 0eddba525c
			
		
	
	
	0eddba525c
	
	
	
		
			
			Starting with commit a3bc1f11e9 ("gianfar: Revive SKB
recycling") gianfar driver sooner or later stops transmitting any
packets on SMP machines.
start_xmit() prepares new skb for transmitting, generally it does
three things:
1. sets up all BDs (marks them ready to send), except the first one.
2. stores skb into tx_queue->tx_skbuff so that clean_tx_ring()
   would cleanup it later.
3. sets up the first BD, i.e. marks it ready.
Here is what clean_tx_ring() does:
1. reads skbs from tx_queue->tx_skbuff
2. checks if the *last* BD is ready. If it's still ready [to send]
   then it it isn't transmitted, so clean_tx_ring() returns.
   Otherwise it actually cleanups BDs. All is OK.
Now, if there is just one BD, code flow:
- start_xmit(): stores skb into tx_skbuff. Note that the first BD
  (which is also the last one) isn't marked as ready, yet.
- clean_tx_ring(): sees that skb is not null, *and* its lstatus
  says that it is NOT ready (like if BD was sent), so it cleans
  it up (bad!)
- start_xmit(): marks BD as ready [to send], but it's too late.
We can fix this simply by reordering lstatus/tx_skbuff writes.
Reported-by: Martyn Welch <martyn.welch@ge.com>
Bisected-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Tested-by: Martyn Welch <martyn.welch@ge.com>
Cc: Sandeep Gopalpet <Sandeep.Kumar@freescale.com>
Cc: Stable <stable@vger.kernel.org> [2.6.33]
Signed-off-by: David S. Miller <davem@davemloft.net>
		
	
			
		
			
				
	
	
		
			3078 lines
		
	
	
	
		
			80 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3078 lines
		
	
	
	
		
			80 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * drivers/net/gianfar.c
 | |
|  *
 | |
|  * Gianfar Ethernet Driver
 | |
|  * This driver is designed for the non-CPM ethernet controllers
 | |
|  * on the 85xx and 83xx family of integrated processors
 | |
|  * Based on 8260_io/fcc_enet.c
 | |
|  *
 | |
|  * Author: Andy Fleming
 | |
|  * Maintainer: Kumar Gala
 | |
|  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
 | |
|  *
 | |
|  * Copyright 2002-2009 Freescale Semiconductor, Inc.
 | |
|  * Copyright 2007 MontaVista Software, Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute  it and/or modify it
 | |
|  * under  the terms of  the GNU General  Public License as published by the
 | |
|  * Free Software Foundation;  either version 2 of the  License, or (at your
 | |
|  * option) any later version.
 | |
|  *
 | |
|  *  Gianfar:  AKA Lambda Draconis, "Dragon"
 | |
|  *  RA 11 31 24.2
 | |
|  *  Dec +69 19 52
 | |
|  *  V 3.84
 | |
|  *  B-V +1.62
 | |
|  *
 | |
|  *  Theory of operation
 | |
|  *
 | |
|  *  The driver is initialized through of_device. Configuration information
 | |
|  *  is therefore conveyed through an OF-style device tree.
 | |
|  *
 | |
|  *  The Gianfar Ethernet Controller uses a ring of buffer
 | |
|  *  descriptors.  The beginning is indicated by a register
 | |
|  *  pointing to the physical address of the start of the ring.
 | |
|  *  The end is determined by a "wrap" bit being set in the
 | |
|  *  last descriptor of the ring.
 | |
|  *
 | |
|  *  When a packet is received, the RXF bit in the
 | |
|  *  IEVENT register is set, triggering an interrupt when the
 | |
|  *  corresponding bit in the IMASK register is also set (if
 | |
|  *  interrupt coalescing is active, then the interrupt may not
 | |
|  *  happen immediately, but will wait until either a set number
 | |
|  *  of frames or amount of time have passed).  In NAPI, the
 | |
|  *  interrupt handler will signal there is work to be done, and
 | |
|  *  exit. This method will start at the last known empty
 | |
|  *  descriptor, and process every subsequent descriptor until there
 | |
|  *  are none left with data (NAPI will stop after a set number of
 | |
|  *  packets to give time to other tasks, but will eventually
 | |
|  *  process all the packets).  The data arrives inside a
 | |
|  *  pre-allocated skb, and so after the skb is passed up to the
 | |
|  *  stack, a new skb must be allocated, and the address field in
 | |
|  *  the buffer descriptor must be updated to indicate this new
 | |
|  *  skb.
 | |
|  *
 | |
|  *  When the kernel requests that a packet be transmitted, the
 | |
|  *  driver starts where it left off last time, and points the
 | |
|  *  descriptor at the buffer which was passed in.  The driver
 | |
|  *  then informs the DMA engine that there are packets ready to
 | |
|  *  be transmitted.  Once the controller is finished transmitting
 | |
|  *  the packet, an interrupt may be triggered (under the same
 | |
|  *  conditions as for reception, but depending on the TXF bit).
 | |
|  *  The driver then cleans up the buffer.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/unistd.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/if_vlan.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/of_mdio.h>
 | |
| #include <linux/of_platform.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/tcp.h>
 | |
| #include <linux/udp.h>
 | |
| #include <linux/in.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/mii.h>
 | |
| #include <linux/phy.h>
 | |
| #include <linux/phy_fixed.h>
 | |
| #include <linux/of.h>
 | |
| 
 | |
| #include "gianfar.h"
 | |
| #include "fsl_pq_mdio.h"
 | |
| 
 | |
| #define TX_TIMEOUT      (1*HZ)
 | |
| #undef BRIEF_GFAR_ERRORS
 | |
| #undef VERBOSE_GFAR_ERRORS
 | |
| 
 | |
| const char gfar_driver_name[] = "Gianfar Ethernet";
 | |
| const char gfar_driver_version[] = "1.3";
 | |
| 
 | |
| static int gfar_enet_open(struct net_device *dev);
 | |
| static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
 | |
| static void gfar_reset_task(struct work_struct *work);
 | |
| static void gfar_timeout(struct net_device *dev);
 | |
| static int gfar_close(struct net_device *dev);
 | |
| struct sk_buff *gfar_new_skb(struct net_device *dev);
 | |
| static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 | |
| 		struct sk_buff *skb);
 | |
| static int gfar_set_mac_address(struct net_device *dev);
 | |
| static int gfar_change_mtu(struct net_device *dev, int new_mtu);
 | |
| static irqreturn_t gfar_error(int irq, void *dev_id);
 | |
| static irqreturn_t gfar_transmit(int irq, void *dev_id);
 | |
| static irqreturn_t gfar_interrupt(int irq, void *dev_id);
 | |
| static void adjust_link(struct net_device *dev);
 | |
| static void init_registers(struct net_device *dev);
 | |
| static int init_phy(struct net_device *dev);
 | |
| static int gfar_probe(struct of_device *ofdev,
 | |
| 		const struct of_device_id *match);
 | |
| static int gfar_remove(struct of_device *ofdev);
 | |
| static void free_skb_resources(struct gfar_private *priv);
 | |
| static void gfar_set_multi(struct net_device *dev);
 | |
| static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
 | |
| static void gfar_configure_serdes(struct net_device *dev);
 | |
| static int gfar_poll(struct napi_struct *napi, int budget);
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| static void gfar_netpoll(struct net_device *dev);
 | |
| #endif
 | |
| int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
 | |
| static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
 | |
| static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
 | |
| 			      int amount_pull);
 | |
| static void gfar_vlan_rx_register(struct net_device *netdev,
 | |
| 		                struct vlan_group *grp);
 | |
| void gfar_halt(struct net_device *dev);
 | |
| static void gfar_halt_nodisable(struct net_device *dev);
 | |
| void gfar_start(struct net_device *dev);
 | |
| static void gfar_clear_exact_match(struct net_device *dev);
 | |
| static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
 | |
| static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 | |
| 
 | |
| MODULE_AUTHOR("Freescale Semiconductor, Inc");
 | |
| MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 | |
| 			    dma_addr_t buf)
 | |
| {
 | |
| 	u32 lstatus;
 | |
| 
 | |
| 	bdp->bufPtr = buf;
 | |
| 
 | |
| 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 | |
| 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 | |
| 		lstatus |= BD_LFLAG(RXBD_WRAP);
 | |
| 
 | |
| 	eieio();
 | |
| 
 | |
| 	bdp->lstatus = lstatus;
 | |
| }
 | |
| 
 | |
| static int gfar_init_bds(struct net_device *ndev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(ndev);
 | |
| 	struct gfar_priv_tx_q *tx_queue = NULL;
 | |
| 	struct gfar_priv_rx_q *rx_queue = NULL;
 | |
| 	struct txbd8 *txbdp;
 | |
| 	struct rxbd8 *rxbdp;
 | |
| 	int i, j;
 | |
| 
 | |
| 	for (i = 0; i < priv->num_tx_queues; i++) {
 | |
| 		tx_queue = priv->tx_queue[i];
 | |
| 		/* Initialize some variables in our dev structure */
 | |
| 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
 | |
| 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
 | |
| 		tx_queue->cur_tx = tx_queue->tx_bd_base;
 | |
| 		tx_queue->skb_curtx = 0;
 | |
| 		tx_queue->skb_dirtytx = 0;
 | |
| 
 | |
| 		/* Initialize Transmit Descriptor Ring */
 | |
| 		txbdp = tx_queue->tx_bd_base;
 | |
| 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
 | |
| 			txbdp->lstatus = 0;
 | |
| 			txbdp->bufPtr = 0;
 | |
| 			txbdp++;
 | |
| 		}
 | |
| 
 | |
| 		/* Set the last descriptor in the ring to indicate wrap */
 | |
| 		txbdp--;
 | |
| 		txbdp->status |= TXBD_WRAP;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < priv->num_rx_queues; i++) {
 | |
| 		rx_queue = priv->rx_queue[i];
 | |
| 		rx_queue->cur_rx = rx_queue->rx_bd_base;
 | |
| 		rx_queue->skb_currx = 0;
 | |
| 		rxbdp = rx_queue->rx_bd_base;
 | |
| 
 | |
| 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
 | |
| 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
 | |
| 
 | |
| 			if (skb) {
 | |
| 				gfar_init_rxbdp(rx_queue, rxbdp,
 | |
| 						rxbdp->bufPtr);
 | |
| 			} else {
 | |
| 				skb = gfar_new_skb(ndev);
 | |
| 				if (!skb) {
 | |
| 					pr_err("%s: Can't allocate RX buffers\n",
 | |
| 							ndev->name);
 | |
| 					goto err_rxalloc_fail;
 | |
| 				}
 | |
| 				rx_queue->rx_skbuff[j] = skb;
 | |
| 
 | |
| 				gfar_new_rxbdp(rx_queue, rxbdp, skb);
 | |
| 			}
 | |
| 
 | |
| 			rxbdp++;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_rxalloc_fail:
 | |
| 	free_skb_resources(priv);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int gfar_alloc_skb_resources(struct net_device *ndev)
 | |
| {
 | |
| 	void *vaddr;
 | |
| 	dma_addr_t addr;
 | |
| 	int i, j, k;
 | |
| 	struct gfar_private *priv = netdev_priv(ndev);
 | |
| 	struct device *dev = &priv->ofdev->dev;
 | |
| 	struct gfar_priv_tx_q *tx_queue = NULL;
 | |
| 	struct gfar_priv_rx_q *rx_queue = NULL;
 | |
| 
 | |
| 	priv->total_tx_ring_size = 0;
 | |
| 	for (i = 0; i < priv->num_tx_queues; i++)
 | |
| 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
 | |
| 
 | |
| 	priv->total_rx_ring_size = 0;
 | |
| 	for (i = 0; i < priv->num_rx_queues; i++)
 | |
| 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
 | |
| 
 | |
| 	/* Allocate memory for the buffer descriptors */
 | |
| 	vaddr = dma_alloc_coherent(dev,
 | |
| 			sizeof(struct txbd8) * priv->total_tx_ring_size +
 | |
| 			sizeof(struct rxbd8) * priv->total_rx_ring_size,
 | |
| 			&addr, GFP_KERNEL);
 | |
| 	if (!vaddr) {
 | |
| 		if (netif_msg_ifup(priv))
 | |
| 			pr_err("%s: Could not allocate buffer descriptors!\n",
 | |
| 			       ndev->name);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < priv->num_tx_queues; i++) {
 | |
| 		tx_queue = priv->tx_queue[i];
 | |
| 		tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
 | |
| 		tx_queue->tx_bd_dma_base = addr;
 | |
| 		tx_queue->dev = ndev;
 | |
| 		/* enet DMA only understands physical addresses */
 | |
| 		addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
 | |
| 		vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
 | |
| 	}
 | |
| 
 | |
| 	/* Start the rx descriptor ring where the tx ring leaves off */
 | |
| 	for (i = 0; i < priv->num_rx_queues; i++) {
 | |
| 		rx_queue = priv->rx_queue[i];
 | |
| 		rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
 | |
| 		rx_queue->rx_bd_dma_base = addr;
 | |
| 		rx_queue->dev = ndev;
 | |
| 		addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
 | |
| 		vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
 | |
| 	}
 | |
| 
 | |
| 	/* Setup the skbuff rings */
 | |
| 	for (i = 0; i < priv->num_tx_queues; i++) {
 | |
| 		tx_queue = priv->tx_queue[i];
 | |
| 		tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
 | |
| 				  tx_queue->tx_ring_size, GFP_KERNEL);
 | |
| 		if (!tx_queue->tx_skbuff) {
 | |
| 			if (netif_msg_ifup(priv))
 | |
| 				pr_err("%s: Could not allocate tx_skbuff\n",
 | |
| 						ndev->name);
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 
 | |
| 		for (k = 0; k < tx_queue->tx_ring_size; k++)
 | |
| 			tx_queue->tx_skbuff[k] = NULL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < priv->num_rx_queues; i++) {
 | |
| 		rx_queue = priv->rx_queue[i];
 | |
| 		rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
 | |
| 				  rx_queue->rx_ring_size, GFP_KERNEL);
 | |
| 
 | |
| 		if (!rx_queue->rx_skbuff) {
 | |
| 			if (netif_msg_ifup(priv))
 | |
| 				pr_err("%s: Could not allocate rx_skbuff\n",
 | |
| 				       ndev->name);
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 
 | |
| 		for (j = 0; j < rx_queue->rx_ring_size; j++)
 | |
| 			rx_queue->rx_skbuff[j] = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (gfar_init_bds(ndev))
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| cleanup:
 | |
| 	free_skb_resources(priv);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void gfar_init_tx_rx_base(struct gfar_private *priv)
 | |
| {
 | |
| 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 | |
| 	u32 __iomem *baddr;
 | |
| 	int i;
 | |
| 
 | |
| 	baddr = ®s->tbase0;
 | |
| 	for(i = 0; i < priv->num_tx_queues; i++) {
 | |
| 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 | |
| 		baddr	+= 2;
 | |
| 	}
 | |
| 
 | |
| 	baddr = ®s->rbase0;
 | |
| 	for(i = 0; i < priv->num_rx_queues; i++) {
 | |
| 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 | |
| 		baddr   += 2;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void gfar_init_mac(struct net_device *ndev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(ndev);
 | |
| 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 | |
| 	u32 rctrl = 0;
 | |
| 	u32 tctrl = 0;
 | |
| 	u32 attrs = 0;
 | |
| 
 | |
| 	/* write the tx/rx base registers */
 | |
| 	gfar_init_tx_rx_base(priv);
 | |
| 
 | |
| 	/* Configure the coalescing support */
 | |
| 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 | |
| 
 | |
| 	if (priv->rx_filer_enable) {
 | |
| 		rctrl |= RCTRL_FILREN;
 | |
| 		/* Program the RIR0 reg with the required distribution */
 | |
| 		gfar_write(®s->rir0, DEFAULT_RIR0);
 | |
| 	}
 | |
| 
 | |
| 	if (priv->rx_csum_enable)
 | |
| 		rctrl |= RCTRL_CHECKSUMMING;
 | |
| 
 | |
| 	if (priv->extended_hash) {
 | |
| 		rctrl |= RCTRL_EXTHASH;
 | |
| 
 | |
| 		gfar_clear_exact_match(ndev);
 | |
| 		rctrl |= RCTRL_EMEN;
 | |
| 	}
 | |
| 
 | |
| 	if (priv->padding) {
 | |
| 		rctrl &= ~RCTRL_PAL_MASK;
 | |
| 		rctrl |= RCTRL_PADDING(priv->padding);
 | |
| 	}
 | |
| 
 | |
| 	/* keep vlan related bits if it's enabled */
 | |
| 	if (priv->vlgrp) {
 | |
| 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 | |
| 		tctrl |= TCTRL_VLINS;
 | |
| 	}
 | |
| 
 | |
| 	/* Init rctrl based on our settings */
 | |
| 	gfar_write(®s->rctrl, rctrl);
 | |
| 
 | |
| 	if (ndev->features & NETIF_F_IP_CSUM)
 | |
| 		tctrl |= TCTRL_INIT_CSUM;
 | |
| 
 | |
| 	tctrl |= TCTRL_TXSCHED_PRIO;
 | |
| 
 | |
| 	gfar_write(®s->tctrl, tctrl);
 | |
| 
 | |
| 	/* Set the extraction length and index */
 | |
| 	attrs = ATTRELI_EL(priv->rx_stash_size) |
 | |
| 		ATTRELI_EI(priv->rx_stash_index);
 | |
| 
 | |
| 	gfar_write(®s->attreli, attrs);
 | |
| 
 | |
| 	/* Start with defaults, and add stashing or locking
 | |
| 	 * depending on the approprate variables */
 | |
| 	attrs = ATTR_INIT_SETTINGS;
 | |
| 
 | |
| 	if (priv->bd_stash_en)
 | |
| 		attrs |= ATTR_BDSTASH;
 | |
| 
 | |
| 	if (priv->rx_stash_size != 0)
 | |
| 		attrs |= ATTR_BUFSTASH;
 | |
| 
 | |
| 	gfar_write(®s->attr, attrs);
 | |
| 
 | |
| 	gfar_write(®s->fifo_tx_thr, priv->fifo_threshold);
 | |
| 	gfar_write(®s->fifo_tx_starve, priv->fifo_starve);
 | |
| 	gfar_write(®s->fifo_tx_starve_shutoff, priv->fifo_starve_off);
 | |
| }
 | |
| 
 | |
| static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct netdev_queue *txq;
 | |
| 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 | |
| 	unsigned long tx_packets = 0, tx_bytes = 0;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	for (i = 0; i < priv->num_rx_queues; i++) {
 | |
| 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
 | |
| 		rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
 | |
| 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 | |
| 	}
 | |
| 
 | |
| 	dev->stats.rx_packets = rx_packets;
 | |
| 	dev->stats.rx_bytes = rx_bytes;
 | |
| 	dev->stats.rx_dropped = rx_dropped;
 | |
| 
 | |
| 	for (i = 0; i < priv->num_tx_queues; i++) {
 | |
| 		txq = netdev_get_tx_queue(dev, i);
 | |
| 		tx_bytes += txq->tx_bytes;
 | |
| 		tx_packets += txq->tx_packets;
 | |
| 	}
 | |
| 
 | |
| 	dev->stats.tx_bytes = tx_bytes;
 | |
| 	dev->stats.tx_packets = tx_packets;
 | |
| 
 | |
| 	return &dev->stats;
 | |
| }
 | |
| 
 | |
| static const struct net_device_ops gfar_netdev_ops = {
 | |
| 	.ndo_open = gfar_enet_open,
 | |
| 	.ndo_start_xmit = gfar_start_xmit,
 | |
| 	.ndo_stop = gfar_close,
 | |
| 	.ndo_change_mtu = gfar_change_mtu,
 | |
| 	.ndo_set_multicast_list = gfar_set_multi,
 | |
| 	.ndo_tx_timeout = gfar_timeout,
 | |
| 	.ndo_do_ioctl = gfar_ioctl,
 | |
| 	.ndo_get_stats = gfar_get_stats,
 | |
| 	.ndo_vlan_rx_register = gfar_vlan_rx_register,
 | |
| 	.ndo_set_mac_address = eth_mac_addr,
 | |
| 	.ndo_validate_addr = eth_validate_addr,
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| 	.ndo_poll_controller = gfar_netpoll,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
 | |
| unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
 | |
| 
 | |
| void lock_rx_qs(struct gfar_private *priv)
 | |
| {
 | |
| 	int i = 0x0;
 | |
| 
 | |
| 	for (i = 0; i < priv->num_rx_queues; i++)
 | |
| 		spin_lock(&priv->rx_queue[i]->rxlock);
 | |
| }
 | |
| 
 | |
| void lock_tx_qs(struct gfar_private *priv)
 | |
| {
 | |
| 	int i = 0x0;
 | |
| 
 | |
| 	for (i = 0; i < priv->num_tx_queues; i++)
 | |
| 		spin_lock(&priv->tx_queue[i]->txlock);
 | |
| }
 | |
| 
 | |
| void unlock_rx_qs(struct gfar_private *priv)
 | |
| {
 | |
| 	int i = 0x0;
 | |
| 
 | |
| 	for (i = 0; i < priv->num_rx_queues; i++)
 | |
| 		spin_unlock(&priv->rx_queue[i]->rxlock);
 | |
| }
 | |
| 
 | |
| void unlock_tx_qs(struct gfar_private *priv)
 | |
| {
 | |
| 	int i = 0x0;
 | |
| 
 | |
| 	for (i = 0; i < priv->num_tx_queues; i++)
 | |
| 		spin_unlock(&priv->tx_queue[i]->txlock);
 | |
| }
 | |
| 
 | |
| /* Returns 1 if incoming frames use an FCB */
 | |
| static inline int gfar_uses_fcb(struct gfar_private *priv)
 | |
| {
 | |
| 	return priv->vlgrp || priv->rx_csum_enable;
 | |
| }
 | |
| 
 | |
| static void free_tx_pointers(struct gfar_private *priv)
 | |
| {
 | |
| 	int i = 0;
 | |
| 
 | |
| 	for (i = 0; i < priv->num_tx_queues; i++)
 | |
| 		kfree(priv->tx_queue[i]);
 | |
| }
 | |
| 
 | |
| static void free_rx_pointers(struct gfar_private *priv)
 | |
| {
 | |
| 	int i = 0;
 | |
| 
 | |
| 	for (i = 0; i < priv->num_rx_queues; i++)
 | |
| 		kfree(priv->rx_queue[i]);
 | |
| }
 | |
| 
 | |
| static void unmap_group_regs(struct gfar_private *priv)
 | |
| {
 | |
| 	int i = 0;
 | |
| 
 | |
| 	for (i = 0; i < MAXGROUPS; i++)
 | |
| 		if (priv->gfargrp[i].regs)
 | |
| 			iounmap(priv->gfargrp[i].regs);
 | |
| }
 | |
| 
 | |
| static void disable_napi(struct gfar_private *priv)
 | |
| {
 | |
| 	int i = 0;
 | |
| 
 | |
| 	for (i = 0; i < priv->num_grps; i++)
 | |
| 		napi_disable(&priv->gfargrp[i].napi);
 | |
| }
 | |
| 
 | |
| static void enable_napi(struct gfar_private *priv)
 | |
| {
 | |
| 	int i = 0;
 | |
| 
 | |
| 	for (i = 0; i < priv->num_grps; i++)
 | |
| 		napi_enable(&priv->gfargrp[i].napi);
 | |
| }
 | |
| 
 | |
| static int gfar_parse_group(struct device_node *np,
 | |
| 		struct gfar_private *priv, const char *model)
 | |
| {
 | |
| 	u32 *queue_mask;
 | |
| 	u64 addr, size;
 | |
| 
 | |
| 	addr = of_translate_address(np,
 | |
| 			of_get_address(np, 0, &size, NULL));
 | |
| 	priv->gfargrp[priv->num_grps].regs = ioremap(addr, size);
 | |
| 
 | |
| 	if (!priv->gfargrp[priv->num_grps].regs)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	priv->gfargrp[priv->num_grps].interruptTransmit =
 | |
| 			irq_of_parse_and_map(np, 0);
 | |
| 
 | |
| 	/* If we aren't the FEC we have multiple interrupts */
 | |
| 	if (model && strcasecmp(model, "FEC")) {
 | |
| 		priv->gfargrp[priv->num_grps].interruptReceive =
 | |
| 			irq_of_parse_and_map(np, 1);
 | |
| 		priv->gfargrp[priv->num_grps].interruptError =
 | |
| 			irq_of_parse_and_map(np,2);
 | |
| 		if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
 | |
| 			priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
 | |
| 			priv->gfargrp[priv->num_grps].interruptError < 0) {
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
 | |
| 	priv->gfargrp[priv->num_grps].priv = priv;
 | |
| 	spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
 | |
| 	if(priv->mode == MQ_MG_MODE) {
 | |
| 		queue_mask = (u32 *)of_get_property(np,
 | |
| 					"fsl,rx-bit-map", NULL);
 | |
| 		priv->gfargrp[priv->num_grps].rx_bit_map =
 | |
| 			queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
 | |
| 		queue_mask = (u32 *)of_get_property(np,
 | |
| 					"fsl,tx-bit-map", NULL);
 | |
| 		priv->gfargrp[priv->num_grps].tx_bit_map =
 | |
| 			queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
 | |
| 	} else {
 | |
| 		priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
 | |
| 		priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
 | |
| 	}
 | |
| 	priv->num_grps++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int gfar_of_init(struct of_device *ofdev, struct net_device **pdev)
 | |
| {
 | |
| 	const char *model;
 | |
| 	const char *ctype;
 | |
| 	const void *mac_addr;
 | |
| 	int err = 0, i;
 | |
| 	struct net_device *dev = NULL;
 | |
| 	struct gfar_private *priv = NULL;
 | |
| 	struct device_node *np = ofdev->node;
 | |
| 	struct device_node *child = NULL;
 | |
| 	const u32 *stash;
 | |
| 	const u32 *stash_len;
 | |
| 	const u32 *stash_idx;
 | |
| 	unsigned int num_tx_qs, num_rx_qs;
 | |
| 	u32 *tx_queues, *rx_queues;
 | |
| 
 | |
| 	if (!np || !of_device_is_available(np))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* parse the num of tx and rx queues */
 | |
| 	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
 | |
| 	num_tx_qs = tx_queues ? *tx_queues : 1;
 | |
| 
 | |
| 	if (num_tx_qs > MAX_TX_QS) {
 | |
| 		printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 | |
| 				num_tx_qs, MAX_TX_QS);
 | |
| 		printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
 | |
| 	num_rx_qs = rx_queues ? *rx_queues : 1;
 | |
| 
 | |
| 	if (num_rx_qs > MAX_RX_QS) {
 | |
| 		printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 | |
| 				num_tx_qs, MAX_TX_QS);
 | |
| 		printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 | |
| 	dev = *pdev;
 | |
| 	if (NULL == dev)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	priv = netdev_priv(dev);
 | |
| 	priv->node = ofdev->node;
 | |
| 	priv->ndev = dev;
 | |
| 
 | |
| 	dev->num_tx_queues = num_tx_qs;
 | |
| 	dev->real_num_tx_queues = num_tx_qs;
 | |
| 	priv->num_tx_queues = num_tx_qs;
 | |
| 	priv->num_rx_queues = num_rx_qs;
 | |
| 	priv->num_grps = 0x0;
 | |
| 
 | |
| 	model = of_get_property(np, "model", NULL);
 | |
| 
 | |
| 	for (i = 0; i < MAXGROUPS; i++)
 | |
| 		priv->gfargrp[i].regs = NULL;
 | |
| 
 | |
| 	/* Parse and initialize group specific information */
 | |
| 	if (of_device_is_compatible(np, "fsl,etsec2")) {
 | |
| 		priv->mode = MQ_MG_MODE;
 | |
| 		for_each_child_of_node(np, child) {
 | |
| 			err = gfar_parse_group(child, priv, model);
 | |
| 			if (err)
 | |
| 				goto err_grp_init;
 | |
| 		}
 | |
| 	} else {
 | |
| 		priv->mode = SQ_SG_MODE;
 | |
| 		err = gfar_parse_group(np, priv, model);
 | |
| 		if(err)
 | |
| 			goto err_grp_init;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < priv->num_tx_queues; i++)
 | |
| 	       priv->tx_queue[i] = NULL;
 | |
| 	for (i = 0; i < priv->num_rx_queues; i++)
 | |
| 		priv->rx_queue[i] = NULL;
 | |
| 
 | |
| 	for (i = 0; i < priv->num_tx_queues; i++) {
 | |
| 		priv->tx_queue[i] =  (struct gfar_priv_tx_q *)kmalloc(
 | |
| 				sizeof (struct gfar_priv_tx_q), GFP_KERNEL);
 | |
| 		if (!priv->tx_queue[i]) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto tx_alloc_failed;
 | |
| 		}
 | |
| 		priv->tx_queue[i]->tx_skbuff = NULL;
 | |
| 		priv->tx_queue[i]->qindex = i;
 | |
| 		priv->tx_queue[i]->dev = dev;
 | |
| 		spin_lock_init(&(priv->tx_queue[i]->txlock));
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < priv->num_rx_queues; i++) {
 | |
| 		priv->rx_queue[i] = (struct gfar_priv_rx_q *)kmalloc(
 | |
| 					sizeof (struct gfar_priv_rx_q), GFP_KERNEL);
 | |
| 		if (!priv->rx_queue[i]) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto rx_alloc_failed;
 | |
| 		}
 | |
| 		priv->rx_queue[i]->rx_skbuff = NULL;
 | |
| 		priv->rx_queue[i]->qindex = i;
 | |
| 		priv->rx_queue[i]->dev = dev;
 | |
| 		spin_lock_init(&(priv->rx_queue[i]->rxlock));
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	stash = of_get_property(np, "bd-stash", NULL);
 | |
| 
 | |
| 	if (stash) {
 | |
| 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 | |
| 		priv->bd_stash_en = 1;
 | |
| 	}
 | |
| 
 | |
| 	stash_len = of_get_property(np, "rx-stash-len", NULL);
 | |
| 
 | |
| 	if (stash_len)
 | |
| 		priv->rx_stash_size = *stash_len;
 | |
| 
 | |
| 	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
 | |
| 
 | |
| 	if (stash_idx)
 | |
| 		priv->rx_stash_index = *stash_idx;
 | |
| 
 | |
| 	if (stash_len || stash_idx)
 | |
| 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 | |
| 
 | |
| 	mac_addr = of_get_mac_address(np);
 | |
| 	if (mac_addr)
 | |
| 		memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
 | |
| 
 | |
| 	if (model && !strcasecmp(model, "TSEC"))
 | |
| 		priv->device_flags =
 | |
| 			FSL_GIANFAR_DEV_HAS_GIGABIT |
 | |
| 			FSL_GIANFAR_DEV_HAS_COALESCE |
 | |
| 			FSL_GIANFAR_DEV_HAS_RMON |
 | |
| 			FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 | |
| 	if (model && !strcasecmp(model, "eTSEC"))
 | |
| 		priv->device_flags =
 | |
| 			FSL_GIANFAR_DEV_HAS_GIGABIT |
 | |
| 			FSL_GIANFAR_DEV_HAS_COALESCE |
 | |
| 			FSL_GIANFAR_DEV_HAS_RMON |
 | |
| 			FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 | |
| 			FSL_GIANFAR_DEV_HAS_PADDING |
 | |
| 			FSL_GIANFAR_DEV_HAS_CSUM |
 | |
| 			FSL_GIANFAR_DEV_HAS_VLAN |
 | |
| 			FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 | |
| 			FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
 | |
| 
 | |
| 	ctype = of_get_property(np, "phy-connection-type", NULL);
 | |
| 
 | |
| 	/* We only care about rgmii-id.  The rest are autodetected */
 | |
| 	if (ctype && !strcmp(ctype, "rgmii-id"))
 | |
| 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
 | |
| 	else
 | |
| 		priv->interface = PHY_INTERFACE_MODE_MII;
 | |
| 
 | |
| 	if (of_get_property(np, "fsl,magic-packet", NULL))
 | |
| 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 | |
| 
 | |
| 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 | |
| 
 | |
| 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
 | |
| 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| rx_alloc_failed:
 | |
| 	free_rx_pointers(priv);
 | |
| tx_alloc_failed:
 | |
| 	free_tx_pointers(priv);
 | |
| err_grp_init:
 | |
| 	unmap_group_regs(priv);
 | |
| 	free_netdev(dev);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Ioctl MII Interface */
 | |
| static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 
 | |
| 	if (!netif_running(dev))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!priv->phydev)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
 | |
| }
 | |
| 
 | |
| static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
 | |
| {
 | |
| 	unsigned int new_bit_map = 0x0;
 | |
| 	int mask = 0x1 << (max_qs - 1), i;
 | |
| 	for (i = 0; i < max_qs; i++) {
 | |
| 		if (bit_map & mask)
 | |
| 			new_bit_map = new_bit_map + (1 << i);
 | |
| 		mask = mask >> 0x1;
 | |
| 	}
 | |
| 	return new_bit_map;
 | |
| }
 | |
| 
 | |
| static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 | |
| 				   u32 class)
 | |
| {
 | |
| 	u32 rqfpr = FPR_FILER_MASK;
 | |
| 	u32 rqfcr = 0x0;
 | |
| 
 | |
| 	rqfar--;
 | |
| 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 | |
| 	ftp_rqfpr[rqfar] = rqfpr;
 | |
| 	ftp_rqfcr[rqfar] = rqfcr;
 | |
| 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 | |
| 
 | |
| 	rqfar--;
 | |
| 	rqfcr = RQFCR_CMP_NOMATCH;
 | |
| 	ftp_rqfpr[rqfar] = rqfpr;
 | |
| 	ftp_rqfcr[rqfar] = rqfcr;
 | |
| 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 | |
| 
 | |
| 	rqfar--;
 | |
| 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 | |
| 	rqfpr = class;
 | |
| 	ftp_rqfcr[rqfar] = rqfcr;
 | |
| 	ftp_rqfpr[rqfar] = rqfpr;
 | |
| 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 | |
| 
 | |
| 	rqfar--;
 | |
| 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 | |
| 	rqfpr = class;
 | |
| 	ftp_rqfcr[rqfar] = rqfcr;
 | |
| 	ftp_rqfpr[rqfar] = rqfpr;
 | |
| 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 | |
| 
 | |
| 	return rqfar;
 | |
| }
 | |
| 
 | |
| static void gfar_init_filer_table(struct gfar_private *priv)
 | |
| {
 | |
| 	int i = 0x0;
 | |
| 	u32 rqfar = MAX_FILER_IDX;
 | |
| 	u32 rqfcr = 0x0;
 | |
| 	u32 rqfpr = FPR_FILER_MASK;
 | |
| 
 | |
| 	/* Default rule */
 | |
| 	rqfcr = RQFCR_CMP_MATCH;
 | |
| 	ftp_rqfcr[rqfar] = rqfcr;
 | |
| 	ftp_rqfpr[rqfar] = rqfpr;
 | |
| 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 | |
| 
 | |
| 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 | |
| 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 | |
| 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 | |
| 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 | |
| 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 | |
| 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 | |
| 
 | |
| 	/* cur_filer_idx indicated the fisrt non-masked rule */
 | |
| 	priv->cur_filer_idx = rqfar;
 | |
| 
 | |
| 	/* Rest are masked rules */
 | |
| 	rqfcr = RQFCR_CMP_NOMATCH;
 | |
| 	for (i = 0; i < rqfar; i++) {
 | |
| 		ftp_rqfcr[i] = rqfcr;
 | |
| 		ftp_rqfpr[i] = rqfpr;
 | |
| 		gfar_write_filer(priv, i, rqfcr, rqfpr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Set up the ethernet device structure, private data,
 | |
|  * and anything else we need before we start */
 | |
| static int gfar_probe(struct of_device *ofdev,
 | |
| 		const struct of_device_id *match)
 | |
| {
 | |
| 	u32 tempval;
 | |
| 	struct net_device *dev = NULL;
 | |
| 	struct gfar_private *priv = NULL;
 | |
| 	struct gfar __iomem *regs = NULL;
 | |
| 	int err = 0, i, grp_idx = 0;
 | |
| 	int len_devname;
 | |
| 	u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
 | |
| 	u32 isrg = 0;
 | |
| 	u32 __iomem *baddr;
 | |
| 
 | |
| 	err = gfar_of_init(ofdev, &dev);
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	priv = netdev_priv(dev);
 | |
| 	priv->ndev = dev;
 | |
| 	priv->ofdev = ofdev;
 | |
| 	priv->node = ofdev->node;
 | |
| 	SET_NETDEV_DEV(dev, &ofdev->dev);
 | |
| 
 | |
| 	spin_lock_init(&priv->bflock);
 | |
| 	INIT_WORK(&priv->reset_task, gfar_reset_task);
 | |
| 
 | |
| 	dev_set_drvdata(&ofdev->dev, priv);
 | |
| 	regs = priv->gfargrp[0].regs;
 | |
| 
 | |
| 	/* Stop the DMA engine now, in case it was running before */
 | |
| 	/* (The firmware could have used it, and left it running). */
 | |
| 	gfar_halt(dev);
 | |
| 
 | |
| 	/* Reset MAC layer */
 | |
| 	gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET);
 | |
| 
 | |
| 	/* We need to delay at least 3 TX clocks */
 | |
| 	udelay(2);
 | |
| 
 | |
| 	tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
 | |
| 	gfar_write(®s->maccfg1, tempval);
 | |
| 
 | |
| 	/* Initialize MACCFG2. */
 | |
| 	gfar_write(®s->maccfg2, MACCFG2_INIT_SETTINGS);
 | |
| 
 | |
| 	/* Initialize ECNTRL */
 | |
| 	gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS);
 | |
| 
 | |
| 	/* Set the dev->base_addr to the gfar reg region */
 | |
| 	dev->base_addr = (unsigned long) regs;
 | |
| 
 | |
| 	SET_NETDEV_DEV(dev, &ofdev->dev);
 | |
| 
 | |
| 	/* Fill in the dev structure */
 | |
| 	dev->watchdog_timeo = TX_TIMEOUT;
 | |
| 	dev->mtu = 1500;
 | |
| 	dev->netdev_ops = &gfar_netdev_ops;
 | |
| 	dev->ethtool_ops = &gfar_ethtool_ops;
 | |
| 
 | |
| 	/* Register for napi ...We are registering NAPI for each grp */
 | |
| 	for (i = 0; i < priv->num_grps; i++)
 | |
| 		netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
 | |
| 
 | |
| 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
 | |
| 		priv->rx_csum_enable = 1;
 | |
| 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
 | |
| 	} else
 | |
| 		priv->rx_csum_enable = 0;
 | |
| 
 | |
| 	priv->vlgrp = NULL;
 | |
| 
 | |
| 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
 | |
| 		dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
 | |
| 
 | |
| 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
 | |
| 		priv->extended_hash = 1;
 | |
| 		priv->hash_width = 9;
 | |
| 
 | |
| 		priv->hash_regs[0] = ®s->igaddr0;
 | |
| 		priv->hash_regs[1] = ®s->igaddr1;
 | |
| 		priv->hash_regs[2] = ®s->igaddr2;
 | |
| 		priv->hash_regs[3] = ®s->igaddr3;
 | |
| 		priv->hash_regs[4] = ®s->igaddr4;
 | |
| 		priv->hash_regs[5] = ®s->igaddr5;
 | |
| 		priv->hash_regs[6] = ®s->igaddr6;
 | |
| 		priv->hash_regs[7] = ®s->igaddr7;
 | |
| 		priv->hash_regs[8] = ®s->gaddr0;
 | |
| 		priv->hash_regs[9] = ®s->gaddr1;
 | |
| 		priv->hash_regs[10] = ®s->gaddr2;
 | |
| 		priv->hash_regs[11] = ®s->gaddr3;
 | |
| 		priv->hash_regs[12] = ®s->gaddr4;
 | |
| 		priv->hash_regs[13] = ®s->gaddr5;
 | |
| 		priv->hash_regs[14] = ®s->gaddr6;
 | |
| 		priv->hash_regs[15] = ®s->gaddr7;
 | |
| 
 | |
| 	} else {
 | |
| 		priv->extended_hash = 0;
 | |
| 		priv->hash_width = 8;
 | |
| 
 | |
| 		priv->hash_regs[0] = ®s->gaddr0;
 | |
| 		priv->hash_regs[1] = ®s->gaddr1;
 | |
| 		priv->hash_regs[2] = ®s->gaddr2;
 | |
| 		priv->hash_regs[3] = ®s->gaddr3;
 | |
| 		priv->hash_regs[4] = ®s->gaddr4;
 | |
| 		priv->hash_regs[5] = ®s->gaddr5;
 | |
| 		priv->hash_regs[6] = ®s->gaddr6;
 | |
| 		priv->hash_regs[7] = ®s->gaddr7;
 | |
| 	}
 | |
| 
 | |
| 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
 | |
| 		priv->padding = DEFAULT_PADDING;
 | |
| 	else
 | |
| 		priv->padding = 0;
 | |
| 
 | |
| 	if (dev->features & NETIF_F_IP_CSUM)
 | |
| 		dev->hard_header_len += GMAC_FCB_LEN;
 | |
| 
 | |
| 	/* Program the isrg regs only if number of grps > 1 */
 | |
| 	if (priv->num_grps > 1) {
 | |
| 		baddr = ®s->isrg0;
 | |
| 		for (i = 0; i < priv->num_grps; i++) {
 | |
| 			isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
 | |
| 			isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
 | |
| 			gfar_write(baddr, isrg);
 | |
| 			baddr++;
 | |
| 			isrg = 0x0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Need to reverse the bit maps as  bit_map's MSB is q0
 | |
| 	 * but, for_each_bit parses from right to left, which
 | |
| 	 * basically reverses the queue numbers */
 | |
| 	for (i = 0; i< priv->num_grps; i++) {
 | |
| 		priv->gfargrp[i].tx_bit_map = reverse_bitmap(
 | |
| 				priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
 | |
| 		priv->gfargrp[i].rx_bit_map = reverse_bitmap(
 | |
| 				priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 | |
| 	 * also assign queues to groups */
 | |
| 	for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
 | |
| 		priv->gfargrp[grp_idx].num_rx_queues = 0x0;
 | |
| 		for_each_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
 | |
| 				priv->num_rx_queues) {
 | |
| 			priv->gfargrp[grp_idx].num_rx_queues++;
 | |
| 			priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
 | |
| 			rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
 | |
| 			rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 | |
| 		}
 | |
| 		priv->gfargrp[grp_idx].num_tx_queues = 0x0;
 | |
| 		for_each_bit (i, &priv->gfargrp[grp_idx].tx_bit_map,
 | |
| 				priv->num_tx_queues) {
 | |
| 			priv->gfargrp[grp_idx].num_tx_queues++;
 | |
| 			priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
 | |
| 			tstat = tstat | (TSTAT_CLEAR_THALT >> i);
 | |
| 			tqueue = tqueue | (TQUEUE_EN0 >> i);
 | |
| 		}
 | |
| 		priv->gfargrp[grp_idx].rstat = rstat;
 | |
| 		priv->gfargrp[grp_idx].tstat = tstat;
 | |
| 		rstat = tstat =0;
 | |
| 	}
 | |
| 
 | |
| 	gfar_write(®s->rqueue, rqueue);
 | |
| 	gfar_write(®s->tqueue, tqueue);
 | |
| 
 | |
| 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
 | |
| 
 | |
| 	/* Initializing some of the rx/tx queue level parameters */
 | |
| 	for (i = 0; i < priv->num_tx_queues; i++) {
 | |
| 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
 | |
| 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
 | |
| 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
 | |
| 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < priv->num_rx_queues; i++) {
 | |
| 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
 | |
| 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
 | |
| 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
 | |
| 	}
 | |
| 
 | |
| 	/* enable filer if using multiple RX queues*/
 | |
| 	if(priv->num_rx_queues > 1)
 | |
| 		priv->rx_filer_enable = 1;
 | |
| 	/* Enable most messages by default */
 | |
| 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
 | |
| 
 | |
| 	/* Carrier starts down, phylib will bring it up */
 | |
| 	netif_carrier_off(dev);
 | |
| 
 | |
| 	err = register_netdev(dev);
 | |
| 
 | |
| 	if (err) {
 | |
| 		printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
 | |
| 				dev->name);
 | |
| 		goto register_fail;
 | |
| 	}
 | |
| 
 | |
| 	device_init_wakeup(&dev->dev,
 | |
| 		priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
 | |
| 
 | |
| 	/* fill out IRQ number and name fields */
 | |
| 	len_devname = strlen(dev->name);
 | |
| 	for (i = 0; i < priv->num_grps; i++) {
 | |
| 		strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
 | |
| 				len_devname);
 | |
| 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
 | |
| 			strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
 | |
| 				"_g", sizeof("_g"));
 | |
| 			priv->gfargrp[i].int_name_tx[
 | |
| 				strlen(priv->gfargrp[i].int_name_tx)] = i+48;
 | |
| 			strncpy(&priv->gfargrp[i].int_name_tx[strlen(
 | |
| 				priv->gfargrp[i].int_name_tx)],
 | |
| 				"_tx", sizeof("_tx") + 1);
 | |
| 
 | |
| 			strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
 | |
| 					len_devname);
 | |
| 			strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
 | |
| 					"_g", sizeof("_g"));
 | |
| 			priv->gfargrp[i].int_name_rx[
 | |
| 				strlen(priv->gfargrp[i].int_name_rx)] = i+48;
 | |
| 			strncpy(&priv->gfargrp[i].int_name_rx[strlen(
 | |
| 				priv->gfargrp[i].int_name_rx)],
 | |
| 				"_rx", sizeof("_rx") + 1);
 | |
| 
 | |
| 			strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
 | |
| 					len_devname);
 | |
| 			strncpy(&priv->gfargrp[i].int_name_er[len_devname],
 | |
| 				"_g", sizeof("_g"));
 | |
| 			priv->gfargrp[i].int_name_er[strlen(
 | |
| 					priv->gfargrp[i].int_name_er)] = i+48;
 | |
| 			strncpy(&priv->gfargrp[i].int_name_er[strlen(\
 | |
| 				priv->gfargrp[i].int_name_er)],
 | |
| 				"_er", sizeof("_er") + 1);
 | |
| 		} else
 | |
| 			priv->gfargrp[i].int_name_tx[len_devname] = '\0';
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize the filer table */
 | |
| 	gfar_init_filer_table(priv);
 | |
| 
 | |
| 	/* Create all the sysfs files */
 | |
| 	gfar_init_sysfs(dev);
 | |
| 
 | |
| 	/* Print out the device info */
 | |
| 	printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
 | |
| 
 | |
| 	/* Even more device info helps when determining which kernel */
 | |
| 	/* provided which set of benchmarks. */
 | |
| 	printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
 | |
| 	for (i = 0; i < priv->num_rx_queues; i++)
 | |
| 		printk(KERN_INFO "%s: :RX BD ring size for Q[%d]: %d\n",
 | |
| 			dev->name, i, priv->rx_queue[i]->rx_ring_size);
 | |
| 	for(i = 0; i < priv->num_tx_queues; i++)
 | |
| 		 printk(KERN_INFO "%s:TX BD ring size for Q[%d]: %d\n",
 | |
| 			dev->name, i, priv->tx_queue[i]->tx_ring_size);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| register_fail:
 | |
| 	unmap_group_regs(priv);
 | |
| 	free_tx_pointers(priv);
 | |
| 	free_rx_pointers(priv);
 | |
| 	if (priv->phy_node)
 | |
| 		of_node_put(priv->phy_node);
 | |
| 	if (priv->tbi_node)
 | |
| 		of_node_put(priv->tbi_node);
 | |
| 	free_netdev(dev);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int gfar_remove(struct of_device *ofdev)
 | |
| {
 | |
| 	struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
 | |
| 
 | |
| 	if (priv->phy_node)
 | |
| 		of_node_put(priv->phy_node);
 | |
| 	if (priv->tbi_node)
 | |
| 		of_node_put(priv->tbi_node);
 | |
| 
 | |
| 	dev_set_drvdata(&ofdev->dev, NULL);
 | |
| 
 | |
| 	unregister_netdev(priv->ndev);
 | |
| 	unmap_group_regs(priv);
 | |
| 	free_netdev(priv->ndev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| 
 | |
| static int gfar_suspend(struct device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = dev_get_drvdata(dev);
 | |
| 	struct net_device *ndev = priv->ndev;
 | |
| 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 | |
| 	unsigned long flags;
 | |
| 	u32 tempval;
 | |
| 
 | |
| 	int magic_packet = priv->wol_en &&
 | |
| 		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
 | |
| 
 | |
| 	netif_device_detach(ndev);
 | |
| 
 | |
| 	if (netif_running(ndev)) {
 | |
| 
 | |
| 		local_irq_save(flags);
 | |
| 		lock_tx_qs(priv);
 | |
| 		lock_rx_qs(priv);
 | |
| 
 | |
| 		gfar_halt_nodisable(ndev);
 | |
| 
 | |
| 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
 | |
| 		tempval = gfar_read(®s->maccfg1);
 | |
| 
 | |
| 		tempval &= ~MACCFG1_TX_EN;
 | |
| 
 | |
| 		if (!magic_packet)
 | |
| 			tempval &= ~MACCFG1_RX_EN;
 | |
| 
 | |
| 		gfar_write(®s->maccfg1, tempval);
 | |
| 
 | |
| 		unlock_rx_qs(priv);
 | |
| 		unlock_tx_qs(priv);
 | |
| 		local_irq_restore(flags);
 | |
| 
 | |
| 		disable_napi(priv);
 | |
| 
 | |
| 		if (magic_packet) {
 | |
| 			/* Enable interrupt on Magic Packet */
 | |
| 			gfar_write(®s->imask, IMASK_MAG);
 | |
| 
 | |
| 			/* Enable Magic Packet mode */
 | |
| 			tempval = gfar_read(®s->maccfg2);
 | |
| 			tempval |= MACCFG2_MPEN;
 | |
| 			gfar_write(®s->maccfg2, tempval);
 | |
| 		} else {
 | |
| 			phy_stop(priv->phydev);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int gfar_resume(struct device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = dev_get_drvdata(dev);
 | |
| 	struct net_device *ndev = priv->ndev;
 | |
| 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 | |
| 	unsigned long flags;
 | |
| 	u32 tempval;
 | |
| 	int magic_packet = priv->wol_en &&
 | |
| 		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
 | |
| 
 | |
| 	if (!netif_running(ndev)) {
 | |
| 		netif_device_attach(ndev);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!magic_packet && priv->phydev)
 | |
| 		phy_start(priv->phydev);
 | |
| 
 | |
| 	/* Disable Magic Packet mode, in case something
 | |
| 	 * else woke us up.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	lock_tx_qs(priv);
 | |
| 	lock_rx_qs(priv);
 | |
| 
 | |
| 	tempval = gfar_read(®s->maccfg2);
 | |
| 	tempval &= ~MACCFG2_MPEN;
 | |
| 	gfar_write(®s->maccfg2, tempval);
 | |
| 
 | |
| 	gfar_start(ndev);
 | |
| 
 | |
| 	unlock_rx_qs(priv);
 | |
| 	unlock_tx_qs(priv);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	netif_device_attach(ndev);
 | |
| 
 | |
| 	enable_napi(priv);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int gfar_restore(struct device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = dev_get_drvdata(dev);
 | |
| 	struct net_device *ndev = priv->ndev;
 | |
| 
 | |
| 	if (!netif_running(ndev))
 | |
| 		return 0;
 | |
| 
 | |
| 	gfar_init_bds(ndev);
 | |
| 	init_registers(ndev);
 | |
| 	gfar_set_mac_address(ndev);
 | |
| 	gfar_init_mac(ndev);
 | |
| 	gfar_start(ndev);
 | |
| 
 | |
| 	priv->oldlink = 0;
 | |
| 	priv->oldspeed = 0;
 | |
| 	priv->oldduplex = -1;
 | |
| 
 | |
| 	if (priv->phydev)
 | |
| 		phy_start(priv->phydev);
 | |
| 
 | |
| 	netif_device_attach(ndev);
 | |
| 	enable_napi(priv);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct dev_pm_ops gfar_pm_ops = {
 | |
| 	.suspend = gfar_suspend,
 | |
| 	.resume = gfar_resume,
 | |
| 	.freeze = gfar_suspend,
 | |
| 	.thaw = gfar_resume,
 | |
| 	.restore = gfar_restore,
 | |
| };
 | |
| 
 | |
| #define GFAR_PM_OPS (&gfar_pm_ops)
 | |
| 
 | |
| static int gfar_legacy_suspend(struct of_device *ofdev, pm_message_t state)
 | |
| {
 | |
| 	return gfar_suspend(&ofdev->dev);
 | |
| }
 | |
| 
 | |
| static int gfar_legacy_resume(struct of_device *ofdev)
 | |
| {
 | |
| 	return gfar_resume(&ofdev->dev);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define GFAR_PM_OPS NULL
 | |
| #define gfar_legacy_suspend NULL
 | |
| #define gfar_legacy_resume NULL
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Reads the controller's registers to determine what interface
 | |
|  * connects it to the PHY.
 | |
|  */
 | |
| static phy_interface_t gfar_get_interface(struct net_device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 | |
| 	u32 ecntrl;
 | |
| 
 | |
| 	ecntrl = gfar_read(®s->ecntrl);
 | |
| 
 | |
| 	if (ecntrl & ECNTRL_SGMII_MODE)
 | |
| 		return PHY_INTERFACE_MODE_SGMII;
 | |
| 
 | |
| 	if (ecntrl & ECNTRL_TBI_MODE) {
 | |
| 		if (ecntrl & ECNTRL_REDUCED_MODE)
 | |
| 			return PHY_INTERFACE_MODE_RTBI;
 | |
| 		else
 | |
| 			return PHY_INTERFACE_MODE_TBI;
 | |
| 	}
 | |
| 
 | |
| 	if (ecntrl & ECNTRL_REDUCED_MODE) {
 | |
| 		if (ecntrl & ECNTRL_REDUCED_MII_MODE)
 | |
| 			return PHY_INTERFACE_MODE_RMII;
 | |
| 		else {
 | |
| 			phy_interface_t interface = priv->interface;
 | |
| 
 | |
| 			/*
 | |
| 			 * This isn't autodetected right now, so it must
 | |
| 			 * be set by the device tree or platform code.
 | |
| 			 */
 | |
| 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
 | |
| 				return PHY_INTERFACE_MODE_RGMII_ID;
 | |
| 
 | |
| 			return PHY_INTERFACE_MODE_RGMII;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
 | |
| 		return PHY_INTERFACE_MODE_GMII;
 | |
| 
 | |
| 	return PHY_INTERFACE_MODE_MII;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Initializes driver's PHY state, and attaches to the PHY.
 | |
|  * Returns 0 on success.
 | |
|  */
 | |
| static int init_phy(struct net_device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	uint gigabit_support =
 | |
| 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
 | |
| 		SUPPORTED_1000baseT_Full : 0;
 | |
| 	phy_interface_t interface;
 | |
| 
 | |
| 	priv->oldlink = 0;
 | |
| 	priv->oldspeed = 0;
 | |
| 	priv->oldduplex = -1;
 | |
| 
 | |
| 	interface = gfar_get_interface(dev);
 | |
| 
 | |
| 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
 | |
| 				      interface);
 | |
| 	if (!priv->phydev)
 | |
| 		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
 | |
| 							 interface);
 | |
| 	if (!priv->phydev) {
 | |
| 		dev_err(&dev->dev, "could not attach to PHY\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if (interface == PHY_INTERFACE_MODE_SGMII)
 | |
| 		gfar_configure_serdes(dev);
 | |
| 
 | |
| 	/* Remove any features not supported by the controller */
 | |
| 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
 | |
| 	priv->phydev->advertising = priv->phydev->supported;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize TBI PHY interface for communicating with the
 | |
|  * SERDES lynx PHY on the chip.  We communicate with this PHY
 | |
|  * through the MDIO bus on each controller, treating it as a
 | |
|  * "normal" PHY at the address found in the TBIPA register.  We assume
 | |
|  * that the TBIPA register is valid.  Either the MDIO bus code will set
 | |
|  * it to a value that doesn't conflict with other PHYs on the bus, or the
 | |
|  * value doesn't matter, as there are no other PHYs on the bus.
 | |
|  */
 | |
| static void gfar_configure_serdes(struct net_device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct phy_device *tbiphy;
 | |
| 
 | |
| 	if (!priv->tbi_node) {
 | |
| 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
 | |
| 				    "device tree specify a tbi-handle\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	tbiphy = of_phy_find_device(priv->tbi_node);
 | |
| 	if (!tbiphy) {
 | |
| 		dev_err(&dev->dev, "error: Could not get TBI device\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the link is already up, we must already be ok, and don't need to
 | |
| 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
 | |
| 	 * everything for us?  Resetting it takes the link down and requires
 | |
| 	 * several seconds for it to come back.
 | |
| 	 */
 | |
| 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
 | |
| 		return;
 | |
| 
 | |
| 	/* Single clk mode, mii mode off(for serdes communication) */
 | |
| 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
 | |
| 
 | |
| 	phy_write(tbiphy, MII_ADVERTISE,
 | |
| 			ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
 | |
| 			ADVERTISE_1000XPSE_ASYM);
 | |
| 
 | |
| 	phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
 | |
| 			BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
 | |
| }
 | |
| 
 | |
| static void init_registers(struct net_device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct gfar __iomem *regs = NULL;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	for (i = 0; i < priv->num_grps; i++) {
 | |
| 		regs = priv->gfargrp[i].regs;
 | |
| 		/* Clear IEVENT */
 | |
| 		gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
 | |
| 
 | |
| 		/* Initialize IMASK */
 | |
| 		gfar_write(®s->imask, IMASK_INIT_CLEAR);
 | |
| 	}
 | |
| 
 | |
| 	regs = priv->gfargrp[0].regs;
 | |
| 	/* Init hash registers to zero */
 | |
| 	gfar_write(®s->igaddr0, 0);
 | |
| 	gfar_write(®s->igaddr1, 0);
 | |
| 	gfar_write(®s->igaddr2, 0);
 | |
| 	gfar_write(®s->igaddr3, 0);
 | |
| 	gfar_write(®s->igaddr4, 0);
 | |
| 	gfar_write(®s->igaddr5, 0);
 | |
| 	gfar_write(®s->igaddr6, 0);
 | |
| 	gfar_write(®s->igaddr7, 0);
 | |
| 
 | |
| 	gfar_write(®s->gaddr0, 0);
 | |
| 	gfar_write(®s->gaddr1, 0);
 | |
| 	gfar_write(®s->gaddr2, 0);
 | |
| 	gfar_write(®s->gaddr3, 0);
 | |
| 	gfar_write(®s->gaddr4, 0);
 | |
| 	gfar_write(®s->gaddr5, 0);
 | |
| 	gfar_write(®s->gaddr6, 0);
 | |
| 	gfar_write(®s->gaddr7, 0);
 | |
| 
 | |
| 	/* Zero out the rmon mib registers if it has them */
 | |
| 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
 | |
| 		memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
 | |
| 
 | |
| 		/* Mask off the CAM interrupts */
 | |
| 		gfar_write(®s->rmon.cam1, 0xffffffff);
 | |
| 		gfar_write(®s->rmon.cam2, 0xffffffff);
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize the max receive buffer length */
 | |
| 	gfar_write(®s->mrblr, priv->rx_buffer_size);
 | |
| 
 | |
| 	/* Initialize the Minimum Frame Length Register */
 | |
| 	gfar_write(®s->minflr, MINFLR_INIT_SETTINGS);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Halt the receive and transmit queues */
 | |
| static void gfar_halt_nodisable(struct net_device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct gfar __iomem *regs = NULL;
 | |
| 	u32 tempval;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	for (i = 0; i < priv->num_grps; i++) {
 | |
| 		regs = priv->gfargrp[i].regs;
 | |
| 		/* Mask all interrupts */
 | |
| 		gfar_write(®s->imask, IMASK_INIT_CLEAR);
 | |
| 
 | |
| 		/* Clear all interrupts */
 | |
| 		gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
 | |
| 	}
 | |
| 
 | |
| 	regs = priv->gfargrp[0].regs;
 | |
| 	/* Stop the DMA, and wait for it to stop */
 | |
| 	tempval = gfar_read(®s->dmactrl);
 | |
| 	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
 | |
| 	    != (DMACTRL_GRS | DMACTRL_GTS)) {
 | |
| 		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
 | |
| 		gfar_write(®s->dmactrl, tempval);
 | |
| 
 | |
| 		while (!(gfar_read(®s->ievent) &
 | |
| 			 (IEVENT_GRSC | IEVENT_GTSC)))
 | |
| 			cpu_relax();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Halt the receive and transmit queues */
 | |
| void gfar_halt(struct net_device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 | |
| 	u32 tempval;
 | |
| 
 | |
| 	gfar_halt_nodisable(dev);
 | |
| 
 | |
| 	/* Disable Rx and Tx */
 | |
| 	tempval = gfar_read(®s->maccfg1);
 | |
| 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
 | |
| 	gfar_write(®s->maccfg1, tempval);
 | |
| }
 | |
| 
 | |
| static void free_grp_irqs(struct gfar_priv_grp *grp)
 | |
| {
 | |
| 	free_irq(grp->interruptError, grp);
 | |
| 	free_irq(grp->interruptTransmit, grp);
 | |
| 	free_irq(grp->interruptReceive, grp);
 | |
| }
 | |
| 
 | |
| void stop_gfar(struct net_device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	phy_stop(priv->phydev);
 | |
| 
 | |
| 
 | |
| 	/* Lock it down */
 | |
| 	local_irq_save(flags);
 | |
| 	lock_tx_qs(priv);
 | |
| 	lock_rx_qs(priv);
 | |
| 
 | |
| 	gfar_halt(dev);
 | |
| 
 | |
| 	unlock_rx_qs(priv);
 | |
| 	unlock_tx_qs(priv);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	/* Free the IRQs */
 | |
| 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
 | |
| 		for (i = 0; i < priv->num_grps; i++)
 | |
| 			free_grp_irqs(&priv->gfargrp[i]);
 | |
| 	} else {
 | |
| 		for (i = 0; i < priv->num_grps; i++)
 | |
| 			free_irq(priv->gfargrp[i].interruptTransmit,
 | |
| 					&priv->gfargrp[i]);
 | |
| 	}
 | |
| 
 | |
| 	free_skb_resources(priv);
 | |
| }
 | |
| 
 | |
| static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
 | |
| {
 | |
| 	struct txbd8 *txbdp;
 | |
| 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
 | |
| 	int i, j;
 | |
| 
 | |
| 	txbdp = tx_queue->tx_bd_base;
 | |
| 
 | |
| 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
 | |
| 		if (!tx_queue->tx_skbuff[i])
 | |
| 			continue;
 | |
| 
 | |
| 		dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
 | |
| 				txbdp->length, DMA_TO_DEVICE);
 | |
| 		txbdp->lstatus = 0;
 | |
| 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
 | |
| 				j++) {
 | |
| 			txbdp++;
 | |
| 			dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
 | |
| 					txbdp->length, DMA_TO_DEVICE);
 | |
| 		}
 | |
| 		txbdp++;
 | |
| 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
 | |
| 		tx_queue->tx_skbuff[i] = NULL;
 | |
| 	}
 | |
| 	kfree(tx_queue->tx_skbuff);
 | |
| }
 | |
| 
 | |
| static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
 | |
| {
 | |
| 	struct rxbd8 *rxbdp;
 | |
| 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
 | |
| 	int i;
 | |
| 
 | |
| 	rxbdp = rx_queue->rx_bd_base;
 | |
| 
 | |
| 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
 | |
| 		if (rx_queue->rx_skbuff[i]) {
 | |
| 			dma_unmap_single(&priv->ofdev->dev,
 | |
| 					rxbdp->bufPtr, priv->rx_buffer_size,
 | |
| 					DMA_FROM_DEVICE);
 | |
| 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
 | |
| 			rx_queue->rx_skbuff[i] = NULL;
 | |
| 		}
 | |
| 		rxbdp->lstatus = 0;
 | |
| 		rxbdp->bufPtr = 0;
 | |
| 		rxbdp++;
 | |
| 	}
 | |
| 	kfree(rx_queue->rx_skbuff);
 | |
| }
 | |
| 
 | |
| /* If there are any tx skbs or rx skbs still around, free them.
 | |
|  * Then free tx_skbuff and rx_skbuff */
 | |
| static void free_skb_resources(struct gfar_private *priv)
 | |
| {
 | |
| 	struct gfar_priv_tx_q *tx_queue = NULL;
 | |
| 	struct gfar_priv_rx_q *rx_queue = NULL;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Go through all the buffer descriptors and free their data buffers */
 | |
| 	for (i = 0; i < priv->num_tx_queues; i++) {
 | |
| 		tx_queue = priv->tx_queue[i];
 | |
| 		if(!tx_queue->tx_skbuff)
 | |
| 			free_skb_tx_queue(tx_queue);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < priv->num_rx_queues; i++) {
 | |
| 		rx_queue = priv->rx_queue[i];
 | |
| 		if(!rx_queue->rx_skbuff)
 | |
| 			free_skb_rx_queue(rx_queue);
 | |
| 	}
 | |
| 
 | |
| 	dma_free_coherent(&priv->ofdev->dev,
 | |
| 			sizeof(struct txbd8) * priv->total_tx_ring_size +
 | |
| 			sizeof(struct rxbd8) * priv->total_rx_ring_size,
 | |
| 			priv->tx_queue[0]->tx_bd_base,
 | |
| 			priv->tx_queue[0]->tx_bd_dma_base);
 | |
| }
 | |
| 
 | |
| void gfar_start(struct net_device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 | |
| 	u32 tempval;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	/* Enable Rx and Tx in MACCFG1 */
 | |
| 	tempval = gfar_read(®s->maccfg1);
 | |
| 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
 | |
| 	gfar_write(®s->maccfg1, tempval);
 | |
| 
 | |
| 	/* Initialize DMACTRL to have WWR and WOP */
 | |
| 	tempval = gfar_read(®s->dmactrl);
 | |
| 	tempval |= DMACTRL_INIT_SETTINGS;
 | |
| 	gfar_write(®s->dmactrl, tempval);
 | |
| 
 | |
| 	/* Make sure we aren't stopped */
 | |
| 	tempval = gfar_read(®s->dmactrl);
 | |
| 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
 | |
| 	gfar_write(®s->dmactrl, tempval);
 | |
| 
 | |
| 	for (i = 0; i < priv->num_grps; i++) {
 | |
| 		regs = priv->gfargrp[i].regs;
 | |
| 		/* Clear THLT/RHLT, so that the DMA starts polling now */
 | |
| 		gfar_write(®s->tstat, priv->gfargrp[i].tstat);
 | |
| 		gfar_write(®s->rstat, priv->gfargrp[i].rstat);
 | |
| 		/* Unmask the interrupts we look for */
 | |
| 		gfar_write(®s->imask, IMASK_DEFAULT);
 | |
| 	}
 | |
| 
 | |
| 	dev->trans_start = jiffies;
 | |
| }
 | |
| 
 | |
| void gfar_configure_coalescing(struct gfar_private *priv,
 | |
| 	unsigned long tx_mask, unsigned long rx_mask)
 | |
| {
 | |
| 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 | |
| 	u32 __iomem *baddr;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	/* Backward compatible case ---- even if we enable
 | |
| 	 * multiple queues, there's only single reg to program
 | |
| 	 */
 | |
| 	gfar_write(®s->txic, 0);
 | |
| 	if(likely(priv->tx_queue[0]->txcoalescing))
 | |
| 		gfar_write(®s->txic, priv->tx_queue[0]->txic);
 | |
| 
 | |
| 	gfar_write(®s->rxic, 0);
 | |
| 	if(unlikely(priv->rx_queue[0]->rxcoalescing))
 | |
| 		gfar_write(®s->rxic, priv->rx_queue[0]->rxic);
 | |
| 
 | |
| 	if (priv->mode == MQ_MG_MODE) {
 | |
| 		baddr = ®s->txic0;
 | |
| 		for_each_bit (i, &tx_mask, priv->num_tx_queues) {
 | |
| 			if (likely(priv->tx_queue[i]->txcoalescing)) {
 | |
| 				gfar_write(baddr + i, 0);
 | |
| 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		baddr = ®s->rxic0;
 | |
| 		for_each_bit (i, &rx_mask, priv->num_rx_queues) {
 | |
| 			if (likely(priv->rx_queue[i]->rxcoalescing)) {
 | |
| 				gfar_write(baddr + i, 0);
 | |
| 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int register_grp_irqs(struct gfar_priv_grp *grp)
 | |
| {
 | |
| 	struct gfar_private *priv = grp->priv;
 | |
| 	struct net_device *dev = priv->ndev;
 | |
| 	int err;
 | |
| 
 | |
| 	/* If the device has multiple interrupts, register for
 | |
| 	 * them.  Otherwise, only register for the one */
 | |
| 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
 | |
| 		/* Install our interrupt handlers for Error,
 | |
| 		 * Transmit, and Receive */
 | |
| 		if ((err = request_irq(grp->interruptError, gfar_error, 0,
 | |
| 				grp->int_name_er,grp)) < 0) {
 | |
| 			if (netif_msg_intr(priv))
 | |
| 				printk(KERN_ERR "%s: Can't get IRQ %d\n",
 | |
| 					dev->name, grp->interruptError);
 | |
| 
 | |
| 				goto err_irq_fail;
 | |
| 		}
 | |
| 
 | |
| 		if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
 | |
| 				0, grp->int_name_tx, grp)) < 0) {
 | |
| 			if (netif_msg_intr(priv))
 | |
| 				printk(KERN_ERR "%s: Can't get IRQ %d\n",
 | |
| 					dev->name, grp->interruptTransmit);
 | |
| 			goto tx_irq_fail;
 | |
| 		}
 | |
| 
 | |
| 		if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
 | |
| 				grp->int_name_rx, grp)) < 0) {
 | |
| 			if (netif_msg_intr(priv))
 | |
| 				printk(KERN_ERR "%s: Can't get IRQ %d\n",
 | |
| 					dev->name, grp->interruptReceive);
 | |
| 			goto rx_irq_fail;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
 | |
| 				grp->int_name_tx, grp)) < 0) {
 | |
| 			if (netif_msg_intr(priv))
 | |
| 				printk(KERN_ERR "%s: Can't get IRQ %d\n",
 | |
| 					dev->name, grp->interruptTransmit);
 | |
| 			goto err_irq_fail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| rx_irq_fail:
 | |
| 	free_irq(grp->interruptTransmit, grp);
 | |
| tx_irq_fail:
 | |
| 	free_irq(grp->interruptError, grp);
 | |
| err_irq_fail:
 | |
| 	return err;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Bring the controller up and running */
 | |
| int startup_gfar(struct net_device *ndev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(ndev);
 | |
| 	struct gfar __iomem *regs = NULL;
 | |
| 	int err, i, j;
 | |
| 
 | |
| 	for (i = 0; i < priv->num_grps; i++) {
 | |
| 		regs= priv->gfargrp[i].regs;
 | |
| 		gfar_write(®s->imask, IMASK_INIT_CLEAR);
 | |
| 	}
 | |
| 
 | |
| 	regs= priv->gfargrp[0].regs;
 | |
| 	err = gfar_alloc_skb_resources(ndev);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	gfar_init_mac(ndev);
 | |
| 
 | |
| 	for (i = 0; i < priv->num_grps; i++) {
 | |
| 		err = register_grp_irqs(&priv->gfargrp[i]);
 | |
| 		if (err) {
 | |
| 			for (j = 0; j < i; j++)
 | |
| 				free_grp_irqs(&priv->gfargrp[j]);
 | |
| 				goto irq_fail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Start the controller */
 | |
| 	gfar_start(ndev);
 | |
| 
 | |
| 	phy_start(priv->phydev);
 | |
| 
 | |
| 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| irq_fail:
 | |
| 	free_skb_resources(priv);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Called when something needs to use the ethernet device */
 | |
| /* Returns 0 for success. */
 | |
| static int gfar_enet_open(struct net_device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	int err;
 | |
| 
 | |
| 	enable_napi(priv);
 | |
| 
 | |
| 	skb_queue_head_init(&priv->rx_recycle);
 | |
| 
 | |
| 	/* Initialize a bunch of registers */
 | |
| 	init_registers(dev);
 | |
| 
 | |
| 	gfar_set_mac_address(dev);
 | |
| 
 | |
| 	err = init_phy(dev);
 | |
| 
 | |
| 	if (err) {
 | |
| 		disable_napi(priv);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = startup_gfar(dev);
 | |
| 	if (err) {
 | |
| 		disable_napi(priv);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	netif_tx_start_all_queues(dev);
 | |
| 
 | |
| 	device_set_wakeup_enable(&dev->dev, priv->wol_en);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
 | |
| {
 | |
| 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
 | |
| 
 | |
| 	memset(fcb, 0, GMAC_FCB_LEN);
 | |
| 
 | |
| 	return fcb;
 | |
| }
 | |
| 
 | |
| static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
 | |
| {
 | |
| 	u8 flags = 0;
 | |
| 
 | |
| 	/* If we're here, it's a IP packet with a TCP or UDP
 | |
| 	 * payload.  We set it to checksum, using a pseudo-header
 | |
| 	 * we provide
 | |
| 	 */
 | |
| 	flags = TXFCB_DEFAULT;
 | |
| 
 | |
| 	/* Tell the controller what the protocol is */
 | |
| 	/* And provide the already calculated phcs */
 | |
| 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
 | |
| 		flags |= TXFCB_UDP;
 | |
| 		fcb->phcs = udp_hdr(skb)->check;
 | |
| 	} else
 | |
| 		fcb->phcs = tcp_hdr(skb)->check;
 | |
| 
 | |
| 	/* l3os is the distance between the start of the
 | |
| 	 * frame (skb->data) and the start of the IP hdr.
 | |
| 	 * l4os is the distance between the start of the
 | |
| 	 * l3 hdr and the l4 hdr */
 | |
| 	fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
 | |
| 	fcb->l4os = skb_network_header_len(skb);
 | |
| 
 | |
| 	fcb->flags = flags;
 | |
| }
 | |
| 
 | |
| void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
 | |
| {
 | |
| 	fcb->flags |= TXFCB_VLN;
 | |
| 	fcb->vlctl = vlan_tx_tag_get(skb);
 | |
| }
 | |
| 
 | |
| static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
 | |
| 			       struct txbd8 *base, int ring_size)
 | |
| {
 | |
| 	struct txbd8 *new_bd = bdp + stride;
 | |
| 
 | |
| 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
 | |
| }
 | |
| 
 | |
| static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
 | |
| 		int ring_size)
 | |
| {
 | |
| 	return skip_txbd(bdp, 1, base, ring_size);
 | |
| }
 | |
| 
 | |
| /* This is called by the kernel when a frame is ready for transmission. */
 | |
| /* It is pointed to by the dev->hard_start_xmit function pointer */
 | |
| static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct gfar_priv_tx_q *tx_queue = NULL;
 | |
| 	struct netdev_queue *txq;
 | |
| 	struct gfar __iomem *regs = NULL;
 | |
| 	struct txfcb *fcb = NULL;
 | |
| 	struct txbd8 *txbdp, *txbdp_start, *base;
 | |
| 	u32 lstatus;
 | |
| 	int i, rq = 0;
 | |
| 	u32 bufaddr;
 | |
| 	unsigned long flags;
 | |
| 	unsigned int nr_frags, length;
 | |
| 
 | |
| 
 | |
| 	rq = skb->queue_mapping;
 | |
| 	tx_queue = priv->tx_queue[rq];
 | |
| 	txq = netdev_get_tx_queue(dev, rq);
 | |
| 	base = tx_queue->tx_bd_base;
 | |
| 	regs = tx_queue->grp->regs;
 | |
| 
 | |
| 	/* make space for additional header when fcb is needed */
 | |
| 	if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
 | |
| 			(priv->vlgrp && vlan_tx_tag_present(skb))) &&
 | |
| 			(skb_headroom(skb) < GMAC_FCB_LEN)) {
 | |
| 		struct sk_buff *skb_new;
 | |
| 
 | |
| 		skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
 | |
| 		if (!skb_new) {
 | |
| 			dev->stats.tx_errors++;
 | |
| 			kfree_skb(skb);
 | |
| 			return NETDEV_TX_OK;
 | |
| 		}
 | |
| 		kfree_skb(skb);
 | |
| 		skb = skb_new;
 | |
| 	}
 | |
| 
 | |
| 	/* total number of fragments in the SKB */
 | |
| 	nr_frags = skb_shinfo(skb)->nr_frags;
 | |
| 
 | |
| 	/* check if there is space to queue this packet */
 | |
| 	if ((nr_frags+1) > tx_queue->num_txbdfree) {
 | |
| 		/* no space, stop the queue */
 | |
| 		netif_tx_stop_queue(txq);
 | |
| 		dev->stats.tx_fifo_errors++;
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	/* Update transmit stats */
 | |
| 	txq->tx_bytes += skb->len;
 | |
| 	txq->tx_packets ++;
 | |
| 
 | |
| 	txbdp = txbdp_start = tx_queue->cur_tx;
 | |
| 
 | |
| 	if (nr_frags == 0) {
 | |
| 		lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
 | |
| 	} else {
 | |
| 		/* Place the fragment addresses and lengths into the TxBDs */
 | |
| 		for (i = 0; i < nr_frags; i++) {
 | |
| 			/* Point at the next BD, wrapping as needed */
 | |
| 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
 | |
| 
 | |
| 			length = skb_shinfo(skb)->frags[i].size;
 | |
| 
 | |
| 			lstatus = txbdp->lstatus | length |
 | |
| 				BD_LFLAG(TXBD_READY);
 | |
| 
 | |
| 			/* Handle the last BD specially */
 | |
| 			if (i == nr_frags - 1)
 | |
| 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
 | |
| 
 | |
| 			bufaddr = dma_map_page(&priv->ofdev->dev,
 | |
| 					skb_shinfo(skb)->frags[i].page,
 | |
| 					skb_shinfo(skb)->frags[i].page_offset,
 | |
| 					length,
 | |
| 					DMA_TO_DEVICE);
 | |
| 
 | |
| 			/* set the TxBD length and buffer pointer */
 | |
| 			txbdp->bufPtr = bufaddr;
 | |
| 			txbdp->lstatus = lstatus;
 | |
| 		}
 | |
| 
 | |
| 		lstatus = txbdp_start->lstatus;
 | |
| 	}
 | |
| 
 | |
| 	/* Set up checksumming */
 | |
| 	if (CHECKSUM_PARTIAL == skb->ip_summed) {
 | |
| 		fcb = gfar_add_fcb(skb);
 | |
| 		lstatus |= BD_LFLAG(TXBD_TOE);
 | |
| 		gfar_tx_checksum(skb, fcb);
 | |
| 	}
 | |
| 
 | |
| 	if (priv->vlgrp && vlan_tx_tag_present(skb)) {
 | |
| 		if (unlikely(NULL == fcb)) {
 | |
| 			fcb = gfar_add_fcb(skb);
 | |
| 			lstatus |= BD_LFLAG(TXBD_TOE);
 | |
| 		}
 | |
| 
 | |
| 		gfar_tx_vlan(skb, fcb);
 | |
| 	}
 | |
| 
 | |
| 	/* setup the TxBD length and buffer pointer for the first BD */
 | |
| 	txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
 | |
| 			skb_headlen(skb), DMA_TO_DEVICE);
 | |
| 
 | |
| 	lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can work in parallel with gfar_clean_tx_ring(), except
 | |
| 	 * when modifying num_txbdfree. Note that we didn't grab the lock
 | |
| 	 * when we were reading the num_txbdfree and checking for available
 | |
| 	 * space, that's because outside of this function it can only grow,
 | |
| 	 * and once we've got needed space, it cannot suddenly disappear.
 | |
| 	 *
 | |
| 	 * The lock also protects us from gfar_error(), which can modify
 | |
| 	 * regs->tstat and thus retrigger the transfers, which is why we
 | |
| 	 * also must grab the lock before setting ready bit for the first
 | |
| 	 * to be transmitted BD.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&tx_queue->txlock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * The powerpc-specific eieio() is used, as wmb() has too strong
 | |
| 	 * semantics (it requires synchronization between cacheable and
 | |
| 	 * uncacheable mappings, which eieio doesn't provide and which we
 | |
| 	 * don't need), thus requiring a more expensive sync instruction.  At
 | |
| 	 * some point, the set of architecture-independent barrier functions
 | |
| 	 * should be expanded to include weaker barriers.
 | |
| 	 */
 | |
| 	eieio();
 | |
| 
 | |
| 	txbdp_start->lstatus = lstatus;
 | |
| 
 | |
| 	eieio(); /* force lstatus write before tx_skbuff */
 | |
| 
 | |
| 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
 | |
| 
 | |
| 	/* Update the current skb pointer to the next entry we will use
 | |
| 	 * (wrapping if necessary) */
 | |
| 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
 | |
| 		TX_RING_MOD_MASK(tx_queue->tx_ring_size);
 | |
| 
 | |
| 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
 | |
| 
 | |
| 	/* reduce TxBD free count */
 | |
| 	tx_queue->num_txbdfree -= (nr_frags + 1);
 | |
| 
 | |
| 	dev->trans_start = jiffies;
 | |
| 
 | |
| 	/* If the next BD still needs to be cleaned up, then the bds
 | |
| 	   are full.  We need to tell the kernel to stop sending us stuff. */
 | |
| 	if (!tx_queue->num_txbdfree) {
 | |
| 		netif_tx_stop_queue(txq);
 | |
| 
 | |
| 		dev->stats.tx_fifo_errors++;
 | |
| 	}
 | |
| 
 | |
| 	/* Tell the DMA to go go go */
 | |
| 	gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
 | |
| 
 | |
| 	/* Unlock priv */
 | |
| 	spin_unlock_irqrestore(&tx_queue->txlock, flags);
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| /* Stops the kernel queue, and halts the controller */
 | |
| static int gfar_close(struct net_device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 
 | |
| 	disable_napi(priv);
 | |
| 
 | |
| 	skb_queue_purge(&priv->rx_recycle);
 | |
| 	cancel_work_sync(&priv->reset_task);
 | |
| 	stop_gfar(dev);
 | |
| 
 | |
| 	/* Disconnect from the PHY */
 | |
| 	phy_disconnect(priv->phydev);
 | |
| 	priv->phydev = NULL;
 | |
| 
 | |
| 	netif_tx_stop_all_queues(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Changes the mac address if the controller is not running. */
 | |
| static int gfar_set_mac_address(struct net_device *dev)
 | |
| {
 | |
| 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Enables and disables VLAN insertion/extraction */
 | |
| static void gfar_vlan_rx_register(struct net_device *dev,
 | |
| 		struct vlan_group *grp)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct gfar __iomem *regs = NULL;
 | |
| 	unsigned long flags;
 | |
| 	u32 tempval;
 | |
| 
 | |
| 	regs = priv->gfargrp[0].regs;
 | |
| 	local_irq_save(flags);
 | |
| 	lock_rx_qs(priv);
 | |
| 
 | |
| 	priv->vlgrp = grp;
 | |
| 
 | |
| 	if (grp) {
 | |
| 		/* Enable VLAN tag insertion */
 | |
| 		tempval = gfar_read(®s->tctrl);
 | |
| 		tempval |= TCTRL_VLINS;
 | |
| 
 | |
| 		gfar_write(®s->tctrl, tempval);
 | |
| 
 | |
| 		/* Enable VLAN tag extraction */
 | |
| 		tempval = gfar_read(®s->rctrl);
 | |
| 		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
 | |
| 		gfar_write(®s->rctrl, tempval);
 | |
| 	} else {
 | |
| 		/* Disable VLAN tag insertion */
 | |
| 		tempval = gfar_read(®s->tctrl);
 | |
| 		tempval &= ~TCTRL_VLINS;
 | |
| 		gfar_write(®s->tctrl, tempval);
 | |
| 
 | |
| 		/* Disable VLAN tag extraction */
 | |
| 		tempval = gfar_read(®s->rctrl);
 | |
| 		tempval &= ~RCTRL_VLEX;
 | |
| 		/* If parse is no longer required, then disable parser */
 | |
| 		if (tempval & RCTRL_REQ_PARSER)
 | |
| 			tempval |= RCTRL_PRSDEP_INIT;
 | |
| 		else
 | |
| 			tempval &= ~RCTRL_PRSDEP_INIT;
 | |
| 		gfar_write(®s->rctrl, tempval);
 | |
| 	}
 | |
| 
 | |
| 	gfar_change_mtu(dev, dev->mtu);
 | |
| 
 | |
| 	unlock_rx_qs(priv);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static int gfar_change_mtu(struct net_device *dev, int new_mtu)
 | |
| {
 | |
| 	int tempsize, tempval;
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 | |
| 	int oldsize = priv->rx_buffer_size;
 | |
| 	int frame_size = new_mtu + ETH_HLEN;
 | |
| 
 | |
| 	if (priv->vlgrp)
 | |
| 		frame_size += VLAN_HLEN;
 | |
| 
 | |
| 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
 | |
| 		if (netif_msg_drv(priv))
 | |
| 			printk(KERN_ERR "%s: Invalid MTU setting\n",
 | |
| 					dev->name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (gfar_uses_fcb(priv))
 | |
| 		frame_size += GMAC_FCB_LEN;
 | |
| 
 | |
| 	frame_size += priv->padding;
 | |
| 
 | |
| 	tempsize =
 | |
| 	    (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
 | |
| 	    INCREMENTAL_BUFFER_SIZE;
 | |
| 
 | |
| 	/* Only stop and start the controller if it isn't already
 | |
| 	 * stopped, and we changed something */
 | |
| 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
 | |
| 		stop_gfar(dev);
 | |
| 
 | |
| 	priv->rx_buffer_size = tempsize;
 | |
| 
 | |
| 	dev->mtu = new_mtu;
 | |
| 
 | |
| 	gfar_write(®s->mrblr, priv->rx_buffer_size);
 | |
| 	gfar_write(®s->maxfrm, priv->rx_buffer_size);
 | |
| 
 | |
| 	/* If the mtu is larger than the max size for standard
 | |
| 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
 | |
| 	 * to allow huge frames, and to check the length */
 | |
| 	tempval = gfar_read(®s->maccfg2);
 | |
| 
 | |
| 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
 | |
| 		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
 | |
| 	else
 | |
| 		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
 | |
| 
 | |
| 	gfar_write(®s->maccfg2, tempval);
 | |
| 
 | |
| 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
 | |
| 		startup_gfar(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* gfar_reset_task gets scheduled when a packet has not been
 | |
|  * transmitted after a set amount of time.
 | |
|  * For now, assume that clearing out all the structures, and
 | |
|  * starting over will fix the problem.
 | |
|  */
 | |
| static void gfar_reset_task(struct work_struct *work)
 | |
| {
 | |
| 	struct gfar_private *priv = container_of(work, struct gfar_private,
 | |
| 			reset_task);
 | |
| 	struct net_device *dev = priv->ndev;
 | |
| 
 | |
| 	if (dev->flags & IFF_UP) {
 | |
| 		netif_tx_stop_all_queues(dev);
 | |
| 		stop_gfar(dev);
 | |
| 		startup_gfar(dev);
 | |
| 		netif_tx_start_all_queues(dev);
 | |
| 	}
 | |
| 
 | |
| 	netif_tx_schedule_all(dev);
 | |
| }
 | |
| 
 | |
| static void gfar_timeout(struct net_device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 
 | |
| 	dev->stats.tx_errors++;
 | |
| 	schedule_work(&priv->reset_task);
 | |
| }
 | |
| 
 | |
| /* Interrupt Handler for Transmit complete */
 | |
| static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
 | |
| {
 | |
| 	struct net_device *dev = tx_queue->dev;
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct gfar_priv_rx_q *rx_queue = NULL;
 | |
| 	struct txbd8 *bdp;
 | |
| 	struct txbd8 *lbdp = NULL;
 | |
| 	struct txbd8 *base = tx_queue->tx_bd_base;
 | |
| 	struct sk_buff *skb;
 | |
| 	int skb_dirtytx;
 | |
| 	int tx_ring_size = tx_queue->tx_ring_size;
 | |
| 	int frags = 0;
 | |
| 	int i;
 | |
| 	int howmany = 0;
 | |
| 	u32 lstatus;
 | |
| 
 | |
| 	rx_queue = priv->rx_queue[tx_queue->qindex];
 | |
| 	bdp = tx_queue->dirty_tx;
 | |
| 	skb_dirtytx = tx_queue->skb_dirtytx;
 | |
| 
 | |
| 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		frags = skb_shinfo(skb)->nr_frags;
 | |
| 		lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
 | |
| 
 | |
| 		lstatus = lbdp->lstatus;
 | |
| 
 | |
| 		/* Only clean completed frames */
 | |
| 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
 | |
| 				(lstatus & BD_LENGTH_MASK))
 | |
| 			break;
 | |
| 
 | |
| 		dma_unmap_single(&priv->ofdev->dev,
 | |
| 				bdp->bufPtr,
 | |
| 				bdp->length,
 | |
| 				DMA_TO_DEVICE);
 | |
| 
 | |
| 		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
 | |
| 		bdp = next_txbd(bdp, base, tx_ring_size);
 | |
| 
 | |
| 		for (i = 0; i < frags; i++) {
 | |
| 			dma_unmap_page(&priv->ofdev->dev,
 | |
| 					bdp->bufPtr,
 | |
| 					bdp->length,
 | |
| 					DMA_TO_DEVICE);
 | |
| 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
 | |
| 			bdp = next_txbd(bdp, base, tx_ring_size);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If there's room in the queue (limit it to rx_buffer_size)
 | |
| 		 * we add this skb back into the pool, if it's the right size
 | |
| 		 */
 | |
| 		if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
 | |
| 				skb_recycle_check(skb, priv->rx_buffer_size +
 | |
| 					RXBUF_ALIGNMENT))
 | |
| 			__skb_queue_head(&priv->rx_recycle, skb);
 | |
| 		else
 | |
| 			dev_kfree_skb_any(skb);
 | |
| 
 | |
| 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
 | |
| 
 | |
| 		skb_dirtytx = (skb_dirtytx + 1) &
 | |
| 			TX_RING_MOD_MASK(tx_ring_size);
 | |
| 
 | |
| 		howmany++;
 | |
| 		spin_lock_irqsave(&tx_queue->txlock, flags);
 | |
| 		tx_queue->num_txbdfree += frags + 1;
 | |
| 		spin_unlock_irqrestore(&tx_queue->txlock, flags);
 | |
| 	}
 | |
| 
 | |
| 	/* If we freed a buffer, we can restart transmission, if necessary */
 | |
| 	if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
 | |
| 		netif_wake_subqueue(dev, tx_queue->qindex);
 | |
| 
 | |
| 	/* Update dirty indicators */
 | |
| 	tx_queue->skb_dirtytx = skb_dirtytx;
 | |
| 	tx_queue->dirty_tx = bdp;
 | |
| 
 | |
| 	return howmany;
 | |
| }
 | |
| 
 | |
| static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&gfargrp->grplock, flags);
 | |
| 	if (napi_schedule_prep(&gfargrp->napi)) {
 | |
| 		gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
 | |
| 		__napi_schedule(&gfargrp->napi);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Clear IEVENT, so interrupts aren't called again
 | |
| 		 * because of the packets that have already arrived.
 | |
| 		 */
 | |
| 		gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&gfargrp->grplock, flags);
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Interrupt Handler for Transmit complete */
 | |
| static irqreturn_t gfar_transmit(int irq, void *grp_id)
 | |
| {
 | |
| 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 | |
| 		struct sk_buff *skb)
 | |
| {
 | |
| 	struct net_device *dev = rx_queue->dev;
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	dma_addr_t buf;
 | |
| 
 | |
| 	buf = dma_map_single(&priv->ofdev->dev, skb->data,
 | |
| 			     priv->rx_buffer_size, DMA_FROM_DEVICE);
 | |
| 	gfar_init_rxbdp(rx_queue, bdp, buf);
 | |
| }
 | |
| 
 | |
| 
 | |
| struct sk_buff * gfar_new_skb(struct net_device *dev)
 | |
| {
 | |
| 	unsigned int alignamount;
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct sk_buff *skb = NULL;
 | |
| 
 | |
| 	skb = __skb_dequeue(&priv->rx_recycle);
 | |
| 	if (!skb)
 | |
| 		skb = netdev_alloc_skb(dev,
 | |
| 				priv->rx_buffer_size + RXBUF_ALIGNMENT);
 | |
| 
 | |
| 	if (!skb)
 | |
| 		return NULL;
 | |
| 
 | |
| 	alignamount = RXBUF_ALIGNMENT -
 | |
| 		(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
 | |
| 
 | |
| 	/* We need the data buffer to be aligned properly.  We will reserve
 | |
| 	 * as many bytes as needed to align the data properly
 | |
| 	 */
 | |
| 	skb_reserve(skb, alignamount);
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| static inline void count_errors(unsigned short status, struct net_device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct net_device_stats *stats = &dev->stats;
 | |
| 	struct gfar_extra_stats *estats = &priv->extra_stats;
 | |
| 
 | |
| 	/* If the packet was truncated, none of the other errors
 | |
| 	 * matter */
 | |
| 	if (status & RXBD_TRUNCATED) {
 | |
| 		stats->rx_length_errors++;
 | |
| 
 | |
| 		estats->rx_trunc++;
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 	/* Count the errors, if there were any */
 | |
| 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
 | |
| 		stats->rx_length_errors++;
 | |
| 
 | |
| 		if (status & RXBD_LARGE)
 | |
| 			estats->rx_large++;
 | |
| 		else
 | |
| 			estats->rx_short++;
 | |
| 	}
 | |
| 	if (status & RXBD_NONOCTET) {
 | |
| 		stats->rx_frame_errors++;
 | |
| 		estats->rx_nonoctet++;
 | |
| 	}
 | |
| 	if (status & RXBD_CRCERR) {
 | |
| 		estats->rx_crcerr++;
 | |
| 		stats->rx_crc_errors++;
 | |
| 	}
 | |
| 	if (status & RXBD_OVERRUN) {
 | |
| 		estats->rx_overrun++;
 | |
| 		stats->rx_crc_errors++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| irqreturn_t gfar_receive(int irq, void *grp_id)
 | |
| {
 | |
| 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
 | |
| {
 | |
| 	/* If valid headers were found, and valid sums
 | |
| 	 * were verified, then we tell the kernel that no
 | |
| 	 * checksumming is necessary.  Otherwise, it is */
 | |
| 	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
 | |
| 		skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 	else
 | |
| 		skb->ip_summed = CHECKSUM_NONE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* gfar_process_frame() -- handle one incoming packet if skb
 | |
|  * isn't NULL.  */
 | |
| static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
 | |
| 			      int amount_pull)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct rxfcb *fcb = NULL;
 | |
| 
 | |
| 	int ret;
 | |
| 
 | |
| 	/* fcb is at the beginning if exists */
 | |
| 	fcb = (struct rxfcb *)skb->data;
 | |
| 
 | |
| 	/* Remove the FCB from the skb */
 | |
| 	/* Remove the padded bytes, if there are any */
 | |
| 	if (amount_pull) {
 | |
| 		skb_record_rx_queue(skb, fcb->rq);
 | |
| 		skb_pull(skb, amount_pull);
 | |
| 	}
 | |
| 
 | |
| 	if (priv->rx_csum_enable)
 | |
| 		gfar_rx_checksum(skb, fcb);
 | |
| 
 | |
| 	/* Tell the skb what kind of packet this is */
 | |
| 	skb->protocol = eth_type_trans(skb, dev);
 | |
| 
 | |
| 	/* Send the packet up the stack */
 | |
| 	if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
 | |
| 		ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
 | |
| 	else
 | |
| 		ret = netif_receive_skb(skb);
 | |
| 
 | |
| 	if (NET_RX_DROP == ret)
 | |
| 		priv->extra_stats.kernel_dropped++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
 | |
|  *   until the budget/quota has been reached. Returns the number
 | |
|  *   of frames handled
 | |
|  */
 | |
| int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
 | |
| {
 | |
| 	struct net_device *dev = rx_queue->dev;
 | |
| 	struct rxbd8 *bdp, *base;
 | |
| 	struct sk_buff *skb;
 | |
| 	int pkt_len;
 | |
| 	int amount_pull;
 | |
| 	int howmany = 0;
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 
 | |
| 	/* Get the first full descriptor */
 | |
| 	bdp = rx_queue->cur_rx;
 | |
| 	base = rx_queue->rx_bd_base;
 | |
| 
 | |
| 	amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
 | |
| 		priv->padding;
 | |
| 
 | |
| 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
 | |
| 		struct sk_buff *newskb;
 | |
| 		rmb();
 | |
| 
 | |
| 		/* Add another skb for the future */
 | |
| 		newskb = gfar_new_skb(dev);
 | |
| 
 | |
| 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
 | |
| 
 | |
| 		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
 | |
| 				priv->rx_buffer_size, DMA_FROM_DEVICE);
 | |
| 
 | |
| 		/* We drop the frame if we failed to allocate a new buffer */
 | |
| 		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
 | |
| 				 bdp->status & RXBD_ERR)) {
 | |
| 			count_errors(bdp->status, dev);
 | |
| 
 | |
| 			if (unlikely(!newskb))
 | |
| 				newskb = skb;
 | |
| 			else if (skb) {
 | |
| 				/*
 | |
| 				 * We need to reset ->data to what it
 | |
| 				 * was before gfar_new_skb() re-aligned
 | |
| 				 * it to an RXBUF_ALIGNMENT boundary
 | |
| 				 * before we put the skb back on the
 | |
| 				 * recycle list.
 | |
| 				 */
 | |
| 				skb->data = skb->head + NET_SKB_PAD;
 | |
| 				__skb_queue_head(&priv->rx_recycle, skb);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* Increment the number of packets */
 | |
| 			rx_queue->stats.rx_packets++;
 | |
| 			howmany++;
 | |
| 
 | |
| 			if (likely(skb)) {
 | |
| 				pkt_len = bdp->length - ETH_FCS_LEN;
 | |
| 				/* Remove the FCS from the packet length */
 | |
| 				skb_put(skb, pkt_len);
 | |
| 				rx_queue->stats.rx_bytes += pkt_len;
 | |
| 				skb_record_rx_queue(skb, rx_queue->qindex);
 | |
| 				gfar_process_frame(dev, skb, amount_pull);
 | |
| 
 | |
| 			} else {
 | |
| 				if (netif_msg_rx_err(priv))
 | |
| 					printk(KERN_WARNING
 | |
| 					       "%s: Missing skb!\n", dev->name);
 | |
| 				rx_queue->stats.rx_dropped++;
 | |
| 				priv->extra_stats.rx_skbmissing++;
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
 | |
| 
 | |
| 		/* Setup the new bdp */
 | |
| 		gfar_new_rxbdp(rx_queue, bdp, newskb);
 | |
| 
 | |
| 		/* Update to the next pointer */
 | |
| 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
 | |
| 
 | |
| 		/* update to point at the next skb */
 | |
| 		rx_queue->skb_currx =
 | |
| 		    (rx_queue->skb_currx + 1) &
 | |
| 		    RX_RING_MOD_MASK(rx_queue->rx_ring_size);
 | |
| 	}
 | |
| 
 | |
| 	/* Update the current rxbd pointer to be the next one */
 | |
| 	rx_queue->cur_rx = bdp;
 | |
| 
 | |
| 	return howmany;
 | |
| }
 | |
| 
 | |
| static int gfar_poll(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct gfar_priv_grp *gfargrp = container_of(napi,
 | |
| 			struct gfar_priv_grp, napi);
 | |
| 	struct gfar_private *priv = gfargrp->priv;
 | |
| 	struct gfar __iomem *regs = gfargrp->regs;
 | |
| 	struct gfar_priv_tx_q *tx_queue = NULL;
 | |
| 	struct gfar_priv_rx_q *rx_queue = NULL;
 | |
| 	int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
 | |
| 	int tx_cleaned = 0, i, left_over_budget = budget;
 | |
| 	unsigned long serviced_queues = 0;
 | |
| 	int num_queues = 0;
 | |
| 
 | |
| 	num_queues = gfargrp->num_rx_queues;
 | |
| 	budget_per_queue = budget/num_queues;
 | |
| 
 | |
| 	/* Clear IEVENT, so interrupts aren't called again
 | |
| 	 * because of the packets that have already arrived */
 | |
| 	gfar_write(®s->ievent, IEVENT_RTX_MASK);
 | |
| 
 | |
| 	while (num_queues && left_over_budget) {
 | |
| 
 | |
| 		budget_per_queue = left_over_budget/num_queues;
 | |
| 		left_over_budget = 0;
 | |
| 
 | |
| 		for_each_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
 | |
| 			if (test_bit(i, &serviced_queues))
 | |
| 				continue;
 | |
| 			rx_queue = priv->rx_queue[i];
 | |
| 			tx_queue = priv->tx_queue[rx_queue->qindex];
 | |
| 
 | |
| 			tx_cleaned += gfar_clean_tx_ring(tx_queue);
 | |
| 			rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
 | |
| 							budget_per_queue);
 | |
| 			rx_cleaned += rx_cleaned_per_queue;
 | |
| 			if(rx_cleaned_per_queue < budget_per_queue) {
 | |
| 				left_over_budget = left_over_budget +
 | |
| 					(budget_per_queue - rx_cleaned_per_queue);
 | |
| 				set_bit(i, &serviced_queues);
 | |
| 				num_queues--;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (tx_cleaned)
 | |
| 		return budget;
 | |
| 
 | |
| 	if (rx_cleaned < budget) {
 | |
| 		napi_complete(napi);
 | |
| 
 | |
| 		/* Clear the halt bit in RSTAT */
 | |
| 		gfar_write(®s->rstat, gfargrp->rstat);
 | |
| 
 | |
| 		gfar_write(®s->imask, IMASK_DEFAULT);
 | |
| 
 | |
| 		/* If we are coalescing interrupts, update the timer */
 | |
| 		/* Otherwise, clear it */
 | |
| 		gfar_configure_coalescing(priv,
 | |
| 				gfargrp->rx_bit_map, gfargrp->tx_bit_map);
 | |
| 	}
 | |
| 
 | |
| 	return rx_cleaned;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| /*
 | |
|  * Polling 'interrupt' - used by things like netconsole to send skbs
 | |
|  * without having to re-enable interrupts. It's not called while
 | |
|  * the interrupt routine is executing.
 | |
|  */
 | |
| static void gfar_netpoll(struct net_device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	int i = 0;
 | |
| 
 | |
| 	/* If the device has multiple interrupts, run tx/rx */
 | |
| 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
 | |
| 		for (i = 0; i < priv->num_grps; i++) {
 | |
| 			disable_irq(priv->gfargrp[i].interruptTransmit);
 | |
| 			disable_irq(priv->gfargrp[i].interruptReceive);
 | |
| 			disable_irq(priv->gfargrp[i].interruptError);
 | |
| 			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
 | |
| 						&priv->gfargrp[i]);
 | |
| 			enable_irq(priv->gfargrp[i].interruptError);
 | |
| 			enable_irq(priv->gfargrp[i].interruptReceive);
 | |
| 			enable_irq(priv->gfargrp[i].interruptTransmit);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i = 0; i < priv->num_grps; i++) {
 | |
| 			disable_irq(priv->gfargrp[i].interruptTransmit);
 | |
| 			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
 | |
| 						&priv->gfargrp[i]);
 | |
| 			enable_irq(priv->gfargrp[i].interruptTransmit);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* The interrupt handler for devices with one interrupt */
 | |
| static irqreturn_t gfar_interrupt(int irq, void *grp_id)
 | |
| {
 | |
| 	struct gfar_priv_grp *gfargrp = grp_id;
 | |
| 
 | |
| 	/* Save ievent for future reference */
 | |
| 	u32 events = gfar_read(&gfargrp->regs->ievent);
 | |
| 
 | |
| 	/* Check for reception */
 | |
| 	if (events & IEVENT_RX_MASK)
 | |
| 		gfar_receive(irq, grp_id);
 | |
| 
 | |
| 	/* Check for transmit completion */
 | |
| 	if (events & IEVENT_TX_MASK)
 | |
| 		gfar_transmit(irq, grp_id);
 | |
| 
 | |
| 	/* Check for errors */
 | |
| 	if (events & IEVENT_ERR_MASK)
 | |
| 		gfar_error(irq, grp_id);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* Called every time the controller might need to be made
 | |
|  * aware of new link state.  The PHY code conveys this
 | |
|  * information through variables in the phydev structure, and this
 | |
|  * function converts those variables into the appropriate
 | |
|  * register values, and can bring down the device if needed.
 | |
|  */
 | |
| static void adjust_link(struct net_device *dev)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 | |
| 	unsigned long flags;
 | |
| 	struct phy_device *phydev = priv->phydev;
 | |
| 	int new_state = 0;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	lock_tx_qs(priv);
 | |
| 
 | |
| 	if (phydev->link) {
 | |
| 		u32 tempval = gfar_read(®s->maccfg2);
 | |
| 		u32 ecntrl = gfar_read(®s->ecntrl);
 | |
| 
 | |
| 		/* Now we make sure that we can be in full duplex mode.
 | |
| 		 * If not, we operate in half-duplex mode. */
 | |
| 		if (phydev->duplex != priv->oldduplex) {
 | |
| 			new_state = 1;
 | |
| 			if (!(phydev->duplex))
 | |
| 				tempval &= ~(MACCFG2_FULL_DUPLEX);
 | |
| 			else
 | |
| 				tempval |= MACCFG2_FULL_DUPLEX;
 | |
| 
 | |
| 			priv->oldduplex = phydev->duplex;
 | |
| 		}
 | |
| 
 | |
| 		if (phydev->speed != priv->oldspeed) {
 | |
| 			new_state = 1;
 | |
| 			switch (phydev->speed) {
 | |
| 			case 1000:
 | |
| 				tempval =
 | |
| 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
 | |
| 
 | |
| 				ecntrl &= ~(ECNTRL_R100);
 | |
| 				break;
 | |
| 			case 100:
 | |
| 			case 10:
 | |
| 				tempval =
 | |
| 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
 | |
| 
 | |
| 				/* Reduced mode distinguishes
 | |
| 				 * between 10 and 100 */
 | |
| 				if (phydev->speed == SPEED_100)
 | |
| 					ecntrl |= ECNTRL_R100;
 | |
| 				else
 | |
| 					ecntrl &= ~(ECNTRL_R100);
 | |
| 				break;
 | |
| 			default:
 | |
| 				if (netif_msg_link(priv))
 | |
| 					printk(KERN_WARNING
 | |
| 						"%s: Ack!  Speed (%d) is not 10/100/1000!\n",
 | |
| 						dev->name, phydev->speed);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			priv->oldspeed = phydev->speed;
 | |
| 		}
 | |
| 
 | |
| 		gfar_write(®s->maccfg2, tempval);
 | |
| 		gfar_write(®s->ecntrl, ecntrl);
 | |
| 
 | |
| 		if (!priv->oldlink) {
 | |
| 			new_state = 1;
 | |
| 			priv->oldlink = 1;
 | |
| 		}
 | |
| 	} else if (priv->oldlink) {
 | |
| 		new_state = 1;
 | |
| 		priv->oldlink = 0;
 | |
| 		priv->oldspeed = 0;
 | |
| 		priv->oldduplex = -1;
 | |
| 	}
 | |
| 
 | |
| 	if (new_state && netif_msg_link(priv))
 | |
| 		phy_print_status(phydev);
 | |
| 	unlock_tx_qs(priv);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /* Update the hash table based on the current list of multicast
 | |
|  * addresses we subscribe to.  Also, change the promiscuity of
 | |
|  * the device based on the flags (this function is called
 | |
|  * whenever dev->flags is changed */
 | |
| static void gfar_set_multi(struct net_device *dev)
 | |
| {
 | |
| 	struct dev_mc_list *mc_ptr;
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 | |
| 	u32 tempval;
 | |
| 
 | |
| 	if (dev->flags & IFF_PROMISC) {
 | |
| 		/* Set RCTRL to PROM */
 | |
| 		tempval = gfar_read(®s->rctrl);
 | |
| 		tempval |= RCTRL_PROM;
 | |
| 		gfar_write(®s->rctrl, tempval);
 | |
| 	} else {
 | |
| 		/* Set RCTRL to not PROM */
 | |
| 		tempval = gfar_read(®s->rctrl);
 | |
| 		tempval &= ~(RCTRL_PROM);
 | |
| 		gfar_write(®s->rctrl, tempval);
 | |
| 	}
 | |
| 
 | |
| 	if (dev->flags & IFF_ALLMULTI) {
 | |
| 		/* Set the hash to rx all multicast frames */
 | |
| 		gfar_write(®s->igaddr0, 0xffffffff);
 | |
| 		gfar_write(®s->igaddr1, 0xffffffff);
 | |
| 		gfar_write(®s->igaddr2, 0xffffffff);
 | |
| 		gfar_write(®s->igaddr3, 0xffffffff);
 | |
| 		gfar_write(®s->igaddr4, 0xffffffff);
 | |
| 		gfar_write(®s->igaddr5, 0xffffffff);
 | |
| 		gfar_write(®s->igaddr6, 0xffffffff);
 | |
| 		gfar_write(®s->igaddr7, 0xffffffff);
 | |
| 		gfar_write(®s->gaddr0, 0xffffffff);
 | |
| 		gfar_write(®s->gaddr1, 0xffffffff);
 | |
| 		gfar_write(®s->gaddr2, 0xffffffff);
 | |
| 		gfar_write(®s->gaddr3, 0xffffffff);
 | |
| 		gfar_write(®s->gaddr4, 0xffffffff);
 | |
| 		gfar_write(®s->gaddr5, 0xffffffff);
 | |
| 		gfar_write(®s->gaddr6, 0xffffffff);
 | |
| 		gfar_write(®s->gaddr7, 0xffffffff);
 | |
| 	} else {
 | |
| 		int em_num;
 | |
| 		int idx;
 | |
| 
 | |
| 		/* zero out the hash */
 | |
| 		gfar_write(®s->igaddr0, 0x0);
 | |
| 		gfar_write(®s->igaddr1, 0x0);
 | |
| 		gfar_write(®s->igaddr2, 0x0);
 | |
| 		gfar_write(®s->igaddr3, 0x0);
 | |
| 		gfar_write(®s->igaddr4, 0x0);
 | |
| 		gfar_write(®s->igaddr5, 0x0);
 | |
| 		gfar_write(®s->igaddr6, 0x0);
 | |
| 		gfar_write(®s->igaddr7, 0x0);
 | |
| 		gfar_write(®s->gaddr0, 0x0);
 | |
| 		gfar_write(®s->gaddr1, 0x0);
 | |
| 		gfar_write(®s->gaddr2, 0x0);
 | |
| 		gfar_write(®s->gaddr3, 0x0);
 | |
| 		gfar_write(®s->gaddr4, 0x0);
 | |
| 		gfar_write(®s->gaddr5, 0x0);
 | |
| 		gfar_write(®s->gaddr6, 0x0);
 | |
| 		gfar_write(®s->gaddr7, 0x0);
 | |
| 
 | |
| 		/* If we have extended hash tables, we need to
 | |
| 		 * clear the exact match registers to prepare for
 | |
| 		 * setting them */
 | |
| 		if (priv->extended_hash) {
 | |
| 			em_num = GFAR_EM_NUM + 1;
 | |
| 			gfar_clear_exact_match(dev);
 | |
| 			idx = 1;
 | |
| 		} else {
 | |
| 			idx = 0;
 | |
| 			em_num = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (netdev_mc_empty(dev))
 | |
| 			return;
 | |
| 
 | |
| 		/* Parse the list, and set the appropriate bits */
 | |
| 		netdev_for_each_mc_addr(mc_ptr, dev) {
 | |
| 			if (idx < em_num) {
 | |
| 				gfar_set_mac_for_addr(dev, idx,
 | |
| 						mc_ptr->dmi_addr);
 | |
| 				idx++;
 | |
| 			} else
 | |
| 				gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Clears each of the exact match registers to zero, so they
 | |
|  * don't interfere with normal reception */
 | |
| static void gfar_clear_exact_match(struct net_device *dev)
 | |
| {
 | |
| 	int idx;
 | |
| 	u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
 | |
| 
 | |
| 	for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
 | |
| 		gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
 | |
| }
 | |
| 
 | |
| /* Set the appropriate hash bit for the given addr */
 | |
| /* The algorithm works like so:
 | |
|  * 1) Take the Destination Address (ie the multicast address), and
 | |
|  * do a CRC on it (little endian), and reverse the bits of the
 | |
|  * result.
 | |
|  * 2) Use the 8 most significant bits as a hash into a 256-entry
 | |
|  * table.  The table is controlled through 8 32-bit registers:
 | |
|  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
 | |
|  * gaddr7.  This means that the 3 most significant bits in the
 | |
|  * hash index which gaddr register to use, and the 5 other bits
 | |
|  * indicate which bit (assuming an IBM numbering scheme, which
 | |
|  * for PowerPC (tm) is usually the case) in the register holds
 | |
|  * the entry. */
 | |
| static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
 | |
| {
 | |
| 	u32 tempval;
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	u32 result = ether_crc(MAC_ADDR_LEN, addr);
 | |
| 	int width = priv->hash_width;
 | |
| 	u8 whichbit = (result >> (32 - width)) & 0x1f;
 | |
| 	u8 whichreg = result >> (32 - width + 5);
 | |
| 	u32 value = (1 << (31-whichbit));
 | |
| 
 | |
| 	tempval = gfar_read(priv->hash_regs[whichreg]);
 | |
| 	tempval |= value;
 | |
| 	gfar_write(priv->hash_regs[whichreg], tempval);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* There are multiple MAC Address register pairs on some controllers
 | |
|  * This function sets the numth pair to a given address
 | |
|  */
 | |
| static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
 | |
| {
 | |
| 	struct gfar_private *priv = netdev_priv(dev);
 | |
| 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 | |
| 	int idx;
 | |
| 	char tmpbuf[MAC_ADDR_LEN];
 | |
| 	u32 tempval;
 | |
| 	u32 __iomem *macptr = ®s->macstnaddr1;
 | |
| 
 | |
| 	macptr += num*2;
 | |
| 
 | |
| 	/* Now copy it into the mac registers backwards, cuz */
 | |
| 	/* little endian is silly */
 | |
| 	for (idx = 0; idx < MAC_ADDR_LEN; idx++)
 | |
| 		tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
 | |
| 
 | |
| 	gfar_write(macptr, *((u32 *) (tmpbuf)));
 | |
| 
 | |
| 	tempval = *((u32 *) (tmpbuf + 4));
 | |
| 
 | |
| 	gfar_write(macptr+1, tempval);
 | |
| }
 | |
| 
 | |
| /* GFAR error interrupt handler */
 | |
| static irqreturn_t gfar_error(int irq, void *grp_id)
 | |
| {
 | |
| 	struct gfar_priv_grp *gfargrp = grp_id;
 | |
| 	struct gfar __iomem *regs = gfargrp->regs;
 | |
| 	struct gfar_private *priv= gfargrp->priv;
 | |
| 	struct net_device *dev = priv->ndev;
 | |
| 
 | |
| 	/* Save ievent for future reference */
 | |
| 	u32 events = gfar_read(®s->ievent);
 | |
| 
 | |
| 	/* Clear IEVENT */
 | |
| 	gfar_write(®s->ievent, events & IEVENT_ERR_MASK);
 | |
| 
 | |
| 	/* Magic Packet is not an error. */
 | |
| 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
 | |
| 	    (events & IEVENT_MAG))
 | |
| 		events &= ~IEVENT_MAG;
 | |
| 
 | |
| 	/* Hmm... */
 | |
| 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
 | |
| 		printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
 | |
| 		       dev->name, events, gfar_read(®s->imask));
 | |
| 
 | |
| 	/* Update the error counters */
 | |
| 	if (events & IEVENT_TXE) {
 | |
| 		dev->stats.tx_errors++;
 | |
| 
 | |
| 		if (events & IEVENT_LC)
 | |
| 			dev->stats.tx_window_errors++;
 | |
| 		if (events & IEVENT_CRL)
 | |
| 			dev->stats.tx_aborted_errors++;
 | |
| 		if (events & IEVENT_XFUN) {
 | |
| 			unsigned long flags;
 | |
| 
 | |
| 			if (netif_msg_tx_err(priv))
 | |
| 				printk(KERN_DEBUG "%s: TX FIFO underrun, "
 | |
| 				       "packet dropped.\n", dev->name);
 | |
| 			dev->stats.tx_dropped++;
 | |
| 			priv->extra_stats.tx_underrun++;
 | |
| 
 | |
| 			local_irq_save(flags);
 | |
| 			lock_tx_qs(priv);
 | |
| 
 | |
| 			/* Reactivate the Tx Queues */
 | |
| 			gfar_write(®s->tstat, gfargrp->tstat);
 | |
| 
 | |
| 			unlock_tx_qs(priv);
 | |
| 			local_irq_restore(flags);
 | |
| 		}
 | |
| 		if (netif_msg_tx_err(priv))
 | |
| 			printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
 | |
| 	}
 | |
| 	if (events & IEVENT_BSY) {
 | |
| 		dev->stats.rx_errors++;
 | |
| 		priv->extra_stats.rx_bsy++;
 | |
| 
 | |
| 		gfar_receive(irq, grp_id);
 | |
| 
 | |
| 		if (netif_msg_rx_err(priv))
 | |
| 			printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
 | |
| 			       dev->name, gfar_read(®s->rstat));
 | |
| 	}
 | |
| 	if (events & IEVENT_BABR) {
 | |
| 		dev->stats.rx_errors++;
 | |
| 		priv->extra_stats.rx_babr++;
 | |
| 
 | |
| 		if (netif_msg_rx_err(priv))
 | |
| 			printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
 | |
| 	}
 | |
| 	if (events & IEVENT_EBERR) {
 | |
| 		priv->extra_stats.eberr++;
 | |
| 		if (netif_msg_rx_err(priv))
 | |
| 			printk(KERN_DEBUG "%s: bus error\n", dev->name);
 | |
| 	}
 | |
| 	if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
 | |
| 		printk(KERN_DEBUG "%s: control frame\n", dev->name);
 | |
| 
 | |
| 	if (events & IEVENT_BABT) {
 | |
| 		priv->extra_stats.tx_babt++;
 | |
| 		if (netif_msg_tx_err(priv))
 | |
| 			printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
 | |
| 	}
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static struct of_device_id gfar_match[] =
 | |
| {
 | |
| 	{
 | |
| 		.type = "network",
 | |
| 		.compatible = "gianfar",
 | |
| 	},
 | |
| 	{
 | |
| 		.compatible = "fsl,etsec2",
 | |
| 	},
 | |
| 	{},
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, gfar_match);
 | |
| 
 | |
| /* Structure for a device driver */
 | |
| static struct of_platform_driver gfar_driver = {
 | |
| 	.name = "fsl-gianfar",
 | |
| 	.match_table = gfar_match,
 | |
| 
 | |
| 	.probe = gfar_probe,
 | |
| 	.remove = gfar_remove,
 | |
| 	.suspend = gfar_legacy_suspend,
 | |
| 	.resume = gfar_legacy_resume,
 | |
| 	.driver.pm = GFAR_PM_OPS,
 | |
| };
 | |
| 
 | |
| static int __init gfar_init(void)
 | |
| {
 | |
| 	return of_register_platform_driver(&gfar_driver);
 | |
| }
 | |
| 
 | |
| static void __exit gfar_exit(void)
 | |
| {
 | |
| 	of_unregister_platform_driver(&gfar_driver);
 | |
| }
 | |
| 
 | |
| module_init(gfar_init);
 | |
| module_exit(gfar_exit);
 | |
| 
 |