 48e2f183cb
			
		
	
	
	48e2f183cb
	
	
	
		
			
			Signed-off-by: Jiri Pirko <jpirko@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			2028 lines
		
	
	
	
		
			54 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2028 lines
		
	
	
	
		
			54 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
 | |
|  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
 | |
|  *
 | |
|  * Right now, I am very wasteful with the buffers.  I allocate memory
 | |
|  * pages and then divide them into 2K frame buffers.  This way I know I
 | |
|  * have buffers large enough to hold one frame within one buffer descriptor.
 | |
|  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
 | |
|  * will be much more memory efficient and will easily handle lots of
 | |
|  * small packets.
 | |
|  *
 | |
|  * Much better multiple PHY support by Magnus Damm.
 | |
|  * Copyright (c) 2000 Ericsson Radio Systems AB.
 | |
|  *
 | |
|  * Support for FEC controller of ColdFire processors.
 | |
|  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
 | |
|  *
 | |
|  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
 | |
|  * Copyright (c) 2004-2006 Macq Electronique SA.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/platform_device.h>
 | |
| 
 | |
| #include <asm/cacheflush.h>
 | |
| 
 | |
| #ifndef CONFIG_ARCH_MXC
 | |
| #include <asm/coldfire.h>
 | |
| #include <asm/mcfsim.h>
 | |
| #endif
 | |
| 
 | |
| #include "fec.h"
 | |
| 
 | |
| #ifdef CONFIG_ARCH_MXC
 | |
| #include <mach/hardware.h>
 | |
| #define FEC_ALIGNMENT	0xf
 | |
| #else
 | |
| #define FEC_ALIGNMENT	0x3
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Define the fixed address of the FEC hardware.
 | |
|  */
 | |
| #if defined(CONFIG_M5272)
 | |
| #define HAVE_mii_link_interrupt
 | |
| 
 | |
| static unsigned char	fec_mac_default[] = {
 | |
| 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Some hardware gets it MAC address out of local flash memory.
 | |
|  * if this is non-zero then assume it is the address to get MAC from.
 | |
|  */
 | |
| #if defined(CONFIG_NETtel)
 | |
| #define	FEC_FLASHMAC	0xf0006006
 | |
| #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 | |
| #define	FEC_FLASHMAC	0xf0006000
 | |
| #elif defined(CONFIG_CANCam)
 | |
| #define	FEC_FLASHMAC	0xf0020000
 | |
| #elif defined (CONFIG_M5272C3)
 | |
| #define	FEC_FLASHMAC	(0xffe04000 + 4)
 | |
| #elif defined(CONFIG_MOD5272)
 | |
| #define FEC_FLASHMAC 	0xffc0406b
 | |
| #else
 | |
| #define	FEC_FLASHMAC	0
 | |
| #endif
 | |
| #endif /* CONFIG_M5272 */
 | |
| 
 | |
| /* Forward declarations of some structures to support different PHYs */
 | |
| 
 | |
| typedef struct {
 | |
| 	uint mii_data;
 | |
| 	void (*funct)(uint mii_reg, struct net_device *dev);
 | |
| } phy_cmd_t;
 | |
| 
 | |
| typedef struct {
 | |
| 	uint id;
 | |
| 	char *name;
 | |
| 
 | |
| 	const phy_cmd_t *config;
 | |
| 	const phy_cmd_t *startup;
 | |
| 	const phy_cmd_t *ack_int;
 | |
| 	const phy_cmd_t *shutdown;
 | |
| } phy_info_t;
 | |
| 
 | |
| /* The number of Tx and Rx buffers.  These are allocated from the page
 | |
|  * pool.  The code may assume these are power of two, so it it best
 | |
|  * to keep them that size.
 | |
|  * We don't need to allocate pages for the transmitter.  We just use
 | |
|  * the skbuffer directly.
 | |
|  */
 | |
| #define FEC_ENET_RX_PAGES	8
 | |
| #define FEC_ENET_RX_FRSIZE	2048
 | |
| #define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
 | |
| #define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
 | |
| #define FEC_ENET_TX_FRSIZE	2048
 | |
| #define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE)
 | |
| #define TX_RING_SIZE		16	/* Must be power of two */
 | |
| #define TX_RING_MOD_MASK	15	/*   for this to work */
 | |
| 
 | |
| #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
 | |
| #error "FEC: descriptor ring size constants too large"
 | |
| #endif
 | |
| 
 | |
| /* Interrupt events/masks. */
 | |
| #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
 | |
| #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
 | |
| #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
 | |
| #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
 | |
| #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
 | |
| #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
 | |
| #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
 | |
| #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
 | |
| #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
 | |
| #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
 | |
| 
 | |
| /* The FEC stores dest/src/type, data, and checksum for receive packets.
 | |
|  */
 | |
| #define PKT_MAXBUF_SIZE		1518
 | |
| #define PKT_MINBUF_SIZE		64
 | |
| #define PKT_MAXBLR_SIZE		1520
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 | |
|  * size bits. Other FEC hardware does not, so we need to take that into
 | |
|  * account when setting it.
 | |
|  */
 | |
| #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 | |
|     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
 | |
| #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 | |
| #else
 | |
| #define	OPT_FRAME_SIZE	0
 | |
| #endif
 | |
| 
 | |
| /* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
 | |
|  * tx_bd_base always point to the base of the buffer descriptors.  The
 | |
|  * cur_rx and cur_tx point to the currently available buffer.
 | |
|  * The dirty_tx tracks the current buffer that is being sent by the
 | |
|  * controller.  The cur_tx and dirty_tx are equal under both completely
 | |
|  * empty and completely full conditions.  The empty/ready indicator in
 | |
|  * the buffer descriptor determines the actual condition.
 | |
|  */
 | |
| struct fec_enet_private {
 | |
| 	/* Hardware registers of the FEC device */
 | |
| 	void __iomem *hwp;
 | |
| 
 | |
| 	struct net_device *netdev;
 | |
| 
 | |
| 	struct clk *clk;
 | |
| 
 | |
| 	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
 | |
| 	unsigned char *tx_bounce[TX_RING_SIZE];
 | |
| 	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
 | |
| 	struct	sk_buff* rx_skbuff[RX_RING_SIZE];
 | |
| 	ushort	skb_cur;
 | |
| 	ushort	skb_dirty;
 | |
| 
 | |
| 	/* CPM dual port RAM relative addresses */
 | |
| 	dma_addr_t	bd_dma;
 | |
| 	/* Address of Rx and Tx buffers */
 | |
| 	struct bufdesc	*rx_bd_base;
 | |
| 	struct bufdesc	*tx_bd_base;
 | |
| 	/* The next free ring entry */
 | |
| 	struct bufdesc	*cur_rx, *cur_tx; 
 | |
| 	/* The ring entries to be free()ed */
 | |
| 	struct bufdesc	*dirty_tx;
 | |
| 
 | |
| 	uint	tx_full;
 | |
| 	/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
 | |
| 	spinlock_t hw_lock;
 | |
| 	/* hold while accessing the mii_list_t() elements */
 | |
| 	spinlock_t mii_lock;
 | |
| 
 | |
| 	uint	phy_id;
 | |
| 	uint	phy_id_done;
 | |
| 	uint	phy_status;
 | |
| 	uint	phy_speed;
 | |
| 	phy_info_t const	*phy;
 | |
| 	struct work_struct phy_task;
 | |
| 
 | |
| 	uint	sequence_done;
 | |
| 	uint	mii_phy_task_queued;
 | |
| 
 | |
| 	uint	phy_addr;
 | |
| 
 | |
| 	int	index;
 | |
| 	int	opened;
 | |
| 	int	link;
 | |
| 	int	old_link;
 | |
| 	int	full_duplex;
 | |
| };
 | |
| 
 | |
| static void fec_enet_mii(struct net_device *dev);
 | |
| static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
 | |
| static void fec_enet_tx(struct net_device *dev);
 | |
| static void fec_enet_rx(struct net_device *dev);
 | |
| static int fec_enet_close(struct net_device *dev);
 | |
| static void fec_restart(struct net_device *dev, int duplex);
 | |
| static void fec_stop(struct net_device *dev);
 | |
| 
 | |
| 
 | |
| /* MII processing.  We keep this as simple as possible.  Requests are
 | |
|  * placed on the list (if there is room).  When the request is finished
 | |
|  * by the MII, an optional function may be called.
 | |
|  */
 | |
| typedef struct mii_list {
 | |
| 	uint	mii_regval;
 | |
| 	void	(*mii_func)(uint val, struct net_device *dev);
 | |
| 	struct	mii_list *mii_next;
 | |
| } mii_list_t;
 | |
| 
 | |
| #define		NMII	20
 | |
| static mii_list_t	mii_cmds[NMII];
 | |
| static mii_list_t	*mii_free;
 | |
| static mii_list_t	*mii_head;
 | |
| static mii_list_t	*mii_tail;
 | |
| 
 | |
| static int	mii_queue(struct net_device *dev, int request,
 | |
| 				void (*func)(uint, struct net_device *));
 | |
| 
 | |
| /* Make MII read/write commands for the FEC */
 | |
| #define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
 | |
| #define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \
 | |
| 						(VAL & 0xffff))
 | |
| #define mk_mii_end	0
 | |
| 
 | |
| /* Transmitter timeout */
 | |
| #define TX_TIMEOUT (2 * HZ)
 | |
| 
 | |
| /* Register definitions for the PHY */
 | |
| 
 | |
| #define MII_REG_CR          0  /* Control Register                         */
 | |
| #define MII_REG_SR          1  /* Status Register                          */
 | |
| #define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */
 | |
| #define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */
 | |
| #define MII_REG_ANAR        4  /* A-N Advertisement Register               */
 | |
| #define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */
 | |
| #define MII_REG_ANER        6  /* A-N Expansion Register                   */
 | |
| #define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */
 | |
| #define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */
 | |
| 
 | |
| /* values for phy_status */
 | |
| 
 | |
| #define PHY_CONF_ANE	0x0001  /* 1 auto-negotiation enabled */
 | |
| #define PHY_CONF_LOOP	0x0002  /* 1 loopback mode enabled */
 | |
| #define PHY_CONF_SPMASK	0x00f0  /* mask for speed */
 | |
| #define PHY_CONF_10HDX	0x0010  /* 10 Mbit half duplex supported */
 | |
| #define PHY_CONF_10FDX	0x0020  /* 10 Mbit full duplex supported */
 | |
| #define PHY_CONF_100HDX	0x0040  /* 100 Mbit half duplex supported */
 | |
| #define PHY_CONF_100FDX	0x0080  /* 100 Mbit full duplex supported */
 | |
| 
 | |
| #define PHY_STAT_LINK	0x0100  /* 1 up - 0 down */
 | |
| #define PHY_STAT_FAULT	0x0200  /* 1 remote fault */
 | |
| #define PHY_STAT_ANC	0x0400  /* 1 auto-negotiation complete	*/
 | |
| #define PHY_STAT_SPMASK	0xf000  /* mask for speed */
 | |
| #define PHY_STAT_10HDX	0x1000  /* 10 Mbit half duplex selected	*/
 | |
| #define PHY_STAT_10FDX	0x2000  /* 10 Mbit full duplex selected	*/
 | |
| #define PHY_STAT_100HDX	0x4000  /* 100 Mbit half duplex selected */
 | |
| #define PHY_STAT_100FDX	0x8000  /* 100 Mbit full duplex selected */
 | |
| 
 | |
| 
 | |
| static int
 | |
| fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	struct bufdesc *bdp;
 | |
| 	void *bufaddr;
 | |
| 	unsigned short	status;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!fep->link) {
 | |
| 		/* Link is down or autonegotiation is in progress. */
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&fep->hw_lock, flags);
 | |
| 	/* Fill in a Tx ring entry */
 | |
| 	bdp = fep->cur_tx;
 | |
| 
 | |
| 	status = bdp->cbd_sc;
 | |
| 
 | |
| 	if (status & BD_ENET_TX_READY) {
 | |
| 		/* Ooops.  All transmit buffers are full.  Bail out.
 | |
| 		 * This should not happen, since dev->tbusy should be set.
 | |
| 		 */
 | |
| 		printk("%s: tx queue full!.\n", dev->name);
 | |
| 		spin_unlock_irqrestore(&fep->hw_lock, flags);
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	/* Clear all of the status flags */
 | |
| 	status &= ~BD_ENET_TX_STATS;
 | |
| 
 | |
| 	/* Set buffer length and buffer pointer */
 | |
| 	bufaddr = skb->data;
 | |
| 	bdp->cbd_datlen = skb->len;
 | |
| 
 | |
| 	/*
 | |
| 	 * On some FEC implementations data must be aligned on
 | |
| 	 * 4-byte boundaries. Use bounce buffers to copy data
 | |
| 	 * and get it aligned. Ugh.
 | |
| 	 */
 | |
| 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
 | |
| 		unsigned int index;
 | |
| 		index = bdp - fep->tx_bd_base;
 | |
| 		memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
 | |
| 		bufaddr = fep->tx_bounce[index];
 | |
| 	}
 | |
| 
 | |
| 	/* Save skb pointer */
 | |
| 	fep->tx_skbuff[fep->skb_cur] = skb;
 | |
| 
 | |
| 	dev->stats.tx_bytes += skb->len;
 | |
| 	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
 | |
| 
 | |
| 	/* Push the data cache so the CPM does not get stale memory
 | |
| 	 * data.
 | |
| 	 */
 | |
| 	bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr,
 | |
| 			FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
 | |
| 
 | |
| 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 | |
| 	 * it's the last BD of the frame, and to put the CRC on the end.
 | |
| 	 */
 | |
| 	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
 | |
| 			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
 | |
| 	bdp->cbd_sc = status;
 | |
| 
 | |
| 	dev->trans_start = jiffies;
 | |
| 
 | |
| 	/* Trigger transmission start */
 | |
| 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
 | |
| 
 | |
| 	/* If this was the last BD in the ring, start at the beginning again. */
 | |
| 	if (status & BD_ENET_TX_WRAP)
 | |
| 		bdp = fep->tx_bd_base;
 | |
| 	else
 | |
| 		bdp++;
 | |
| 
 | |
| 	if (bdp == fep->dirty_tx) {
 | |
| 		fep->tx_full = 1;
 | |
| 		netif_stop_queue(dev);
 | |
| 	}
 | |
| 
 | |
| 	fep->cur_tx = bdp;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&fep->hw_lock, flags);
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| static void
 | |
| fec_timeout(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 
 | |
| 	dev->stats.tx_errors++;
 | |
| 
 | |
| 	fec_restart(dev, fep->full_duplex);
 | |
| 	netif_wake_queue(dev);
 | |
| }
 | |
| 
 | |
| static irqreturn_t
 | |
| fec_enet_interrupt(int irq, void * dev_id)
 | |
| {
 | |
| 	struct	net_device *dev = dev_id;
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	uint	int_events;
 | |
| 	irqreturn_t ret = IRQ_NONE;
 | |
| 
 | |
| 	do {
 | |
| 		int_events = readl(fep->hwp + FEC_IEVENT);
 | |
| 		writel(int_events, fep->hwp + FEC_IEVENT);
 | |
| 
 | |
| 		if (int_events & FEC_ENET_RXF) {
 | |
| 			ret = IRQ_HANDLED;
 | |
| 			fec_enet_rx(dev);
 | |
| 		}
 | |
| 
 | |
| 		/* Transmit OK, or non-fatal error. Update the buffer
 | |
| 		 * descriptors. FEC handles all errors, we just discover
 | |
| 		 * them as part of the transmit process.
 | |
| 		 */
 | |
| 		if (int_events & FEC_ENET_TXF) {
 | |
| 			ret = IRQ_HANDLED;
 | |
| 			fec_enet_tx(dev);
 | |
| 		}
 | |
| 
 | |
| 		if (int_events & FEC_ENET_MII) {
 | |
| 			ret = IRQ_HANDLED;
 | |
| 			fec_enet_mii(dev);
 | |
| 		}
 | |
| 
 | |
| 	} while (int_events);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| fec_enet_tx(struct net_device *dev)
 | |
| {
 | |
| 	struct	fec_enet_private *fep;
 | |
| 	struct bufdesc *bdp;
 | |
| 	unsigned short status;
 | |
| 	struct	sk_buff	*skb;
 | |
| 
 | |
| 	fep = netdev_priv(dev);
 | |
| 	spin_lock(&fep->hw_lock);
 | |
| 	bdp = fep->dirty_tx;
 | |
| 
 | |
| 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
 | |
| 		if (bdp == fep->cur_tx && fep->tx_full == 0)
 | |
| 			break;
 | |
| 
 | |
| 		dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
 | |
| 		bdp->cbd_bufaddr = 0;
 | |
| 
 | |
| 		skb = fep->tx_skbuff[fep->skb_dirty];
 | |
| 		/* Check for errors. */
 | |
| 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 | |
| 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
 | |
| 				   BD_ENET_TX_CSL)) {
 | |
| 			dev->stats.tx_errors++;
 | |
| 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
 | |
| 				dev->stats.tx_heartbeat_errors++;
 | |
| 			if (status & BD_ENET_TX_LC)  /* Late collision */
 | |
| 				dev->stats.tx_window_errors++;
 | |
| 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
 | |
| 				dev->stats.tx_aborted_errors++;
 | |
| 			if (status & BD_ENET_TX_UN)  /* Underrun */
 | |
| 				dev->stats.tx_fifo_errors++;
 | |
| 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
 | |
| 				dev->stats.tx_carrier_errors++;
 | |
| 		} else {
 | |
| 			dev->stats.tx_packets++;
 | |
| 		}
 | |
| 
 | |
| 		if (status & BD_ENET_TX_READY)
 | |
| 			printk("HEY! Enet xmit interrupt and TX_READY.\n");
 | |
| 
 | |
| 		/* Deferred means some collisions occurred during transmit,
 | |
| 		 * but we eventually sent the packet OK.
 | |
| 		 */
 | |
| 		if (status & BD_ENET_TX_DEF)
 | |
| 			dev->stats.collisions++;
 | |
| 
 | |
| 		/* Free the sk buffer associated with this last transmit */
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		fep->tx_skbuff[fep->skb_dirty] = NULL;
 | |
| 		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
 | |
| 
 | |
| 		/* Update pointer to next buffer descriptor to be transmitted */
 | |
| 		if (status & BD_ENET_TX_WRAP)
 | |
| 			bdp = fep->tx_bd_base;
 | |
| 		else
 | |
| 			bdp++;
 | |
| 
 | |
| 		/* Since we have freed up a buffer, the ring is no longer full
 | |
| 		 */
 | |
| 		if (fep->tx_full) {
 | |
| 			fep->tx_full = 0;
 | |
| 			if (netif_queue_stopped(dev))
 | |
| 				netif_wake_queue(dev);
 | |
| 		}
 | |
| 	}
 | |
| 	fep->dirty_tx = bdp;
 | |
| 	spin_unlock(&fep->hw_lock);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* During a receive, the cur_rx points to the current incoming buffer.
 | |
|  * When we update through the ring, if the next incoming buffer has
 | |
|  * not been given to the system, we just set the empty indicator,
 | |
|  * effectively tossing the packet.
 | |
|  */
 | |
| static void
 | |
| fec_enet_rx(struct net_device *dev)
 | |
| {
 | |
| 	struct	fec_enet_private *fep = netdev_priv(dev);
 | |
| 	struct bufdesc *bdp;
 | |
| 	unsigned short status;
 | |
| 	struct	sk_buff	*skb;
 | |
| 	ushort	pkt_len;
 | |
| 	__u8 *data;
 | |
| 
 | |
| #ifdef CONFIG_M532x
 | |
| 	flush_cache_all();
 | |
| #endif
 | |
| 
 | |
| 	spin_lock(&fep->hw_lock);
 | |
| 
 | |
| 	/* First, grab all of the stats for the incoming packet.
 | |
| 	 * These get messed up if we get called due to a busy condition.
 | |
| 	 */
 | |
| 	bdp = fep->cur_rx;
 | |
| 
 | |
| 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
 | |
| 
 | |
| 		/* Since we have allocated space to hold a complete frame,
 | |
| 		 * the last indicator should be set.
 | |
| 		 */
 | |
| 		if ((status & BD_ENET_RX_LAST) == 0)
 | |
| 			printk("FEC ENET: rcv is not +last\n");
 | |
| 
 | |
| 		if (!fep->opened)
 | |
| 			goto rx_processing_done;
 | |
| 
 | |
| 		/* Check for errors. */
 | |
| 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
 | |
| 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 | |
| 			dev->stats.rx_errors++;
 | |
| 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
 | |
| 				/* Frame too long or too short. */
 | |
| 				dev->stats.rx_length_errors++;
 | |
| 			}
 | |
| 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
 | |
| 				dev->stats.rx_frame_errors++;
 | |
| 			if (status & BD_ENET_RX_CR)	/* CRC Error */
 | |
| 				dev->stats.rx_crc_errors++;
 | |
| 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
 | |
| 				dev->stats.rx_fifo_errors++;
 | |
| 		}
 | |
| 
 | |
| 		/* Report late collisions as a frame error.
 | |
| 		 * On this error, the BD is closed, but we don't know what we
 | |
| 		 * have in the buffer.  So, just drop this frame on the floor.
 | |
| 		 */
 | |
| 		if (status & BD_ENET_RX_CL) {
 | |
| 			dev->stats.rx_errors++;
 | |
| 			dev->stats.rx_frame_errors++;
 | |
| 			goto rx_processing_done;
 | |
| 		}
 | |
| 
 | |
| 		/* Process the incoming frame. */
 | |
| 		dev->stats.rx_packets++;
 | |
| 		pkt_len = bdp->cbd_datlen;
 | |
| 		dev->stats.rx_bytes += pkt_len;
 | |
| 		data = (__u8*)__va(bdp->cbd_bufaddr);
 | |
| 
 | |
| 	        dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
 | |
|         			DMA_FROM_DEVICE);
 | |
| 
 | |
| 		/* This does 16 byte alignment, exactly what we need.
 | |
| 		 * The packet length includes FCS, but we don't want to
 | |
| 		 * include that when passing upstream as it messes up
 | |
| 		 * bridging applications.
 | |
| 		 */
 | |
| 		skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
 | |
| 
 | |
| 		if (unlikely(!skb)) {
 | |
| 			printk("%s: Memory squeeze, dropping packet.\n",
 | |
| 					dev->name);
 | |
| 			dev->stats.rx_dropped++;
 | |
| 		} else {
 | |
| 			skb_reserve(skb, NET_IP_ALIGN);
 | |
| 			skb_put(skb, pkt_len - 4);	/* Make room */
 | |
| 			skb_copy_to_linear_data(skb, data, pkt_len - 4);
 | |
| 			skb->protocol = eth_type_trans(skb, dev);
 | |
| 			netif_rx(skb);
 | |
| 		}
 | |
| 
 | |
|         	bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
 | |
| 			DMA_FROM_DEVICE);
 | |
| rx_processing_done:
 | |
| 		/* Clear the status flags for this buffer */
 | |
| 		status &= ~BD_ENET_RX_STATS;
 | |
| 
 | |
| 		/* Mark the buffer empty */
 | |
| 		status |= BD_ENET_RX_EMPTY;
 | |
| 		bdp->cbd_sc = status;
 | |
| 
 | |
| 		/* Update BD pointer to next entry */
 | |
| 		if (status & BD_ENET_RX_WRAP)
 | |
| 			bdp = fep->rx_bd_base;
 | |
| 		else
 | |
| 			bdp++;
 | |
| 		/* Doing this here will keep the FEC running while we process
 | |
| 		 * incoming frames.  On a heavily loaded network, we should be
 | |
| 		 * able to keep up at the expense of system resources.
 | |
| 		 */
 | |
| 		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
 | |
| 	}
 | |
| 	fep->cur_rx = bdp;
 | |
| 
 | |
| 	spin_unlock(&fep->hw_lock);
 | |
| }
 | |
| 
 | |
| /* called from interrupt context */
 | |
| static void
 | |
| fec_enet_mii(struct net_device *dev)
 | |
| {
 | |
| 	struct	fec_enet_private *fep;
 | |
| 	mii_list_t	*mip;
 | |
| 
 | |
| 	fep = netdev_priv(dev);
 | |
| 	spin_lock(&fep->mii_lock);
 | |
| 
 | |
| 	if ((mip = mii_head) == NULL) {
 | |
| 		printk("MII and no head!\n");
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (mip->mii_func != NULL)
 | |
| 		(*(mip->mii_func))(readl(fep->hwp + FEC_MII_DATA), dev);
 | |
| 
 | |
| 	mii_head = mip->mii_next;
 | |
| 	mip->mii_next = mii_free;
 | |
| 	mii_free = mip;
 | |
| 
 | |
| 	if ((mip = mii_head) != NULL)
 | |
| 		writel(mip->mii_regval, fep->hwp + FEC_MII_DATA);
 | |
| 
 | |
| unlock:
 | |
| 	spin_unlock(&fep->mii_lock);
 | |
| }
 | |
| 
 | |
| static int
 | |
| mii_queue_unlocked(struct net_device *dev, int regval,
 | |
| 		void (*func)(uint, struct net_device *))
 | |
| {
 | |
| 	struct fec_enet_private *fep;
 | |
| 	mii_list_t	*mip;
 | |
| 	int		retval;
 | |
| 
 | |
| 	/* Add PHY address to register command */
 | |
| 	fep = netdev_priv(dev);
 | |
| 
 | |
| 	regval |= fep->phy_addr << 23;
 | |
| 	retval = 0;
 | |
| 
 | |
| 	if ((mip = mii_free) != NULL) {
 | |
| 		mii_free = mip->mii_next;
 | |
| 		mip->mii_regval = regval;
 | |
| 		mip->mii_func = func;
 | |
| 		mip->mii_next = NULL;
 | |
| 		if (mii_head) {
 | |
| 			mii_tail->mii_next = mip;
 | |
| 			mii_tail = mip;
 | |
| 		} else {
 | |
| 			mii_head = mii_tail = mip;
 | |
| 			writel(regval, fep->hwp + FEC_MII_DATA);
 | |
| 		}
 | |
| 	} else {
 | |
| 		retval = 1;
 | |
| 	}
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int
 | |
| mii_queue(struct net_device *dev, int regval,
 | |
| 		void (*func)(uint, struct net_device *))
 | |
| {
 | |
| 	struct fec_enet_private *fep;
 | |
| 	unsigned long   flags;
 | |
| 	int             retval;
 | |
| 	fep = netdev_priv(dev);
 | |
| 	spin_lock_irqsave(&fep->mii_lock, flags);
 | |
| 	retval = mii_queue_unlocked(dev, regval, func);
 | |
| 	spin_unlock_irqrestore(&fep->mii_lock, flags);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
 | |
| {
 | |
| 	if(!c)
 | |
| 		return;
 | |
| 
 | |
| 	for (; c->mii_data != mk_mii_end; c++)
 | |
| 		mii_queue(dev, c->mii_data, c->funct);
 | |
| }
 | |
| 
 | |
| static void mii_parse_sr(uint mii_reg, struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	volatile uint *s = &(fep->phy_status);
 | |
| 	uint status;
 | |
| 
 | |
| 	status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
 | |
| 
 | |
| 	if (mii_reg & 0x0004)
 | |
| 		status |= PHY_STAT_LINK;
 | |
| 	if (mii_reg & 0x0010)
 | |
| 		status |= PHY_STAT_FAULT;
 | |
| 	if (mii_reg & 0x0020)
 | |
| 		status |= PHY_STAT_ANC;
 | |
| 	*s = status;
 | |
| }
 | |
| 
 | |
| static void mii_parse_cr(uint mii_reg, struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	volatile uint *s = &(fep->phy_status);
 | |
| 	uint status;
 | |
| 
 | |
| 	status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
 | |
| 
 | |
| 	if (mii_reg & 0x1000)
 | |
| 		status |= PHY_CONF_ANE;
 | |
| 	if (mii_reg & 0x4000)
 | |
| 		status |= PHY_CONF_LOOP;
 | |
| 	*s = status;
 | |
| }
 | |
| 
 | |
| static void mii_parse_anar(uint mii_reg, struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	volatile uint *s = &(fep->phy_status);
 | |
| 	uint status;
 | |
| 
 | |
| 	status = *s & ~(PHY_CONF_SPMASK);
 | |
| 
 | |
| 	if (mii_reg & 0x0020)
 | |
| 		status |= PHY_CONF_10HDX;
 | |
| 	if (mii_reg & 0x0040)
 | |
| 		status |= PHY_CONF_10FDX;
 | |
| 	if (mii_reg & 0x0080)
 | |
| 		status |= PHY_CONF_100HDX;
 | |
| 	if (mii_reg & 0x00100)
 | |
| 		status |= PHY_CONF_100FDX;
 | |
| 	*s = status;
 | |
| }
 | |
| 
 | |
| /* ------------------------------------------------------------------------- */
 | |
| /* The Level one LXT970 is used by many boards				     */
 | |
| 
 | |
| #define MII_LXT970_MIRROR    16  /* Mirror register           */
 | |
| #define MII_LXT970_IER       17  /* Interrupt Enable Register */
 | |
| #define MII_LXT970_ISR       18  /* Interrupt Status Register */
 | |
| #define MII_LXT970_CONFIG    19  /* Configuration Register    */
 | |
| #define MII_LXT970_CSR       20  /* Chip Status Register      */
 | |
| 
 | |
| static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	volatile uint *s = &(fep->phy_status);
 | |
| 	uint status;
 | |
| 
 | |
| 	status = *s & ~(PHY_STAT_SPMASK);
 | |
| 	if (mii_reg & 0x0800) {
 | |
| 		if (mii_reg & 0x1000)
 | |
| 			status |= PHY_STAT_100FDX;
 | |
| 		else
 | |
| 			status |= PHY_STAT_100HDX;
 | |
| 	} else {
 | |
| 		if (mii_reg & 0x1000)
 | |
| 			status |= PHY_STAT_10FDX;
 | |
| 		else
 | |
| 			status |= PHY_STAT_10HDX;
 | |
| 	}
 | |
| 	*s = status;
 | |
| }
 | |
| 
 | |
| static phy_cmd_t const phy_cmd_lxt970_config[] = {
 | |
| 		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
 | |
| 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
 | |
| 		{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
 | |
| 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
 | |
| 		/* read SR and ISR to acknowledge */
 | |
| 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | |
| 		{ mk_mii_read(MII_LXT970_ISR), NULL },
 | |
| 
 | |
| 		/* find out the current status */
 | |
| 		{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
 | |
| 		{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_info_t const phy_info_lxt970 = {
 | |
| 	.id = 0x07810000,
 | |
| 	.name = "LXT970",
 | |
| 	.config = phy_cmd_lxt970_config,
 | |
| 	.startup = phy_cmd_lxt970_startup,
 | |
| 	.ack_int = phy_cmd_lxt970_ack_int,
 | |
| 	.shutdown = phy_cmd_lxt970_shutdown
 | |
| };
 | |
| 
 | |
| /* ------------------------------------------------------------------------- */
 | |
| /* The Level one LXT971 is used on some of my custom boards                  */
 | |
| 
 | |
| /* register definitions for the 971 */
 | |
| 
 | |
| #define MII_LXT971_PCR       16  /* Port Control Register     */
 | |
| #define MII_LXT971_SR2       17  /* Status Register 2         */
 | |
| #define MII_LXT971_IER       18  /* Interrupt Enable Register */
 | |
| #define MII_LXT971_ISR       19  /* Interrupt Status Register */
 | |
| #define MII_LXT971_LCR       20  /* LED Control Register      */
 | |
| #define MII_LXT971_TCR       30  /* Transmit Control Register */
 | |
| 
 | |
| /*
 | |
|  * I had some nice ideas of running the MDIO faster...
 | |
|  * The 971 should support 8MHz and I tried it, but things acted really
 | |
|  * weird, so 2.5 MHz ought to be enough for anyone...
 | |
|  */
 | |
| 
 | |
| static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	volatile uint *s = &(fep->phy_status);
 | |
| 	uint status;
 | |
| 
 | |
| 	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
 | |
| 
 | |
| 	if (mii_reg & 0x0400) {
 | |
| 		fep->link = 1;
 | |
| 		status |= PHY_STAT_LINK;
 | |
| 	} else {
 | |
| 		fep->link = 0;
 | |
| 	}
 | |
| 	if (mii_reg & 0x0080)
 | |
| 		status |= PHY_STAT_ANC;
 | |
| 	if (mii_reg & 0x4000) {
 | |
| 		if (mii_reg & 0x0200)
 | |
| 			status |= PHY_STAT_100FDX;
 | |
| 		else
 | |
| 			status |= PHY_STAT_100HDX;
 | |
| 	} else {
 | |
| 		if (mii_reg & 0x0200)
 | |
| 			status |= PHY_STAT_10FDX;
 | |
| 		else
 | |
| 			status |= PHY_STAT_10HDX;
 | |
| 	}
 | |
| 	if (mii_reg & 0x0008)
 | |
| 		status |= PHY_STAT_FAULT;
 | |
| 
 | |
| 	*s = status;
 | |
| }
 | |
| 
 | |
| static phy_cmd_t const phy_cmd_lxt971_config[] = {
 | |
| 		/* limit to 10MBit because my prototype board
 | |
| 		 * doesn't work with 100. */
 | |
| 		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
 | |
| 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
 | |
| 		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_cmd_t const phy_cmd_lxt971_startup[] = {  /* enable interrupts */
 | |
| 		{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
 | |
| 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 | |
| 		{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
 | |
| 		/* Somehow does the 971 tell me that the link is down
 | |
| 		 * the first read after power-up.
 | |
| 		 * read here to get a valid value in ack_int */
 | |
| 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
 | |
| 		/* acknowledge the int before reading status ! */
 | |
| 		{ mk_mii_read(MII_LXT971_ISR), NULL },
 | |
| 		/* find out the current status */
 | |
| 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | |
| 		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
 | |
| 		{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_info_t const phy_info_lxt971 = {
 | |
| 	.id = 0x0001378e,
 | |
| 	.name = "LXT971",
 | |
| 	.config = phy_cmd_lxt971_config,
 | |
| 	.startup = phy_cmd_lxt971_startup,
 | |
| 	.ack_int = phy_cmd_lxt971_ack_int,
 | |
| 	.shutdown = phy_cmd_lxt971_shutdown
 | |
| };
 | |
| 
 | |
| /* ------------------------------------------------------------------------- */
 | |
| /* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */
 | |
| 
 | |
| /* register definitions */
 | |
| 
 | |
| #define MII_QS6612_MCR       17  /* Mode Control Register      */
 | |
| #define MII_QS6612_FTR       27  /* Factory Test Register      */
 | |
| #define MII_QS6612_MCO       28  /* Misc. Control Register     */
 | |
| #define MII_QS6612_ISR       29  /* Interrupt Source Register  */
 | |
| #define MII_QS6612_IMR       30  /* Interrupt Mask Register    */
 | |
| #define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */
 | |
| 
 | |
| static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	volatile uint *s = &(fep->phy_status);
 | |
| 	uint status;
 | |
| 
 | |
| 	status = *s & ~(PHY_STAT_SPMASK);
 | |
| 
 | |
| 	switch((mii_reg >> 2) & 7) {
 | |
| 	case 1: status |= PHY_STAT_10HDX; break;
 | |
| 	case 2: status |= PHY_STAT_100HDX; break;
 | |
| 	case 5: status |= PHY_STAT_10FDX; break;
 | |
| 	case 6: status |= PHY_STAT_100FDX; break;
 | |
| }
 | |
| 
 | |
| 	*s = status;
 | |
| }
 | |
| 
 | |
| static phy_cmd_t const phy_cmd_qs6612_config[] = {
 | |
| 		/* The PHY powers up isolated on the RPX,
 | |
| 		 * so send a command to allow operation.
 | |
| 		 */
 | |
| 		{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
 | |
| 
 | |
| 		/* parse cr and anar to get some info */
 | |
| 		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
 | |
| 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_cmd_t const phy_cmd_qs6612_startup[] = {  /* enable interrupts */
 | |
| 		{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
 | |
| 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
 | |
| 		/* we need to read ISR, SR and ANER to acknowledge */
 | |
| 		{ mk_mii_read(MII_QS6612_ISR), NULL },
 | |
| 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | |
| 		{ mk_mii_read(MII_REG_ANER), NULL },
 | |
| 
 | |
| 		/* read pcr to get info */
 | |
| 		{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
 | |
| 		{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_info_t const phy_info_qs6612 = {
 | |
| 	.id = 0x00181440,
 | |
| 	.name = "QS6612",
 | |
| 	.config = phy_cmd_qs6612_config,
 | |
| 	.startup = phy_cmd_qs6612_startup,
 | |
| 	.ack_int = phy_cmd_qs6612_ack_int,
 | |
| 	.shutdown = phy_cmd_qs6612_shutdown
 | |
| };
 | |
| 
 | |
| /* ------------------------------------------------------------------------- */
 | |
| /* AMD AM79C874 phy                                                          */
 | |
| 
 | |
| /* register definitions for the 874 */
 | |
| 
 | |
| #define MII_AM79C874_MFR       16  /* Miscellaneous Feature Register */
 | |
| #define MII_AM79C874_ICSR      17  /* Interrupt/Status Register      */
 | |
| #define MII_AM79C874_DR        18  /* Diagnostic Register            */
 | |
| #define MII_AM79C874_PMLR      19  /* Power and Loopback Register    */
 | |
| #define MII_AM79C874_MCR       21  /* ModeControl Register           */
 | |
| #define MII_AM79C874_DC        23  /* Disconnect Counter             */
 | |
| #define MII_AM79C874_REC       24  /* Recieve Error Counter          */
 | |
| 
 | |
| static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	volatile uint *s = &(fep->phy_status);
 | |
| 	uint status;
 | |
| 
 | |
| 	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
 | |
| 
 | |
| 	if (mii_reg & 0x0080)
 | |
| 		status |= PHY_STAT_ANC;
 | |
| 	if (mii_reg & 0x0400)
 | |
| 		status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
 | |
| 	else
 | |
| 		status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
 | |
| 
 | |
| 	*s = status;
 | |
| }
 | |
| 
 | |
| static phy_cmd_t const phy_cmd_am79c874_config[] = {
 | |
| 		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
 | |
| 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
 | |
| 		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_cmd_t const phy_cmd_am79c874_startup[] = {  /* enable interrupts */
 | |
| 		{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
 | |
| 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 | |
| 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
 | |
| 		/* find out the current status */
 | |
| 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | |
| 		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
 | |
| 		/* we only need to read ISR to acknowledge */
 | |
| 		{ mk_mii_read(MII_AM79C874_ICSR), NULL },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
 | |
| 		{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_info_t const phy_info_am79c874 = {
 | |
| 	.id = 0x00022561,
 | |
| 	.name = "AM79C874",
 | |
| 	.config = phy_cmd_am79c874_config,
 | |
| 	.startup = phy_cmd_am79c874_startup,
 | |
| 	.ack_int = phy_cmd_am79c874_ack_int,
 | |
| 	.shutdown = phy_cmd_am79c874_shutdown
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ------------------------------------------------------------------------- */
 | |
| /* Kendin KS8721BL phy                                                       */
 | |
| 
 | |
| /* register definitions for the 8721 */
 | |
| 
 | |
| #define MII_KS8721BL_RXERCR	21
 | |
| #define MII_KS8721BL_ICSR	27
 | |
| #define	MII_KS8721BL_PHYCR	31
 | |
| 
 | |
| static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
 | |
| 		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
 | |
| 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_cmd_t const phy_cmd_ks8721bl_startup[] = {  /* enable interrupts */
 | |
| 		{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
 | |
| 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 | |
| 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
 | |
| 		/* find out the current status */
 | |
| 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | |
| 		/* we only need to read ISR to acknowledge */
 | |
| 		{ mk_mii_read(MII_KS8721BL_ICSR), NULL },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
 | |
| 		{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
 | |
| 		{ mk_mii_end, }
 | |
| 	};
 | |
| static phy_info_t const phy_info_ks8721bl = {
 | |
| 	.id = 0x00022161,
 | |
| 	.name = "KS8721BL",
 | |
| 	.config = phy_cmd_ks8721bl_config,
 | |
| 	.startup = phy_cmd_ks8721bl_startup,
 | |
| 	.ack_int = phy_cmd_ks8721bl_ack_int,
 | |
| 	.shutdown = phy_cmd_ks8721bl_shutdown
 | |
| };
 | |
| 
 | |
| /* ------------------------------------------------------------------------- */
 | |
| /* register definitions for the DP83848 */
 | |
| 
 | |
| #define MII_DP8384X_PHYSTST    16  /* PHY Status Register */
 | |
| 
 | |
| static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	volatile uint *s = &(fep->phy_status);
 | |
| 
 | |
| 	*s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
 | |
| 
 | |
| 	/* Link up */
 | |
| 	if (mii_reg & 0x0001) {
 | |
| 		fep->link = 1;
 | |
| 		*s |= PHY_STAT_LINK;
 | |
| 	} else
 | |
| 		fep->link = 0;
 | |
| 	/* Status of link */
 | |
| 	if (mii_reg & 0x0010)   /* Autonegotioation complete */
 | |
| 		*s |= PHY_STAT_ANC;
 | |
| 	if (mii_reg & 0x0002) {   /* 10MBps? */
 | |
| 		if (mii_reg & 0x0004)   /* Full Duplex? */
 | |
| 			*s |= PHY_STAT_10FDX;
 | |
| 		else
 | |
| 			*s |= PHY_STAT_10HDX;
 | |
| 	} else {                  /* 100 Mbps? */
 | |
| 		if (mii_reg & 0x0004)   /* Full Duplex? */
 | |
| 			*s |= PHY_STAT_100FDX;
 | |
| 		else
 | |
| 			*s |= PHY_STAT_100HDX;
 | |
| 	}
 | |
| 	if (mii_reg & 0x0008)
 | |
| 		*s |= PHY_STAT_FAULT;
 | |
| }
 | |
| 
 | |
| static phy_info_t phy_info_dp83848= {
 | |
| 	0x020005c9,
 | |
| 	"DP83848",
 | |
| 
 | |
| 	(const phy_cmd_t []) {  /* config */
 | |
| 		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
 | |
| 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
 | |
| 		{ mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
 | |
| 		{ mk_mii_end, }
 | |
| 	},
 | |
| 	(const phy_cmd_t []) {  /* startup - enable interrupts */
 | |
| 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 | |
| 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | |
| 		{ mk_mii_end, }
 | |
| 	},
 | |
| 	(const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
 | |
| 		{ mk_mii_end, }
 | |
| 	},
 | |
| 	(const phy_cmd_t []) {  /* shutdown */
 | |
| 		{ mk_mii_end, }
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static phy_info_t phy_info_lan8700 = {
 | |
| 	0x0007C0C,
 | |
| 	"LAN8700",
 | |
| 	(const phy_cmd_t []) { /* config */
 | |
| 		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
 | |
| 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
 | |
| 		{ mk_mii_end, }
 | |
| 	},
 | |
| 	(const phy_cmd_t []) { /* startup */
 | |
| 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 | |
| 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | |
| 		{ mk_mii_end, }
 | |
| 	},
 | |
| 	(const phy_cmd_t []) { /* act_int */
 | |
| 		{ mk_mii_end, }
 | |
| 	},
 | |
| 	(const phy_cmd_t []) { /* shutdown */
 | |
| 		{ mk_mii_end, }
 | |
| 	},
 | |
| };
 | |
| /* ------------------------------------------------------------------------- */
 | |
| 
 | |
| static phy_info_t const * const phy_info[] = {
 | |
| 	&phy_info_lxt970,
 | |
| 	&phy_info_lxt971,
 | |
| 	&phy_info_qs6612,
 | |
| 	&phy_info_am79c874,
 | |
| 	&phy_info_ks8721bl,
 | |
| 	&phy_info_dp83848,
 | |
| 	&phy_info_lan8700,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| /* ------------------------------------------------------------------------- */
 | |
| #ifdef HAVE_mii_link_interrupt
 | |
| static irqreturn_t
 | |
| mii_link_interrupt(int irq, void * dev_id);
 | |
| 
 | |
| /*
 | |
|  *	This is specific to the MII interrupt setup of the M5272EVB.
 | |
|  */
 | |
| static void __inline__ fec_request_mii_intr(struct net_device *dev)
 | |
| {
 | |
| 	if (request_irq(66, mii_link_interrupt, IRQF_DISABLED, "fec(MII)", dev) != 0)
 | |
| 		printk("FEC: Could not allocate fec(MII) IRQ(66)!\n");
 | |
| }
 | |
| 
 | |
| static void __inline__ fec_disable_phy_intr(struct net_device *dev)
 | |
| {
 | |
| 	free_irq(66, dev);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_M5272
 | |
| static void __inline__ fec_get_mac(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	unsigned char *iap, tmpaddr[ETH_ALEN];
 | |
| 
 | |
| 	if (FEC_FLASHMAC) {
 | |
| 		/*
 | |
| 		 * Get MAC address from FLASH.
 | |
| 		 * If it is all 1's or 0's, use the default.
 | |
| 		 */
 | |
| 		iap = (unsigned char *)FEC_FLASHMAC;
 | |
| 		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
 | |
| 		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
 | |
| 			iap = fec_mac_default;
 | |
| 		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
 | |
| 		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
 | |
| 			iap = fec_mac_default;
 | |
| 	} else {
 | |
| 		*((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW);
 | |
| 		*((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
 | |
| 		iap = &tmpaddr[0];
 | |
| 	}
 | |
| 
 | |
| 	memcpy(dev->dev_addr, iap, ETH_ALEN);
 | |
| 
 | |
| 	/* Adjust MAC if using default MAC address */
 | |
| 	if (iap == fec_mac_default)
 | |
| 		 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ------------------------------------------------------------------------- */
 | |
| 
 | |
| static void mii_display_status(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	volatile uint *s = &(fep->phy_status);
 | |
| 
 | |
| 	if (!fep->link && !fep->old_link) {
 | |
| 		/* Link is still down - don't print anything */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	printk("%s: status: ", dev->name);
 | |
| 
 | |
| 	if (!fep->link) {
 | |
| 		printk("link down");
 | |
| 	} else {
 | |
| 		printk("link up");
 | |
| 
 | |
| 		switch(*s & PHY_STAT_SPMASK) {
 | |
| 		case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
 | |
| 		case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
 | |
| 		case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
 | |
| 		case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
 | |
| 		default:
 | |
| 			printk(", Unknown speed/duplex");
 | |
| 		}
 | |
| 
 | |
| 		if (*s & PHY_STAT_ANC)
 | |
| 			printk(", auto-negotiation complete");
 | |
| 	}
 | |
| 
 | |
| 	if (*s & PHY_STAT_FAULT)
 | |
| 		printk(", remote fault");
 | |
| 
 | |
| 	printk(".\n");
 | |
| }
 | |
| 
 | |
| static void mii_display_config(struct work_struct *work)
 | |
| {
 | |
| 	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
 | |
| 	struct net_device *dev = fep->netdev;
 | |
| 	uint status = fep->phy_status;
 | |
| 
 | |
| 	/*
 | |
| 	** When we get here, phy_task is already removed from
 | |
| 	** the workqueue.  It is thus safe to allow to reuse it.
 | |
| 	*/
 | |
| 	fep->mii_phy_task_queued = 0;
 | |
| 	printk("%s: config: auto-negotiation ", dev->name);
 | |
| 
 | |
| 	if (status & PHY_CONF_ANE)
 | |
| 		printk("on");
 | |
| 	else
 | |
| 		printk("off");
 | |
| 
 | |
| 	if (status & PHY_CONF_100FDX)
 | |
| 		printk(", 100FDX");
 | |
| 	if (status & PHY_CONF_100HDX)
 | |
| 		printk(", 100HDX");
 | |
| 	if (status & PHY_CONF_10FDX)
 | |
| 		printk(", 10FDX");
 | |
| 	if (status & PHY_CONF_10HDX)
 | |
| 		printk(", 10HDX");
 | |
| 	if (!(status & PHY_CONF_SPMASK))
 | |
| 		printk(", No speed/duplex selected?");
 | |
| 
 | |
| 	if (status & PHY_CONF_LOOP)
 | |
| 		printk(", loopback enabled");
 | |
| 
 | |
| 	printk(".\n");
 | |
| 
 | |
| 	fep->sequence_done = 1;
 | |
| }
 | |
| 
 | |
| static void mii_relink(struct work_struct *work)
 | |
| {
 | |
| 	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
 | |
| 	struct net_device *dev = fep->netdev;
 | |
| 	int duplex;
 | |
| 
 | |
| 	/*
 | |
| 	** When we get here, phy_task is already removed from
 | |
| 	** the workqueue.  It is thus safe to allow to reuse it.
 | |
| 	*/
 | |
| 	fep->mii_phy_task_queued = 0;
 | |
| 	fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
 | |
| 	mii_display_status(dev);
 | |
| 	fep->old_link = fep->link;
 | |
| 
 | |
| 	if (fep->link) {
 | |
| 		duplex = 0;
 | |
| 		if (fep->phy_status
 | |
| 		    & (PHY_STAT_100FDX | PHY_STAT_10FDX))
 | |
| 			duplex = 1;
 | |
| 		fec_restart(dev, duplex);
 | |
| 	} else
 | |
| 		fec_stop(dev);
 | |
| }
 | |
| 
 | |
| /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
 | |
| static void mii_queue_relink(uint mii_reg, struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * We cannot queue phy_task twice in the workqueue.  It
 | |
| 	 * would cause an endless loop in the workqueue.
 | |
| 	 * Fortunately, if the last mii_relink entry has not yet been
 | |
| 	 * executed now, it will do the job for the current interrupt,
 | |
| 	 * which is just what we want.
 | |
| 	 */
 | |
| 	if (fep->mii_phy_task_queued)
 | |
| 		return;
 | |
| 
 | |
| 	fep->mii_phy_task_queued = 1;
 | |
| 	INIT_WORK(&fep->phy_task, mii_relink);
 | |
| 	schedule_work(&fep->phy_task);
 | |
| }
 | |
| 
 | |
| /* mii_queue_config is called in interrupt context from fec_enet_mii */
 | |
| static void mii_queue_config(uint mii_reg, struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 
 | |
| 	if (fep->mii_phy_task_queued)
 | |
| 		return;
 | |
| 
 | |
| 	fep->mii_phy_task_queued = 1;
 | |
| 	INIT_WORK(&fep->phy_task, mii_display_config);
 | |
| 	schedule_work(&fep->phy_task);
 | |
| }
 | |
| 
 | |
| phy_cmd_t const phy_cmd_relink[] = {
 | |
| 	{ mk_mii_read(MII_REG_CR), mii_queue_relink },
 | |
| 	{ mk_mii_end, }
 | |
| 	};
 | |
| phy_cmd_t const phy_cmd_config[] = {
 | |
| 	{ mk_mii_read(MII_REG_CR), mii_queue_config },
 | |
| 	{ mk_mii_end, }
 | |
| 	};
 | |
| 
 | |
| /* Read remainder of PHY ID. */
 | |
| static void
 | |
| mii_discover_phy3(uint mii_reg, struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep;
 | |
| 	int i;
 | |
| 
 | |
| 	fep = netdev_priv(dev);
 | |
| 	fep->phy_id |= (mii_reg & 0xffff);
 | |
| 	printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
 | |
| 
 | |
| 	for(i = 0; phy_info[i]; i++) {
 | |
| 		if(phy_info[i]->id == (fep->phy_id >> 4))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (phy_info[i])
 | |
| 		printk(" -- %s\n", phy_info[i]->name);
 | |
| 	else
 | |
| 		printk(" -- unknown PHY!\n");
 | |
| 
 | |
| 	fep->phy = phy_info[i];
 | |
| 	fep->phy_id_done = 1;
 | |
| }
 | |
| 
 | |
| /* Scan all of the MII PHY addresses looking for someone to respond
 | |
|  * with a valid ID.  This usually happens quickly.
 | |
|  */
 | |
| static void
 | |
| mii_discover_phy(uint mii_reg, struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep;
 | |
| 	uint phytype;
 | |
| 
 | |
| 	fep = netdev_priv(dev);
 | |
| 
 | |
| 	if (fep->phy_addr < 32) {
 | |
| 		if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
 | |
| 
 | |
| 			/* Got first part of ID, now get remainder */
 | |
| 			fep->phy_id = phytype << 16;
 | |
| 			mii_queue_unlocked(dev, mk_mii_read(MII_REG_PHYIR2),
 | |
| 							mii_discover_phy3);
 | |
| 		} else {
 | |
| 			fep->phy_addr++;
 | |
| 			mii_queue_unlocked(dev, mk_mii_read(MII_REG_PHYIR1),
 | |
| 							mii_discover_phy);
 | |
| 		}
 | |
| 	} else {
 | |
| 		printk("FEC: No PHY device found.\n");
 | |
| 		/* Disable external MII interface */
 | |
| 		writel(0, fep->hwp + FEC_MII_SPEED);
 | |
| 		fep->phy_speed = 0;
 | |
| #ifdef HAVE_mii_link_interrupt
 | |
| 		fec_disable_phy_intr(dev);
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* This interrupt occurs when the PHY detects a link change */
 | |
| #ifdef HAVE_mii_link_interrupt
 | |
| static irqreturn_t
 | |
| mii_link_interrupt(int irq, void * dev_id)
 | |
| {
 | |
| 	struct	net_device *dev = dev_id;
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 
 | |
| 	mii_do_cmd(dev, fep->phy->ack_int);
 | |
| 	mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void fec_enet_free_buffers(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	int i;
 | |
| 	struct sk_buff *skb;
 | |
| 	struct bufdesc	*bdp;
 | |
| 
 | |
| 	bdp = fep->rx_bd_base;
 | |
| 	for (i = 0; i < RX_RING_SIZE; i++) {
 | |
| 		skb = fep->rx_skbuff[i];
 | |
| 
 | |
| 		if (bdp->cbd_bufaddr)
 | |
| 			dma_unmap_single(&dev->dev, bdp->cbd_bufaddr,
 | |
| 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
 | |
| 		if (skb)
 | |
| 			dev_kfree_skb(skb);
 | |
| 		bdp++;
 | |
| 	}
 | |
| 
 | |
| 	bdp = fep->tx_bd_base;
 | |
| 	for (i = 0; i < TX_RING_SIZE; i++)
 | |
| 		kfree(fep->tx_bounce[i]);
 | |
| }
 | |
| 
 | |
| static int fec_enet_alloc_buffers(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	int i;
 | |
| 	struct sk_buff *skb;
 | |
| 	struct bufdesc	*bdp;
 | |
| 
 | |
| 	bdp = fep->rx_bd_base;
 | |
| 	for (i = 0; i < RX_RING_SIZE; i++) {
 | |
| 		skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
 | |
| 		if (!skb) {
 | |
| 			fec_enet_free_buffers(dev);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		fep->rx_skbuff[i] = skb;
 | |
| 
 | |
| 		bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
 | |
| 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
 | |
| 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
 | |
| 		bdp++;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the last buffer to wrap. */
 | |
| 	bdp--;
 | |
| 	bdp->cbd_sc |= BD_SC_WRAP;
 | |
| 
 | |
| 	bdp = fep->tx_bd_base;
 | |
| 	for (i = 0; i < TX_RING_SIZE; i++) {
 | |
| 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
 | |
| 
 | |
| 		bdp->cbd_sc = 0;
 | |
| 		bdp->cbd_bufaddr = 0;
 | |
| 		bdp++;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the last buffer to wrap. */
 | |
| 	bdp--;
 | |
| 	bdp->cbd_sc |= BD_SC_WRAP;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| fec_enet_open(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	/* I should reset the ring buffers here, but I don't yet know
 | |
| 	 * a simple way to do that.
 | |
| 	 */
 | |
| 
 | |
| 	ret = fec_enet_alloc_buffers(dev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	fep->sequence_done = 0;
 | |
| 	fep->link = 0;
 | |
| 
 | |
| 	fec_restart(dev, 1);
 | |
| 
 | |
| 	if (fep->phy) {
 | |
| 		mii_do_cmd(dev, fep->phy->ack_int);
 | |
| 		mii_do_cmd(dev, fep->phy->config);
 | |
| 		mii_do_cmd(dev, phy_cmd_config);  /* display configuration */
 | |
| 
 | |
| 		/* Poll until the PHY tells us its configuration
 | |
| 		 * (not link state).
 | |
| 		 * Request is initiated by mii_do_cmd above, but answer
 | |
| 		 * comes by interrupt.
 | |
| 		 * This should take about 25 usec per register at 2.5 MHz,
 | |
| 		 * and we read approximately 5 registers.
 | |
| 		 */
 | |
| 		while(!fep->sequence_done)
 | |
| 			schedule();
 | |
| 
 | |
| 		mii_do_cmd(dev, fep->phy->startup);
 | |
| 	}
 | |
| 
 | |
| 	/* Set the initial link state to true. A lot of hardware
 | |
| 	 * based on this device does not implement a PHY interrupt,
 | |
| 	 * so we are never notified of link change.
 | |
| 	 */
 | |
| 	fep->link = 1;
 | |
| 
 | |
| 	netif_start_queue(dev);
 | |
| 	fep->opened = 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| fec_enet_close(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 
 | |
| 	/* Don't know what to do yet. */
 | |
| 	fep->opened = 0;
 | |
| 	netif_stop_queue(dev);
 | |
| 	fec_stop(dev);
 | |
| 
 | |
|         fec_enet_free_buffers(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Set or clear the multicast filter for this adaptor.
 | |
|  * Skeleton taken from sunlance driver.
 | |
|  * The CPM Ethernet implementation allows Multicast as well as individual
 | |
|  * MAC address filtering.  Some of the drivers check to make sure it is
 | |
|  * a group multicast address, and discard those that are not.  I guess I
 | |
|  * will do the same for now, but just remove the test if you want
 | |
|  * individual filtering as well (do the upper net layers want or support
 | |
|  * this kind of feature?).
 | |
|  */
 | |
| 
 | |
| #define HASH_BITS	6		/* #bits in hash */
 | |
| #define CRC32_POLY	0xEDB88320
 | |
| 
 | |
| static void set_multicast_list(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	struct dev_mc_list *dmi;
 | |
| 	unsigned int i, bit, data, crc, tmp;
 | |
| 	unsigned char hash;
 | |
| 
 | |
| 	if (dev->flags & IFF_PROMISC) {
 | |
| 		tmp = readl(fep->hwp + FEC_R_CNTRL);
 | |
| 		tmp |= 0x8;
 | |
| 		writel(tmp, fep->hwp + FEC_R_CNTRL);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	tmp = readl(fep->hwp + FEC_R_CNTRL);
 | |
| 	tmp &= ~0x8;
 | |
| 	writel(tmp, fep->hwp + FEC_R_CNTRL);
 | |
| 
 | |
| 	if (dev->flags & IFF_ALLMULTI) {
 | |
| 		/* Catch all multicast addresses, so set the
 | |
| 		 * filter to all 1's
 | |
| 		 */
 | |
| 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
 | |
| 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Clear filter and add the addresses in hash register
 | |
| 	 */
 | |
| 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
 | |
| 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
 | |
| 
 | |
| 	netdev_for_each_mc_addr(dmi, dev) {
 | |
| 		/* Only support group multicast for now */
 | |
| 		if (!(dmi->dmi_addr[0] & 1))
 | |
| 			continue;
 | |
| 
 | |
| 		/* calculate crc32 value of mac address */
 | |
| 		crc = 0xffffffff;
 | |
| 
 | |
| 		for (i = 0; i < dmi->dmi_addrlen; i++) {
 | |
| 			data = dmi->dmi_addr[i];
 | |
| 			for (bit = 0; bit < 8; bit++, data >>= 1) {
 | |
| 				crc = (crc >> 1) ^
 | |
| 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* only upper 6 bits (HASH_BITS) are used
 | |
| 		 * which point to specific bit in he hash registers
 | |
| 		 */
 | |
| 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
 | |
| 
 | |
| 		if (hash > 31) {
 | |
| 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
 | |
| 			tmp |= 1 << (hash - 32);
 | |
| 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
 | |
| 		} else {
 | |
| 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
 | |
| 			tmp |= 1 << hash;
 | |
| 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Set a MAC change in hardware. */
 | |
| static int
 | |
| fec_set_mac_address(struct net_device *dev, void *p)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	struct sockaddr *addr = p;
 | |
| 
 | |
| 	if (!is_valid_ether_addr(addr->sa_data))
 | |
| 		return -EADDRNOTAVAIL;
 | |
| 
 | |
| 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
 | |
| 
 | |
| 	writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
 | |
| 		(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24),
 | |
| 		fep->hwp + FEC_ADDR_LOW);
 | |
| 	writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24),
 | |
| 		fep + FEC_ADDR_HIGH);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct net_device_ops fec_netdev_ops = {
 | |
| 	.ndo_open		= fec_enet_open,
 | |
| 	.ndo_stop		= fec_enet_close,
 | |
| 	.ndo_start_xmit		= fec_enet_start_xmit,
 | |
| 	.ndo_set_multicast_list = set_multicast_list,
 | |
| 	.ndo_change_mtu		= eth_change_mtu,
 | |
| 	.ndo_validate_addr	= eth_validate_addr,
 | |
| 	.ndo_tx_timeout		= fec_timeout,
 | |
| 	.ndo_set_mac_address	= fec_set_mac_address,
 | |
| };
 | |
| 
 | |
|  /*
 | |
|   * XXX:  We need to clean up on failure exits here.
 | |
|   *
 | |
|   * index is only used in legacy code
 | |
|   */
 | |
| static int fec_enet_init(struct net_device *dev, int index)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	struct bufdesc *cbd_base;
 | |
| 	struct bufdesc *bdp;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Allocate memory for buffer descriptors. */
 | |
| 	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
 | |
| 			GFP_KERNEL);
 | |
| 	if (!cbd_base) {
 | |
| 		printk("FEC: allocate descriptor memory failed?\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_init(&fep->hw_lock);
 | |
| 	spin_lock_init(&fep->mii_lock);
 | |
| 
 | |
| 	fep->index = index;
 | |
| 	fep->hwp = (void __iomem *)dev->base_addr;
 | |
| 	fep->netdev = dev;
 | |
| 
 | |
| 	/* Set the Ethernet address */
 | |
| #ifdef CONFIG_M5272
 | |
| 	fec_get_mac(dev);
 | |
| #else
 | |
| 	{
 | |
| 		unsigned long l;
 | |
| 		l = readl(fep->hwp + FEC_ADDR_LOW);
 | |
| 		dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
 | |
| 		dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
 | |
| 		dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
 | |
| 		dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
 | |
| 		l = readl(fep->hwp + FEC_ADDR_HIGH);
 | |
| 		dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
 | |
| 		dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Set receive and transmit descriptor base. */
 | |
| 	fep->rx_bd_base = cbd_base;
 | |
| 	fep->tx_bd_base = cbd_base + RX_RING_SIZE;
 | |
| 
 | |
| #ifdef HAVE_mii_link_interrupt
 | |
| 	fec_request_mii_intr(dev);
 | |
| #endif
 | |
| 	/* The FEC Ethernet specific entries in the device structure */
 | |
| 	dev->watchdog_timeo = TX_TIMEOUT;
 | |
| 	dev->netdev_ops = &fec_netdev_ops;
 | |
| 
 | |
| 	for (i=0; i<NMII-1; i++)
 | |
| 		mii_cmds[i].mii_next = &mii_cmds[i+1];
 | |
| 	mii_free = mii_cmds;
 | |
| 
 | |
| 	/* Set MII speed to 2.5 MHz */
 | |
| 	fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999)
 | |
| 					/ 2500000) / 2) & 0x3F) << 1;
 | |
| 
 | |
| 	/* Initialize the receive buffer descriptors. */
 | |
| 	bdp = fep->rx_bd_base;
 | |
| 	for (i = 0; i < RX_RING_SIZE; i++) {
 | |
| 
 | |
| 		/* Initialize the BD for every fragment in the page. */
 | |
| 		bdp->cbd_sc = 0;
 | |
| 		bdp++;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the last buffer to wrap */
 | |
| 	bdp--;
 | |
| 	bdp->cbd_sc |= BD_SC_WRAP;
 | |
| 
 | |
| 	/* ...and the same for transmit */
 | |
| 	bdp = fep->tx_bd_base;
 | |
| 	for (i = 0; i < TX_RING_SIZE; i++) {
 | |
| 
 | |
| 		/* Initialize the BD for every fragment in the page. */
 | |
| 		bdp->cbd_sc = 0;
 | |
| 		bdp->cbd_bufaddr = 0;
 | |
| 		bdp++;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the last buffer to wrap */
 | |
| 	bdp--;
 | |
| 	bdp->cbd_sc |= BD_SC_WRAP;
 | |
| 
 | |
| 	fec_restart(dev, 0);
 | |
| 
 | |
| 	/* Queue up command to detect the PHY and initialize the
 | |
| 	 * remainder of the interface.
 | |
| 	 */
 | |
| 	fep->phy_id_done = 0;
 | |
| 	fep->phy_addr = 0;
 | |
| 	mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This function is called to start or restart the FEC during a link
 | |
|  * change.  This only happens when switching between half and full
 | |
|  * duplex.
 | |
|  */
 | |
| static void
 | |
| fec_restart(struct net_device *dev, int duplex)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	int i;
 | |
| 
 | |
| 	/* Whack a reset.  We should wait for this. */
 | |
| 	writel(1, fep->hwp + FEC_ECNTRL);
 | |
| 	udelay(10);
 | |
| 
 | |
| 	/* Clear any outstanding interrupt. */
 | |
| 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
 | |
| 
 | |
| 	/* Reset all multicast.	*/
 | |
| 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
 | |
| 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
 | |
| #ifndef CONFIG_M5272
 | |
| 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
 | |
| 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
 | |
| #endif
 | |
| 
 | |
| 	/* Set maximum receive buffer size. */
 | |
| 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
 | |
| 
 | |
| 	/* Set receive and transmit descriptor base. */
 | |
| 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
 | |
| 	writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
 | |
| 			fep->hwp + FEC_X_DES_START);
 | |
| 
 | |
| 	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 | |
| 	fep->cur_rx = fep->rx_bd_base;
 | |
| 
 | |
| 	/* Reset SKB transmit buffers. */
 | |
| 	fep->skb_cur = fep->skb_dirty = 0;
 | |
| 	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
 | |
| 		if (fep->tx_skbuff[i]) {
 | |
| 			dev_kfree_skb_any(fep->tx_skbuff[i]);
 | |
| 			fep->tx_skbuff[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Enable MII mode */
 | |
| 	if (duplex) {
 | |
| 		/* MII enable / FD enable */
 | |
| 		writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
 | |
| 		writel(0x04, fep->hwp + FEC_X_CNTRL);
 | |
| 	} else {
 | |
| 		/* MII enable / No Rcv on Xmit */
 | |
| 		writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
 | |
| 		writel(0x0, fep->hwp + FEC_X_CNTRL);
 | |
| 	}
 | |
| 	fep->full_duplex = duplex;
 | |
| 
 | |
| 	/* Set MII speed */
 | |
| 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 | |
| 
 | |
| 	/* And last, enable the transmit and receive processing */
 | |
| 	writel(2, fep->hwp + FEC_ECNTRL);
 | |
| 	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
 | |
| 
 | |
| 	/* Enable interrupts we wish to service */
 | |
| 	writel(FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII,
 | |
| 			fep->hwp + FEC_IMASK);
 | |
| }
 | |
| 
 | |
| static void
 | |
| fec_stop(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 
 | |
| 	/* We cannot expect a graceful transmit stop without link !!! */
 | |
| 	if (fep->link) {
 | |
| 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
 | |
| 		udelay(10);
 | |
| 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
 | |
| 			printk("fec_stop : Graceful transmit stop did not complete !\n");
 | |
| 	}
 | |
| 
 | |
| 	/* Whack a reset.  We should wait for this. */
 | |
| 	writel(1, fep->hwp + FEC_ECNTRL);
 | |
| 	udelay(10);
 | |
| 
 | |
| 	/* Clear outstanding MII command interrupts. */
 | |
| 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
 | |
| 
 | |
| 	writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
 | |
| 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 | |
| }
 | |
| 
 | |
| static int __devinit
 | |
| fec_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct fec_enet_private *fep;
 | |
| 	struct net_device *ndev;
 | |
| 	int i, irq, ret = 0;
 | |
| 	struct resource *r;
 | |
| 
 | |
| 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 | |
| 	if (!r)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	r = request_mem_region(r->start, resource_size(r), pdev->name);
 | |
| 	if (!r)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* Init network device */
 | |
| 	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
 | |
| 	if (!ndev)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	SET_NETDEV_DEV(ndev, &pdev->dev);
 | |
| 
 | |
| 	/* setup board info structure */
 | |
| 	fep = netdev_priv(ndev);
 | |
| 	memset(fep, 0, sizeof(*fep));
 | |
| 
 | |
| 	ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
 | |
| 
 | |
| 	if (!ndev->base_addr) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto failed_ioremap;
 | |
| 	}
 | |
| 
 | |
| 	platform_set_drvdata(pdev, ndev);
 | |
| 
 | |
| 	/* This device has up to three irqs on some platforms */
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		irq = platform_get_irq(pdev, i);
 | |
| 		if (i && irq < 0)
 | |
| 			break;
 | |
| 		ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
 | |
| 		if (ret) {
 | |
| 			while (i >= 0) {
 | |
| 				irq = platform_get_irq(pdev, i);
 | |
| 				free_irq(irq, ndev);
 | |
| 				i--;
 | |
| 			}
 | |
| 			goto failed_irq;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	fep->clk = clk_get(&pdev->dev, "fec_clk");
 | |
| 	if (IS_ERR(fep->clk)) {
 | |
| 		ret = PTR_ERR(fep->clk);
 | |
| 		goto failed_clk;
 | |
| 	}
 | |
| 	clk_enable(fep->clk);
 | |
| 
 | |
| 	ret = fec_enet_init(ndev, 0);
 | |
| 	if (ret)
 | |
| 		goto failed_init;
 | |
| 
 | |
| 	ret = register_netdev(ndev);
 | |
| 	if (ret)
 | |
| 		goto failed_register;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| failed_register:
 | |
| failed_init:
 | |
| 	clk_disable(fep->clk);
 | |
| 	clk_put(fep->clk);
 | |
| failed_clk:
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		irq = platform_get_irq(pdev, i);
 | |
| 		if (irq > 0)
 | |
| 			free_irq(irq, ndev);
 | |
| 	}
 | |
| failed_irq:
 | |
| 	iounmap((void __iomem *)ndev->base_addr);
 | |
| failed_ioremap:
 | |
| 	free_netdev(ndev);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __devexit
 | |
| fec_drv_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct net_device *ndev = platform_get_drvdata(pdev);
 | |
| 	struct fec_enet_private *fep = netdev_priv(ndev);
 | |
| 
 | |
| 	platform_set_drvdata(pdev, NULL);
 | |
| 
 | |
| 	fec_stop(ndev);
 | |
| 	clk_disable(fep->clk);
 | |
| 	clk_put(fep->clk);
 | |
| 	iounmap((void __iomem *)ndev->base_addr);
 | |
| 	unregister_netdev(ndev);
 | |
| 	free_netdev(ndev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| fec_suspend(struct platform_device *dev, pm_message_t state)
 | |
| {
 | |
| 	struct net_device *ndev = platform_get_drvdata(dev);
 | |
| 	struct fec_enet_private *fep;
 | |
| 
 | |
| 	if (ndev) {
 | |
| 		fep = netdev_priv(ndev);
 | |
| 		if (netif_running(ndev)) {
 | |
| 			netif_device_detach(ndev);
 | |
| 			fec_stop(ndev);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| fec_resume(struct platform_device *dev)
 | |
| {
 | |
| 	struct net_device *ndev = platform_get_drvdata(dev);
 | |
| 
 | |
| 	if (ndev) {
 | |
| 		if (netif_running(ndev)) {
 | |
| 			fec_enet_init(ndev, 0);
 | |
| 			netif_device_attach(ndev);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct platform_driver fec_driver = {
 | |
| 	.driver	= {
 | |
| 		.name    = "fec",
 | |
| 		.owner	 = THIS_MODULE,
 | |
| 	},
 | |
| 	.probe   = fec_probe,
 | |
| 	.remove  = __devexit_p(fec_drv_remove),
 | |
| 	.suspend = fec_suspend,
 | |
| 	.resume  = fec_resume,
 | |
| };
 | |
| 
 | |
| static int __init
 | |
| fec_enet_module_init(void)
 | |
| {
 | |
| 	printk(KERN_INFO "FEC Ethernet Driver\n");
 | |
| 
 | |
| 	return platform_driver_register(&fec_driver);
 | |
| }
 | |
| 
 | |
| static void __exit
 | |
| fec_enet_cleanup(void)
 | |
| {
 | |
| 	platform_driver_unregister(&fec_driver);
 | |
| }
 | |
| 
 | |
| module_exit(fec_enet_cleanup);
 | |
| module_init(fec_enet_module_init);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 |