| 		lpj = per_cpu(cpu_loops_per_jiffy, this_cpu);
 | |
| 		if (!printed)
 | |
| 			pr_info("Calibrating delay loop (skipped) "
 | |
| 				"already calibrated this CPU");
 | |
| 	} else if (preset_lpj) {
 | |
| 		lpj = preset_lpj;
 | |
| 		if (!printed)
 | |
| 			pr_info("Calibrating delay loop (skipped) "
 | |
| 				"preset value.. ");
 | |
| 	} else if ((!printed) && lpj_fine) {
 | |
| 		lpj = lpj_fine;
 | |
| 		pr_info("Calibrating delay loop (skipped), "
 | |
| 			"value calculated using timer frequency.. ");
 | |
| 	} else if ((lpj = calibrate_delay_is_known())) {
 | |
| 		;
 | |
| 	} else if ((lpj = calibrate_delay_direct()) != 0) {
 | |
| 		if (!printed)
 | |
| 			pr_info("Calibrating delay using timer "
 | |
| 				"specific routine.. ");
 | |
| 	} else {
 | |
| 		if (!printed)
 | |
| 			pr_info("Calibrating delay loop... ");
 | |
| 		lpj = calibrate_delay_converge();
 | |
| 	}
 | |
| 	per_cpu(cpu_loops_per_jiffy, this_cpu) = lpj;
 | |
| 	if (!printed)
 | |
| 		pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
 | |
| 			lpj/(500000/HZ),
 | |
| 			(lpj/(5000/HZ)) % 100, lpj);
 | |
| 
 | |
| 	loops_per_jiffy = lpj;
 | |
| 	printed = true;
 | |
| 
 | |
| 	calibration_delay_done();
 | |
| }
 |