 df25bc38b5
			
		
	
	
	df25bc38b5
	
	
	
		
			
			Now that the VPD searching code is abstracted away, the outer loop used to detect the read-only large resource data type section is useless. Signed-off-by: Matt Carlson <mcarlson@broadcom.com> Acked-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			8518 lines
		
	
	
	
		
			206 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			8518 lines
		
	
	
	
		
			206 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* bnx2.c: Broadcom NX2 network driver.
 | |
|  *
 | |
|  * Copyright (c) 2004-2010 Broadcom Corporation
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation.
 | |
|  *
 | |
|  * Written by: Michael Chan  (mchan@broadcom.com)
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/moduleparam.h>
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/irq.h>
 | |
| #include <linux/delay.h>
 | |
| #include <asm/byteorder.h>
 | |
| #include <asm/page.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/ethtool.h>
 | |
| #include <linux/mii.h>
 | |
| #include <linux/if_vlan.h>
 | |
| #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
 | |
| #define BCM_VLAN 1
 | |
| #endif
 | |
| #include <net/ip.h>
 | |
| #include <net/tcp.h>
 | |
| #include <net/checksum.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/firmware.h>
 | |
| #include <linux/log2.h>
 | |
| 
 | |
| #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
 | |
| #define BCM_CNIC 1
 | |
| #include "cnic_if.h"
 | |
| #endif
 | |
| #include "bnx2.h"
 | |
| #include "bnx2_fw.h"
 | |
| 
 | |
| #define DRV_MODULE_NAME		"bnx2"
 | |
| #define DRV_MODULE_VERSION	"2.0.8"
 | |
| #define DRV_MODULE_RELDATE	"Feb 15, 2010"
 | |
| #define FW_MIPS_FILE_06		"bnx2/bnx2-mips-06-5.0.0.j6.fw"
 | |
| #define FW_RV2P_FILE_06		"bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
 | |
| #define FW_MIPS_FILE_09		"bnx2/bnx2-mips-09-5.0.0.j9.fw"
 | |
| #define FW_RV2P_FILE_09_Ax	"bnx2/bnx2-rv2p-09ax-5.0.0.j10.fw"
 | |
| #define FW_RV2P_FILE_09		"bnx2/bnx2-rv2p-09-5.0.0.j10.fw"
 | |
| 
 | |
| #define RUN_AT(x) (jiffies + (x))
 | |
| 
 | |
| /* Time in jiffies before concluding the transmitter is hung. */
 | |
| #define TX_TIMEOUT  (5*HZ)
 | |
| 
 | |
| static char version[] __devinitdata =
 | |
| 	"Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
 | |
| 
 | |
| MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
 | |
| MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_VERSION(DRV_MODULE_VERSION);
 | |
| MODULE_FIRMWARE(FW_MIPS_FILE_06);
 | |
| MODULE_FIRMWARE(FW_RV2P_FILE_06);
 | |
| MODULE_FIRMWARE(FW_MIPS_FILE_09);
 | |
| MODULE_FIRMWARE(FW_RV2P_FILE_09);
 | |
| MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
 | |
| 
 | |
| static int disable_msi = 0;
 | |
| 
 | |
| module_param(disable_msi, int, 0);
 | |
| MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
 | |
| 
 | |
| typedef enum {
 | |
| 	BCM5706 = 0,
 | |
| 	NC370T,
 | |
| 	NC370I,
 | |
| 	BCM5706S,
 | |
| 	NC370F,
 | |
| 	BCM5708,
 | |
| 	BCM5708S,
 | |
| 	BCM5709,
 | |
| 	BCM5709S,
 | |
| 	BCM5716,
 | |
| 	BCM5716S,
 | |
| } board_t;
 | |
| 
 | |
| /* indexed by board_t, above */
 | |
| static struct {
 | |
| 	char *name;
 | |
| } board_info[] __devinitdata = {
 | |
| 	{ "Broadcom NetXtreme II BCM5706 1000Base-T" },
 | |
| 	{ "HP NC370T Multifunction Gigabit Server Adapter" },
 | |
| 	{ "HP NC370i Multifunction Gigabit Server Adapter" },
 | |
| 	{ "Broadcom NetXtreme II BCM5706 1000Base-SX" },
 | |
| 	{ "HP NC370F Multifunction Gigabit Server Adapter" },
 | |
| 	{ "Broadcom NetXtreme II BCM5708 1000Base-T" },
 | |
| 	{ "Broadcom NetXtreme II BCM5708 1000Base-SX" },
 | |
| 	{ "Broadcom NetXtreme II BCM5709 1000Base-T" },
 | |
| 	{ "Broadcom NetXtreme II BCM5709 1000Base-SX" },
 | |
| 	{ "Broadcom NetXtreme II BCM5716 1000Base-T" },
 | |
| 	{ "Broadcom NetXtreme II BCM5716 1000Base-SX" },
 | |
| 	};
 | |
| 
 | |
| static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
 | |
| 	{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
 | |
| 	  PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
 | |
| 	{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
 | |
| 	  PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
 | |
| 	{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
 | |
| 	{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
 | |
| 	{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
 | |
| 	  PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
 | |
| 	{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
 | |
| 	{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
 | |
| 	{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
 | |
| 	{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
 | |
| 	{ PCI_VENDOR_ID_BROADCOM, 0x163b,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
 | |
| 	{ PCI_VENDOR_ID_BROADCOM, 0x163c,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
 | |
| 	{ 0, }
 | |
| };
 | |
| 
 | |
| static const struct flash_spec flash_table[] =
 | |
| {
 | |
| #define BUFFERED_FLAGS		(BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
 | |
| #define NONBUFFERED_FLAGS	(BNX2_NV_WREN)
 | |
| 	/* Slow EEPROM */
 | |
| 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
 | |
| 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
 | |
| 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
 | |
| 	 "EEPROM - slow"},
 | |
| 	/* Expansion entry 0001 */
 | |
| 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
 | |
| 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
 | |
| 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
 | |
| 	 "Entry 0001"},
 | |
| 	/* Saifun SA25F010 (non-buffered flash) */
 | |
| 	/* strap, cfg1, & write1 need updates */
 | |
| 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
 | |
| 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
 | |
| 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
 | |
| 	 "Non-buffered flash (128kB)"},
 | |
| 	/* Saifun SA25F020 (non-buffered flash) */
 | |
| 	/* strap, cfg1, & write1 need updates */
 | |
| 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
 | |
| 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
 | |
| 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
 | |
| 	 "Non-buffered flash (256kB)"},
 | |
| 	/* Expansion entry 0100 */
 | |
| 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
 | |
| 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
 | |
| 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
 | |
| 	 "Entry 0100"},
 | |
| 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
 | |
| 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
 | |
| 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
 | |
| 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
 | |
| 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
 | |
| 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
 | |
| 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
 | |
| 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
 | |
| 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
 | |
| 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
 | |
| 	/* Saifun SA25F005 (non-buffered flash) */
 | |
| 	/* strap, cfg1, & write1 need updates */
 | |
| 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
 | |
| 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
 | |
| 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
 | |
| 	 "Non-buffered flash (64kB)"},
 | |
| 	/* Fast EEPROM */
 | |
| 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
 | |
| 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
 | |
| 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
 | |
| 	 "EEPROM - fast"},
 | |
| 	/* Expansion entry 1001 */
 | |
| 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
 | |
| 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
 | |
| 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
 | |
| 	 "Entry 1001"},
 | |
| 	/* Expansion entry 1010 */
 | |
| 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
 | |
| 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
 | |
| 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
 | |
| 	 "Entry 1010"},
 | |
| 	/* ATMEL AT45DB011B (buffered flash) */
 | |
| 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
 | |
| 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
 | |
| 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
 | |
| 	 "Buffered flash (128kB)"},
 | |
| 	/* Expansion entry 1100 */
 | |
| 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
 | |
| 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
 | |
| 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
 | |
| 	 "Entry 1100"},
 | |
| 	/* Expansion entry 1101 */
 | |
| 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
 | |
| 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
 | |
| 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
 | |
| 	 "Entry 1101"},
 | |
| 	/* Ateml Expansion entry 1110 */
 | |
| 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
 | |
| 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
 | |
| 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
 | |
| 	 "Entry 1110 (Atmel)"},
 | |
| 	/* ATMEL AT45DB021B (buffered flash) */
 | |
| 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
 | |
| 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
 | |
| 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
 | |
| 	 "Buffered flash (256kB)"},
 | |
| };
 | |
| 
 | |
| static const struct flash_spec flash_5709 = {
 | |
| 	.flags		= BNX2_NV_BUFFERED,
 | |
| 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
 | |
| 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
 | |
| 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
 | |
| 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE*2,
 | |
| 	.name		= "5709 Buffered flash (256kB)",
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
 | |
| 
 | |
| static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
 | |
| {
 | |
| 	u32 diff;
 | |
| 
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/* The ring uses 256 indices for 255 entries, one of them
 | |
| 	 * needs to be skipped.
 | |
| 	 */
 | |
| 	diff = txr->tx_prod - txr->tx_cons;
 | |
| 	if (unlikely(diff >= TX_DESC_CNT)) {
 | |
| 		diff &= 0xffff;
 | |
| 		if (diff == TX_DESC_CNT)
 | |
| 			diff = MAX_TX_DESC_CNT;
 | |
| 	}
 | |
| 	return (bp->tx_ring_size - diff);
 | |
| }
 | |
| 
 | |
| static u32
 | |
| bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	spin_lock_bh(&bp->indirect_lock);
 | |
| 	REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
 | |
| 	val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
 | |
| 	spin_unlock_bh(&bp->indirect_lock);
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
 | |
| {
 | |
| 	spin_lock_bh(&bp->indirect_lock);
 | |
| 	REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
 | |
| 	REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
 | |
| 	spin_unlock_bh(&bp->indirect_lock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
 | |
| {
 | |
| 	bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
 | |
| }
 | |
| 
 | |
| static u32
 | |
| bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
 | |
| {
 | |
| 	return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
 | |
| {
 | |
| 	offset += cid_addr;
 | |
| 	spin_lock_bh(&bp->indirect_lock);
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 		int i;
 | |
| 
 | |
| 		REG_WR(bp, BNX2_CTX_CTX_DATA, val);
 | |
| 		REG_WR(bp, BNX2_CTX_CTX_CTRL,
 | |
| 		       offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
 | |
| 		for (i = 0; i < 5; i++) {
 | |
| 			val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
 | |
| 			if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
 | |
| 				break;
 | |
| 			udelay(5);
 | |
| 		}
 | |
| 	} else {
 | |
| 		REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
 | |
| 		REG_WR(bp, BNX2_CTX_DATA, val);
 | |
| 	}
 | |
| 	spin_unlock_bh(&bp->indirect_lock);
 | |
| }
 | |
| 
 | |
| #ifdef BCM_CNIC
 | |
| static int
 | |
| bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	struct drv_ctl_io *io = &info->data.io;
 | |
| 
 | |
| 	switch (info->cmd) {
 | |
| 	case DRV_CTL_IO_WR_CMD:
 | |
| 		bnx2_reg_wr_ind(bp, io->offset, io->data);
 | |
| 		break;
 | |
| 	case DRV_CTL_IO_RD_CMD:
 | |
| 		io->data = bnx2_reg_rd_ind(bp, io->offset);
 | |
| 		break;
 | |
| 	case DRV_CTL_CTX_WR_CMD:
 | |
| 		bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
 | |
| {
 | |
| 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
 | |
| 	struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
 | |
| 	int sb_id;
 | |
| 
 | |
| 	if (bp->flags & BNX2_FLAG_USING_MSIX) {
 | |
| 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
 | |
| 		bnapi->cnic_present = 0;
 | |
| 		sb_id = bp->irq_nvecs;
 | |
| 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
 | |
| 	} else {
 | |
| 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
 | |
| 		bnapi->cnic_tag = bnapi->last_status_idx;
 | |
| 		bnapi->cnic_present = 1;
 | |
| 		sb_id = 0;
 | |
| 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
 | |
| 	}
 | |
| 
 | |
| 	cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
 | |
| 	cp->irq_arr[0].status_blk = (void *)
 | |
| 		((unsigned long) bnapi->status_blk.msi +
 | |
| 		(BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
 | |
| 	cp->irq_arr[0].status_blk_num = sb_id;
 | |
| 	cp->num_irq = 1;
 | |
| }
 | |
| 
 | |
| static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
 | |
| 			      void *data)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
 | |
| 
 | |
| 	if (ops == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (cp->drv_state & CNIC_DRV_STATE_REGD)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	bp->cnic_data = data;
 | |
| 	rcu_assign_pointer(bp->cnic_ops, ops);
 | |
| 
 | |
| 	cp->num_irq = 0;
 | |
| 	cp->drv_state = CNIC_DRV_STATE_REGD;
 | |
| 
 | |
| 	bnx2_setup_cnic_irq_info(bp);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bnx2_unregister_cnic(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
 | |
| 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
 | |
| 
 | |
| 	mutex_lock(&bp->cnic_lock);
 | |
| 	cp->drv_state = 0;
 | |
| 	bnapi->cnic_present = 0;
 | |
| 	rcu_assign_pointer(bp->cnic_ops, NULL);
 | |
| 	mutex_unlock(&bp->cnic_lock);
 | |
| 	synchronize_rcu();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
 | |
| 
 | |
| 	cp->drv_owner = THIS_MODULE;
 | |
| 	cp->chip_id = bp->chip_id;
 | |
| 	cp->pdev = bp->pdev;
 | |
| 	cp->io_base = bp->regview;
 | |
| 	cp->drv_ctl = bnx2_drv_ctl;
 | |
| 	cp->drv_register_cnic = bnx2_register_cnic;
 | |
| 	cp->drv_unregister_cnic = bnx2_unregister_cnic;
 | |
| 
 | |
| 	return cp;
 | |
| }
 | |
| EXPORT_SYMBOL(bnx2_cnic_probe);
 | |
| 
 | |
| static void
 | |
| bnx2_cnic_stop(struct bnx2 *bp)
 | |
| {
 | |
| 	struct cnic_ops *c_ops;
 | |
| 	struct cnic_ctl_info info;
 | |
| 
 | |
| 	mutex_lock(&bp->cnic_lock);
 | |
| 	c_ops = bp->cnic_ops;
 | |
| 	if (c_ops) {
 | |
| 		info.cmd = CNIC_CTL_STOP_CMD;
 | |
| 		c_ops->cnic_ctl(bp->cnic_data, &info);
 | |
| 	}
 | |
| 	mutex_unlock(&bp->cnic_lock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_cnic_start(struct bnx2 *bp)
 | |
| {
 | |
| 	struct cnic_ops *c_ops;
 | |
| 	struct cnic_ctl_info info;
 | |
| 
 | |
| 	mutex_lock(&bp->cnic_lock);
 | |
| 	c_ops = bp->cnic_ops;
 | |
| 	if (c_ops) {
 | |
| 		if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
 | |
| 			struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
 | |
| 
 | |
| 			bnapi->cnic_tag = bnapi->last_status_idx;
 | |
| 		}
 | |
| 		info.cmd = CNIC_CTL_START_CMD;
 | |
| 		c_ops->cnic_ctl(bp->cnic_data, &info);
 | |
| 	}
 | |
| 	mutex_unlock(&bp->cnic_lock);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static void
 | |
| bnx2_cnic_stop(struct bnx2 *bp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_cnic_start(struct bnx2 *bp)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
 | |
| {
 | |
| 	u32 val1;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
 | |
| 		val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
 | |
| 		val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
 | |
| 
 | |
| 		REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
 | |
| 		REG_RD(bp, BNX2_EMAC_MDIO_MODE);
 | |
| 
 | |
| 		udelay(40);
 | |
| 	}
 | |
| 
 | |
| 	val1 = (bp->phy_addr << 21) | (reg << 16) |
 | |
| 		BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
 | |
| 		BNX2_EMAC_MDIO_COMM_START_BUSY;
 | |
| 	REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
 | |
| 
 | |
| 	for (i = 0; i < 50; i++) {
 | |
| 		udelay(10);
 | |
| 
 | |
| 		val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
 | |
| 		if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
 | |
| 			udelay(5);
 | |
| 
 | |
| 			val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
 | |
| 			val1 &= BNX2_EMAC_MDIO_COMM_DATA;
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
 | |
| 		*val = 0x0;
 | |
| 		ret = -EBUSY;
 | |
| 	}
 | |
| 	else {
 | |
| 		*val = val1;
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
 | |
| 		val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
 | |
| 		val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
 | |
| 
 | |
| 		REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
 | |
| 		REG_RD(bp, BNX2_EMAC_MDIO_MODE);
 | |
| 
 | |
| 		udelay(40);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
 | |
| {
 | |
| 	u32 val1;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
 | |
| 		val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
 | |
| 		val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
 | |
| 
 | |
| 		REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
 | |
| 		REG_RD(bp, BNX2_EMAC_MDIO_MODE);
 | |
| 
 | |
| 		udelay(40);
 | |
| 	}
 | |
| 
 | |
| 	val1 = (bp->phy_addr << 21) | (reg << 16) | val |
 | |
| 		BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
 | |
| 		BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
 | |
| 	REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
 | |
| 
 | |
| 	for (i = 0; i < 50; i++) {
 | |
| 		udelay(10);
 | |
| 
 | |
| 		val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
 | |
| 		if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
 | |
| 			udelay(5);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
 | |
|         	ret = -EBUSY;
 | |
| 	else
 | |
| 		ret = 0;
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
 | |
| 		val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
 | |
| 		val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
 | |
| 
 | |
| 		REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
 | |
| 		REG_RD(bp, BNX2_EMAC_MDIO_MODE);
 | |
| 
 | |
| 		udelay(40);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_disable_int(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 	struct bnx2_napi *bnapi;
 | |
| 
 | |
| 	for (i = 0; i < bp->irq_nvecs; i++) {
 | |
| 		bnapi = &bp->bnx2_napi[i];
 | |
| 		REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
 | |
| 		       BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
 | |
| 	}
 | |
| 	REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_enable_int(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 	struct bnx2_napi *bnapi;
 | |
| 
 | |
| 	for (i = 0; i < bp->irq_nvecs; i++) {
 | |
| 		bnapi = &bp->bnx2_napi[i];
 | |
| 
 | |
| 		REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
 | |
| 		       BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
 | |
| 		       BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
 | |
| 		       bnapi->last_status_idx);
 | |
| 
 | |
| 		REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
 | |
| 		       BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
 | |
| 		       bnapi->last_status_idx);
 | |
| 	}
 | |
| 	REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_disable_int_sync(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	atomic_inc(&bp->intr_sem);
 | |
| 	if (!netif_running(bp->dev))
 | |
| 		return;
 | |
| 
 | |
| 	bnx2_disable_int(bp);
 | |
| 	for (i = 0; i < bp->irq_nvecs; i++)
 | |
| 		synchronize_irq(bp->irq_tbl[i].vector);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_napi_disable(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < bp->irq_nvecs; i++)
 | |
| 		napi_disable(&bp->bnx2_napi[i].napi);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_napi_enable(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < bp->irq_nvecs; i++)
 | |
| 		napi_enable(&bp->bnx2_napi[i].napi);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_netif_stop(struct bnx2 *bp)
 | |
| {
 | |
| 	bnx2_cnic_stop(bp);
 | |
| 	if (netif_running(bp->dev)) {
 | |
| 		int i;
 | |
| 
 | |
| 		bnx2_napi_disable(bp);
 | |
| 		netif_tx_disable(bp->dev);
 | |
| 		/* prevent tx timeout */
 | |
| 		for (i = 0; i <  bp->dev->num_tx_queues; i++) {
 | |
| 			struct netdev_queue *txq;
 | |
| 
 | |
| 			txq = netdev_get_tx_queue(bp->dev, i);
 | |
| 			txq->trans_start = jiffies;
 | |
| 		}
 | |
| 	}
 | |
| 	bnx2_disable_int_sync(bp);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_netif_start(struct bnx2 *bp)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&bp->intr_sem)) {
 | |
| 		if (netif_running(bp->dev)) {
 | |
| 			netif_tx_wake_all_queues(bp->dev);
 | |
| 			bnx2_napi_enable(bp);
 | |
| 			bnx2_enable_int(bp);
 | |
| 			bnx2_cnic_start(bp);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_free_tx_mem(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < bp->num_tx_rings; i++) {
 | |
| 		struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
 | |
| 		struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
 | |
| 
 | |
| 		if (txr->tx_desc_ring) {
 | |
| 			pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
 | |
| 					    txr->tx_desc_ring,
 | |
| 					    txr->tx_desc_mapping);
 | |
| 			txr->tx_desc_ring = NULL;
 | |
| 		}
 | |
| 		kfree(txr->tx_buf_ring);
 | |
| 		txr->tx_buf_ring = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_free_rx_mem(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < bp->num_rx_rings; i++) {
 | |
| 		struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
 | |
| 		struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
 | |
| 		int j;
 | |
| 
 | |
| 		for (j = 0; j < bp->rx_max_ring; j++) {
 | |
| 			if (rxr->rx_desc_ring[j])
 | |
| 				pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
 | |
| 						    rxr->rx_desc_ring[j],
 | |
| 						    rxr->rx_desc_mapping[j]);
 | |
| 			rxr->rx_desc_ring[j] = NULL;
 | |
| 		}
 | |
| 		vfree(rxr->rx_buf_ring);
 | |
| 		rxr->rx_buf_ring = NULL;
 | |
| 
 | |
| 		for (j = 0; j < bp->rx_max_pg_ring; j++) {
 | |
| 			if (rxr->rx_pg_desc_ring[j])
 | |
| 				pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
 | |
| 						    rxr->rx_pg_desc_ring[j],
 | |
| 						    rxr->rx_pg_desc_mapping[j]);
 | |
| 			rxr->rx_pg_desc_ring[j] = NULL;
 | |
| 		}
 | |
| 		vfree(rxr->rx_pg_ring);
 | |
| 		rxr->rx_pg_ring = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_alloc_tx_mem(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < bp->num_tx_rings; i++) {
 | |
| 		struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
 | |
| 		struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
 | |
| 
 | |
| 		txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
 | |
| 		if (txr->tx_buf_ring == NULL)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		txr->tx_desc_ring =
 | |
| 			pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
 | |
| 					     &txr->tx_desc_mapping);
 | |
| 		if (txr->tx_desc_ring == NULL)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_alloc_rx_mem(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < bp->num_rx_rings; i++) {
 | |
| 		struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
 | |
| 		struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
 | |
| 		int j;
 | |
| 
 | |
| 		rxr->rx_buf_ring =
 | |
| 			vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
 | |
| 		if (rxr->rx_buf_ring == NULL)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		memset(rxr->rx_buf_ring, 0,
 | |
| 		       SW_RXBD_RING_SIZE * bp->rx_max_ring);
 | |
| 
 | |
| 		for (j = 0; j < bp->rx_max_ring; j++) {
 | |
| 			rxr->rx_desc_ring[j] =
 | |
| 				pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
 | |
| 						     &rxr->rx_desc_mapping[j]);
 | |
| 			if (rxr->rx_desc_ring[j] == NULL)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		if (bp->rx_pg_ring_size) {
 | |
| 			rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
 | |
| 						  bp->rx_max_pg_ring);
 | |
| 			if (rxr->rx_pg_ring == NULL)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
 | |
| 			       bp->rx_max_pg_ring);
 | |
| 		}
 | |
| 
 | |
| 		for (j = 0; j < bp->rx_max_pg_ring; j++) {
 | |
| 			rxr->rx_pg_desc_ring[j] =
 | |
| 				pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
 | |
| 						&rxr->rx_pg_desc_mapping[j]);
 | |
| 			if (rxr->rx_pg_desc_ring[j] == NULL)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_free_mem(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 	struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
 | |
| 
 | |
| 	bnx2_free_tx_mem(bp);
 | |
| 	bnx2_free_rx_mem(bp);
 | |
| 
 | |
| 	for (i = 0; i < bp->ctx_pages; i++) {
 | |
| 		if (bp->ctx_blk[i]) {
 | |
| 			pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
 | |
| 					    bp->ctx_blk[i],
 | |
| 					    bp->ctx_blk_mapping[i]);
 | |
| 			bp->ctx_blk[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	if (bnapi->status_blk.msi) {
 | |
| 		pci_free_consistent(bp->pdev, bp->status_stats_size,
 | |
| 				    bnapi->status_blk.msi,
 | |
| 				    bp->status_blk_mapping);
 | |
| 		bnapi->status_blk.msi = NULL;
 | |
| 		bp->stats_blk = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_alloc_mem(struct bnx2 *bp)
 | |
| {
 | |
| 	int i, status_blk_size, err;
 | |
| 	struct bnx2_napi *bnapi;
 | |
| 	void *status_blk;
 | |
| 
 | |
| 	/* Combine status and statistics blocks into one allocation. */
 | |
| 	status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
 | |
| 	if (bp->flags & BNX2_FLAG_MSIX_CAP)
 | |
| 		status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
 | |
| 						 BNX2_SBLK_MSIX_ALIGN_SIZE);
 | |
| 	bp->status_stats_size = status_blk_size +
 | |
| 				sizeof(struct statistics_block);
 | |
| 
 | |
| 	status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
 | |
| 					  &bp->status_blk_mapping);
 | |
| 	if (status_blk == NULL)
 | |
| 		goto alloc_mem_err;
 | |
| 
 | |
| 	memset(status_blk, 0, bp->status_stats_size);
 | |
| 
 | |
| 	bnapi = &bp->bnx2_napi[0];
 | |
| 	bnapi->status_blk.msi = status_blk;
 | |
| 	bnapi->hw_tx_cons_ptr =
 | |
| 		&bnapi->status_blk.msi->status_tx_quick_consumer_index0;
 | |
| 	bnapi->hw_rx_cons_ptr =
 | |
| 		&bnapi->status_blk.msi->status_rx_quick_consumer_index0;
 | |
| 	if (bp->flags & BNX2_FLAG_MSIX_CAP) {
 | |
| 		for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
 | |
| 			struct status_block_msix *sblk;
 | |
| 
 | |
| 			bnapi = &bp->bnx2_napi[i];
 | |
| 
 | |
| 			sblk = (void *) (status_blk +
 | |
| 					 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
 | |
| 			bnapi->status_blk.msix = sblk;
 | |
| 			bnapi->hw_tx_cons_ptr =
 | |
| 				&sblk->status_tx_quick_consumer_index;
 | |
| 			bnapi->hw_rx_cons_ptr =
 | |
| 				&sblk->status_rx_quick_consumer_index;
 | |
| 			bnapi->int_num = i << 24;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bp->stats_blk = status_blk + status_blk_size;
 | |
| 
 | |
| 	bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 		bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
 | |
| 		if (bp->ctx_pages == 0)
 | |
| 			bp->ctx_pages = 1;
 | |
| 		for (i = 0; i < bp->ctx_pages; i++) {
 | |
| 			bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
 | |
| 						BCM_PAGE_SIZE,
 | |
| 						&bp->ctx_blk_mapping[i]);
 | |
| 			if (bp->ctx_blk[i] == NULL)
 | |
| 				goto alloc_mem_err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	err = bnx2_alloc_rx_mem(bp);
 | |
| 	if (err)
 | |
| 		goto alloc_mem_err;
 | |
| 
 | |
| 	err = bnx2_alloc_tx_mem(bp);
 | |
| 	if (err)
 | |
| 		goto alloc_mem_err;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| alloc_mem_err:
 | |
| 	bnx2_free_mem(bp);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_report_fw_link(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 fw_link_status = 0;
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
 | |
| 		return;
 | |
| 
 | |
| 	if (bp->link_up) {
 | |
| 		u32 bmsr;
 | |
| 
 | |
| 		switch (bp->line_speed) {
 | |
| 		case SPEED_10:
 | |
| 			if (bp->duplex == DUPLEX_HALF)
 | |
| 				fw_link_status = BNX2_LINK_STATUS_10HALF;
 | |
| 			else
 | |
| 				fw_link_status = BNX2_LINK_STATUS_10FULL;
 | |
| 			break;
 | |
| 		case SPEED_100:
 | |
| 			if (bp->duplex == DUPLEX_HALF)
 | |
| 				fw_link_status = BNX2_LINK_STATUS_100HALF;
 | |
| 			else
 | |
| 				fw_link_status = BNX2_LINK_STATUS_100FULL;
 | |
| 			break;
 | |
| 		case SPEED_1000:
 | |
| 			if (bp->duplex == DUPLEX_HALF)
 | |
| 				fw_link_status = BNX2_LINK_STATUS_1000HALF;
 | |
| 			else
 | |
| 				fw_link_status = BNX2_LINK_STATUS_1000FULL;
 | |
| 			break;
 | |
| 		case SPEED_2500:
 | |
| 			if (bp->duplex == DUPLEX_HALF)
 | |
| 				fw_link_status = BNX2_LINK_STATUS_2500HALF;
 | |
| 			else
 | |
| 				fw_link_status = BNX2_LINK_STATUS_2500FULL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
 | |
| 
 | |
| 		if (bp->autoneg) {
 | |
| 			fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
 | |
| 
 | |
| 			bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
 | |
| 			bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
 | |
| 
 | |
| 			if (!(bmsr & BMSR_ANEGCOMPLETE) ||
 | |
| 			    bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
 | |
| 				fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
 | |
| 			else
 | |
| 				fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 		fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
 | |
| 
 | |
| 	bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
 | |
| }
 | |
| 
 | |
| static char *
 | |
| bnx2_xceiver_str(struct bnx2 *bp)
 | |
| {
 | |
| 	return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
 | |
| 		((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
 | |
| 		 "Copper"));
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_report_link(struct bnx2 *bp)
 | |
| {
 | |
| 	if (bp->link_up) {
 | |
| 		netif_carrier_on(bp->dev);
 | |
| 		netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
 | |
| 			    bnx2_xceiver_str(bp),
 | |
| 			    bp->line_speed,
 | |
| 			    bp->duplex == DUPLEX_FULL ? "full" : "half");
 | |
| 
 | |
| 		if (bp->flow_ctrl) {
 | |
| 			if (bp->flow_ctrl & FLOW_CTRL_RX) {
 | |
| 				pr_cont(", receive ");
 | |
| 				if (bp->flow_ctrl & FLOW_CTRL_TX)
 | |
| 					pr_cont("& transmit ");
 | |
| 			}
 | |
| 			else {
 | |
| 				pr_cont(", transmit ");
 | |
| 			}
 | |
| 			pr_cont("flow control ON");
 | |
| 		}
 | |
| 		pr_cont("\n");
 | |
| 	} else {
 | |
| 		netif_carrier_off(bp->dev);
 | |
| 		netdev_err(bp->dev, "NIC %s Link is Down\n",
 | |
| 			   bnx2_xceiver_str(bp));
 | |
| 	}
 | |
| 
 | |
| 	bnx2_report_fw_link(bp);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_resolve_flow_ctrl(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 local_adv, remote_adv;
 | |
| 
 | |
| 	bp->flow_ctrl = 0;
 | |
| 	if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
 | |
| 		(AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
 | |
| 
 | |
| 		if (bp->duplex == DUPLEX_FULL) {
 | |
| 			bp->flow_ctrl = bp->req_flow_ctrl;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (bp->duplex != DUPLEX_FULL) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
 | |
| 	    (CHIP_NUM(bp) == CHIP_NUM_5708)) {
 | |
| 		u32 val;
 | |
| 
 | |
| 		bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
 | |
| 		if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
 | |
| 			bp->flow_ctrl |= FLOW_CTRL_TX;
 | |
| 		if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
 | |
| 			bp->flow_ctrl |= FLOW_CTRL_RX;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	bnx2_read_phy(bp, bp->mii_adv, &local_adv);
 | |
| 	bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
 | |
| 		u32 new_local_adv = 0;
 | |
| 		u32 new_remote_adv = 0;
 | |
| 
 | |
| 		if (local_adv & ADVERTISE_1000XPAUSE)
 | |
| 			new_local_adv |= ADVERTISE_PAUSE_CAP;
 | |
| 		if (local_adv & ADVERTISE_1000XPSE_ASYM)
 | |
| 			new_local_adv |= ADVERTISE_PAUSE_ASYM;
 | |
| 		if (remote_adv & ADVERTISE_1000XPAUSE)
 | |
| 			new_remote_adv |= ADVERTISE_PAUSE_CAP;
 | |
| 		if (remote_adv & ADVERTISE_1000XPSE_ASYM)
 | |
| 			new_remote_adv |= ADVERTISE_PAUSE_ASYM;
 | |
| 
 | |
| 		local_adv = new_local_adv;
 | |
| 		remote_adv = new_remote_adv;
 | |
| 	}
 | |
| 
 | |
| 	/* See Table 28B-3 of 802.3ab-1999 spec. */
 | |
| 	if (local_adv & ADVERTISE_PAUSE_CAP) {
 | |
| 		if(local_adv & ADVERTISE_PAUSE_ASYM) {
 | |
| 	                if (remote_adv & ADVERTISE_PAUSE_CAP) {
 | |
| 				bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
 | |
| 			}
 | |
| 			else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
 | |
| 				bp->flow_ctrl = FLOW_CTRL_RX;
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			if (remote_adv & ADVERTISE_PAUSE_CAP) {
 | |
| 				bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else if (local_adv & ADVERTISE_PAUSE_ASYM) {
 | |
| 		if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
 | |
| 			(remote_adv & ADVERTISE_PAUSE_ASYM)) {
 | |
| 
 | |
| 			bp->flow_ctrl = FLOW_CTRL_TX;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_5709s_linkup(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 val, speed;
 | |
| 
 | |
| 	bp->link_up = 1;
 | |
| 
 | |
| 	bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
 | |
| 	bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
 | |
| 	bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
 | |
| 
 | |
| 	if ((bp->autoneg & AUTONEG_SPEED) == 0) {
 | |
| 		bp->line_speed = bp->req_line_speed;
 | |
| 		bp->duplex = bp->req_duplex;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
 | |
| 	switch (speed) {
 | |
| 		case MII_BNX2_GP_TOP_AN_SPEED_10:
 | |
| 			bp->line_speed = SPEED_10;
 | |
| 			break;
 | |
| 		case MII_BNX2_GP_TOP_AN_SPEED_100:
 | |
| 			bp->line_speed = SPEED_100;
 | |
| 			break;
 | |
| 		case MII_BNX2_GP_TOP_AN_SPEED_1G:
 | |
| 		case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
 | |
| 			bp->line_speed = SPEED_1000;
 | |
| 			break;
 | |
| 		case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
 | |
| 			bp->line_speed = SPEED_2500;
 | |
| 			break;
 | |
| 	}
 | |
| 	if (val & MII_BNX2_GP_TOP_AN_FD)
 | |
| 		bp->duplex = DUPLEX_FULL;
 | |
| 	else
 | |
| 		bp->duplex = DUPLEX_HALF;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_5708s_linkup(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	bp->link_up = 1;
 | |
| 	bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
 | |
| 	switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
 | |
| 		case BCM5708S_1000X_STAT1_SPEED_10:
 | |
| 			bp->line_speed = SPEED_10;
 | |
| 			break;
 | |
| 		case BCM5708S_1000X_STAT1_SPEED_100:
 | |
| 			bp->line_speed = SPEED_100;
 | |
| 			break;
 | |
| 		case BCM5708S_1000X_STAT1_SPEED_1G:
 | |
| 			bp->line_speed = SPEED_1000;
 | |
| 			break;
 | |
| 		case BCM5708S_1000X_STAT1_SPEED_2G5:
 | |
| 			bp->line_speed = SPEED_2500;
 | |
| 			break;
 | |
| 	}
 | |
| 	if (val & BCM5708S_1000X_STAT1_FD)
 | |
| 		bp->duplex = DUPLEX_FULL;
 | |
| 	else
 | |
| 		bp->duplex = DUPLEX_HALF;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_5706s_linkup(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 bmcr, local_adv, remote_adv, common;
 | |
| 
 | |
| 	bp->link_up = 1;
 | |
| 	bp->line_speed = SPEED_1000;
 | |
| 
 | |
| 	bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
 | |
| 	if (bmcr & BMCR_FULLDPLX) {
 | |
| 		bp->duplex = DUPLEX_FULL;
 | |
| 	}
 | |
| 	else {
 | |
| 		bp->duplex = DUPLEX_HALF;
 | |
| 	}
 | |
| 
 | |
| 	if (!(bmcr & BMCR_ANENABLE)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	bnx2_read_phy(bp, bp->mii_adv, &local_adv);
 | |
| 	bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
 | |
| 
 | |
| 	common = local_adv & remote_adv;
 | |
| 	if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
 | |
| 
 | |
| 		if (common & ADVERTISE_1000XFULL) {
 | |
| 			bp->duplex = DUPLEX_FULL;
 | |
| 		}
 | |
| 		else {
 | |
| 			bp->duplex = DUPLEX_HALF;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_copper_linkup(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 bmcr;
 | |
| 
 | |
| 	bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
 | |
| 	if (bmcr & BMCR_ANENABLE) {
 | |
| 		u32 local_adv, remote_adv, common;
 | |
| 
 | |
| 		bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
 | |
| 		bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
 | |
| 
 | |
| 		common = local_adv & (remote_adv >> 2);
 | |
| 		if (common & ADVERTISE_1000FULL) {
 | |
| 			bp->line_speed = SPEED_1000;
 | |
| 			bp->duplex = DUPLEX_FULL;
 | |
| 		}
 | |
| 		else if (common & ADVERTISE_1000HALF) {
 | |
| 			bp->line_speed = SPEED_1000;
 | |
| 			bp->duplex = DUPLEX_HALF;
 | |
| 		}
 | |
| 		else {
 | |
| 			bnx2_read_phy(bp, bp->mii_adv, &local_adv);
 | |
| 			bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
 | |
| 
 | |
| 			common = local_adv & remote_adv;
 | |
| 			if (common & ADVERTISE_100FULL) {
 | |
| 				bp->line_speed = SPEED_100;
 | |
| 				bp->duplex = DUPLEX_FULL;
 | |
| 			}
 | |
| 			else if (common & ADVERTISE_100HALF) {
 | |
| 				bp->line_speed = SPEED_100;
 | |
| 				bp->duplex = DUPLEX_HALF;
 | |
| 			}
 | |
| 			else if (common & ADVERTISE_10FULL) {
 | |
| 				bp->line_speed = SPEED_10;
 | |
| 				bp->duplex = DUPLEX_FULL;
 | |
| 			}
 | |
| 			else if (common & ADVERTISE_10HALF) {
 | |
| 				bp->line_speed = SPEED_10;
 | |
| 				bp->duplex = DUPLEX_HALF;
 | |
| 			}
 | |
| 			else {
 | |
| 				bp->line_speed = 0;
 | |
| 				bp->link_up = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		if (bmcr & BMCR_SPEED100) {
 | |
| 			bp->line_speed = SPEED_100;
 | |
| 		}
 | |
| 		else {
 | |
| 			bp->line_speed = SPEED_10;
 | |
| 		}
 | |
| 		if (bmcr & BMCR_FULLDPLX) {
 | |
| 			bp->duplex = DUPLEX_FULL;
 | |
| 		}
 | |
| 		else {
 | |
| 			bp->duplex = DUPLEX_HALF;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
 | |
| {
 | |
| 	u32 val, rx_cid_addr = GET_CID_ADDR(cid);
 | |
| 
 | |
| 	val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
 | |
| 	val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
 | |
| 	val |= 0x02 << 8;
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 		u32 lo_water, hi_water;
 | |
| 
 | |
| 		if (bp->flow_ctrl & FLOW_CTRL_TX)
 | |
| 			lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
 | |
| 		else
 | |
| 			lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
 | |
| 		if (lo_water >= bp->rx_ring_size)
 | |
| 			lo_water = 0;
 | |
| 
 | |
| 		hi_water = min_t(int, bp->rx_ring_size / 4, lo_water + 16);
 | |
| 
 | |
| 		if (hi_water <= lo_water)
 | |
| 			lo_water = 0;
 | |
| 
 | |
| 		hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
 | |
| 		lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
 | |
| 
 | |
| 		if (hi_water > 0xf)
 | |
| 			hi_water = 0xf;
 | |
| 		else if (hi_water == 0)
 | |
| 			lo_water = 0;
 | |
| 		val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
 | |
| 	}
 | |
| 	bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_init_all_rx_contexts(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 cid;
 | |
| 
 | |
| 	for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
 | |
| 		if (i == 1)
 | |
| 			cid = RX_RSS_CID;
 | |
| 		bnx2_init_rx_context(bp, cid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_set_mac_link(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
 | |
| 	if (bp->link_up && (bp->line_speed == SPEED_1000) &&
 | |
| 		(bp->duplex == DUPLEX_HALF)) {
 | |
| 		REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
 | |
| 	}
 | |
| 
 | |
| 	/* Configure the EMAC mode register. */
 | |
| 	val = REG_RD(bp, BNX2_EMAC_MODE);
 | |
| 
 | |
| 	val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
 | |
| 		BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
 | |
| 		BNX2_EMAC_MODE_25G_MODE);
 | |
| 
 | |
| 	if (bp->link_up) {
 | |
| 		switch (bp->line_speed) {
 | |
| 			case SPEED_10:
 | |
| 				if (CHIP_NUM(bp) != CHIP_NUM_5706) {
 | |
| 					val |= BNX2_EMAC_MODE_PORT_MII_10M;
 | |
| 					break;
 | |
| 				}
 | |
| 				/* fall through */
 | |
| 			case SPEED_100:
 | |
| 				val |= BNX2_EMAC_MODE_PORT_MII;
 | |
| 				break;
 | |
| 			case SPEED_2500:
 | |
| 				val |= BNX2_EMAC_MODE_25G_MODE;
 | |
| 				/* fall through */
 | |
| 			case SPEED_1000:
 | |
| 				val |= BNX2_EMAC_MODE_PORT_GMII;
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		val |= BNX2_EMAC_MODE_PORT_GMII;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the MAC to operate in the appropriate duplex mode. */
 | |
| 	if (bp->duplex == DUPLEX_HALF)
 | |
| 		val |= BNX2_EMAC_MODE_HALF_DUPLEX;
 | |
| 	REG_WR(bp, BNX2_EMAC_MODE, val);
 | |
| 
 | |
| 	/* Enable/disable rx PAUSE. */
 | |
| 	bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
 | |
| 
 | |
| 	if (bp->flow_ctrl & FLOW_CTRL_RX)
 | |
| 		bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
 | |
| 	REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
 | |
| 
 | |
| 	/* Enable/disable tx PAUSE. */
 | |
| 	val = REG_RD(bp, BNX2_EMAC_TX_MODE);
 | |
| 	val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
 | |
| 
 | |
| 	if (bp->flow_ctrl & FLOW_CTRL_TX)
 | |
| 		val |= BNX2_EMAC_TX_MODE_FLOW_EN;
 | |
| 	REG_WR(bp, BNX2_EMAC_TX_MODE, val);
 | |
| 
 | |
| 	/* Acknowledge the interrupt. */
 | |
| 	REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709)
 | |
| 		bnx2_init_all_rx_contexts(bp);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_enable_bmsr1(struct bnx2 *bp)
 | |
| {
 | |
| 	if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
 | |
| 	    (CHIP_NUM(bp) == CHIP_NUM_5709))
 | |
| 		bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
 | |
| 			       MII_BNX2_BLK_ADDR_GP_STATUS);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_disable_bmsr1(struct bnx2 *bp)
 | |
| {
 | |
| 	if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
 | |
| 	    (CHIP_NUM(bp) == CHIP_NUM_5709))
 | |
| 		bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
 | |
| 			       MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_test_and_enable_2g5(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 up1;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (bp->autoneg & AUTONEG_SPEED)
 | |
| 		bp->advertising |= ADVERTISED_2500baseX_Full;
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709)
 | |
| 		bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
 | |
| 
 | |
| 	bnx2_read_phy(bp, bp->mii_up1, &up1);
 | |
| 	if (!(up1 & BCM5708S_UP1_2G5)) {
 | |
| 		up1 |= BCM5708S_UP1_2G5;
 | |
| 		bnx2_write_phy(bp, bp->mii_up1, up1);
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709)
 | |
| 		bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
 | |
| 			       MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_test_and_disable_2g5(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 up1;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709)
 | |
| 		bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
 | |
| 
 | |
| 	bnx2_read_phy(bp, bp->mii_up1, &up1);
 | |
| 	if (up1 & BCM5708S_UP1_2G5) {
 | |
| 		up1 &= ~BCM5708S_UP1_2G5;
 | |
| 		bnx2_write_phy(bp, bp->mii_up1, up1);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709)
 | |
| 		bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
 | |
| 			       MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_enable_forced_2g5(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 bmcr;
 | |
| 
 | |
| 	if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
 | |
| 		return;
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 		u32 val;
 | |
| 
 | |
| 		bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
 | |
| 			       MII_BNX2_BLK_ADDR_SERDES_DIG);
 | |
| 		bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
 | |
| 		val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
 | |
| 		val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
 | |
| 		bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
 | |
| 
 | |
| 		bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
 | |
| 			       MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
 | |
| 		bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
 | |
| 
 | |
| 	} else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
 | |
| 		bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
 | |
| 		bmcr |= BCM5708S_BMCR_FORCE_2500;
 | |
| 	} else {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (bp->autoneg & AUTONEG_SPEED) {
 | |
| 		bmcr &= ~BMCR_ANENABLE;
 | |
| 		if (bp->req_duplex == DUPLEX_FULL)
 | |
| 			bmcr |= BMCR_FULLDPLX;
 | |
| 	}
 | |
| 	bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_disable_forced_2g5(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 bmcr;
 | |
| 
 | |
| 	if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
 | |
| 		return;
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 		u32 val;
 | |
| 
 | |
| 		bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
 | |
| 			       MII_BNX2_BLK_ADDR_SERDES_DIG);
 | |
| 		bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
 | |
| 		val &= ~MII_BNX2_SD_MISC1_FORCE;
 | |
| 		bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
 | |
| 
 | |
| 		bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
 | |
| 			       MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
 | |
| 		bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
 | |
| 
 | |
| 	} else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
 | |
| 		bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
 | |
| 		bmcr &= ~BCM5708S_BMCR_FORCE_2500;
 | |
| 	} else {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (bp->autoneg & AUTONEG_SPEED)
 | |
| 		bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
 | |
| 	bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
 | |
| 	bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
 | |
| 	if (start)
 | |
| 		bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
 | |
| 	else
 | |
| 		bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_set_link(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 bmsr;
 | |
| 	u8 link_up;
 | |
| 
 | |
| 	if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
 | |
| 		bp->link_up = 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
 | |
| 		return 0;
 | |
| 
 | |
| 	link_up = bp->link_up;
 | |
| 
 | |
| 	bnx2_enable_bmsr1(bp);
 | |
| 	bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
 | |
| 	bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
 | |
| 	bnx2_disable_bmsr1(bp);
 | |
| 
 | |
| 	if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
 | |
| 	    (CHIP_NUM(bp) == CHIP_NUM_5706)) {
 | |
| 		u32 val, an_dbg;
 | |
| 
 | |
| 		if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
 | |
| 			bnx2_5706s_force_link_dn(bp, 0);
 | |
| 			bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
 | |
| 		}
 | |
| 		val = REG_RD(bp, BNX2_EMAC_STATUS);
 | |
| 
 | |
| 		bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
 | |
| 		bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
 | |
| 		bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
 | |
| 
 | |
| 		if ((val & BNX2_EMAC_STATUS_LINK) &&
 | |
| 		    !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
 | |
| 			bmsr |= BMSR_LSTATUS;
 | |
| 		else
 | |
| 			bmsr &= ~BMSR_LSTATUS;
 | |
| 	}
 | |
| 
 | |
| 	if (bmsr & BMSR_LSTATUS) {
 | |
| 		bp->link_up = 1;
 | |
| 
 | |
| 		if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
 | |
| 			if (CHIP_NUM(bp) == CHIP_NUM_5706)
 | |
| 				bnx2_5706s_linkup(bp);
 | |
| 			else if (CHIP_NUM(bp) == CHIP_NUM_5708)
 | |
| 				bnx2_5708s_linkup(bp);
 | |
| 			else if (CHIP_NUM(bp) == CHIP_NUM_5709)
 | |
| 				bnx2_5709s_linkup(bp);
 | |
| 		}
 | |
| 		else {
 | |
| 			bnx2_copper_linkup(bp);
 | |
| 		}
 | |
| 		bnx2_resolve_flow_ctrl(bp);
 | |
| 	}
 | |
| 	else {
 | |
| 		if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
 | |
| 		    (bp->autoneg & AUTONEG_SPEED))
 | |
| 			bnx2_disable_forced_2g5(bp);
 | |
| 
 | |
| 		if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
 | |
| 			u32 bmcr;
 | |
| 
 | |
| 			bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
 | |
| 			bmcr |= BMCR_ANENABLE;
 | |
| 			bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
 | |
| 
 | |
| 			bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
 | |
| 		}
 | |
| 		bp->link_up = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (bp->link_up != link_up) {
 | |
| 		bnx2_report_link(bp);
 | |
| 	}
 | |
| 
 | |
| 	bnx2_set_mac_link(bp);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_reset_phy(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 reg;
 | |
| 
 | |
|         bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
 | |
| 
 | |
| #define PHY_RESET_MAX_WAIT 100
 | |
| 	for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
 | |
| 		udelay(10);
 | |
| 
 | |
| 		bnx2_read_phy(bp, bp->mii_bmcr, ®);
 | |
| 		if (!(reg & BMCR_RESET)) {
 | |
| 			udelay(20);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (i == PHY_RESET_MAX_WAIT) {
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32
 | |
| bnx2_phy_get_pause_adv(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 adv = 0;
 | |
| 
 | |
| 	if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
 | |
| 		(FLOW_CTRL_RX | FLOW_CTRL_TX)) {
 | |
| 
 | |
| 		if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
 | |
| 			adv = ADVERTISE_1000XPAUSE;
 | |
| 		}
 | |
| 		else {
 | |
| 			adv = ADVERTISE_PAUSE_CAP;
 | |
| 		}
 | |
| 	}
 | |
| 	else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
 | |
| 		if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
 | |
| 			adv = ADVERTISE_1000XPSE_ASYM;
 | |
| 		}
 | |
| 		else {
 | |
| 			adv = ADVERTISE_PAUSE_ASYM;
 | |
| 		}
 | |
| 	}
 | |
| 	else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
 | |
| 		if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
 | |
| 			adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
 | |
| 		}
 | |
| 		else {
 | |
| 			adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
 | |
| 		}
 | |
| 	}
 | |
| 	return adv;
 | |
| }
 | |
| 
 | |
| static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
 | |
| 
 | |
| static int
 | |
| bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
 | |
| __releases(&bp->phy_lock)
 | |
| __acquires(&bp->phy_lock)
 | |
| {
 | |
| 	u32 speed_arg = 0, pause_adv;
 | |
| 
 | |
| 	pause_adv = bnx2_phy_get_pause_adv(bp);
 | |
| 
 | |
| 	if (bp->autoneg & AUTONEG_SPEED) {
 | |
| 		speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
 | |
| 		if (bp->advertising & ADVERTISED_10baseT_Half)
 | |
| 			speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
 | |
| 		if (bp->advertising & ADVERTISED_10baseT_Full)
 | |
| 			speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
 | |
| 		if (bp->advertising & ADVERTISED_100baseT_Half)
 | |
| 			speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
 | |
| 		if (bp->advertising & ADVERTISED_100baseT_Full)
 | |
| 			speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
 | |
| 		if (bp->advertising & ADVERTISED_1000baseT_Full)
 | |
| 			speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
 | |
| 		if (bp->advertising & ADVERTISED_2500baseX_Full)
 | |
| 			speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
 | |
| 	} else {
 | |
| 		if (bp->req_line_speed == SPEED_2500)
 | |
| 			speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
 | |
| 		else if (bp->req_line_speed == SPEED_1000)
 | |
| 			speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
 | |
| 		else if (bp->req_line_speed == SPEED_100) {
 | |
| 			if (bp->req_duplex == DUPLEX_FULL)
 | |
| 				speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
 | |
| 			else
 | |
| 				speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
 | |
| 		} else if (bp->req_line_speed == SPEED_10) {
 | |
| 			if (bp->req_duplex == DUPLEX_FULL)
 | |
| 				speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
 | |
| 			else
 | |
| 				speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
 | |
| 		speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
 | |
| 	if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
 | |
| 		speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
 | |
| 
 | |
| 	if (port == PORT_TP)
 | |
| 		speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
 | |
| 			     BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
 | |
| 
 | |
| 	bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
 | |
| 
 | |
| 	spin_unlock_bh(&bp->phy_lock);
 | |
| 	bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
 | |
| 	spin_lock_bh(&bp->phy_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
 | |
| __releases(&bp->phy_lock)
 | |
| __acquires(&bp->phy_lock)
 | |
| {
 | |
| 	u32 adv, bmcr;
 | |
| 	u32 new_adv = 0;
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
 | |
| 		return (bnx2_setup_remote_phy(bp, port));
 | |
| 
 | |
| 	if (!(bp->autoneg & AUTONEG_SPEED)) {
 | |
| 		u32 new_bmcr;
 | |
| 		int force_link_down = 0;
 | |
| 
 | |
| 		if (bp->req_line_speed == SPEED_2500) {
 | |
| 			if (!bnx2_test_and_enable_2g5(bp))
 | |
| 				force_link_down = 1;
 | |
| 		} else if (bp->req_line_speed == SPEED_1000) {
 | |
| 			if (bnx2_test_and_disable_2g5(bp))
 | |
| 				force_link_down = 1;
 | |
| 		}
 | |
| 		bnx2_read_phy(bp, bp->mii_adv, &adv);
 | |
| 		adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
 | |
| 
 | |
| 		bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
 | |
| 		new_bmcr = bmcr & ~BMCR_ANENABLE;
 | |
| 		new_bmcr |= BMCR_SPEED1000;
 | |
| 
 | |
| 		if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 			if (bp->req_line_speed == SPEED_2500)
 | |
| 				bnx2_enable_forced_2g5(bp);
 | |
| 			else if (bp->req_line_speed == SPEED_1000) {
 | |
| 				bnx2_disable_forced_2g5(bp);
 | |
| 				new_bmcr &= ~0x2000;
 | |
| 			}
 | |
| 
 | |
| 		} else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
 | |
| 			if (bp->req_line_speed == SPEED_2500)
 | |
| 				new_bmcr |= BCM5708S_BMCR_FORCE_2500;
 | |
| 			else
 | |
| 				new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
 | |
| 		}
 | |
| 
 | |
| 		if (bp->req_duplex == DUPLEX_FULL) {
 | |
| 			adv |= ADVERTISE_1000XFULL;
 | |
| 			new_bmcr |= BMCR_FULLDPLX;
 | |
| 		}
 | |
| 		else {
 | |
| 			adv |= ADVERTISE_1000XHALF;
 | |
| 			new_bmcr &= ~BMCR_FULLDPLX;
 | |
| 		}
 | |
| 		if ((new_bmcr != bmcr) || (force_link_down)) {
 | |
| 			/* Force a link down visible on the other side */
 | |
| 			if (bp->link_up) {
 | |
| 				bnx2_write_phy(bp, bp->mii_adv, adv &
 | |
| 					       ~(ADVERTISE_1000XFULL |
 | |
| 						 ADVERTISE_1000XHALF));
 | |
| 				bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
 | |
| 					BMCR_ANRESTART | BMCR_ANENABLE);
 | |
| 
 | |
| 				bp->link_up = 0;
 | |
| 				netif_carrier_off(bp->dev);
 | |
| 				bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
 | |
| 				bnx2_report_link(bp);
 | |
| 			}
 | |
| 			bnx2_write_phy(bp, bp->mii_adv, adv);
 | |
| 			bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
 | |
| 		} else {
 | |
| 			bnx2_resolve_flow_ctrl(bp);
 | |
| 			bnx2_set_mac_link(bp);
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	bnx2_test_and_enable_2g5(bp);
 | |
| 
 | |
| 	if (bp->advertising & ADVERTISED_1000baseT_Full)
 | |
| 		new_adv |= ADVERTISE_1000XFULL;
 | |
| 
 | |
| 	new_adv |= bnx2_phy_get_pause_adv(bp);
 | |
| 
 | |
| 	bnx2_read_phy(bp, bp->mii_adv, &adv);
 | |
| 	bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
 | |
| 
 | |
| 	bp->serdes_an_pending = 0;
 | |
| 	if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
 | |
| 		/* Force a link down visible on the other side */
 | |
| 		if (bp->link_up) {
 | |
| 			bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
 | |
| 			spin_unlock_bh(&bp->phy_lock);
 | |
| 			msleep(20);
 | |
| 			spin_lock_bh(&bp->phy_lock);
 | |
| 		}
 | |
| 
 | |
| 		bnx2_write_phy(bp, bp->mii_adv, new_adv);
 | |
| 		bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
 | |
| 			BMCR_ANENABLE);
 | |
| 		/* Speed up link-up time when the link partner
 | |
| 		 * does not autonegotiate which is very common
 | |
| 		 * in blade servers. Some blade servers use
 | |
| 		 * IPMI for kerboard input and it's important
 | |
| 		 * to minimize link disruptions. Autoneg. involves
 | |
| 		 * exchanging base pages plus 3 next pages and
 | |
| 		 * normally completes in about 120 msec.
 | |
| 		 */
 | |
| 		bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
 | |
| 		bp->serdes_an_pending = 1;
 | |
| 		mod_timer(&bp->timer, jiffies + bp->current_interval);
 | |
| 	} else {
 | |
| 		bnx2_resolve_flow_ctrl(bp);
 | |
| 		bnx2_set_mac_link(bp);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define ETHTOOL_ALL_FIBRE_SPEED						\
 | |
| 	(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ?			\
 | |
| 		(ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
 | |
| 		(ADVERTISED_1000baseT_Full)
 | |
| 
 | |
| #define ETHTOOL_ALL_COPPER_SPEED					\
 | |
| 	(ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |		\
 | |
| 	ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full |		\
 | |
| 	ADVERTISED_1000baseT_Full)
 | |
| 
 | |
| #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
 | |
| 	ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
 | |
| 
 | |
| #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
 | |
| 
 | |
| static void
 | |
| bnx2_set_default_remote_link(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 link;
 | |
| 
 | |
| 	if (bp->phy_port == PORT_TP)
 | |
| 		link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
 | |
| 	else
 | |
| 		link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
 | |
| 
 | |
| 	if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
 | |
| 		bp->req_line_speed = 0;
 | |
| 		bp->autoneg |= AUTONEG_SPEED;
 | |
| 		bp->advertising = ADVERTISED_Autoneg;
 | |
| 		if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
 | |
| 			bp->advertising |= ADVERTISED_10baseT_Half;
 | |
| 		if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
 | |
| 			bp->advertising |= ADVERTISED_10baseT_Full;
 | |
| 		if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
 | |
| 			bp->advertising |= ADVERTISED_100baseT_Half;
 | |
| 		if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
 | |
| 			bp->advertising |= ADVERTISED_100baseT_Full;
 | |
| 		if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
 | |
| 			bp->advertising |= ADVERTISED_1000baseT_Full;
 | |
| 		if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
 | |
| 			bp->advertising |= ADVERTISED_2500baseX_Full;
 | |
| 	} else {
 | |
| 		bp->autoneg = 0;
 | |
| 		bp->advertising = 0;
 | |
| 		bp->req_duplex = DUPLEX_FULL;
 | |
| 		if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
 | |
| 			bp->req_line_speed = SPEED_10;
 | |
| 			if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
 | |
| 				bp->req_duplex = DUPLEX_HALF;
 | |
| 		}
 | |
| 		if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
 | |
| 			bp->req_line_speed = SPEED_100;
 | |
| 			if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
 | |
| 				bp->req_duplex = DUPLEX_HALF;
 | |
| 		}
 | |
| 		if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
 | |
| 			bp->req_line_speed = SPEED_1000;
 | |
| 		if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
 | |
| 			bp->req_line_speed = SPEED_2500;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_set_default_link(struct bnx2 *bp)
 | |
| {
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
 | |
| 		bnx2_set_default_remote_link(bp);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
 | |
| 	bp->req_line_speed = 0;
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
 | |
| 		u32 reg;
 | |
| 
 | |
| 		bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
 | |
| 
 | |
| 		reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
 | |
| 		reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
 | |
| 		if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
 | |
| 			bp->autoneg = 0;
 | |
| 			bp->req_line_speed = bp->line_speed = SPEED_1000;
 | |
| 			bp->req_duplex = DUPLEX_FULL;
 | |
| 		}
 | |
| 	} else
 | |
| 		bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_send_heart_beat(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 msg;
 | |
| 	u32 addr;
 | |
| 
 | |
| 	spin_lock(&bp->indirect_lock);
 | |
| 	msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
 | |
| 	addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
 | |
| 	REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
 | |
| 	REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
 | |
| 	spin_unlock(&bp->indirect_lock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_remote_phy_event(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 msg;
 | |
| 	u8 link_up = bp->link_up;
 | |
| 	u8 old_port;
 | |
| 
 | |
| 	msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
 | |
| 
 | |
| 	if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
 | |
| 		bnx2_send_heart_beat(bp);
 | |
| 
 | |
| 	msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
 | |
| 
 | |
| 	if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
 | |
| 		bp->link_up = 0;
 | |
| 	else {
 | |
| 		u32 speed;
 | |
| 
 | |
| 		bp->link_up = 1;
 | |
| 		speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
 | |
| 		bp->duplex = DUPLEX_FULL;
 | |
| 		switch (speed) {
 | |
| 			case BNX2_LINK_STATUS_10HALF:
 | |
| 				bp->duplex = DUPLEX_HALF;
 | |
| 			case BNX2_LINK_STATUS_10FULL:
 | |
| 				bp->line_speed = SPEED_10;
 | |
| 				break;
 | |
| 			case BNX2_LINK_STATUS_100HALF:
 | |
| 				bp->duplex = DUPLEX_HALF;
 | |
| 			case BNX2_LINK_STATUS_100BASE_T4:
 | |
| 			case BNX2_LINK_STATUS_100FULL:
 | |
| 				bp->line_speed = SPEED_100;
 | |
| 				break;
 | |
| 			case BNX2_LINK_STATUS_1000HALF:
 | |
| 				bp->duplex = DUPLEX_HALF;
 | |
| 			case BNX2_LINK_STATUS_1000FULL:
 | |
| 				bp->line_speed = SPEED_1000;
 | |
| 				break;
 | |
| 			case BNX2_LINK_STATUS_2500HALF:
 | |
| 				bp->duplex = DUPLEX_HALF;
 | |
| 			case BNX2_LINK_STATUS_2500FULL:
 | |
| 				bp->line_speed = SPEED_2500;
 | |
| 				break;
 | |
| 			default:
 | |
| 				bp->line_speed = 0;
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		bp->flow_ctrl = 0;
 | |
| 		if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
 | |
| 		    (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
 | |
| 			if (bp->duplex == DUPLEX_FULL)
 | |
| 				bp->flow_ctrl = bp->req_flow_ctrl;
 | |
| 		} else {
 | |
| 			if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
 | |
| 				bp->flow_ctrl |= FLOW_CTRL_TX;
 | |
| 			if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
 | |
| 				bp->flow_ctrl |= FLOW_CTRL_RX;
 | |
| 		}
 | |
| 
 | |
| 		old_port = bp->phy_port;
 | |
| 		if (msg & BNX2_LINK_STATUS_SERDES_LINK)
 | |
| 			bp->phy_port = PORT_FIBRE;
 | |
| 		else
 | |
| 			bp->phy_port = PORT_TP;
 | |
| 
 | |
| 		if (old_port != bp->phy_port)
 | |
| 			bnx2_set_default_link(bp);
 | |
| 
 | |
| 	}
 | |
| 	if (bp->link_up != link_up)
 | |
| 		bnx2_report_link(bp);
 | |
| 
 | |
| 	bnx2_set_mac_link(bp);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_set_remote_link(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 evt_code;
 | |
| 
 | |
| 	evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
 | |
| 	switch (evt_code) {
 | |
| 		case BNX2_FW_EVT_CODE_LINK_EVENT:
 | |
| 			bnx2_remote_phy_event(bp);
 | |
| 			break;
 | |
| 		case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
 | |
| 		default:
 | |
| 			bnx2_send_heart_beat(bp);
 | |
| 			break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_setup_copper_phy(struct bnx2 *bp)
 | |
| __releases(&bp->phy_lock)
 | |
| __acquires(&bp->phy_lock)
 | |
| {
 | |
| 	u32 bmcr;
 | |
| 	u32 new_bmcr;
 | |
| 
 | |
| 	bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
 | |
| 
 | |
| 	if (bp->autoneg & AUTONEG_SPEED) {
 | |
| 		u32 adv_reg, adv1000_reg;
 | |
| 		u32 new_adv_reg = 0;
 | |
| 		u32 new_adv1000_reg = 0;
 | |
| 
 | |
| 		bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
 | |
| 		adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
 | |
| 			ADVERTISE_PAUSE_ASYM);
 | |
| 
 | |
| 		bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
 | |
| 		adv1000_reg &= PHY_ALL_1000_SPEED;
 | |
| 
 | |
| 		if (bp->advertising & ADVERTISED_10baseT_Half)
 | |
| 			new_adv_reg |= ADVERTISE_10HALF;
 | |
| 		if (bp->advertising & ADVERTISED_10baseT_Full)
 | |
| 			new_adv_reg |= ADVERTISE_10FULL;
 | |
| 		if (bp->advertising & ADVERTISED_100baseT_Half)
 | |
| 			new_adv_reg |= ADVERTISE_100HALF;
 | |
| 		if (bp->advertising & ADVERTISED_100baseT_Full)
 | |
| 			new_adv_reg |= ADVERTISE_100FULL;
 | |
| 		if (bp->advertising & ADVERTISED_1000baseT_Full)
 | |
| 			new_adv1000_reg |= ADVERTISE_1000FULL;
 | |
| 
 | |
| 		new_adv_reg |= ADVERTISE_CSMA;
 | |
| 
 | |
| 		new_adv_reg |= bnx2_phy_get_pause_adv(bp);
 | |
| 
 | |
| 		if ((adv1000_reg != new_adv1000_reg) ||
 | |
| 			(adv_reg != new_adv_reg) ||
 | |
| 			((bmcr & BMCR_ANENABLE) == 0)) {
 | |
| 
 | |
| 			bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
 | |
| 			bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
 | |
| 			bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
 | |
| 				BMCR_ANENABLE);
 | |
| 		}
 | |
| 		else if (bp->link_up) {
 | |
| 			/* Flow ctrl may have changed from auto to forced */
 | |
| 			/* or vice-versa. */
 | |
| 
 | |
| 			bnx2_resolve_flow_ctrl(bp);
 | |
| 			bnx2_set_mac_link(bp);
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	new_bmcr = 0;
 | |
| 	if (bp->req_line_speed == SPEED_100) {
 | |
| 		new_bmcr |= BMCR_SPEED100;
 | |
| 	}
 | |
| 	if (bp->req_duplex == DUPLEX_FULL) {
 | |
| 		new_bmcr |= BMCR_FULLDPLX;
 | |
| 	}
 | |
| 	if (new_bmcr != bmcr) {
 | |
| 		u32 bmsr;
 | |
| 
 | |
| 		bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
 | |
| 		bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
 | |
| 
 | |
| 		if (bmsr & BMSR_LSTATUS) {
 | |
| 			/* Force link down */
 | |
| 			bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
 | |
| 			spin_unlock_bh(&bp->phy_lock);
 | |
| 			msleep(50);
 | |
| 			spin_lock_bh(&bp->phy_lock);
 | |
| 
 | |
| 			bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
 | |
| 			bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
 | |
| 		}
 | |
| 
 | |
| 		bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
 | |
| 
 | |
| 		/* Normally, the new speed is setup after the link has
 | |
| 		 * gone down and up again. In some cases, link will not go
 | |
| 		 * down so we need to set up the new speed here.
 | |
| 		 */
 | |
| 		if (bmsr & BMSR_LSTATUS) {
 | |
| 			bp->line_speed = bp->req_line_speed;
 | |
| 			bp->duplex = bp->req_duplex;
 | |
| 			bnx2_resolve_flow_ctrl(bp);
 | |
| 			bnx2_set_mac_link(bp);
 | |
| 		}
 | |
| 	} else {
 | |
| 		bnx2_resolve_flow_ctrl(bp);
 | |
| 		bnx2_set_mac_link(bp);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_setup_phy(struct bnx2 *bp, u8 port)
 | |
| __releases(&bp->phy_lock)
 | |
| __acquires(&bp->phy_lock)
 | |
| {
 | |
| 	if (bp->loopback == MAC_LOOPBACK)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
 | |
| 		return (bnx2_setup_serdes_phy(bp, port));
 | |
| 	}
 | |
| 	else {
 | |
| 		return (bnx2_setup_copper_phy(bp));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	bp->mii_bmcr = MII_BMCR + 0x10;
 | |
| 	bp->mii_bmsr = MII_BMSR + 0x10;
 | |
| 	bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
 | |
| 	bp->mii_adv = MII_ADVERTISE + 0x10;
 | |
| 	bp->mii_lpa = MII_LPA + 0x10;
 | |
| 	bp->mii_up1 = MII_BNX2_OVER1G_UP1;
 | |
| 
 | |
| 	bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
 | |
| 	bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
 | |
| 
 | |
| 	bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
 | |
| 	if (reset_phy)
 | |
| 		bnx2_reset_phy(bp);
 | |
| 
 | |
| 	bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
 | |
| 
 | |
| 	bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
 | |
| 	val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
 | |
| 	val |= MII_BNX2_SD_1000XCTL1_FIBER;
 | |
| 	bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
 | |
| 
 | |
| 	bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
 | |
| 	bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
 | |
| 		val |= BCM5708S_UP1_2G5;
 | |
| 	else
 | |
| 		val &= ~BCM5708S_UP1_2G5;
 | |
| 	bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
 | |
| 
 | |
| 	bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
 | |
| 	bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
 | |
| 	val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
 | |
| 	bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
 | |
| 
 | |
| 	bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
 | |
| 
 | |
| 	val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
 | |
| 	      MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
 | |
| 	bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
 | |
| 
 | |
| 	bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (reset_phy)
 | |
| 		bnx2_reset_phy(bp);
 | |
| 
 | |
| 	bp->mii_up1 = BCM5708S_UP1;
 | |
| 
 | |
| 	bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
 | |
| 	bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
 | |
| 	bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
 | |
| 
 | |
| 	bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
 | |
| 	val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
 | |
| 	bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
 | |
| 
 | |
| 	bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
 | |
| 	val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
 | |
| 	bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
 | |
| 		bnx2_read_phy(bp, BCM5708S_UP1, &val);
 | |
| 		val |= BCM5708S_UP1_2G5;
 | |
| 		bnx2_write_phy(bp, BCM5708S_UP1, val);
 | |
| 	}
 | |
| 
 | |
| 	if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
 | |
| 	    (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
 | |
| 	    (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
 | |
| 		/* increase tx signal amplitude */
 | |
| 		bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
 | |
| 			       BCM5708S_BLK_ADDR_TX_MISC);
 | |
| 		bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
 | |
| 		val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
 | |
| 		bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
 | |
| 		bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
 | |
| 	}
 | |
| 
 | |
| 	val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
 | |
| 	      BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
 | |
| 
 | |
| 	if (val) {
 | |
| 		u32 is_backplane;
 | |
| 
 | |
| 		is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
 | |
| 		if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
 | |
| 			bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
 | |
| 				       BCM5708S_BLK_ADDR_TX_MISC);
 | |
| 			bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
 | |
| 			bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
 | |
| 				       BCM5708S_BLK_ADDR_DIG);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
 | |
| {
 | |
| 	if (reset_phy)
 | |
| 		bnx2_reset_phy(bp);
 | |
| 
 | |
| 	bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5706)
 | |
|         	REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
 | |
| 
 | |
| 	if (bp->dev->mtu > 1500) {
 | |
| 		u32 val;
 | |
| 
 | |
| 		/* Set extended packet length bit */
 | |
| 		bnx2_write_phy(bp, 0x18, 0x7);
 | |
| 		bnx2_read_phy(bp, 0x18, &val);
 | |
| 		bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
 | |
| 
 | |
| 		bnx2_write_phy(bp, 0x1c, 0x6c00);
 | |
| 		bnx2_read_phy(bp, 0x1c, &val);
 | |
| 		bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
 | |
| 	}
 | |
| 	else {
 | |
| 		u32 val;
 | |
| 
 | |
| 		bnx2_write_phy(bp, 0x18, 0x7);
 | |
| 		bnx2_read_phy(bp, 0x18, &val);
 | |
| 		bnx2_write_phy(bp, 0x18, val & ~0x4007);
 | |
| 
 | |
| 		bnx2_write_phy(bp, 0x1c, 0x6c00);
 | |
| 		bnx2_read_phy(bp, 0x1c, &val);
 | |
| 		bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (reset_phy)
 | |
| 		bnx2_reset_phy(bp);
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
 | |
| 		bnx2_write_phy(bp, 0x18, 0x0c00);
 | |
| 		bnx2_write_phy(bp, 0x17, 0x000a);
 | |
| 		bnx2_write_phy(bp, 0x15, 0x310b);
 | |
| 		bnx2_write_phy(bp, 0x17, 0x201f);
 | |
| 		bnx2_write_phy(bp, 0x15, 0x9506);
 | |
| 		bnx2_write_phy(bp, 0x17, 0x401f);
 | |
| 		bnx2_write_phy(bp, 0x15, 0x14e2);
 | |
| 		bnx2_write_phy(bp, 0x18, 0x0400);
 | |
| 	}
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
 | |
| 		bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
 | |
| 			       MII_BNX2_DSP_EXPAND_REG | 0x8);
 | |
| 		bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
 | |
| 		val &= ~(1 << 8);
 | |
| 		bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
 | |
| 	}
 | |
| 
 | |
| 	if (bp->dev->mtu > 1500) {
 | |
| 		/* Set extended packet length bit */
 | |
| 		bnx2_write_phy(bp, 0x18, 0x7);
 | |
| 		bnx2_read_phy(bp, 0x18, &val);
 | |
| 		bnx2_write_phy(bp, 0x18, val | 0x4000);
 | |
| 
 | |
| 		bnx2_read_phy(bp, 0x10, &val);
 | |
| 		bnx2_write_phy(bp, 0x10, val | 0x1);
 | |
| 	}
 | |
| 	else {
 | |
| 		bnx2_write_phy(bp, 0x18, 0x7);
 | |
| 		bnx2_read_phy(bp, 0x18, &val);
 | |
| 		bnx2_write_phy(bp, 0x18, val & ~0x4007);
 | |
| 
 | |
| 		bnx2_read_phy(bp, 0x10, &val);
 | |
| 		bnx2_write_phy(bp, 0x10, val & ~0x1);
 | |
| 	}
 | |
| 
 | |
| 	/* ethernet@wirespeed */
 | |
| 	bnx2_write_phy(bp, 0x18, 0x7007);
 | |
| 	bnx2_read_phy(bp, 0x18, &val);
 | |
| 	bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| bnx2_init_phy(struct bnx2 *bp, int reset_phy)
 | |
| __releases(&bp->phy_lock)
 | |
| __acquires(&bp->phy_lock)
 | |
| {
 | |
| 	u32 val;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
 | |
| 	bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
 | |
| 
 | |
| 	bp->mii_bmcr = MII_BMCR;
 | |
| 	bp->mii_bmsr = MII_BMSR;
 | |
| 	bp->mii_bmsr1 = MII_BMSR;
 | |
| 	bp->mii_adv = MII_ADVERTISE;
 | |
| 	bp->mii_lpa = MII_LPA;
 | |
| 
 | |
|         REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
 | |
| 		goto setup_phy;
 | |
| 
 | |
| 	bnx2_read_phy(bp, MII_PHYSID1, &val);
 | |
| 	bp->phy_id = val << 16;
 | |
| 	bnx2_read_phy(bp, MII_PHYSID2, &val);
 | |
| 	bp->phy_id |= val & 0xffff;
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
 | |
| 		if (CHIP_NUM(bp) == CHIP_NUM_5706)
 | |
| 			rc = bnx2_init_5706s_phy(bp, reset_phy);
 | |
| 		else if (CHIP_NUM(bp) == CHIP_NUM_5708)
 | |
| 			rc = bnx2_init_5708s_phy(bp, reset_phy);
 | |
| 		else if (CHIP_NUM(bp) == CHIP_NUM_5709)
 | |
| 			rc = bnx2_init_5709s_phy(bp, reset_phy);
 | |
| 	}
 | |
| 	else {
 | |
| 		rc = bnx2_init_copper_phy(bp, reset_phy);
 | |
| 	}
 | |
| 
 | |
| setup_phy:
 | |
| 	if (!rc)
 | |
| 		rc = bnx2_setup_phy(bp, bp->phy_port);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_set_mac_loopback(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 mac_mode;
 | |
| 
 | |
| 	mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
 | |
| 	mac_mode &= ~BNX2_EMAC_MODE_PORT;
 | |
| 	mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
 | |
| 	REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
 | |
| 	bp->link_up = 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bnx2_test_link(struct bnx2 *);
 | |
| 
 | |
| static int
 | |
| bnx2_set_phy_loopback(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 mac_mode;
 | |
| 	int rc, i;
 | |
| 
 | |
| 	spin_lock_bh(&bp->phy_lock);
 | |
| 	rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
 | |
| 			    BMCR_SPEED1000);
 | |
| 	spin_unlock_bh(&bp->phy_lock);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	for (i = 0; i < 10; i++) {
 | |
| 		if (bnx2_test_link(bp) == 0)
 | |
| 			break;
 | |
| 		msleep(100);
 | |
| 	}
 | |
| 
 | |
| 	mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
 | |
| 	mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
 | |
| 		      BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
 | |
| 		      BNX2_EMAC_MODE_25G_MODE);
 | |
| 
 | |
| 	mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
 | |
| 	REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
 | |
| 	bp->link_up = 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 val;
 | |
| 
 | |
| 	bp->fw_wr_seq++;
 | |
| 	msg_data |= bp->fw_wr_seq;
 | |
| 
 | |
| 	bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
 | |
| 
 | |
| 	if (!ack)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* wait for an acknowledgement. */
 | |
| 	for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
 | |
| 		msleep(10);
 | |
| 
 | |
| 		val = bnx2_shmem_rd(bp, BNX2_FW_MB);
 | |
| 
 | |
| 		if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
 | |
| 			break;
 | |
| 	}
 | |
| 	if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If we timed out, inform the firmware that this is the case. */
 | |
| 	if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
 | |
| 		if (!silent)
 | |
| 			pr_err("fw sync timeout, reset code = %x\n", msg_data);
 | |
| 
 | |
| 		msg_data &= ~BNX2_DRV_MSG_CODE;
 | |
| 		msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
 | |
| 
 | |
| 		bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
 | |
| 
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_init_5709_context(struct bnx2 *bp)
 | |
| {
 | |
| 	int i, ret = 0;
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
 | |
| 	val |= (BCM_PAGE_BITS - 8) << 16;
 | |
| 	REG_WR(bp, BNX2_CTX_COMMAND, val);
 | |
| 	for (i = 0; i < 10; i++) {
 | |
| 		val = REG_RD(bp, BNX2_CTX_COMMAND);
 | |
| 		if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
 | |
| 			break;
 | |
| 		udelay(2);
 | |
| 	}
 | |
| 	if (val & BNX2_CTX_COMMAND_MEM_INIT)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	for (i = 0; i < bp->ctx_pages; i++) {
 | |
| 		int j;
 | |
| 
 | |
| 		if (bp->ctx_blk[i])
 | |
| 			memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
 | |
| 		else
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
 | |
| 		       (bp->ctx_blk_mapping[i] & 0xffffffff) |
 | |
| 		       BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
 | |
| 		REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
 | |
| 		       (u64) bp->ctx_blk_mapping[i] >> 32);
 | |
| 		REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
 | |
| 		       BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
 | |
| 		for (j = 0; j < 10; j++) {
 | |
| 
 | |
| 			val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
 | |
| 			if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
 | |
| 				break;
 | |
| 			udelay(5);
 | |
| 		}
 | |
| 		if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
 | |
| 			ret = -EBUSY;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_init_context(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 vcid;
 | |
| 
 | |
| 	vcid = 96;
 | |
| 	while (vcid) {
 | |
| 		u32 vcid_addr, pcid_addr, offset;
 | |
| 		int i;
 | |
| 
 | |
| 		vcid--;
 | |
| 
 | |
| 		if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
 | |
| 			u32 new_vcid;
 | |
| 
 | |
| 			vcid_addr = GET_PCID_ADDR(vcid);
 | |
| 			if (vcid & 0x8) {
 | |
| 				new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
 | |
| 			}
 | |
| 			else {
 | |
| 				new_vcid = vcid;
 | |
| 			}
 | |
| 			pcid_addr = GET_PCID_ADDR(new_vcid);
 | |
| 		}
 | |
| 		else {
 | |
| 	    		vcid_addr = GET_CID_ADDR(vcid);
 | |
| 			pcid_addr = vcid_addr;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
 | |
| 			vcid_addr += (i << PHY_CTX_SHIFT);
 | |
| 			pcid_addr += (i << PHY_CTX_SHIFT);
 | |
| 
 | |
| 			REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
 | |
| 			REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
 | |
| 
 | |
| 			/* Zero out the context. */
 | |
| 			for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
 | |
| 				bnx2_ctx_wr(bp, vcid_addr, offset, 0);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_alloc_bad_rbuf(struct bnx2 *bp)
 | |
| {
 | |
| 	u16 *good_mbuf;
 | |
| 	u32 good_mbuf_cnt;
 | |
| 	u32 val;
 | |
| 
 | |
| 	good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
 | |
| 	if (good_mbuf == NULL) {
 | |
| 		pr_err("Failed to allocate memory in %s\n", __func__);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
 | |
| 		BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
 | |
| 
 | |
| 	good_mbuf_cnt = 0;
 | |
| 
 | |
| 	/* Allocate a bunch of mbufs and save the good ones in an array. */
 | |
| 	val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
 | |
| 	while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
 | |
| 		bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
 | |
| 				BNX2_RBUF_COMMAND_ALLOC_REQ);
 | |
| 
 | |
| 		val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
 | |
| 
 | |
| 		val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
 | |
| 
 | |
| 		/* The addresses with Bit 9 set are bad memory blocks. */
 | |
| 		if (!(val & (1 << 9))) {
 | |
| 			good_mbuf[good_mbuf_cnt] = (u16) val;
 | |
| 			good_mbuf_cnt++;
 | |
| 		}
 | |
| 
 | |
| 		val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
 | |
| 	}
 | |
| 
 | |
| 	/* Free the good ones back to the mbuf pool thus discarding
 | |
| 	 * all the bad ones. */
 | |
| 	while (good_mbuf_cnt) {
 | |
| 		good_mbuf_cnt--;
 | |
| 
 | |
| 		val = good_mbuf[good_mbuf_cnt];
 | |
| 		val = (val << 9) | val | 1;
 | |
| 
 | |
| 		bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
 | |
| 	}
 | |
| 	kfree(good_mbuf);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = (mac_addr[0] << 8) | mac_addr[1];
 | |
| 
 | |
| 	REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
 | |
| 
 | |
| 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
 | |
| 		(mac_addr[4] << 8) | mac_addr[5];
 | |
| 
 | |
| 	REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
 | |
| {
 | |
| 	dma_addr_t mapping;
 | |
| 	struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
 | |
| 	struct rx_bd *rxbd =
 | |
| 		&rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
 | |
| 	struct page *page = alloc_page(GFP_ATOMIC);
 | |
| 
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 	mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
 | |
| 			       PCI_DMA_FROMDEVICE);
 | |
| 	if (pci_dma_mapping_error(bp->pdev, mapping)) {
 | |
| 		__free_page(page);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	rx_pg->page = page;
 | |
| 	pci_unmap_addr_set(rx_pg, mapping, mapping);
 | |
| 	rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
 | |
| 	rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
 | |
| {
 | |
| 	struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
 | |
| 	struct page *page = rx_pg->page;
 | |
| 
 | |
| 	if (!page)
 | |
| 		return;
 | |
| 
 | |
| 	pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
 | |
| 		       PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 	__free_page(page);
 | |
| 	rx_pg->page = NULL;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
 | |
| 	dma_addr_t mapping;
 | |
| 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
 | |
| 	unsigned long align;
 | |
| 
 | |
| 	skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
 | |
| 	if (skb == NULL) {
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
 | |
| 		skb_reserve(skb, BNX2_RX_ALIGN - align);
 | |
| 
 | |
| 	mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
 | |
| 		PCI_DMA_FROMDEVICE);
 | |
| 	if (pci_dma_mapping_error(bp->pdev, mapping)) {
 | |
| 		dev_kfree_skb(skb);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	rx_buf->skb = skb;
 | |
| 	pci_unmap_addr_set(rx_buf, mapping, mapping);
 | |
| 
 | |
| 	rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
 | |
| 	rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
 | |
| 
 | |
| 	rxr->rx_prod_bseq += bp->rx_buf_use_size;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
 | |
| {
 | |
| 	struct status_block *sblk = bnapi->status_blk.msi;
 | |
| 	u32 new_link_state, old_link_state;
 | |
| 	int is_set = 1;
 | |
| 
 | |
| 	new_link_state = sblk->status_attn_bits & event;
 | |
| 	old_link_state = sblk->status_attn_bits_ack & event;
 | |
| 	if (new_link_state != old_link_state) {
 | |
| 		if (new_link_state)
 | |
| 			REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
 | |
| 		else
 | |
| 			REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
 | |
| 	} else
 | |
| 		is_set = 0;
 | |
| 
 | |
| 	return is_set;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
 | |
| {
 | |
| 	spin_lock(&bp->phy_lock);
 | |
| 
 | |
| 	if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
 | |
| 		bnx2_set_link(bp);
 | |
| 	if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
 | |
| 		bnx2_set_remote_link(bp);
 | |
| 
 | |
| 	spin_unlock(&bp->phy_lock);
 | |
| 
 | |
| }
 | |
| 
 | |
| static inline u16
 | |
| bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
 | |
| {
 | |
| 	u16 cons;
 | |
| 
 | |
| 	/* Tell compiler that status block fields can change. */
 | |
| 	barrier();
 | |
| 	cons = *bnapi->hw_tx_cons_ptr;
 | |
| 	barrier();
 | |
| 	if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
 | |
| 		cons++;
 | |
| 	return cons;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
 | |
| {
 | |
| 	struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
 | |
| 	u16 hw_cons, sw_cons, sw_ring_cons;
 | |
| 	int tx_pkt = 0, index;
 | |
| 	struct netdev_queue *txq;
 | |
| 
 | |
| 	index = (bnapi - bp->bnx2_napi);
 | |
| 	txq = netdev_get_tx_queue(bp->dev, index);
 | |
| 
 | |
| 	hw_cons = bnx2_get_hw_tx_cons(bnapi);
 | |
| 	sw_cons = txr->tx_cons;
 | |
| 
 | |
| 	while (sw_cons != hw_cons) {
 | |
| 		struct sw_tx_bd *tx_buf;
 | |
| 		struct sk_buff *skb;
 | |
| 		int i, last;
 | |
| 
 | |
| 		sw_ring_cons = TX_RING_IDX(sw_cons);
 | |
| 
 | |
| 		tx_buf = &txr->tx_buf_ring[sw_ring_cons];
 | |
| 		skb = tx_buf->skb;
 | |
| 
 | |
| 		/* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
 | |
| 		prefetch(&skb->end);
 | |
| 
 | |
| 		/* partial BD completions possible with TSO packets */
 | |
| 		if (tx_buf->is_gso) {
 | |
| 			u16 last_idx, last_ring_idx;
 | |
| 
 | |
| 			last_idx = sw_cons + tx_buf->nr_frags + 1;
 | |
| 			last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
 | |
| 			if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
 | |
| 				last_idx++;
 | |
| 			}
 | |
| 			if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
 | |
| 			skb_headlen(skb), PCI_DMA_TODEVICE);
 | |
| 
 | |
| 		tx_buf->skb = NULL;
 | |
| 		last = tx_buf->nr_frags;
 | |
| 
 | |
| 		for (i = 0; i < last; i++) {
 | |
| 			sw_cons = NEXT_TX_BD(sw_cons);
 | |
| 
 | |
| 			pci_unmap_page(bp->pdev,
 | |
| 				pci_unmap_addr(
 | |
| 					&txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
 | |
| 					mapping),
 | |
| 				skb_shinfo(skb)->frags[i].size,
 | |
| 				PCI_DMA_TODEVICE);
 | |
| 		}
 | |
| 
 | |
| 		sw_cons = NEXT_TX_BD(sw_cons);
 | |
| 
 | |
| 		dev_kfree_skb(skb);
 | |
| 		tx_pkt++;
 | |
| 		if (tx_pkt == budget)
 | |
| 			break;
 | |
| 
 | |
| 		if (hw_cons == sw_cons)
 | |
| 			hw_cons = bnx2_get_hw_tx_cons(bnapi);
 | |
| 	}
 | |
| 
 | |
| 	txr->hw_tx_cons = hw_cons;
 | |
| 	txr->tx_cons = sw_cons;
 | |
| 
 | |
| 	/* Need to make the tx_cons update visible to bnx2_start_xmit()
 | |
| 	 * before checking for netif_tx_queue_stopped().  Without the
 | |
| 	 * memory barrier, there is a small possibility that bnx2_start_xmit()
 | |
| 	 * will miss it and cause the queue to be stopped forever.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	if (unlikely(netif_tx_queue_stopped(txq)) &&
 | |
| 		     (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
 | |
| 		__netif_tx_lock(txq, smp_processor_id());
 | |
| 		if ((netif_tx_queue_stopped(txq)) &&
 | |
| 		    (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
 | |
| 			netif_tx_wake_queue(txq);
 | |
| 		__netif_tx_unlock(txq);
 | |
| 	}
 | |
| 
 | |
| 	return tx_pkt;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
 | |
| 			struct sk_buff *skb, int count)
 | |
| {
 | |
| 	struct sw_pg *cons_rx_pg, *prod_rx_pg;
 | |
| 	struct rx_bd *cons_bd, *prod_bd;
 | |
| 	int i;
 | |
| 	u16 hw_prod, prod;
 | |
| 	u16 cons = rxr->rx_pg_cons;
 | |
| 
 | |
| 	cons_rx_pg = &rxr->rx_pg_ring[cons];
 | |
| 
 | |
| 	/* The caller was unable to allocate a new page to replace the
 | |
| 	 * last one in the frags array, so we need to recycle that page
 | |
| 	 * and then free the skb.
 | |
| 	 */
 | |
| 	if (skb) {
 | |
| 		struct page *page;
 | |
| 		struct skb_shared_info *shinfo;
 | |
| 
 | |
| 		shinfo = skb_shinfo(skb);
 | |
| 		shinfo->nr_frags--;
 | |
| 		page = shinfo->frags[shinfo->nr_frags].page;
 | |
| 		shinfo->frags[shinfo->nr_frags].page = NULL;
 | |
| 
 | |
| 		cons_rx_pg->page = page;
 | |
| 		dev_kfree_skb(skb);
 | |
| 	}
 | |
| 
 | |
| 	hw_prod = rxr->rx_pg_prod;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		prod = RX_PG_RING_IDX(hw_prod);
 | |
| 
 | |
| 		prod_rx_pg = &rxr->rx_pg_ring[prod];
 | |
| 		cons_rx_pg = &rxr->rx_pg_ring[cons];
 | |
| 		cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
 | |
| 		prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
 | |
| 
 | |
| 		if (prod != cons) {
 | |
| 			prod_rx_pg->page = cons_rx_pg->page;
 | |
| 			cons_rx_pg->page = NULL;
 | |
| 			pci_unmap_addr_set(prod_rx_pg, mapping,
 | |
| 				pci_unmap_addr(cons_rx_pg, mapping));
 | |
| 
 | |
| 			prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
 | |
| 			prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
 | |
| 
 | |
| 		}
 | |
| 		cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
 | |
| 		hw_prod = NEXT_RX_BD(hw_prod);
 | |
| 	}
 | |
| 	rxr->rx_pg_prod = hw_prod;
 | |
| 	rxr->rx_pg_cons = cons;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
 | |
| 		  struct sk_buff *skb, u16 cons, u16 prod)
 | |
| {
 | |
| 	struct sw_bd *cons_rx_buf, *prod_rx_buf;
 | |
| 	struct rx_bd *cons_bd, *prod_bd;
 | |
| 
 | |
| 	cons_rx_buf = &rxr->rx_buf_ring[cons];
 | |
| 	prod_rx_buf = &rxr->rx_buf_ring[prod];
 | |
| 
 | |
| 	pci_dma_sync_single_for_device(bp->pdev,
 | |
| 		pci_unmap_addr(cons_rx_buf, mapping),
 | |
| 		BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 	rxr->rx_prod_bseq += bp->rx_buf_use_size;
 | |
| 
 | |
| 	prod_rx_buf->skb = skb;
 | |
| 
 | |
| 	if (cons == prod)
 | |
| 		return;
 | |
| 
 | |
| 	pci_unmap_addr_set(prod_rx_buf, mapping,
 | |
| 			pci_unmap_addr(cons_rx_buf, mapping));
 | |
| 
 | |
| 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
 | |
| 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
 | |
| 	prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
 | |
| 	prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
 | |
| 	    unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
 | |
| 	    u32 ring_idx)
 | |
| {
 | |
| 	int err;
 | |
| 	u16 prod = ring_idx & 0xffff;
 | |
| 
 | |
| 	err = bnx2_alloc_rx_skb(bp, rxr, prod);
 | |
| 	if (unlikely(err)) {
 | |
| 		bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
 | |
| 		if (hdr_len) {
 | |
| 			unsigned int raw_len = len + 4;
 | |
| 			int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
 | |
| 
 | |
| 			bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
 | |
| 		}
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	skb_reserve(skb, BNX2_RX_OFFSET);
 | |
| 	pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
 | |
| 			 PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 	if (hdr_len == 0) {
 | |
| 		skb_put(skb, len);
 | |
| 		return 0;
 | |
| 	} else {
 | |
| 		unsigned int i, frag_len, frag_size, pages;
 | |
| 		struct sw_pg *rx_pg;
 | |
| 		u16 pg_cons = rxr->rx_pg_cons;
 | |
| 		u16 pg_prod = rxr->rx_pg_prod;
 | |
| 
 | |
| 		frag_size = len + 4 - hdr_len;
 | |
| 		pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
 | |
| 		skb_put(skb, hdr_len);
 | |
| 
 | |
| 		for (i = 0; i < pages; i++) {
 | |
| 			dma_addr_t mapping_old;
 | |
| 
 | |
| 			frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
 | |
| 			if (unlikely(frag_len <= 4)) {
 | |
| 				unsigned int tail = 4 - frag_len;
 | |
| 
 | |
| 				rxr->rx_pg_cons = pg_cons;
 | |
| 				rxr->rx_pg_prod = pg_prod;
 | |
| 				bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
 | |
| 							pages - i);
 | |
| 				skb->len -= tail;
 | |
| 				if (i == 0) {
 | |
| 					skb->tail -= tail;
 | |
| 				} else {
 | |
| 					skb_frag_t *frag =
 | |
| 						&skb_shinfo(skb)->frags[i - 1];
 | |
| 					frag->size -= tail;
 | |
| 					skb->data_len -= tail;
 | |
| 					skb->truesize -= tail;
 | |
| 				}
 | |
| 				return 0;
 | |
| 			}
 | |
| 			rx_pg = &rxr->rx_pg_ring[pg_cons];
 | |
| 
 | |
| 			/* Don't unmap yet.  If we're unable to allocate a new
 | |
| 			 * page, we need to recycle the page and the DMA addr.
 | |
| 			 */
 | |
| 			mapping_old = pci_unmap_addr(rx_pg, mapping);
 | |
| 			if (i == pages - 1)
 | |
| 				frag_len -= 4;
 | |
| 
 | |
| 			skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
 | |
| 			rx_pg->page = NULL;
 | |
| 
 | |
| 			err = bnx2_alloc_rx_page(bp, rxr,
 | |
| 						 RX_PG_RING_IDX(pg_prod));
 | |
| 			if (unlikely(err)) {
 | |
| 				rxr->rx_pg_cons = pg_cons;
 | |
| 				rxr->rx_pg_prod = pg_prod;
 | |
| 				bnx2_reuse_rx_skb_pages(bp, rxr, skb,
 | |
| 							pages - i);
 | |
| 				return err;
 | |
| 			}
 | |
| 
 | |
| 			pci_unmap_page(bp->pdev, mapping_old,
 | |
| 				       PAGE_SIZE, PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 			frag_size -= frag_len;
 | |
| 			skb->data_len += frag_len;
 | |
| 			skb->truesize += frag_len;
 | |
| 			skb->len += frag_len;
 | |
| 
 | |
| 			pg_prod = NEXT_RX_BD(pg_prod);
 | |
| 			pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
 | |
| 		}
 | |
| 		rxr->rx_pg_prod = pg_prod;
 | |
| 		rxr->rx_pg_cons = pg_cons;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline u16
 | |
| bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
 | |
| {
 | |
| 	u16 cons;
 | |
| 
 | |
| 	/* Tell compiler that status block fields can change. */
 | |
| 	barrier();
 | |
| 	cons = *bnapi->hw_rx_cons_ptr;
 | |
| 	barrier();
 | |
| 	if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
 | |
| 		cons++;
 | |
| 	return cons;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
 | |
| {
 | |
| 	struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
 | |
| 	u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
 | |
| 	struct l2_fhdr *rx_hdr;
 | |
| 	int rx_pkt = 0, pg_ring_used = 0;
 | |
| 
 | |
| 	hw_cons = bnx2_get_hw_rx_cons(bnapi);
 | |
| 	sw_cons = rxr->rx_cons;
 | |
| 	sw_prod = rxr->rx_prod;
 | |
| 
 | |
| 	/* Memory barrier necessary as speculative reads of the rx
 | |
| 	 * buffer can be ahead of the index in the status block
 | |
| 	 */
 | |
| 	rmb();
 | |
| 	while (sw_cons != hw_cons) {
 | |
| 		unsigned int len, hdr_len;
 | |
| 		u32 status;
 | |
| 		struct sw_bd *rx_buf;
 | |
| 		struct sk_buff *skb;
 | |
| 		dma_addr_t dma_addr;
 | |
| 		u16 vtag = 0;
 | |
| 		int hw_vlan __maybe_unused = 0;
 | |
| 
 | |
| 		sw_ring_cons = RX_RING_IDX(sw_cons);
 | |
| 		sw_ring_prod = RX_RING_IDX(sw_prod);
 | |
| 
 | |
| 		rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
 | |
| 		skb = rx_buf->skb;
 | |
| 
 | |
| 		rx_buf->skb = NULL;
 | |
| 
 | |
| 		dma_addr = pci_unmap_addr(rx_buf, mapping);
 | |
| 
 | |
| 		pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
 | |
| 			BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
 | |
| 			PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 		rx_hdr = (struct l2_fhdr *) skb->data;
 | |
| 		len = rx_hdr->l2_fhdr_pkt_len;
 | |
| 		status = rx_hdr->l2_fhdr_status;
 | |
| 
 | |
| 		hdr_len = 0;
 | |
| 		if (status & L2_FHDR_STATUS_SPLIT) {
 | |
| 			hdr_len = rx_hdr->l2_fhdr_ip_xsum;
 | |
| 			pg_ring_used = 1;
 | |
| 		} else if (len > bp->rx_jumbo_thresh) {
 | |
| 			hdr_len = bp->rx_jumbo_thresh;
 | |
| 			pg_ring_used = 1;
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
 | |
| 				       L2_FHDR_ERRORS_PHY_DECODE |
 | |
| 				       L2_FHDR_ERRORS_ALIGNMENT |
 | |
| 				       L2_FHDR_ERRORS_TOO_SHORT |
 | |
| 				       L2_FHDR_ERRORS_GIANT_FRAME))) {
 | |
| 
 | |
| 			bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
 | |
| 					  sw_ring_prod);
 | |
| 			if (pg_ring_used) {
 | |
| 				int pages;
 | |
| 
 | |
| 				pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
 | |
| 
 | |
| 				bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
 | |
| 			}
 | |
| 			goto next_rx;
 | |
| 		}
 | |
| 
 | |
| 		len -= 4;
 | |
| 
 | |
| 		if (len <= bp->rx_copy_thresh) {
 | |
| 			struct sk_buff *new_skb;
 | |
| 
 | |
| 			new_skb = netdev_alloc_skb(bp->dev, len + 6);
 | |
| 			if (new_skb == NULL) {
 | |
| 				bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
 | |
| 						  sw_ring_prod);
 | |
| 				goto next_rx;
 | |
| 			}
 | |
| 
 | |
| 			/* aligned copy */
 | |
| 			skb_copy_from_linear_data_offset(skb,
 | |
| 							 BNX2_RX_OFFSET - 6,
 | |
| 				      new_skb->data, len + 6);
 | |
| 			skb_reserve(new_skb, 6);
 | |
| 			skb_put(new_skb, len);
 | |
| 
 | |
| 			bnx2_reuse_rx_skb(bp, rxr, skb,
 | |
| 				sw_ring_cons, sw_ring_prod);
 | |
| 
 | |
| 			skb = new_skb;
 | |
| 		} else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
 | |
| 			   dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
 | |
| 			goto next_rx;
 | |
| 
 | |
| 		if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
 | |
| 		    !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
 | |
| 			vtag = rx_hdr->l2_fhdr_vlan_tag;
 | |
| #ifdef BCM_VLAN
 | |
| 			if (bp->vlgrp)
 | |
| 				hw_vlan = 1;
 | |
| 			else
 | |
| #endif
 | |
| 			{
 | |
| 				struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
 | |
| 					__skb_push(skb, 4);
 | |
| 
 | |
| 				memmove(ve, skb->data + 4, ETH_ALEN * 2);
 | |
| 				ve->h_vlan_proto = htons(ETH_P_8021Q);
 | |
| 				ve->h_vlan_TCI = htons(vtag);
 | |
| 				len += 4;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		skb->protocol = eth_type_trans(skb, bp->dev);
 | |
| 
 | |
| 		if ((len > (bp->dev->mtu + ETH_HLEN)) &&
 | |
| 			(ntohs(skb->protocol) != 0x8100)) {
 | |
| 
 | |
| 			dev_kfree_skb(skb);
 | |
| 			goto next_rx;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		skb->ip_summed = CHECKSUM_NONE;
 | |
| 		if (bp->rx_csum &&
 | |
| 			(status & (L2_FHDR_STATUS_TCP_SEGMENT |
 | |
| 			L2_FHDR_STATUS_UDP_DATAGRAM))) {
 | |
| 
 | |
| 			if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
 | |
| 					      L2_FHDR_ERRORS_UDP_XSUM)) == 0))
 | |
| 				skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 		}
 | |
| 
 | |
| 		skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
 | |
| 
 | |
| #ifdef BCM_VLAN
 | |
| 		if (hw_vlan)
 | |
| 			vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
 | |
| 		else
 | |
| #endif
 | |
| 			netif_receive_skb(skb);
 | |
| 
 | |
| 		rx_pkt++;
 | |
| 
 | |
| next_rx:
 | |
| 		sw_cons = NEXT_RX_BD(sw_cons);
 | |
| 		sw_prod = NEXT_RX_BD(sw_prod);
 | |
| 
 | |
| 		if ((rx_pkt == budget))
 | |
| 			break;
 | |
| 
 | |
| 		/* Refresh hw_cons to see if there is new work */
 | |
| 		if (sw_cons == hw_cons) {
 | |
| 			hw_cons = bnx2_get_hw_rx_cons(bnapi);
 | |
| 			rmb();
 | |
| 		}
 | |
| 	}
 | |
| 	rxr->rx_cons = sw_cons;
 | |
| 	rxr->rx_prod = sw_prod;
 | |
| 
 | |
| 	if (pg_ring_used)
 | |
| 		REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
 | |
| 
 | |
| 	REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
 | |
| 
 | |
| 	REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
 | |
| 
 | |
| 	mmiowb();
 | |
| 
 | |
| 	return rx_pkt;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* MSI ISR - The only difference between this and the INTx ISR
 | |
|  * is that the MSI interrupt is always serviced.
 | |
|  */
 | |
| static irqreturn_t
 | |
| bnx2_msi(int irq, void *dev_instance)
 | |
| {
 | |
| 	struct bnx2_napi *bnapi = dev_instance;
 | |
| 	struct bnx2 *bp = bnapi->bp;
 | |
| 
 | |
| 	prefetch(bnapi->status_blk.msi);
 | |
| 	REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
 | |
| 		BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
 | |
| 		BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
 | |
| 
 | |
| 	/* Return here if interrupt is disabled. */
 | |
| 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
 | |
| 		return IRQ_HANDLED;
 | |
| 
 | |
| 	napi_schedule(&bnapi->napi);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t
 | |
| bnx2_msi_1shot(int irq, void *dev_instance)
 | |
| {
 | |
| 	struct bnx2_napi *bnapi = dev_instance;
 | |
| 	struct bnx2 *bp = bnapi->bp;
 | |
| 
 | |
| 	prefetch(bnapi->status_blk.msi);
 | |
| 
 | |
| 	/* Return here if interrupt is disabled. */
 | |
| 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
 | |
| 		return IRQ_HANDLED;
 | |
| 
 | |
| 	napi_schedule(&bnapi->napi);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t
 | |
| bnx2_interrupt(int irq, void *dev_instance)
 | |
| {
 | |
| 	struct bnx2_napi *bnapi = dev_instance;
 | |
| 	struct bnx2 *bp = bnapi->bp;
 | |
| 	struct status_block *sblk = bnapi->status_blk.msi;
 | |
| 
 | |
| 	/* When using INTx, it is possible for the interrupt to arrive
 | |
| 	 * at the CPU before the status block posted prior to the
 | |
| 	 * interrupt. Reading a register will flush the status block.
 | |
| 	 * When using MSI, the MSI message will always complete after
 | |
| 	 * the status block write.
 | |
| 	 */
 | |
| 	if ((sblk->status_idx == bnapi->last_status_idx) &&
 | |
| 	    (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
 | |
| 	     BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
 | |
| 		BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
 | |
| 		BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
 | |
| 
 | |
| 	/* Read back to deassert IRQ immediately to avoid too many
 | |
| 	 * spurious interrupts.
 | |
| 	 */
 | |
| 	REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
 | |
| 
 | |
| 	/* Return here if interrupt is shared and is disabled. */
 | |
| 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
 | |
| 		return IRQ_HANDLED;
 | |
| 
 | |
| 	if (napi_schedule_prep(&bnapi->napi)) {
 | |
| 		bnapi->last_status_idx = sblk->status_idx;
 | |
| 		__napi_schedule(&bnapi->napi);
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| bnx2_has_fast_work(struct bnx2_napi *bnapi)
 | |
| {
 | |
| 	struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
 | |
| 	struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
 | |
| 
 | |
| 	if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
 | |
| 	    (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define STATUS_ATTN_EVENTS	(STATUS_ATTN_BITS_LINK_STATE | \
 | |
| 				 STATUS_ATTN_BITS_TIMER_ABORT)
 | |
| 
 | |
| static inline int
 | |
| bnx2_has_work(struct bnx2_napi *bnapi)
 | |
| {
 | |
| 	struct status_block *sblk = bnapi->status_blk.msi;
 | |
| 
 | |
| 	if (bnx2_has_fast_work(bnapi))
 | |
| 		return 1;
 | |
| 
 | |
| #ifdef BCM_CNIC
 | |
| 	if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
 | |
| 		return 1;
 | |
| #endif
 | |
| 
 | |
| 	if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
 | |
| 	    (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_chk_missed_msi(struct bnx2 *bp)
 | |
| {
 | |
| 	struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
 | |
| 	u32 msi_ctrl;
 | |
| 
 | |
| 	if (bnx2_has_work(bnapi)) {
 | |
| 		msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
 | |
| 		if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
 | |
| 			return;
 | |
| 
 | |
| 		if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
 | |
| 			REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
 | |
| 			       ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
 | |
| 			REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
 | |
| 			bnx2_msi(bp->irq_tbl[0].vector, bnapi);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bp->idle_chk_status_idx = bnapi->last_status_idx;
 | |
| }
 | |
| 
 | |
| #ifdef BCM_CNIC
 | |
| static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
 | |
| {
 | |
| 	struct cnic_ops *c_ops;
 | |
| 
 | |
| 	if (!bnapi->cnic_present)
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	c_ops = rcu_dereference(bp->cnic_ops);
 | |
| 	if (c_ops)
 | |
| 		bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
 | |
| 						      bnapi->status_blk.msi);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
 | |
| {
 | |
| 	struct status_block *sblk = bnapi->status_blk.msi;
 | |
| 	u32 status_attn_bits = sblk->status_attn_bits;
 | |
| 	u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
 | |
| 
 | |
| 	if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
 | |
| 	    (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
 | |
| 
 | |
| 		bnx2_phy_int(bp, bnapi);
 | |
| 
 | |
| 		/* This is needed to take care of transient status
 | |
| 		 * during link changes.
 | |
| 		 */
 | |
| 		REG_WR(bp, BNX2_HC_COMMAND,
 | |
| 		       bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
 | |
| 		REG_RD(bp, BNX2_HC_COMMAND);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
 | |
| 			  int work_done, int budget)
 | |
| {
 | |
| 	struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
 | |
| 	struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
 | |
| 
 | |
| 	if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
 | |
| 		bnx2_tx_int(bp, bnapi, 0);
 | |
| 
 | |
| 	if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
 | |
| 		work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
 | |
| 
 | |
| 	return work_done;
 | |
| }
 | |
| 
 | |
| static int bnx2_poll_msix(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
 | |
| 	struct bnx2 *bp = bnapi->bp;
 | |
| 	int work_done = 0;
 | |
| 	struct status_block_msix *sblk = bnapi->status_blk.msix;
 | |
| 
 | |
| 	while (1) {
 | |
| 		work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
 | |
| 		if (unlikely(work_done >= budget))
 | |
| 			break;
 | |
| 
 | |
| 		bnapi->last_status_idx = sblk->status_idx;
 | |
| 		/* status idx must be read before checking for more work. */
 | |
| 		rmb();
 | |
| 		if (likely(!bnx2_has_fast_work(bnapi))) {
 | |
| 
 | |
| 			napi_complete(napi);
 | |
| 			REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
 | |
| 			       BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
 | |
| 			       bnapi->last_status_idx);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return work_done;
 | |
| }
 | |
| 
 | |
| static int bnx2_poll(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
 | |
| 	struct bnx2 *bp = bnapi->bp;
 | |
| 	int work_done = 0;
 | |
| 	struct status_block *sblk = bnapi->status_blk.msi;
 | |
| 
 | |
| 	while (1) {
 | |
| 		bnx2_poll_link(bp, bnapi);
 | |
| 
 | |
| 		work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
 | |
| 
 | |
| #ifdef BCM_CNIC
 | |
| 		bnx2_poll_cnic(bp, bnapi);
 | |
| #endif
 | |
| 
 | |
| 		/* bnapi->last_status_idx is used below to tell the hw how
 | |
| 		 * much work has been processed, so we must read it before
 | |
| 		 * checking for more work.
 | |
| 		 */
 | |
| 		bnapi->last_status_idx = sblk->status_idx;
 | |
| 
 | |
| 		if (unlikely(work_done >= budget))
 | |
| 			break;
 | |
| 
 | |
| 		rmb();
 | |
| 		if (likely(!bnx2_has_work(bnapi))) {
 | |
| 			napi_complete(napi);
 | |
| 			if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
 | |
| 				REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
 | |
| 				       BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
 | |
| 				       bnapi->last_status_idx);
 | |
| 				break;
 | |
| 			}
 | |
| 			REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
 | |
| 			       BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
 | |
| 			       BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
 | |
| 			       bnapi->last_status_idx);
 | |
| 
 | |
| 			REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
 | |
| 			       BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
 | |
| 			       bnapi->last_status_idx);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return work_done;
 | |
| }
 | |
| 
 | |
| /* Called with rtnl_lock from vlan functions and also netif_tx_lock
 | |
|  * from set_multicast.
 | |
|  */
 | |
| static void
 | |
| bnx2_set_rx_mode(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	u32 rx_mode, sort_mode;
 | |
| 	struct netdev_hw_addr *ha;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!netif_running(dev))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_bh(&bp->phy_lock);
 | |
| 
 | |
| 	rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
 | |
| 				  BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
 | |
| 	sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
 | |
| #ifdef BCM_VLAN
 | |
| 	if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
 | |
| 		rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
 | |
| #else
 | |
| 	if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
 | |
| 		rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
 | |
| #endif
 | |
| 	if (dev->flags & IFF_PROMISC) {
 | |
| 		/* Promiscuous mode. */
 | |
| 		rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
 | |
| 		sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
 | |
| 			     BNX2_RPM_SORT_USER0_PROM_VLAN;
 | |
| 	}
 | |
| 	else if (dev->flags & IFF_ALLMULTI) {
 | |
| 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
 | |
| 			REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
 | |
| 			       0xffffffff);
 | |
|         	}
 | |
| 		sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
 | |
| 	}
 | |
| 	else {
 | |
| 		/* Accept one or more multicast(s). */
 | |
| 		struct dev_mc_list *mclist;
 | |
| 		u32 mc_filter[NUM_MC_HASH_REGISTERS];
 | |
| 		u32 regidx;
 | |
| 		u32 bit;
 | |
| 		u32 crc;
 | |
| 
 | |
| 		memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
 | |
| 
 | |
| 		netdev_for_each_mc_addr(mclist, dev) {
 | |
| 			crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
 | |
| 			bit = crc & 0xff;
 | |
| 			regidx = (bit & 0xe0) >> 5;
 | |
| 			bit &= 0x1f;
 | |
| 			mc_filter[regidx] |= (1 << bit);
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
 | |
| 			REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
 | |
| 			       mc_filter[i]);
 | |
| 		}
 | |
| 
 | |
| 		sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
 | |
| 	}
 | |
| 
 | |
| 	if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
 | |
| 		rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
 | |
| 		sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
 | |
| 			     BNX2_RPM_SORT_USER0_PROM_VLAN;
 | |
| 	} else if (!(dev->flags & IFF_PROMISC)) {
 | |
| 		/* Add all entries into to the match filter list */
 | |
| 		i = 0;
 | |
| 		netdev_for_each_uc_addr(ha, dev) {
 | |
| 			bnx2_set_mac_addr(bp, ha->addr,
 | |
| 					  i + BNX2_START_UNICAST_ADDRESS_INDEX);
 | |
| 			sort_mode |= (1 <<
 | |
| 				      (i + BNX2_START_UNICAST_ADDRESS_INDEX));
 | |
| 			i++;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (rx_mode != bp->rx_mode) {
 | |
| 		bp->rx_mode = rx_mode;
 | |
| 		REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
 | |
| 	}
 | |
| 
 | |
| 	REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
 | |
| 	REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
 | |
| 	REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
 | |
| 
 | |
| 	spin_unlock_bh(&bp->phy_lock);
 | |
| }
 | |
| 
 | |
| static int __devinit
 | |
| check_fw_section(const struct firmware *fw,
 | |
| 		 const struct bnx2_fw_file_section *section,
 | |
| 		 u32 alignment, bool non_empty)
 | |
| {
 | |
| 	u32 offset = be32_to_cpu(section->offset);
 | |
| 	u32 len = be32_to_cpu(section->len);
 | |
| 
 | |
| 	if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
 | |
| 		return -EINVAL;
 | |
| 	if ((non_empty && len == 0) || len > fw->size - offset ||
 | |
| 	    len & (alignment - 1))
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __devinit
 | |
| check_mips_fw_entry(const struct firmware *fw,
 | |
| 		    const struct bnx2_mips_fw_file_entry *entry)
 | |
| {
 | |
| 	if (check_fw_section(fw, &entry->text, 4, true) ||
 | |
| 	    check_fw_section(fw, &entry->data, 4, false) ||
 | |
| 	    check_fw_section(fw, &entry->rodata, 4, false))
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __devinit
 | |
| bnx2_request_firmware(struct bnx2 *bp)
 | |
| {
 | |
| 	const char *mips_fw_file, *rv2p_fw_file;
 | |
| 	const struct bnx2_mips_fw_file *mips_fw;
 | |
| 	const struct bnx2_rv2p_fw_file *rv2p_fw;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 		mips_fw_file = FW_MIPS_FILE_09;
 | |
| 		if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
 | |
| 		    (CHIP_ID(bp) == CHIP_ID_5709_A1))
 | |
| 			rv2p_fw_file = FW_RV2P_FILE_09_Ax;
 | |
| 		else
 | |
| 			rv2p_fw_file = FW_RV2P_FILE_09;
 | |
| 	} else {
 | |
| 		mips_fw_file = FW_MIPS_FILE_06;
 | |
| 		rv2p_fw_file = FW_RV2P_FILE_06;
 | |
| 	}
 | |
| 
 | |
| 	rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
 | |
| 	if (rc) {
 | |
| 		pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
 | |
| 	if (rc) {
 | |
| 		pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
 | |
| 		return rc;
 | |
| 	}
 | |
| 	mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
 | |
| 	rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
 | |
| 	if (bp->mips_firmware->size < sizeof(*mips_fw) ||
 | |
| 	    check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
 | |
| 	    check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
 | |
| 	    check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
 | |
| 	    check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
 | |
| 	    check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
 | |
| 		pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
 | |
| 	    check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
 | |
| 	    check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
 | |
| 		pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32
 | |
| rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
 | |
| {
 | |
| 	switch (idx) {
 | |
| 	case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
 | |
| 		rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
 | |
| 		rv2p_code |= RV2P_BD_PAGE_SIZE;
 | |
| 		break;
 | |
| 	}
 | |
| 	return rv2p_code;
 | |
| }
 | |
| 
 | |
| static int
 | |
| load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
 | |
| 	     const struct bnx2_rv2p_fw_file_entry *fw_entry)
 | |
| {
 | |
| 	u32 rv2p_code_len, file_offset;
 | |
| 	__be32 *rv2p_code;
 | |
| 	int i;
 | |
| 	u32 val, cmd, addr;
 | |
| 
 | |
| 	rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
 | |
| 	file_offset = be32_to_cpu(fw_entry->rv2p.offset);
 | |
| 
 | |
| 	rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
 | |
| 
 | |
| 	if (rv2p_proc == RV2P_PROC1) {
 | |
| 		cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
 | |
| 		addr = BNX2_RV2P_PROC1_ADDR_CMD;
 | |
| 	} else {
 | |
| 		cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
 | |
| 		addr = BNX2_RV2P_PROC2_ADDR_CMD;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < rv2p_code_len; i += 8) {
 | |
| 		REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
 | |
| 		rv2p_code++;
 | |
| 		REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
 | |
| 		rv2p_code++;
 | |
| 
 | |
| 		val = (i / 8) | cmd;
 | |
| 		REG_WR(bp, addr, val);
 | |
| 	}
 | |
| 
 | |
| 	rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		u32 loc, code;
 | |
| 
 | |
| 		loc = be32_to_cpu(fw_entry->fixup[i]);
 | |
| 		if (loc && ((loc * 4) < rv2p_code_len)) {
 | |
| 			code = be32_to_cpu(*(rv2p_code + loc - 1));
 | |
| 			REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
 | |
| 			code = be32_to_cpu(*(rv2p_code + loc));
 | |
| 			code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
 | |
| 			REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
 | |
| 
 | |
| 			val = (loc / 2) | cmd;
 | |
| 			REG_WR(bp, addr, val);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Reset the processor, un-stall is done later. */
 | |
| 	if (rv2p_proc == RV2P_PROC1) {
 | |
| 		REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
 | |
| 	}
 | |
| 	else {
 | |
| 		REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
 | |
| 	    const struct bnx2_mips_fw_file_entry *fw_entry)
 | |
| {
 | |
| 	u32 addr, len, file_offset;
 | |
| 	__be32 *data;
 | |
| 	u32 offset;
 | |
| 	u32 val;
 | |
| 
 | |
| 	/* Halt the CPU. */
 | |
| 	val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
 | |
| 	val |= cpu_reg->mode_value_halt;
 | |
| 	bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
 | |
| 	bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
 | |
| 
 | |
| 	/* Load the Text area. */
 | |
| 	addr = be32_to_cpu(fw_entry->text.addr);
 | |
| 	len = be32_to_cpu(fw_entry->text.len);
 | |
| 	file_offset = be32_to_cpu(fw_entry->text.offset);
 | |
| 	data = (__be32 *)(bp->mips_firmware->data + file_offset);
 | |
| 
 | |
| 	offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
 | |
| 	if (len) {
 | |
| 		int j;
 | |
| 
 | |
| 		for (j = 0; j < (len / 4); j++, offset += 4)
 | |
| 			bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
 | |
| 	}
 | |
| 
 | |
| 	/* Load the Data area. */
 | |
| 	addr = be32_to_cpu(fw_entry->data.addr);
 | |
| 	len = be32_to_cpu(fw_entry->data.len);
 | |
| 	file_offset = be32_to_cpu(fw_entry->data.offset);
 | |
| 	data = (__be32 *)(bp->mips_firmware->data + file_offset);
 | |
| 
 | |
| 	offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
 | |
| 	if (len) {
 | |
| 		int j;
 | |
| 
 | |
| 		for (j = 0; j < (len / 4); j++, offset += 4)
 | |
| 			bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
 | |
| 	}
 | |
| 
 | |
| 	/* Load the Read-Only area. */
 | |
| 	addr = be32_to_cpu(fw_entry->rodata.addr);
 | |
| 	len = be32_to_cpu(fw_entry->rodata.len);
 | |
| 	file_offset = be32_to_cpu(fw_entry->rodata.offset);
 | |
| 	data = (__be32 *)(bp->mips_firmware->data + file_offset);
 | |
| 
 | |
| 	offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
 | |
| 	if (len) {
 | |
| 		int j;
 | |
| 
 | |
| 		for (j = 0; j < (len / 4); j++, offset += 4)
 | |
| 			bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
 | |
| 	}
 | |
| 
 | |
| 	/* Clear the pre-fetch instruction. */
 | |
| 	bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
 | |
| 
 | |
| 	val = be32_to_cpu(fw_entry->start_addr);
 | |
| 	bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
 | |
| 
 | |
| 	/* Start the CPU. */
 | |
| 	val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
 | |
| 	val &= ~cpu_reg->mode_value_halt;
 | |
| 	bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
 | |
| 	bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_init_cpus(struct bnx2 *bp)
 | |
| {
 | |
| 	const struct bnx2_mips_fw_file *mips_fw =
 | |
| 		(const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
 | |
| 	const struct bnx2_rv2p_fw_file *rv2p_fw =
 | |
| 		(const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Initialize the RV2P processor. */
 | |
| 	load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
 | |
| 	load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
 | |
| 
 | |
| 	/* Initialize the RX Processor. */
 | |
| 	rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
 | |
| 	if (rc)
 | |
| 		goto init_cpu_err;
 | |
| 
 | |
| 	/* Initialize the TX Processor. */
 | |
| 	rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
 | |
| 	if (rc)
 | |
| 		goto init_cpu_err;
 | |
| 
 | |
| 	/* Initialize the TX Patch-up Processor. */
 | |
| 	rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
 | |
| 	if (rc)
 | |
| 		goto init_cpu_err;
 | |
| 
 | |
| 	/* Initialize the Completion Processor. */
 | |
| 	rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
 | |
| 	if (rc)
 | |
| 		goto init_cpu_err;
 | |
| 
 | |
| 	/* Initialize the Command Processor. */
 | |
| 	rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
 | |
| 
 | |
| init_cpu_err:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
 | |
| {
 | |
| 	u16 pmcsr;
 | |
| 
 | |
| 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case PCI_D0: {
 | |
| 		u32 val;
 | |
| 
 | |
| 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
 | |
| 			(pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
 | |
| 			PCI_PM_CTRL_PME_STATUS);
 | |
| 
 | |
| 		if (pmcsr & PCI_PM_CTRL_STATE_MASK)
 | |
| 			/* delay required during transition out of D3hot */
 | |
| 			msleep(20);
 | |
| 
 | |
| 		val = REG_RD(bp, BNX2_EMAC_MODE);
 | |
| 		val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
 | |
| 		val &= ~BNX2_EMAC_MODE_MPKT;
 | |
| 		REG_WR(bp, BNX2_EMAC_MODE, val);
 | |
| 
 | |
| 		val = REG_RD(bp, BNX2_RPM_CONFIG);
 | |
| 		val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
 | |
| 		REG_WR(bp, BNX2_RPM_CONFIG, val);
 | |
| 		break;
 | |
| 	}
 | |
| 	case PCI_D3hot: {
 | |
| 		int i;
 | |
| 		u32 val, wol_msg;
 | |
| 
 | |
| 		if (bp->wol) {
 | |
| 			u32 advertising;
 | |
| 			u8 autoneg;
 | |
| 
 | |
| 			autoneg = bp->autoneg;
 | |
| 			advertising = bp->advertising;
 | |
| 
 | |
| 			if (bp->phy_port == PORT_TP) {
 | |
| 				bp->autoneg = AUTONEG_SPEED;
 | |
| 				bp->advertising = ADVERTISED_10baseT_Half |
 | |
| 					ADVERTISED_10baseT_Full |
 | |
| 					ADVERTISED_100baseT_Half |
 | |
| 					ADVERTISED_100baseT_Full |
 | |
| 					ADVERTISED_Autoneg;
 | |
| 			}
 | |
| 
 | |
| 			spin_lock_bh(&bp->phy_lock);
 | |
| 			bnx2_setup_phy(bp, bp->phy_port);
 | |
| 			spin_unlock_bh(&bp->phy_lock);
 | |
| 
 | |
| 			bp->autoneg = autoneg;
 | |
| 			bp->advertising = advertising;
 | |
| 
 | |
| 			bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
 | |
| 
 | |
| 			val = REG_RD(bp, BNX2_EMAC_MODE);
 | |
| 
 | |
| 			/* Enable port mode. */
 | |
| 			val &= ~BNX2_EMAC_MODE_PORT;
 | |
| 			val |= BNX2_EMAC_MODE_MPKT_RCVD |
 | |
| 			       BNX2_EMAC_MODE_ACPI_RCVD |
 | |
| 			       BNX2_EMAC_MODE_MPKT;
 | |
| 			if (bp->phy_port == PORT_TP)
 | |
| 				val |= BNX2_EMAC_MODE_PORT_MII;
 | |
| 			else {
 | |
| 				val |= BNX2_EMAC_MODE_PORT_GMII;
 | |
| 				if (bp->line_speed == SPEED_2500)
 | |
| 					val |= BNX2_EMAC_MODE_25G_MODE;
 | |
| 			}
 | |
| 
 | |
| 			REG_WR(bp, BNX2_EMAC_MODE, val);
 | |
| 
 | |
| 			/* receive all multicast */
 | |
| 			for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
 | |
| 				REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
 | |
| 				       0xffffffff);
 | |
| 			}
 | |
| 			REG_WR(bp, BNX2_EMAC_RX_MODE,
 | |
| 			       BNX2_EMAC_RX_MODE_SORT_MODE);
 | |
| 
 | |
| 			val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
 | |
| 			      BNX2_RPM_SORT_USER0_MC_EN;
 | |
| 			REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
 | |
| 			REG_WR(bp, BNX2_RPM_SORT_USER0, val);
 | |
| 			REG_WR(bp, BNX2_RPM_SORT_USER0, val |
 | |
| 			       BNX2_RPM_SORT_USER0_ENA);
 | |
| 
 | |
| 			/* Need to enable EMAC and RPM for WOL. */
 | |
| 			REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
 | |
| 			       BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
 | |
| 			       BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
 | |
| 			       BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
 | |
| 
 | |
| 			val = REG_RD(bp, BNX2_RPM_CONFIG);
 | |
| 			val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
 | |
| 			REG_WR(bp, BNX2_RPM_CONFIG, val);
 | |
| 
 | |
| 			wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
 | |
| 		}
 | |
| 		else {
 | |
| 			wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
 | |
| 		}
 | |
| 
 | |
| 		if (!(bp->flags & BNX2_FLAG_NO_WOL))
 | |
| 			bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
 | |
| 				     1, 0);
 | |
| 
 | |
| 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 | |
| 		if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
 | |
| 		    (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
 | |
| 
 | |
| 			if (bp->wol)
 | |
| 				pmcsr |= 3;
 | |
| 		}
 | |
| 		else {
 | |
| 			pmcsr |= 3;
 | |
| 		}
 | |
| 		if (bp->wol) {
 | |
| 			pmcsr |= PCI_PM_CTRL_PME_ENABLE;
 | |
| 		}
 | |
| 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
 | |
| 				      pmcsr);
 | |
| 
 | |
| 		/* No more memory access after this point until
 | |
| 		 * device is brought back to D0.
 | |
| 		 */
 | |
| 		udelay(50);
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_acquire_nvram_lock(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 	int j;
 | |
| 
 | |
| 	/* Request access to the flash interface. */
 | |
| 	REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
 | |
| 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
 | |
| 		val = REG_RD(bp, BNX2_NVM_SW_ARB);
 | |
| 		if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
 | |
| 			break;
 | |
| 
 | |
| 		udelay(5);
 | |
| 	}
 | |
| 
 | |
| 	if (j >= NVRAM_TIMEOUT_COUNT)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_release_nvram_lock(struct bnx2 *bp)
 | |
| {
 | |
| 	int j;
 | |
| 	u32 val;
 | |
| 
 | |
| 	/* Relinquish nvram interface. */
 | |
| 	REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
 | |
| 
 | |
| 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
 | |
| 		val = REG_RD(bp, BNX2_NVM_SW_ARB);
 | |
| 		if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
 | |
| 			break;
 | |
| 
 | |
| 		udelay(5);
 | |
| 	}
 | |
| 
 | |
| 	if (j >= NVRAM_TIMEOUT_COUNT)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| bnx2_enable_nvram_write(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = REG_RD(bp, BNX2_MISC_CFG);
 | |
| 	REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
 | |
| 
 | |
| 	if (bp->flash_info->flags & BNX2_NV_WREN) {
 | |
| 		int j;
 | |
| 
 | |
| 		REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
 | |
| 		REG_WR(bp, BNX2_NVM_COMMAND,
 | |
| 		       BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
 | |
| 
 | |
| 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
 | |
| 			udelay(5);
 | |
| 
 | |
| 			val = REG_RD(bp, BNX2_NVM_COMMAND);
 | |
| 			if (val & BNX2_NVM_COMMAND_DONE)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (j >= NVRAM_TIMEOUT_COUNT)
 | |
| 			return -EBUSY;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_disable_nvram_write(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = REG_RD(bp, BNX2_MISC_CFG);
 | |
| 	REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| bnx2_enable_nvram_access(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
 | |
| 	/* Enable both bits, even on read. */
 | |
| 	REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
 | |
| 	       val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_disable_nvram_access(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
 | |
| 	/* Disable both bits, even after read. */
 | |
| 	REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
 | |
| 		val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
 | |
| 			BNX2_NVM_ACCESS_ENABLE_WR_EN));
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
 | |
| {
 | |
| 	u32 cmd;
 | |
| 	int j;
 | |
| 
 | |
| 	if (bp->flash_info->flags & BNX2_NV_BUFFERED)
 | |
| 		/* Buffered flash, no erase needed */
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Build an erase command */
 | |
| 	cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
 | |
| 	      BNX2_NVM_COMMAND_DOIT;
 | |
| 
 | |
| 	/* Need to clear DONE bit separately. */
 | |
| 	REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
 | |
| 
 | |
| 	/* Address of the NVRAM to read from. */
 | |
| 	REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
 | |
| 
 | |
| 	/* Issue an erase command. */
 | |
| 	REG_WR(bp, BNX2_NVM_COMMAND, cmd);
 | |
| 
 | |
| 	/* Wait for completion. */
 | |
| 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
 | |
| 		u32 val;
 | |
| 
 | |
| 		udelay(5);
 | |
| 
 | |
| 		val = REG_RD(bp, BNX2_NVM_COMMAND);
 | |
| 		if (val & BNX2_NVM_COMMAND_DONE)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (j >= NVRAM_TIMEOUT_COUNT)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
 | |
| {
 | |
| 	u32 cmd;
 | |
| 	int j;
 | |
| 
 | |
| 	/* Build the command word. */
 | |
| 	cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
 | |
| 
 | |
| 	/* Calculate an offset of a buffered flash, not needed for 5709. */
 | |
| 	if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
 | |
| 		offset = ((offset / bp->flash_info->page_size) <<
 | |
| 			   bp->flash_info->page_bits) +
 | |
| 			  (offset % bp->flash_info->page_size);
 | |
| 	}
 | |
| 
 | |
| 	/* Need to clear DONE bit separately. */
 | |
| 	REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
 | |
| 
 | |
| 	/* Address of the NVRAM to read from. */
 | |
| 	REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
 | |
| 
 | |
| 	/* Issue a read command. */
 | |
| 	REG_WR(bp, BNX2_NVM_COMMAND, cmd);
 | |
| 
 | |
| 	/* Wait for completion. */
 | |
| 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
 | |
| 		u32 val;
 | |
| 
 | |
| 		udelay(5);
 | |
| 
 | |
| 		val = REG_RD(bp, BNX2_NVM_COMMAND);
 | |
| 		if (val & BNX2_NVM_COMMAND_DONE) {
 | |
| 			__be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
 | |
| 			memcpy(ret_val, &v, 4);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (j >= NVRAM_TIMEOUT_COUNT)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
 | |
| {
 | |
| 	u32 cmd;
 | |
| 	__be32 val32;
 | |
| 	int j;
 | |
| 
 | |
| 	/* Build the command word. */
 | |
| 	cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
 | |
| 
 | |
| 	/* Calculate an offset of a buffered flash, not needed for 5709. */
 | |
| 	if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
 | |
| 		offset = ((offset / bp->flash_info->page_size) <<
 | |
| 			  bp->flash_info->page_bits) +
 | |
| 			 (offset % bp->flash_info->page_size);
 | |
| 	}
 | |
| 
 | |
| 	/* Need to clear DONE bit separately. */
 | |
| 	REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
 | |
| 
 | |
| 	memcpy(&val32, val, 4);
 | |
| 
 | |
| 	/* Write the data. */
 | |
| 	REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
 | |
| 
 | |
| 	/* Address of the NVRAM to write to. */
 | |
| 	REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
 | |
| 
 | |
| 	/* Issue the write command. */
 | |
| 	REG_WR(bp, BNX2_NVM_COMMAND, cmd);
 | |
| 
 | |
| 	/* Wait for completion. */
 | |
| 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
 | |
| 		udelay(5);
 | |
| 
 | |
| 		if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (j >= NVRAM_TIMEOUT_COUNT)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_init_nvram(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 val;
 | |
| 	int j, entry_count, rc = 0;
 | |
| 	const struct flash_spec *flash;
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 		bp->flash_info = &flash_5709;
 | |
| 		goto get_flash_size;
 | |
| 	}
 | |
| 
 | |
| 	/* Determine the selected interface. */
 | |
| 	val = REG_RD(bp, BNX2_NVM_CFG1);
 | |
| 
 | |
| 	entry_count = ARRAY_SIZE(flash_table);
 | |
| 
 | |
| 	if (val & 0x40000000) {
 | |
| 
 | |
| 		/* Flash interface has been reconfigured */
 | |
| 		for (j = 0, flash = &flash_table[0]; j < entry_count;
 | |
| 		     j++, flash++) {
 | |
| 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
 | |
| 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
 | |
| 				bp->flash_info = flash;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		u32 mask;
 | |
| 		/* Not yet been reconfigured */
 | |
| 
 | |
| 		if (val & (1 << 23))
 | |
| 			mask = FLASH_BACKUP_STRAP_MASK;
 | |
| 		else
 | |
| 			mask = FLASH_STRAP_MASK;
 | |
| 
 | |
| 		for (j = 0, flash = &flash_table[0]; j < entry_count;
 | |
| 			j++, flash++) {
 | |
| 
 | |
| 			if ((val & mask) == (flash->strapping & mask)) {
 | |
| 				bp->flash_info = flash;
 | |
| 
 | |
| 				/* Request access to the flash interface. */
 | |
| 				if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
 | |
| 					return rc;
 | |
| 
 | |
| 				/* Enable access to flash interface */
 | |
| 				bnx2_enable_nvram_access(bp);
 | |
| 
 | |
| 				/* Reconfigure the flash interface */
 | |
| 				REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
 | |
| 				REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
 | |
| 				REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
 | |
| 				REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
 | |
| 
 | |
| 				/* Disable access to flash interface */
 | |
| 				bnx2_disable_nvram_access(bp);
 | |
| 				bnx2_release_nvram_lock(bp);
 | |
| 
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	} /* if (val & 0x40000000) */
 | |
| 
 | |
| 	if (j == entry_count) {
 | |
| 		bp->flash_info = NULL;
 | |
| 		pr_alert("Unknown flash/EEPROM type\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| get_flash_size:
 | |
| 	val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
 | |
| 	val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
 | |
| 	if (val)
 | |
| 		bp->flash_size = val;
 | |
| 	else
 | |
| 		bp->flash_size = bp->flash_info->total_size;
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
 | |
| 		int buf_size)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	u32 cmd_flags, offset32, len32, extra;
 | |
| 
 | |
| 	if (buf_size == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Request access to the flash interface. */
 | |
| 	if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Enable access to flash interface */
 | |
| 	bnx2_enable_nvram_access(bp);
 | |
| 
 | |
| 	len32 = buf_size;
 | |
| 	offset32 = offset;
 | |
| 	extra = 0;
 | |
| 
 | |
| 	cmd_flags = 0;
 | |
| 
 | |
| 	if (offset32 & 3) {
 | |
| 		u8 buf[4];
 | |
| 		u32 pre_len;
 | |
| 
 | |
| 		offset32 &= ~3;
 | |
| 		pre_len = 4 - (offset & 3);
 | |
| 
 | |
| 		if (pre_len >= len32) {
 | |
| 			pre_len = len32;
 | |
| 			cmd_flags = BNX2_NVM_COMMAND_FIRST |
 | |
| 				    BNX2_NVM_COMMAND_LAST;
 | |
| 		}
 | |
| 		else {
 | |
| 			cmd_flags = BNX2_NVM_COMMAND_FIRST;
 | |
| 		}
 | |
| 
 | |
| 		rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
 | |
| 
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		memcpy(ret_buf, buf + (offset & 3), pre_len);
 | |
| 
 | |
| 		offset32 += 4;
 | |
| 		ret_buf += pre_len;
 | |
| 		len32 -= pre_len;
 | |
| 	}
 | |
| 	if (len32 & 3) {
 | |
| 		extra = 4 - (len32 & 3);
 | |
| 		len32 = (len32 + 4) & ~3;
 | |
| 	}
 | |
| 
 | |
| 	if (len32 == 4) {
 | |
| 		u8 buf[4];
 | |
| 
 | |
| 		if (cmd_flags)
 | |
| 			cmd_flags = BNX2_NVM_COMMAND_LAST;
 | |
| 		else
 | |
| 			cmd_flags = BNX2_NVM_COMMAND_FIRST |
 | |
| 				    BNX2_NVM_COMMAND_LAST;
 | |
| 
 | |
| 		rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
 | |
| 
 | |
| 		memcpy(ret_buf, buf, 4 - extra);
 | |
| 	}
 | |
| 	else if (len32 > 0) {
 | |
| 		u8 buf[4];
 | |
| 
 | |
| 		/* Read the first word. */
 | |
| 		if (cmd_flags)
 | |
| 			cmd_flags = 0;
 | |
| 		else
 | |
| 			cmd_flags = BNX2_NVM_COMMAND_FIRST;
 | |
| 
 | |
| 		rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
 | |
| 
 | |
| 		/* Advance to the next dword. */
 | |
| 		offset32 += 4;
 | |
| 		ret_buf += 4;
 | |
| 		len32 -= 4;
 | |
| 
 | |
| 		while (len32 > 4 && rc == 0) {
 | |
| 			rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
 | |
| 
 | |
| 			/* Advance to the next dword. */
 | |
| 			offset32 += 4;
 | |
| 			ret_buf += 4;
 | |
| 			len32 -= 4;
 | |
| 		}
 | |
| 
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		cmd_flags = BNX2_NVM_COMMAND_LAST;
 | |
| 		rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
 | |
| 
 | |
| 		memcpy(ret_buf, buf, 4 - extra);
 | |
| 	}
 | |
| 
 | |
| 	/* Disable access to flash interface */
 | |
| 	bnx2_disable_nvram_access(bp);
 | |
| 
 | |
| 	bnx2_release_nvram_lock(bp);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
 | |
| 		int buf_size)
 | |
| {
 | |
| 	u32 written, offset32, len32;
 | |
| 	u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
 | |
| 	int rc = 0;
 | |
| 	int align_start, align_end;
 | |
| 
 | |
| 	buf = data_buf;
 | |
| 	offset32 = offset;
 | |
| 	len32 = buf_size;
 | |
| 	align_start = align_end = 0;
 | |
| 
 | |
| 	if ((align_start = (offset32 & 3))) {
 | |
| 		offset32 &= ~3;
 | |
| 		len32 += align_start;
 | |
| 		if (len32 < 4)
 | |
| 			len32 = 4;
 | |
| 		if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
 | |
| 			return rc;
 | |
| 	}
 | |
| 
 | |
| 	if (len32 & 3) {
 | |
| 		align_end = 4 - (len32 & 3);
 | |
| 		len32 += align_end;
 | |
| 		if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
 | |
| 			return rc;
 | |
| 	}
 | |
| 
 | |
| 	if (align_start || align_end) {
 | |
| 		align_buf = kmalloc(len32, GFP_KERNEL);
 | |
| 		if (align_buf == NULL)
 | |
| 			return -ENOMEM;
 | |
| 		if (align_start) {
 | |
| 			memcpy(align_buf, start, 4);
 | |
| 		}
 | |
| 		if (align_end) {
 | |
| 			memcpy(align_buf + len32 - 4, end, 4);
 | |
| 		}
 | |
| 		memcpy(align_buf + align_start, data_buf, buf_size);
 | |
| 		buf = align_buf;
 | |
| 	}
 | |
| 
 | |
| 	if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
 | |
| 		flash_buffer = kmalloc(264, GFP_KERNEL);
 | |
| 		if (flash_buffer == NULL) {
 | |
| 			rc = -ENOMEM;
 | |
| 			goto nvram_write_end;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	written = 0;
 | |
| 	while ((written < len32) && (rc == 0)) {
 | |
| 		u32 page_start, page_end, data_start, data_end;
 | |
| 		u32 addr, cmd_flags;
 | |
| 		int i;
 | |
| 
 | |
| 	        /* Find the page_start addr */
 | |
| 		page_start = offset32 + written;
 | |
| 		page_start -= (page_start % bp->flash_info->page_size);
 | |
| 		/* Find the page_end addr */
 | |
| 		page_end = page_start + bp->flash_info->page_size;
 | |
| 		/* Find the data_start addr */
 | |
| 		data_start = (written == 0) ? offset32 : page_start;
 | |
| 		/* Find the data_end addr */
 | |
| 		data_end = (page_end > offset32 + len32) ?
 | |
| 			(offset32 + len32) : page_end;
 | |
| 
 | |
| 		/* Request access to the flash interface. */
 | |
| 		if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
 | |
| 			goto nvram_write_end;
 | |
| 
 | |
| 		/* Enable access to flash interface */
 | |
| 		bnx2_enable_nvram_access(bp);
 | |
| 
 | |
| 		cmd_flags = BNX2_NVM_COMMAND_FIRST;
 | |
| 		if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
 | |
| 			int j;
 | |
| 
 | |
| 			/* Read the whole page into the buffer
 | |
| 			 * (non-buffer flash only) */
 | |
| 			for (j = 0; j < bp->flash_info->page_size; j += 4) {
 | |
| 				if (j == (bp->flash_info->page_size - 4)) {
 | |
| 					cmd_flags |= BNX2_NVM_COMMAND_LAST;
 | |
| 				}
 | |
| 				rc = bnx2_nvram_read_dword(bp,
 | |
| 					page_start + j,
 | |
| 					&flash_buffer[j],
 | |
| 					cmd_flags);
 | |
| 
 | |
| 				if (rc)
 | |
| 					goto nvram_write_end;
 | |
| 
 | |
| 				cmd_flags = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Enable writes to flash interface (unlock write-protect) */
 | |
| 		if ((rc = bnx2_enable_nvram_write(bp)) != 0)
 | |
| 			goto nvram_write_end;
 | |
| 
 | |
| 		/* Loop to write back the buffer data from page_start to
 | |
| 		 * data_start */
 | |
| 		i = 0;
 | |
| 		if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
 | |
| 			/* Erase the page */
 | |
| 			if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
 | |
| 				goto nvram_write_end;
 | |
| 
 | |
| 			/* Re-enable the write again for the actual write */
 | |
| 			bnx2_enable_nvram_write(bp);
 | |
| 
 | |
| 			for (addr = page_start; addr < data_start;
 | |
| 				addr += 4, i += 4) {
 | |
| 
 | |
| 				rc = bnx2_nvram_write_dword(bp, addr,
 | |
| 					&flash_buffer[i], cmd_flags);
 | |
| 
 | |
| 				if (rc != 0)
 | |
| 					goto nvram_write_end;
 | |
| 
 | |
| 				cmd_flags = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Loop to write the new data from data_start to data_end */
 | |
| 		for (addr = data_start; addr < data_end; addr += 4, i += 4) {
 | |
| 			if ((addr == page_end - 4) ||
 | |
| 				((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
 | |
| 				 (addr == data_end - 4))) {
 | |
| 
 | |
| 				cmd_flags |= BNX2_NVM_COMMAND_LAST;
 | |
| 			}
 | |
| 			rc = bnx2_nvram_write_dword(bp, addr, buf,
 | |
| 				cmd_flags);
 | |
| 
 | |
| 			if (rc != 0)
 | |
| 				goto nvram_write_end;
 | |
| 
 | |
| 			cmd_flags = 0;
 | |
| 			buf += 4;
 | |
| 		}
 | |
| 
 | |
| 		/* Loop to write back the buffer data from data_end
 | |
| 		 * to page_end */
 | |
| 		if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
 | |
| 			for (addr = data_end; addr < page_end;
 | |
| 				addr += 4, i += 4) {
 | |
| 
 | |
| 				if (addr == page_end-4) {
 | |
| 					cmd_flags = BNX2_NVM_COMMAND_LAST;
 | |
|                 		}
 | |
| 				rc = bnx2_nvram_write_dword(bp, addr,
 | |
| 					&flash_buffer[i], cmd_flags);
 | |
| 
 | |
| 				if (rc != 0)
 | |
| 					goto nvram_write_end;
 | |
| 
 | |
| 				cmd_flags = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Disable writes to flash interface (lock write-protect) */
 | |
| 		bnx2_disable_nvram_write(bp);
 | |
| 
 | |
| 		/* Disable access to flash interface */
 | |
| 		bnx2_disable_nvram_access(bp);
 | |
| 		bnx2_release_nvram_lock(bp);
 | |
| 
 | |
| 		/* Increment written */
 | |
| 		written += data_end - data_start;
 | |
| 	}
 | |
| 
 | |
| nvram_write_end:
 | |
| 	kfree(flash_buffer);
 | |
| 	kfree(align_buf);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_init_fw_cap(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 val, sig = 0;
 | |
| 
 | |
| 	bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
 | |
| 	bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
 | |
| 
 | |
| 	if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
 | |
| 		bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
 | |
| 
 | |
| 	val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
 | |
| 	if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
 | |
| 		return;
 | |
| 
 | |
| 	if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
 | |
| 		bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
 | |
| 		sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
 | |
| 	}
 | |
| 
 | |
| 	if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
 | |
| 	    (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
 | |
| 		u32 link;
 | |
| 
 | |
| 		bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
 | |
| 
 | |
| 		link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
 | |
| 		if (link & BNX2_LINK_STATUS_SERDES_LINK)
 | |
| 			bp->phy_port = PORT_FIBRE;
 | |
| 		else
 | |
| 			bp->phy_port = PORT_TP;
 | |
| 
 | |
| 		sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
 | |
| 		       BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
 | |
| 	}
 | |
| 
 | |
| 	if (netif_running(bp->dev) && sig)
 | |
| 		bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_setup_msix_tbl(struct bnx2 *bp)
 | |
| {
 | |
| 	REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
 | |
| 
 | |
| 	REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
 | |
| 	REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
 | |
| {
 | |
| 	u32 val;
 | |
| 	int i, rc = 0;
 | |
| 	u8 old_port;
 | |
| 
 | |
| 	/* Wait for the current PCI transaction to complete before
 | |
| 	 * issuing a reset. */
 | |
| 	REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
 | |
| 	       BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
 | |
| 	       BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
 | |
| 	       BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
 | |
| 	       BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
 | |
| 	val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
 | |
| 	udelay(5);
 | |
| 
 | |
| 	/* Wait for the firmware to tell us it is ok to issue a reset. */
 | |
| 	bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
 | |
| 
 | |
| 	/* Deposit a driver reset signature so the firmware knows that
 | |
| 	 * this is a soft reset. */
 | |
| 	bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
 | |
| 		      BNX2_DRV_RESET_SIGNATURE_MAGIC);
 | |
| 
 | |
| 	/* Do a dummy read to force the chip to complete all current transaction
 | |
| 	 * before we issue a reset. */
 | |
| 	val = REG_RD(bp, BNX2_MISC_ID);
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 		REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
 | |
| 		REG_RD(bp, BNX2_MISC_COMMAND);
 | |
| 		udelay(5);
 | |
| 
 | |
| 		val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
 | |
| 		      BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
 | |
| 
 | |
| 		pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
 | |
| 
 | |
| 	} else {
 | |
| 		val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
 | |
| 		      BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
 | |
| 		      BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
 | |
| 
 | |
| 		/* Chip reset. */
 | |
| 		REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
 | |
| 
 | |
| 		/* Reading back any register after chip reset will hang the
 | |
| 		 * bus on 5706 A0 and A1.  The msleep below provides plenty
 | |
| 		 * of margin for write posting.
 | |
| 		 */
 | |
| 		if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
 | |
| 		    (CHIP_ID(bp) == CHIP_ID_5706_A1))
 | |
| 			msleep(20);
 | |
| 
 | |
| 		/* Reset takes approximate 30 usec */
 | |
| 		for (i = 0; i < 10; i++) {
 | |
| 			val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
 | |
| 			if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
 | |
| 				    BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
 | |
| 				break;
 | |
| 			udelay(10);
 | |
| 		}
 | |
| 
 | |
| 		if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
 | |
| 			   BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
 | |
| 			pr_err("Chip reset did not complete\n");
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure byte swapping is properly configured. */
 | |
| 	val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
 | |
| 	if (val != 0x01020304) {
 | |
| 		pr_err("Chip not in correct endian mode\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* Wait for the firmware to finish its initialization. */
 | |
| 	rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	spin_lock_bh(&bp->phy_lock);
 | |
| 	old_port = bp->phy_port;
 | |
| 	bnx2_init_fw_cap(bp);
 | |
| 	if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
 | |
| 	    old_port != bp->phy_port)
 | |
| 		bnx2_set_default_remote_link(bp);
 | |
| 	spin_unlock_bh(&bp->phy_lock);
 | |
| 
 | |
| 	if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
 | |
| 		/* Adjust the voltage regular to two steps lower.  The default
 | |
| 		 * of this register is 0x0000000e. */
 | |
| 		REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
 | |
| 
 | |
| 		/* Remove bad rbuf memory from the free pool. */
 | |
| 		rc = bnx2_alloc_bad_rbuf(bp);
 | |
| 	}
 | |
| 
 | |
| 	if (bp->flags & BNX2_FLAG_USING_MSIX)
 | |
| 		bnx2_setup_msix_tbl(bp);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_init_chip(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 val, mtu;
 | |
| 	int rc, i;
 | |
| 
 | |
| 	/* Make sure the interrupt is not active. */
 | |
| 	REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
 | |
| 
 | |
| 	val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
 | |
| 	      BNX2_DMA_CONFIG_DATA_WORD_SWAP |
 | |
| #ifdef __BIG_ENDIAN
 | |
| 	      BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
 | |
| #endif
 | |
| 	      BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
 | |
| 	      DMA_READ_CHANS << 12 |
 | |
| 	      DMA_WRITE_CHANS << 16;
 | |
| 
 | |
| 	val |= (0x2 << 20) | (1 << 11);
 | |
| 
 | |
| 	if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
 | |
| 		val |= (1 << 23);
 | |
| 
 | |
| 	if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
 | |
| 	    (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
 | |
| 		val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
 | |
| 
 | |
| 	REG_WR(bp, BNX2_DMA_CONFIG, val);
 | |
| 
 | |
| 	if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
 | |
| 		val = REG_RD(bp, BNX2_TDMA_CONFIG);
 | |
| 		val |= BNX2_TDMA_CONFIG_ONE_DMA;
 | |
| 		REG_WR(bp, BNX2_TDMA_CONFIG, val);
 | |
| 	}
 | |
| 
 | |
| 	if (bp->flags & BNX2_FLAG_PCIX) {
 | |
| 		u16 val16;
 | |
| 
 | |
| 		pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
 | |
| 				     &val16);
 | |
| 		pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
 | |
| 				      val16 & ~PCI_X_CMD_ERO);
 | |
| 	}
 | |
| 
 | |
| 	REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
 | |
| 	       BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
 | |
| 	       BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
 | |
| 	       BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
 | |
| 
 | |
| 	/* Initialize context mapping and zero out the quick contexts.  The
 | |
| 	 * context block must have already been enabled. */
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 		rc = bnx2_init_5709_context(bp);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	} else
 | |
| 		bnx2_init_context(bp);
 | |
| 
 | |
| 	if ((rc = bnx2_init_cpus(bp)) != 0)
 | |
| 		return rc;
 | |
| 
 | |
| 	bnx2_init_nvram(bp);
 | |
| 
 | |
| 	bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
 | |
| 
 | |
| 	val = REG_RD(bp, BNX2_MQ_CONFIG);
 | |
| 	val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
 | |
| 	val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 		val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
 | |
| 		if (CHIP_REV(bp) == CHIP_REV_Ax)
 | |
| 			val |= BNX2_MQ_CONFIG_HALT_DIS;
 | |
| 	}
 | |
| 
 | |
| 	REG_WR(bp, BNX2_MQ_CONFIG, val);
 | |
| 
 | |
| 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
 | |
| 	REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
 | |
| 	REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
 | |
| 
 | |
| 	val = (BCM_PAGE_BITS - 8) << 24;
 | |
| 	REG_WR(bp, BNX2_RV2P_CONFIG, val);
 | |
| 
 | |
| 	/* Configure page size. */
 | |
| 	val = REG_RD(bp, BNX2_TBDR_CONFIG);
 | |
| 	val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
 | |
| 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
 | |
| 	REG_WR(bp, BNX2_TBDR_CONFIG, val);
 | |
| 
 | |
| 	val = bp->mac_addr[0] +
 | |
| 	      (bp->mac_addr[1] << 8) +
 | |
| 	      (bp->mac_addr[2] << 16) +
 | |
| 	      bp->mac_addr[3] +
 | |
| 	      (bp->mac_addr[4] << 8) +
 | |
| 	      (bp->mac_addr[5] << 16);
 | |
| 	REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
 | |
| 
 | |
| 	/* Program the MTU.  Also include 4 bytes for CRC32. */
 | |
| 	mtu = bp->dev->mtu;
 | |
| 	val = mtu + ETH_HLEN + ETH_FCS_LEN;
 | |
| 	if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
 | |
| 		val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
 | |
| 	REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
 | |
| 
 | |
| 	if (mtu < 1500)
 | |
| 		mtu = 1500;
 | |
| 
 | |
| 	bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
 | |
| 	bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
 | |
| 	bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
 | |
| 
 | |
| 	memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
 | |
| 	for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
 | |
| 		bp->bnx2_napi[i].last_status_idx = 0;
 | |
| 
 | |
| 	bp->idle_chk_status_idx = 0xffff;
 | |
| 
 | |
| 	bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
 | |
| 
 | |
| 	/* Set up how to generate a link change interrupt. */
 | |
| 	REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
 | |
| 
 | |
| 	REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
 | |
| 	       (u64) bp->status_blk_mapping & 0xffffffff);
 | |
| 	REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
 | |
| 
 | |
| 	REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
 | |
| 	       (u64) bp->stats_blk_mapping & 0xffffffff);
 | |
| 	REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
 | |
| 	       (u64) bp->stats_blk_mapping >> 32);
 | |
| 
 | |
| 	REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
 | |
| 	       (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
 | |
| 
 | |
| 	REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
 | |
| 	       (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
 | |
| 
 | |
| 	REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
 | |
| 	       (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
 | |
| 
 | |
| 	REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
 | |
| 
 | |
| 	REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
 | |
| 
 | |
| 	REG_WR(bp, BNX2_HC_COM_TICKS,
 | |
| 	       (bp->com_ticks_int << 16) | bp->com_ticks);
 | |
| 
 | |
| 	REG_WR(bp, BNX2_HC_CMD_TICKS,
 | |
| 	       (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
 | |
| 
 | |
| 	if (bp->flags & BNX2_FLAG_BROKEN_STATS)
 | |
| 		REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
 | |
| 	else
 | |
| 		REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
 | |
| 	REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
 | |
| 
 | |
| 	if (CHIP_ID(bp) == CHIP_ID_5706_A1)
 | |
| 		val = BNX2_HC_CONFIG_COLLECT_STATS;
 | |
| 	else {
 | |
| 		val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
 | |
| 		      BNX2_HC_CONFIG_COLLECT_STATS;
 | |
| 	}
 | |
| 
 | |
| 	if (bp->flags & BNX2_FLAG_USING_MSIX) {
 | |
| 		REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
 | |
| 		       BNX2_HC_MSIX_BIT_VECTOR_VAL);
 | |
| 
 | |
| 		val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
 | |
| 	}
 | |
| 
 | |
| 	if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
 | |
| 		val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
 | |
| 
 | |
| 	REG_WR(bp, BNX2_HC_CONFIG, val);
 | |
| 
 | |
| 	for (i = 1; i < bp->irq_nvecs; i++) {
 | |
| 		u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
 | |
| 			   BNX2_HC_SB_CONFIG_1;
 | |
| 
 | |
| 		REG_WR(bp, base,
 | |
| 			BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
 | |
| 			BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
 | |
| 			BNX2_HC_SB_CONFIG_1_ONE_SHOT);
 | |
| 
 | |
| 		REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
 | |
| 			(bp->tx_quick_cons_trip_int << 16) |
 | |
| 			 bp->tx_quick_cons_trip);
 | |
| 
 | |
| 		REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
 | |
| 			(bp->tx_ticks_int << 16) | bp->tx_ticks);
 | |
| 
 | |
| 		REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
 | |
| 		       (bp->rx_quick_cons_trip_int << 16) |
 | |
| 			bp->rx_quick_cons_trip);
 | |
| 
 | |
| 		REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
 | |
| 			(bp->rx_ticks_int << 16) | bp->rx_ticks);
 | |
| 	}
 | |
| 
 | |
| 	/* Clear internal stats counters. */
 | |
| 	REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
 | |
| 
 | |
| 	REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
 | |
| 
 | |
| 	/* Initialize the receive filter. */
 | |
| 	bnx2_set_rx_mode(bp->dev);
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 		val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
 | |
| 		val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
 | |
| 		REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
 | |
| 	}
 | |
| 	rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
 | |
| 			  1, 0);
 | |
| 
 | |
| 	REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
 | |
| 	REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
 | |
| 
 | |
| 	udelay(20);
 | |
| 
 | |
| 	bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_clear_ring_states(struct bnx2 *bp)
 | |
| {
 | |
| 	struct bnx2_napi *bnapi;
 | |
| 	struct bnx2_tx_ring_info *txr;
 | |
| 	struct bnx2_rx_ring_info *rxr;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
 | |
| 		bnapi = &bp->bnx2_napi[i];
 | |
| 		txr = &bnapi->tx_ring;
 | |
| 		rxr = &bnapi->rx_ring;
 | |
| 
 | |
| 		txr->tx_cons = 0;
 | |
| 		txr->hw_tx_cons = 0;
 | |
| 		rxr->rx_prod_bseq = 0;
 | |
| 		rxr->rx_prod = 0;
 | |
| 		rxr->rx_cons = 0;
 | |
| 		rxr->rx_pg_prod = 0;
 | |
| 		rxr->rx_pg_cons = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
 | |
| {
 | |
| 	u32 val, offset0, offset1, offset2, offset3;
 | |
| 	u32 cid_addr = GET_CID_ADDR(cid);
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 		offset0 = BNX2_L2CTX_TYPE_XI;
 | |
| 		offset1 = BNX2_L2CTX_CMD_TYPE_XI;
 | |
| 		offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
 | |
| 		offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
 | |
| 	} else {
 | |
| 		offset0 = BNX2_L2CTX_TYPE;
 | |
| 		offset1 = BNX2_L2CTX_CMD_TYPE;
 | |
| 		offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
 | |
| 		offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
 | |
| 	}
 | |
| 	val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
 | |
| 	bnx2_ctx_wr(bp, cid_addr, offset0, val);
 | |
| 
 | |
| 	val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
 | |
| 	bnx2_ctx_wr(bp, cid_addr, offset1, val);
 | |
| 
 | |
| 	val = (u64) txr->tx_desc_mapping >> 32;
 | |
| 	bnx2_ctx_wr(bp, cid_addr, offset2, val);
 | |
| 
 | |
| 	val = (u64) txr->tx_desc_mapping & 0xffffffff;
 | |
| 	bnx2_ctx_wr(bp, cid_addr, offset3, val);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
 | |
| {
 | |
| 	struct tx_bd *txbd;
 | |
| 	u32 cid = TX_CID;
 | |
| 	struct bnx2_napi *bnapi;
 | |
| 	struct bnx2_tx_ring_info *txr;
 | |
| 
 | |
| 	bnapi = &bp->bnx2_napi[ring_num];
 | |
| 	txr = &bnapi->tx_ring;
 | |
| 
 | |
| 	if (ring_num == 0)
 | |
| 		cid = TX_CID;
 | |
| 	else
 | |
| 		cid = TX_TSS_CID + ring_num - 1;
 | |
| 
 | |
| 	bp->tx_wake_thresh = bp->tx_ring_size / 2;
 | |
| 
 | |
| 	txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
 | |
| 
 | |
| 	txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
 | |
| 	txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
 | |
| 
 | |
| 	txr->tx_prod = 0;
 | |
| 	txr->tx_prod_bseq = 0;
 | |
| 
 | |
| 	txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
 | |
| 	txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
 | |
| 
 | |
| 	bnx2_init_tx_context(bp, cid, txr);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
 | |
| 		     int num_rings)
 | |
| {
 | |
| 	int i;
 | |
| 	struct rx_bd *rxbd;
 | |
| 
 | |
| 	for (i = 0; i < num_rings; i++) {
 | |
| 		int j;
 | |
| 
 | |
| 		rxbd = &rx_ring[i][0];
 | |
| 		for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
 | |
| 			rxbd->rx_bd_len = buf_size;
 | |
| 			rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
 | |
| 		}
 | |
| 		if (i == (num_rings - 1))
 | |
| 			j = 0;
 | |
| 		else
 | |
| 			j = i + 1;
 | |
| 		rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
 | |
| 		rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
 | |
| {
 | |
| 	int i;
 | |
| 	u16 prod, ring_prod;
 | |
| 	u32 cid, rx_cid_addr, val;
 | |
| 	struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
 | |
| 	struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
 | |
| 
 | |
| 	if (ring_num == 0)
 | |
| 		cid = RX_CID;
 | |
| 	else
 | |
| 		cid = RX_RSS_CID + ring_num - 1;
 | |
| 
 | |
| 	rx_cid_addr = GET_CID_ADDR(cid);
 | |
| 
 | |
| 	bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
 | |
| 			     bp->rx_buf_use_size, bp->rx_max_ring);
 | |
| 
 | |
| 	bnx2_init_rx_context(bp, cid);
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 		val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
 | |
| 		REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
 | |
| 	}
 | |
| 
 | |
| 	bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
 | |
| 	if (bp->rx_pg_ring_size) {
 | |
| 		bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
 | |
| 				     rxr->rx_pg_desc_mapping,
 | |
| 				     PAGE_SIZE, bp->rx_max_pg_ring);
 | |
| 		val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
 | |
| 		bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
 | |
| 		bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
 | |
| 		       BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
 | |
| 
 | |
| 		val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
 | |
| 		bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
 | |
| 
 | |
| 		val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
 | |
| 		bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
 | |
| 
 | |
| 		if (CHIP_NUM(bp) == CHIP_NUM_5709)
 | |
| 			REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
 | |
| 	}
 | |
| 
 | |
| 	val = (u64) rxr->rx_desc_mapping[0] >> 32;
 | |
| 	bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
 | |
| 
 | |
| 	val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
 | |
| 	bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
 | |
| 
 | |
| 	ring_prod = prod = rxr->rx_pg_prod;
 | |
| 	for (i = 0; i < bp->rx_pg_ring_size; i++) {
 | |
| 		if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0) {
 | |
| 			netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
 | |
| 				    ring_num, i, bp->rx_pg_ring_size);
 | |
| 			break;
 | |
| 		}
 | |
| 		prod = NEXT_RX_BD(prod);
 | |
| 		ring_prod = RX_PG_RING_IDX(prod);
 | |
| 	}
 | |
| 	rxr->rx_pg_prod = prod;
 | |
| 
 | |
| 	ring_prod = prod = rxr->rx_prod;
 | |
| 	for (i = 0; i < bp->rx_ring_size; i++) {
 | |
| 		if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0) {
 | |
| 			netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
 | |
| 				    ring_num, i, bp->rx_ring_size);
 | |
| 			break;
 | |
| 		}
 | |
| 		prod = NEXT_RX_BD(prod);
 | |
| 		ring_prod = RX_RING_IDX(prod);
 | |
| 	}
 | |
| 	rxr->rx_prod = prod;
 | |
| 
 | |
| 	rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
 | |
| 	rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
 | |
| 	rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
 | |
| 
 | |
| 	REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
 | |
| 	REG_WR16(bp, rxr->rx_bidx_addr, prod);
 | |
| 
 | |
| 	REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_init_all_rings(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 val;
 | |
| 
 | |
| 	bnx2_clear_ring_states(bp);
 | |
| 
 | |
| 	REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
 | |
| 	for (i = 0; i < bp->num_tx_rings; i++)
 | |
| 		bnx2_init_tx_ring(bp, i);
 | |
| 
 | |
| 	if (bp->num_tx_rings > 1)
 | |
| 		REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
 | |
| 		       (TX_TSS_CID << 7));
 | |
| 
 | |
| 	REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
 | |
| 	bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
 | |
| 
 | |
| 	for (i = 0; i < bp->num_rx_rings; i++)
 | |
| 		bnx2_init_rx_ring(bp, i);
 | |
| 
 | |
| 	if (bp->num_rx_rings > 1) {
 | |
| 		u32 tbl_32;
 | |
| 		u8 *tbl = (u8 *) &tbl_32;
 | |
| 
 | |
| 		bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
 | |
| 				BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
 | |
| 
 | |
| 		for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
 | |
| 			tbl[i % 4] = i % (bp->num_rx_rings - 1);
 | |
| 			if ((i % 4) == 3)
 | |
| 				bnx2_reg_wr_ind(bp,
 | |
| 						BNX2_RXP_SCRATCH_RSS_TBL + i,
 | |
| 						cpu_to_be32(tbl_32));
 | |
| 		}
 | |
| 
 | |
| 		val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
 | |
| 		      BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
 | |
| 
 | |
| 		REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
 | |
| 
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
 | |
| {
 | |
| 	u32 max, num_rings = 1;
 | |
| 
 | |
| 	while (ring_size > MAX_RX_DESC_CNT) {
 | |
| 		ring_size -= MAX_RX_DESC_CNT;
 | |
| 		num_rings++;
 | |
| 	}
 | |
| 	/* round to next power of 2 */
 | |
| 	max = max_size;
 | |
| 	while ((max & num_rings) == 0)
 | |
| 		max >>= 1;
 | |
| 
 | |
| 	if (num_rings != max)
 | |
| 		max <<= 1;
 | |
| 
 | |
| 	return max;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
 | |
| {
 | |
| 	u32 rx_size, rx_space, jumbo_size;
 | |
| 
 | |
| 	/* 8 for CRC and VLAN */
 | |
| 	rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
 | |
| 
 | |
| 	rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
 | |
| 		sizeof(struct skb_shared_info);
 | |
| 
 | |
| 	bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
 | |
| 	bp->rx_pg_ring_size = 0;
 | |
| 	bp->rx_max_pg_ring = 0;
 | |
| 	bp->rx_max_pg_ring_idx = 0;
 | |
| 	if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
 | |
| 		int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
 | |
| 
 | |
| 		jumbo_size = size * pages;
 | |
| 		if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
 | |
| 			jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
 | |
| 
 | |
| 		bp->rx_pg_ring_size = jumbo_size;
 | |
| 		bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
 | |
| 							MAX_RX_PG_RINGS);
 | |
| 		bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
 | |
| 		rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
 | |
| 		bp->rx_copy_thresh = 0;
 | |
| 	}
 | |
| 
 | |
| 	bp->rx_buf_use_size = rx_size;
 | |
| 	/* hw alignment */
 | |
| 	bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
 | |
| 	bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
 | |
| 	bp->rx_ring_size = size;
 | |
| 	bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
 | |
| 	bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_free_tx_skbs(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < bp->num_tx_rings; i++) {
 | |
| 		struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
 | |
| 		struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
 | |
| 		int j;
 | |
| 
 | |
| 		if (txr->tx_buf_ring == NULL)
 | |
| 			continue;
 | |
| 
 | |
| 		for (j = 0; j < TX_DESC_CNT; ) {
 | |
| 			struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
 | |
| 			struct sk_buff *skb = tx_buf->skb;
 | |
| 			int k, last;
 | |
| 
 | |
| 			if (skb == NULL) {
 | |
| 				j++;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			pci_unmap_single(bp->pdev,
 | |
| 					 pci_unmap_addr(tx_buf, mapping),
 | |
| 					 skb_headlen(skb),
 | |
| 					 PCI_DMA_TODEVICE);
 | |
| 
 | |
| 			tx_buf->skb = NULL;
 | |
| 
 | |
| 			last = tx_buf->nr_frags;
 | |
| 			j++;
 | |
| 			for (k = 0; k < last; k++, j++) {
 | |
| 				tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
 | |
| 				pci_unmap_page(bp->pdev,
 | |
| 					pci_unmap_addr(tx_buf, mapping),
 | |
| 					skb_shinfo(skb)->frags[k].size,
 | |
| 					PCI_DMA_TODEVICE);
 | |
| 			}
 | |
| 			dev_kfree_skb(skb);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_free_rx_skbs(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < bp->num_rx_rings; i++) {
 | |
| 		struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
 | |
| 		struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
 | |
| 		int j;
 | |
| 
 | |
| 		if (rxr->rx_buf_ring == NULL)
 | |
| 			return;
 | |
| 
 | |
| 		for (j = 0; j < bp->rx_max_ring_idx; j++) {
 | |
| 			struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
 | |
| 			struct sk_buff *skb = rx_buf->skb;
 | |
| 
 | |
| 			if (skb == NULL)
 | |
| 				continue;
 | |
| 
 | |
| 			pci_unmap_single(bp->pdev,
 | |
| 					 pci_unmap_addr(rx_buf, mapping),
 | |
| 					 bp->rx_buf_use_size,
 | |
| 					 PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 			rx_buf->skb = NULL;
 | |
| 
 | |
| 			dev_kfree_skb(skb);
 | |
| 		}
 | |
| 		for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
 | |
| 			bnx2_free_rx_page(bp, rxr, j);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_free_skbs(struct bnx2 *bp)
 | |
| {
 | |
| 	bnx2_free_tx_skbs(bp);
 | |
| 	bnx2_free_rx_skbs(bp);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = bnx2_reset_chip(bp, reset_code);
 | |
| 	bnx2_free_skbs(bp);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	if ((rc = bnx2_init_chip(bp)) != 0)
 | |
| 		return rc;
 | |
| 
 | |
| 	bnx2_init_all_rings(bp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_init_nic(struct bnx2 *bp, int reset_phy)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
 | |
| 		return rc;
 | |
| 
 | |
| 	spin_lock_bh(&bp->phy_lock);
 | |
| 	bnx2_init_phy(bp, reset_phy);
 | |
| 	bnx2_set_link(bp);
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
 | |
| 		bnx2_remote_phy_event(bp);
 | |
| 	spin_unlock_bh(&bp->phy_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_shutdown_chip(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 reset_code;
 | |
| 
 | |
| 	if (bp->flags & BNX2_FLAG_NO_WOL)
 | |
| 		reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
 | |
| 	else if (bp->wol)
 | |
| 		reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
 | |
| 	else
 | |
| 		reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
 | |
| 
 | |
| 	return bnx2_reset_chip(bp, reset_code);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_test_registers(struct bnx2 *bp)
 | |
| {
 | |
| 	int ret;
 | |
| 	int i, is_5709;
 | |
| 	static const struct {
 | |
| 		u16   offset;
 | |
| 		u16   flags;
 | |
| #define BNX2_FL_NOT_5709	1
 | |
| 		u32   rw_mask;
 | |
| 		u32   ro_mask;
 | |
| 	} reg_tbl[] = {
 | |
| 		{ 0x006c, 0, 0x00000000, 0x0000003f },
 | |
| 		{ 0x0090, 0, 0xffffffff, 0x00000000 },
 | |
| 		{ 0x0094, 0, 0x00000000, 0x00000000 },
 | |
| 
 | |
| 		{ 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
 | |
| 		{ 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
 | |
| 		{ 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
 | |
| 		{ 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
 | |
| 		{ 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
 | |
| 		{ 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
 | |
| 		{ 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
 | |
| 		{ 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
 | |
| 		{ 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
 | |
| 
 | |
| 		{ 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
 | |
| 		{ 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
 | |
| 		{ 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
 | |
| 		{ 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
 | |
| 		{ 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
 | |
| 		{ 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
 | |
| 
 | |
| 		{ 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
 | |
| 		{ 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
 | |
| 		{ 0x0c08, BNX2_FL_NOT_5709,  0x0f0ff073, 0x00000000 },
 | |
| 
 | |
| 		{ 0x1000, 0, 0x00000000, 0x00000001 },
 | |
| 		{ 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
 | |
| 
 | |
| 		{ 0x1408, 0, 0x01c00800, 0x00000000 },
 | |
| 		{ 0x149c, 0, 0x8000ffff, 0x00000000 },
 | |
| 		{ 0x14a8, 0, 0x00000000, 0x000001ff },
 | |
| 		{ 0x14ac, 0, 0x0fffffff, 0x10000000 },
 | |
| 		{ 0x14b0, 0, 0x00000002, 0x00000001 },
 | |
| 		{ 0x14b8, 0, 0x00000000, 0x00000000 },
 | |
| 		{ 0x14c0, 0, 0x00000000, 0x00000009 },
 | |
| 		{ 0x14c4, 0, 0x00003fff, 0x00000000 },
 | |
| 		{ 0x14cc, 0, 0x00000000, 0x00000001 },
 | |
| 		{ 0x14d0, 0, 0xffffffff, 0x00000000 },
 | |
| 
 | |
| 		{ 0x1800, 0, 0x00000000, 0x00000001 },
 | |
| 		{ 0x1804, 0, 0x00000000, 0x00000003 },
 | |
| 
 | |
| 		{ 0x2800, 0, 0x00000000, 0x00000001 },
 | |
| 		{ 0x2804, 0, 0x00000000, 0x00003f01 },
 | |
| 		{ 0x2808, 0, 0x0f3f3f03, 0x00000000 },
 | |
| 		{ 0x2810, 0, 0xffff0000, 0x00000000 },
 | |
| 		{ 0x2814, 0, 0xffff0000, 0x00000000 },
 | |
| 		{ 0x2818, 0, 0xffff0000, 0x00000000 },
 | |
| 		{ 0x281c, 0, 0xffff0000, 0x00000000 },
 | |
| 		{ 0x2834, 0, 0xffffffff, 0x00000000 },
 | |
| 		{ 0x2840, 0, 0x00000000, 0xffffffff },
 | |
| 		{ 0x2844, 0, 0x00000000, 0xffffffff },
 | |
| 		{ 0x2848, 0, 0xffffffff, 0x00000000 },
 | |
| 		{ 0x284c, 0, 0xf800f800, 0x07ff07ff },
 | |
| 
 | |
| 		{ 0x2c00, 0, 0x00000000, 0x00000011 },
 | |
| 		{ 0x2c04, 0, 0x00000000, 0x00030007 },
 | |
| 
 | |
| 		{ 0x3c00, 0, 0x00000000, 0x00000001 },
 | |
| 		{ 0x3c04, 0, 0x00000000, 0x00070000 },
 | |
| 		{ 0x3c08, 0, 0x00007f71, 0x07f00000 },
 | |
| 		{ 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
 | |
| 		{ 0x3c10, 0, 0xffffffff, 0x00000000 },
 | |
| 		{ 0x3c14, 0, 0x00000000, 0xffffffff },
 | |
| 		{ 0x3c18, 0, 0x00000000, 0xffffffff },
 | |
| 		{ 0x3c1c, 0, 0xfffff000, 0x00000000 },
 | |
| 		{ 0x3c20, 0, 0xffffff00, 0x00000000 },
 | |
| 
 | |
| 		{ 0x5004, 0, 0x00000000, 0x0000007f },
 | |
| 		{ 0x5008, 0, 0x0f0007ff, 0x00000000 },
 | |
| 
 | |
| 		{ 0x5c00, 0, 0x00000000, 0x00000001 },
 | |
| 		{ 0x5c04, 0, 0x00000000, 0x0003000f },
 | |
| 		{ 0x5c08, 0, 0x00000003, 0x00000000 },
 | |
| 		{ 0x5c0c, 0, 0x0000fff8, 0x00000000 },
 | |
| 		{ 0x5c10, 0, 0x00000000, 0xffffffff },
 | |
| 		{ 0x5c80, 0, 0x00000000, 0x0f7113f1 },
 | |
| 		{ 0x5c84, 0, 0x00000000, 0x0000f333 },
 | |
| 		{ 0x5c88, 0, 0x00000000, 0x00077373 },
 | |
| 		{ 0x5c8c, 0, 0x00000000, 0x0007f737 },
 | |
| 
 | |
| 		{ 0x6808, 0, 0x0000ff7f, 0x00000000 },
 | |
| 		{ 0x680c, 0, 0xffffffff, 0x00000000 },
 | |
| 		{ 0x6810, 0, 0xffffffff, 0x00000000 },
 | |
| 		{ 0x6814, 0, 0xffffffff, 0x00000000 },
 | |
| 		{ 0x6818, 0, 0xffffffff, 0x00000000 },
 | |
| 		{ 0x681c, 0, 0xffffffff, 0x00000000 },
 | |
| 		{ 0x6820, 0, 0x00ff00ff, 0x00000000 },
 | |
| 		{ 0x6824, 0, 0x00ff00ff, 0x00000000 },
 | |
| 		{ 0x6828, 0, 0x00ff00ff, 0x00000000 },
 | |
| 		{ 0x682c, 0, 0x03ff03ff, 0x00000000 },
 | |
| 		{ 0x6830, 0, 0x03ff03ff, 0x00000000 },
 | |
| 		{ 0x6834, 0, 0x03ff03ff, 0x00000000 },
 | |
| 		{ 0x6838, 0, 0x03ff03ff, 0x00000000 },
 | |
| 		{ 0x683c, 0, 0x0000ffff, 0x00000000 },
 | |
| 		{ 0x6840, 0, 0x00000ff0, 0x00000000 },
 | |
| 		{ 0x6844, 0, 0x00ffff00, 0x00000000 },
 | |
| 		{ 0x684c, 0, 0xffffffff, 0x00000000 },
 | |
| 		{ 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
 | |
| 		{ 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
 | |
| 		{ 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
 | |
| 		{ 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
 | |
| 		{ 0x6908, 0, 0x00000000, 0x0001ff0f },
 | |
| 		{ 0x690c, 0, 0x00000000, 0x0ffe00f0 },
 | |
| 
 | |
| 		{ 0xffff, 0, 0x00000000, 0x00000000 },
 | |
| 	};
 | |
| 
 | |
| 	ret = 0;
 | |
| 	is_5709 = 0;
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709)
 | |
| 		is_5709 = 1;
 | |
| 
 | |
| 	for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
 | |
| 		u32 offset, rw_mask, ro_mask, save_val, val;
 | |
| 		u16 flags = reg_tbl[i].flags;
 | |
| 
 | |
| 		if (is_5709 && (flags & BNX2_FL_NOT_5709))
 | |
| 			continue;
 | |
| 
 | |
| 		offset = (u32) reg_tbl[i].offset;
 | |
| 		rw_mask = reg_tbl[i].rw_mask;
 | |
| 		ro_mask = reg_tbl[i].ro_mask;
 | |
| 
 | |
| 		save_val = readl(bp->regview + offset);
 | |
| 
 | |
| 		writel(0, bp->regview + offset);
 | |
| 
 | |
| 		val = readl(bp->regview + offset);
 | |
| 		if ((val & rw_mask) != 0) {
 | |
| 			goto reg_test_err;
 | |
| 		}
 | |
| 
 | |
| 		if ((val & ro_mask) != (save_val & ro_mask)) {
 | |
| 			goto reg_test_err;
 | |
| 		}
 | |
| 
 | |
| 		writel(0xffffffff, bp->regview + offset);
 | |
| 
 | |
| 		val = readl(bp->regview + offset);
 | |
| 		if ((val & rw_mask) != rw_mask) {
 | |
| 			goto reg_test_err;
 | |
| 		}
 | |
| 
 | |
| 		if ((val & ro_mask) != (save_val & ro_mask)) {
 | |
| 			goto reg_test_err;
 | |
| 		}
 | |
| 
 | |
| 		writel(save_val, bp->regview + offset);
 | |
| 		continue;
 | |
| 
 | |
| reg_test_err:
 | |
| 		writel(save_val, bp->regview + offset);
 | |
| 		ret = -ENODEV;
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
 | |
| {
 | |
| 	static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
 | |
| 		0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < sizeof(test_pattern) / 4; i++) {
 | |
| 		u32 offset;
 | |
| 
 | |
| 		for (offset = 0; offset < size; offset += 4) {
 | |
| 
 | |
| 			bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
 | |
| 
 | |
| 			if (bnx2_reg_rd_ind(bp, start + offset) !=
 | |
| 				test_pattern[i]) {
 | |
| 				return -ENODEV;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_test_memory(struct bnx2 *bp)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 	static struct mem_entry {
 | |
| 		u32   offset;
 | |
| 		u32   len;
 | |
| 	} mem_tbl_5706[] = {
 | |
| 		{ 0x60000,  0x4000 },
 | |
| 		{ 0xa0000,  0x3000 },
 | |
| 		{ 0xe0000,  0x4000 },
 | |
| 		{ 0x120000, 0x4000 },
 | |
| 		{ 0x1a0000, 0x4000 },
 | |
| 		{ 0x160000, 0x4000 },
 | |
| 		{ 0xffffffff, 0    },
 | |
| 	},
 | |
| 	mem_tbl_5709[] = {
 | |
| 		{ 0x60000,  0x4000 },
 | |
| 		{ 0xa0000,  0x3000 },
 | |
| 		{ 0xe0000,  0x4000 },
 | |
| 		{ 0x120000, 0x4000 },
 | |
| 		{ 0x1a0000, 0x4000 },
 | |
| 		{ 0xffffffff, 0    },
 | |
| 	};
 | |
| 	struct mem_entry *mem_tbl;
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709)
 | |
| 		mem_tbl = mem_tbl_5709;
 | |
| 	else
 | |
| 		mem_tbl = mem_tbl_5706;
 | |
| 
 | |
| 	for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
 | |
| 		if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
 | |
| 			mem_tbl[i].len)) != 0) {
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define BNX2_MAC_LOOPBACK	0
 | |
| #define BNX2_PHY_LOOPBACK	1
 | |
| 
 | |
| static int
 | |
| bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
 | |
| {
 | |
| 	unsigned int pkt_size, num_pkts, i;
 | |
| 	struct sk_buff *skb, *rx_skb;
 | |
| 	unsigned char *packet;
 | |
| 	u16 rx_start_idx, rx_idx;
 | |
| 	dma_addr_t map;
 | |
| 	struct tx_bd *txbd;
 | |
| 	struct sw_bd *rx_buf;
 | |
| 	struct l2_fhdr *rx_hdr;
 | |
| 	int ret = -ENODEV;
 | |
| 	struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
 | |
| 	struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
 | |
| 	struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
 | |
| 
 | |
| 	tx_napi = bnapi;
 | |
| 
 | |
| 	txr = &tx_napi->tx_ring;
 | |
| 	rxr = &bnapi->rx_ring;
 | |
| 	if (loopback_mode == BNX2_MAC_LOOPBACK) {
 | |
| 		bp->loopback = MAC_LOOPBACK;
 | |
| 		bnx2_set_mac_loopback(bp);
 | |
| 	}
 | |
| 	else if (loopback_mode == BNX2_PHY_LOOPBACK) {
 | |
| 		if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
 | |
| 			return 0;
 | |
| 
 | |
| 		bp->loopback = PHY_LOOPBACK;
 | |
| 		bnx2_set_phy_loopback(bp);
 | |
| 	}
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
 | |
| 	skb = netdev_alloc_skb(bp->dev, pkt_size);
 | |
| 	if (!skb)
 | |
| 		return -ENOMEM;
 | |
| 	packet = skb_put(skb, pkt_size);
 | |
| 	memcpy(packet, bp->dev->dev_addr, 6);
 | |
| 	memset(packet + 6, 0x0, 8);
 | |
| 	for (i = 14; i < pkt_size; i++)
 | |
| 		packet[i] = (unsigned char) (i & 0xff);
 | |
| 
 | |
| 	map = pci_map_single(bp->pdev, skb->data, pkt_size,
 | |
| 		PCI_DMA_TODEVICE);
 | |
| 	if (pci_dma_mapping_error(bp->pdev, map)) {
 | |
| 		dev_kfree_skb(skb);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	REG_WR(bp, BNX2_HC_COMMAND,
 | |
| 	       bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
 | |
| 
 | |
| 	REG_RD(bp, BNX2_HC_COMMAND);
 | |
| 
 | |
| 	udelay(5);
 | |
| 	rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
 | |
| 
 | |
| 	num_pkts = 0;
 | |
| 
 | |
| 	txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
 | |
| 
 | |
| 	txbd->tx_bd_haddr_hi = (u64) map >> 32;
 | |
| 	txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
 | |
| 	txbd->tx_bd_mss_nbytes = pkt_size;
 | |
| 	txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
 | |
| 
 | |
| 	num_pkts++;
 | |
| 	txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
 | |
| 	txr->tx_prod_bseq += pkt_size;
 | |
| 
 | |
| 	REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
 | |
| 	REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
 | |
| 
 | |
| 	udelay(100);
 | |
| 
 | |
| 	REG_WR(bp, BNX2_HC_COMMAND,
 | |
| 	       bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
 | |
| 
 | |
| 	REG_RD(bp, BNX2_HC_COMMAND);
 | |
| 
 | |
| 	udelay(5);
 | |
| 
 | |
| 	pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
 | |
| 	dev_kfree_skb(skb);
 | |
| 
 | |
| 	if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
 | |
| 		goto loopback_test_done;
 | |
| 
 | |
| 	rx_idx = bnx2_get_hw_rx_cons(bnapi);
 | |
| 	if (rx_idx != rx_start_idx + num_pkts) {
 | |
| 		goto loopback_test_done;
 | |
| 	}
 | |
| 
 | |
| 	rx_buf = &rxr->rx_buf_ring[rx_start_idx];
 | |
| 	rx_skb = rx_buf->skb;
 | |
| 
 | |
| 	rx_hdr = (struct l2_fhdr *) rx_skb->data;
 | |
| 	skb_reserve(rx_skb, BNX2_RX_OFFSET);
 | |
| 
 | |
| 	pci_dma_sync_single_for_cpu(bp->pdev,
 | |
| 		pci_unmap_addr(rx_buf, mapping),
 | |
| 		bp->rx_buf_size, PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 	if (rx_hdr->l2_fhdr_status &
 | |
| 		(L2_FHDR_ERRORS_BAD_CRC |
 | |
| 		L2_FHDR_ERRORS_PHY_DECODE |
 | |
| 		L2_FHDR_ERRORS_ALIGNMENT |
 | |
| 		L2_FHDR_ERRORS_TOO_SHORT |
 | |
| 		L2_FHDR_ERRORS_GIANT_FRAME)) {
 | |
| 
 | |
| 		goto loopback_test_done;
 | |
| 	}
 | |
| 
 | |
| 	if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
 | |
| 		goto loopback_test_done;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 14; i < pkt_size; i++) {
 | |
| 		if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
 | |
| 			goto loopback_test_done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| loopback_test_done:
 | |
| 	bp->loopback = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define BNX2_MAC_LOOPBACK_FAILED	1
 | |
| #define BNX2_PHY_LOOPBACK_FAILED	2
 | |
| #define BNX2_LOOPBACK_FAILED		(BNX2_MAC_LOOPBACK_FAILED |	\
 | |
| 					 BNX2_PHY_LOOPBACK_FAILED)
 | |
| 
 | |
| static int
 | |
| bnx2_test_loopback(struct bnx2 *bp)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	if (!netif_running(bp->dev))
 | |
| 		return BNX2_LOOPBACK_FAILED;
 | |
| 
 | |
| 	bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
 | |
| 	spin_lock_bh(&bp->phy_lock);
 | |
| 	bnx2_init_phy(bp, 1);
 | |
| 	spin_unlock_bh(&bp->phy_lock);
 | |
| 	if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
 | |
| 		rc |= BNX2_MAC_LOOPBACK_FAILED;
 | |
| 	if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
 | |
| 		rc |= BNX2_PHY_LOOPBACK_FAILED;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| #define NVRAM_SIZE 0x200
 | |
| #define CRC32_RESIDUAL 0xdebb20e3
 | |
| 
 | |
| static int
 | |
| bnx2_test_nvram(struct bnx2 *bp)
 | |
| {
 | |
| 	__be32 buf[NVRAM_SIZE / 4];
 | |
| 	u8 *data = (u8 *) buf;
 | |
| 	int rc = 0;
 | |
| 	u32 magic, csum;
 | |
| 
 | |
| 	if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
 | |
| 		goto test_nvram_done;
 | |
| 
 | |
|         magic = be32_to_cpu(buf[0]);
 | |
| 	if (magic != 0x669955aa) {
 | |
| 		rc = -ENODEV;
 | |
| 		goto test_nvram_done;
 | |
| 	}
 | |
| 
 | |
| 	if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
 | |
| 		goto test_nvram_done;
 | |
| 
 | |
| 	csum = ether_crc_le(0x100, data);
 | |
| 	if (csum != CRC32_RESIDUAL) {
 | |
| 		rc = -ENODEV;
 | |
| 		goto test_nvram_done;
 | |
| 	}
 | |
| 
 | |
| 	csum = ether_crc_le(0x100, data + 0x100);
 | |
| 	if (csum != CRC32_RESIDUAL) {
 | |
| 		rc = -ENODEV;
 | |
| 	}
 | |
| 
 | |
| test_nvram_done:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_test_link(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 bmsr;
 | |
| 
 | |
| 	if (!netif_running(bp->dev))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
 | |
| 		if (bp->link_up)
 | |
| 			return 0;
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	spin_lock_bh(&bp->phy_lock);
 | |
| 	bnx2_enable_bmsr1(bp);
 | |
| 	bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
 | |
| 	bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
 | |
| 	bnx2_disable_bmsr1(bp);
 | |
| 	spin_unlock_bh(&bp->phy_lock);
 | |
| 
 | |
| 	if (bmsr & BMSR_LSTATUS) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_test_intr(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 	u16 status_idx;
 | |
| 
 | |
| 	if (!netif_running(bp->dev))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
 | |
| 
 | |
| 	/* This register is not touched during run-time. */
 | |
| 	REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
 | |
| 	REG_RD(bp, BNX2_HC_COMMAND);
 | |
| 
 | |
| 	for (i = 0; i < 10; i++) {
 | |
| 		if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
 | |
| 			status_idx) {
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		msleep_interruptible(10);
 | |
| 	}
 | |
| 	if (i < 10)
 | |
| 		return 0;
 | |
| 
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| /* Determining link for parallel detection. */
 | |
| static int
 | |
| bnx2_5706_serdes_has_link(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 mode_ctl, an_dbg, exp;
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
 | |
| 		return 0;
 | |
| 
 | |
| 	bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
 | |
| 	bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
 | |
| 
 | |
| 	if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
 | |
| 		return 0;
 | |
| 
 | |
| 	bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
 | |
| 	bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
 | |
| 	bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
 | |
| 
 | |
| 	if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
 | |
| 		return 0;
 | |
| 
 | |
| 	bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
 | |
| 	bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
 | |
| 	bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
 | |
| 
 | |
| 	if (exp & MII_EXPAND_REG1_RUDI_C)	/* receiving CONFIG */
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_5706_serdes_timer(struct bnx2 *bp)
 | |
| {
 | |
| 	int check_link = 1;
 | |
| 
 | |
| 	spin_lock(&bp->phy_lock);
 | |
| 	if (bp->serdes_an_pending) {
 | |
| 		bp->serdes_an_pending--;
 | |
| 		check_link = 0;
 | |
| 	} else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
 | |
| 		u32 bmcr;
 | |
| 
 | |
| 		bp->current_interval = BNX2_TIMER_INTERVAL;
 | |
| 
 | |
| 		bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
 | |
| 
 | |
| 		if (bmcr & BMCR_ANENABLE) {
 | |
| 			if (bnx2_5706_serdes_has_link(bp)) {
 | |
| 				bmcr &= ~BMCR_ANENABLE;
 | |
| 				bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
 | |
| 				bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
 | |
| 				bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
 | |
| 		 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
 | |
| 		u32 phy2;
 | |
| 
 | |
| 		bnx2_write_phy(bp, 0x17, 0x0f01);
 | |
| 		bnx2_read_phy(bp, 0x15, &phy2);
 | |
| 		if (phy2 & 0x20) {
 | |
| 			u32 bmcr;
 | |
| 
 | |
| 			bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
 | |
| 			bmcr |= BMCR_ANENABLE;
 | |
| 			bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
 | |
| 
 | |
| 			bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
 | |
| 		}
 | |
| 	} else
 | |
| 		bp->current_interval = BNX2_TIMER_INTERVAL;
 | |
| 
 | |
| 	if (check_link) {
 | |
| 		u32 val;
 | |
| 
 | |
| 		bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
 | |
| 		bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
 | |
| 		bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
 | |
| 
 | |
| 		if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
 | |
| 			if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
 | |
| 				bnx2_5706s_force_link_dn(bp, 1);
 | |
| 				bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
 | |
| 			} else
 | |
| 				bnx2_set_link(bp);
 | |
| 		} else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
 | |
| 			bnx2_set_link(bp);
 | |
| 	}
 | |
| 	spin_unlock(&bp->phy_lock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_5708_serdes_timer(struct bnx2 *bp)
 | |
| {
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
 | |
| 		return;
 | |
| 
 | |
| 	if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
 | |
| 		bp->serdes_an_pending = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&bp->phy_lock);
 | |
| 	if (bp->serdes_an_pending)
 | |
| 		bp->serdes_an_pending--;
 | |
| 	else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
 | |
| 		u32 bmcr;
 | |
| 
 | |
| 		bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
 | |
| 		if (bmcr & BMCR_ANENABLE) {
 | |
| 			bnx2_enable_forced_2g5(bp);
 | |
| 			bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
 | |
| 		} else {
 | |
| 			bnx2_disable_forced_2g5(bp);
 | |
| 			bp->serdes_an_pending = 2;
 | |
| 			bp->current_interval = BNX2_TIMER_INTERVAL;
 | |
| 		}
 | |
| 
 | |
| 	} else
 | |
| 		bp->current_interval = BNX2_TIMER_INTERVAL;
 | |
| 
 | |
| 	spin_unlock(&bp->phy_lock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_timer(unsigned long data)
 | |
| {
 | |
| 	struct bnx2 *bp = (struct bnx2 *) data;
 | |
| 
 | |
| 	if (!netif_running(bp->dev))
 | |
| 		return;
 | |
| 
 | |
| 	if (atomic_read(&bp->intr_sem) != 0)
 | |
| 		goto bnx2_restart_timer;
 | |
| 
 | |
| 	if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
 | |
| 	     BNX2_FLAG_USING_MSI)
 | |
| 		bnx2_chk_missed_msi(bp);
 | |
| 
 | |
| 	bnx2_send_heart_beat(bp);
 | |
| 
 | |
| 	bp->stats_blk->stat_FwRxDrop =
 | |
| 		bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
 | |
| 
 | |
| 	/* workaround occasional corrupted counters */
 | |
| 	if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
 | |
| 		REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
 | |
| 					    BNX2_HC_COMMAND_STATS_NOW);
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
 | |
| 		if (CHIP_NUM(bp) == CHIP_NUM_5706)
 | |
| 			bnx2_5706_serdes_timer(bp);
 | |
| 		else
 | |
| 			bnx2_5708_serdes_timer(bp);
 | |
| 	}
 | |
| 
 | |
| bnx2_restart_timer:
 | |
| 	mod_timer(&bp->timer, jiffies + bp->current_interval);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_request_irq(struct bnx2 *bp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct bnx2_irq *irq;
 | |
| 	int rc = 0, i;
 | |
| 
 | |
| 	if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
 | |
| 		flags = 0;
 | |
| 	else
 | |
| 		flags = IRQF_SHARED;
 | |
| 
 | |
| 	for (i = 0; i < bp->irq_nvecs; i++) {
 | |
| 		irq = &bp->irq_tbl[i];
 | |
| 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
 | |
| 				 &bp->bnx2_napi[i]);
 | |
| 		if (rc)
 | |
| 			break;
 | |
| 		irq->requested = 1;
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_free_irq(struct bnx2 *bp)
 | |
| {
 | |
| 	struct bnx2_irq *irq;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < bp->irq_nvecs; i++) {
 | |
| 		irq = &bp->irq_tbl[i];
 | |
| 		if (irq->requested)
 | |
| 			free_irq(irq->vector, &bp->bnx2_napi[i]);
 | |
| 		irq->requested = 0;
 | |
| 	}
 | |
| 	if (bp->flags & BNX2_FLAG_USING_MSI)
 | |
| 		pci_disable_msi(bp->pdev);
 | |
| 	else if (bp->flags & BNX2_FLAG_USING_MSIX)
 | |
| 		pci_disable_msix(bp->pdev);
 | |
| 
 | |
| 	bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
 | |
| {
 | |
| 	int i, rc;
 | |
| 	struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
 | |
| 	struct net_device *dev = bp->dev;
 | |
| 	const int len = sizeof(bp->irq_tbl[0].name);
 | |
| 
 | |
| 	bnx2_setup_msix_tbl(bp);
 | |
| 	REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
 | |
| 	REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
 | |
| 	REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
 | |
| 
 | |
| 	/*  Need to flush the previous three writes to ensure MSI-X
 | |
| 	 *  is setup properly */
 | |
| 	REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
 | |
| 
 | |
| 	for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
 | |
| 		msix_ent[i].entry = i;
 | |
| 		msix_ent[i].vector = 0;
 | |
| 	}
 | |
| 
 | |
| 	rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
 | |
| 	if (rc != 0)
 | |
| 		return;
 | |
| 
 | |
| 	bp->irq_nvecs = msix_vecs;
 | |
| 	bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
 | |
| 	for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
 | |
| 		bp->irq_tbl[i].vector = msix_ent[i].vector;
 | |
| 		snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
 | |
| 		bp->irq_tbl[i].handler = bnx2_msi_1shot;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
 | |
| {
 | |
| 	int cpus = num_online_cpus();
 | |
| 	int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
 | |
| 
 | |
| 	bp->irq_tbl[0].handler = bnx2_interrupt;
 | |
| 	strcpy(bp->irq_tbl[0].name, bp->dev->name);
 | |
| 	bp->irq_nvecs = 1;
 | |
| 	bp->irq_tbl[0].vector = bp->pdev->irq;
 | |
| 
 | |
| 	if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
 | |
| 		bnx2_enable_msix(bp, msix_vecs);
 | |
| 
 | |
| 	if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
 | |
| 	    !(bp->flags & BNX2_FLAG_USING_MSIX)) {
 | |
| 		if (pci_enable_msi(bp->pdev) == 0) {
 | |
| 			bp->flags |= BNX2_FLAG_USING_MSI;
 | |
| 			if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 				bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
 | |
| 				bp->irq_tbl[0].handler = bnx2_msi_1shot;
 | |
| 			} else
 | |
| 				bp->irq_tbl[0].handler = bnx2_msi;
 | |
| 
 | |
| 			bp->irq_tbl[0].vector = bp->pdev->irq;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
 | |
| 	bp->dev->real_num_tx_queues = bp->num_tx_rings;
 | |
| 
 | |
| 	bp->num_rx_rings = bp->irq_nvecs;
 | |
| }
 | |
| 
 | |
| /* Called with rtnl_lock */
 | |
| static int
 | |
| bnx2_open(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	int rc;
 | |
| 
 | |
| 	netif_carrier_off(dev);
 | |
| 
 | |
| 	bnx2_set_power_state(bp, PCI_D0);
 | |
| 	bnx2_disable_int(bp);
 | |
| 
 | |
| 	bnx2_setup_int_mode(bp, disable_msi);
 | |
| 	bnx2_napi_enable(bp);
 | |
| 	rc = bnx2_alloc_mem(bp);
 | |
| 	if (rc)
 | |
| 		goto open_err;
 | |
| 
 | |
| 	rc = bnx2_request_irq(bp);
 | |
| 	if (rc)
 | |
| 		goto open_err;
 | |
| 
 | |
| 	rc = bnx2_init_nic(bp, 1);
 | |
| 	if (rc)
 | |
| 		goto open_err;
 | |
| 
 | |
| 	mod_timer(&bp->timer, jiffies + bp->current_interval);
 | |
| 
 | |
| 	atomic_set(&bp->intr_sem, 0);
 | |
| 
 | |
| 	memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
 | |
| 
 | |
| 	bnx2_enable_int(bp);
 | |
| 
 | |
| 	if (bp->flags & BNX2_FLAG_USING_MSI) {
 | |
| 		/* Test MSI to make sure it is working
 | |
| 		 * If MSI test fails, go back to INTx mode
 | |
| 		 */
 | |
| 		if (bnx2_test_intr(bp) != 0) {
 | |
| 			netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
 | |
| 
 | |
| 			bnx2_disable_int(bp);
 | |
| 			bnx2_free_irq(bp);
 | |
| 
 | |
| 			bnx2_setup_int_mode(bp, 1);
 | |
| 
 | |
| 			rc = bnx2_init_nic(bp, 0);
 | |
| 
 | |
| 			if (!rc)
 | |
| 				rc = bnx2_request_irq(bp);
 | |
| 
 | |
| 			if (rc) {
 | |
| 				del_timer_sync(&bp->timer);
 | |
| 				goto open_err;
 | |
| 			}
 | |
| 			bnx2_enable_int(bp);
 | |
| 		}
 | |
| 	}
 | |
| 	if (bp->flags & BNX2_FLAG_USING_MSI)
 | |
| 		netdev_info(dev, "using MSI\n");
 | |
| 	else if (bp->flags & BNX2_FLAG_USING_MSIX)
 | |
| 		netdev_info(dev, "using MSIX\n");
 | |
| 
 | |
| 	netif_tx_start_all_queues(dev);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| open_err:
 | |
| 	bnx2_napi_disable(bp);
 | |
| 	bnx2_free_skbs(bp);
 | |
| 	bnx2_free_irq(bp);
 | |
| 	bnx2_free_mem(bp);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_reset_task(struct work_struct *work)
 | |
| {
 | |
| 	struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 	if (!netif_running(bp->dev)) {
 | |
| 		rtnl_unlock();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	bnx2_netif_stop(bp);
 | |
| 
 | |
| 	bnx2_init_nic(bp, 1);
 | |
| 
 | |
| 	atomic_set(&bp->intr_sem, 1);
 | |
| 	bnx2_netif_start(bp);
 | |
| 	rtnl_unlock();
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_dump_state(struct bnx2 *bp)
 | |
| {
 | |
| 	struct net_device *dev = bp->dev;
 | |
| 
 | |
| 	netdev_err(dev, "DEBUG: intr_sem[%x]\n", atomic_read(&bp->intr_sem));
 | |
| 	netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] RPM_MGMT_PKT_CTRL[%08x]\n",
 | |
| 		   REG_RD(bp, BNX2_EMAC_TX_STATUS),
 | |
| 		   REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
 | |
| 	netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
 | |
| 		   bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P0),
 | |
| 		   bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P1));
 | |
| 	netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
 | |
| 		   REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
 | |
| 	if (bp->flags & BNX2_FLAG_USING_MSIX)
 | |
| 		netdev_err(dev, "DEBUG: PBA[%08x]\n",
 | |
| 			   REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_tx_timeout(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	bnx2_dump_state(bp);
 | |
| 
 | |
| 	/* This allows the netif to be shutdown gracefully before resetting */
 | |
| 	schedule_work(&bp->reset_task);
 | |
| }
 | |
| 
 | |
| #ifdef BCM_VLAN
 | |
| /* Called with rtnl_lock */
 | |
| static void
 | |
| bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	if (netif_running(dev))
 | |
| 		bnx2_netif_stop(bp);
 | |
| 
 | |
| 	bp->vlgrp = vlgrp;
 | |
| 
 | |
| 	if (!netif_running(dev))
 | |
| 		return;
 | |
| 
 | |
| 	bnx2_set_rx_mode(dev);
 | |
| 	if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
 | |
| 		bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
 | |
| 
 | |
| 	bnx2_netif_start(bp);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Called with netif_tx_lock.
 | |
|  * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
 | |
|  * netif_wake_queue().
 | |
|  */
 | |
| static netdev_tx_t
 | |
| bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	dma_addr_t mapping;
 | |
| 	struct tx_bd *txbd;
 | |
| 	struct sw_tx_bd *tx_buf;
 | |
| 	u32 len, vlan_tag_flags, last_frag, mss;
 | |
| 	u16 prod, ring_prod;
 | |
| 	int i;
 | |
| 	struct bnx2_napi *bnapi;
 | |
| 	struct bnx2_tx_ring_info *txr;
 | |
| 	struct netdev_queue *txq;
 | |
| 
 | |
| 	/*  Determine which tx ring we will be placed on */
 | |
| 	i = skb_get_queue_mapping(skb);
 | |
| 	bnapi = &bp->bnx2_napi[i];
 | |
| 	txr = &bnapi->tx_ring;
 | |
| 	txq = netdev_get_tx_queue(dev, i);
 | |
| 
 | |
| 	if (unlikely(bnx2_tx_avail(bp, txr) <
 | |
| 	    (skb_shinfo(skb)->nr_frags + 1))) {
 | |
| 		netif_tx_stop_queue(txq);
 | |
| 		netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
 | |
| 
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 	len = skb_headlen(skb);
 | |
| 	prod = txr->tx_prod;
 | |
| 	ring_prod = TX_RING_IDX(prod);
 | |
| 
 | |
| 	vlan_tag_flags = 0;
 | |
| 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 | |
| 		vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
 | |
| 	}
 | |
| 
 | |
| #ifdef BCM_VLAN
 | |
| 	if (bp->vlgrp && vlan_tx_tag_present(skb)) {
 | |
| 		vlan_tag_flags |=
 | |
| 			(TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
 | |
| 	}
 | |
| #endif
 | |
| 	if ((mss = skb_shinfo(skb)->gso_size)) {
 | |
| 		u32 tcp_opt_len;
 | |
| 		struct iphdr *iph;
 | |
| 
 | |
| 		vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
 | |
| 
 | |
| 		tcp_opt_len = tcp_optlen(skb);
 | |
| 
 | |
| 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
 | |
| 			u32 tcp_off = skb_transport_offset(skb) -
 | |
| 				      sizeof(struct ipv6hdr) - ETH_HLEN;
 | |
| 
 | |
| 			vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
 | |
| 					  TX_BD_FLAGS_SW_FLAGS;
 | |
| 			if (likely(tcp_off == 0))
 | |
| 				vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
 | |
| 			else {
 | |
| 				tcp_off >>= 3;
 | |
| 				vlan_tag_flags |= ((tcp_off & 0x3) <<
 | |
| 						   TX_BD_FLAGS_TCP6_OFF0_SHL) |
 | |
| 						  ((tcp_off & 0x10) <<
 | |
| 						   TX_BD_FLAGS_TCP6_OFF4_SHL);
 | |
| 				mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
 | |
| 			}
 | |
| 		} else {
 | |
| 			iph = ip_hdr(skb);
 | |
| 			if (tcp_opt_len || (iph->ihl > 5)) {
 | |
| 				vlan_tag_flags |= ((iph->ihl - 5) +
 | |
| 						   (tcp_opt_len >> 2)) << 8;
 | |
| 			}
 | |
| 		}
 | |
| 	} else
 | |
| 		mss = 0;
 | |
| 
 | |
| 	mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
 | |
| 	if (pci_dma_mapping_error(bp->pdev, mapping)) {
 | |
| 		dev_kfree_skb(skb);
 | |
| 		return NETDEV_TX_OK;
 | |
| 	}
 | |
| 
 | |
| 	tx_buf = &txr->tx_buf_ring[ring_prod];
 | |
| 	tx_buf->skb = skb;
 | |
| 	pci_unmap_addr_set(tx_buf, mapping, mapping);
 | |
| 
 | |
| 	txbd = &txr->tx_desc_ring[ring_prod];
 | |
| 
 | |
| 	txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
 | |
| 	txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
 | |
| 	txbd->tx_bd_mss_nbytes = len | (mss << 16);
 | |
| 	txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
 | |
| 
 | |
| 	last_frag = skb_shinfo(skb)->nr_frags;
 | |
| 	tx_buf->nr_frags = last_frag;
 | |
| 	tx_buf->is_gso = skb_is_gso(skb);
 | |
| 
 | |
| 	for (i = 0; i < last_frag; i++) {
 | |
| 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 | |
| 
 | |
| 		prod = NEXT_TX_BD(prod);
 | |
| 		ring_prod = TX_RING_IDX(prod);
 | |
| 		txbd = &txr->tx_desc_ring[ring_prod];
 | |
| 
 | |
| 		len = frag->size;
 | |
| 		mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
 | |
| 			len, PCI_DMA_TODEVICE);
 | |
| 		if (pci_dma_mapping_error(bp->pdev, mapping))
 | |
| 			goto dma_error;
 | |
| 		pci_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
 | |
| 				   mapping);
 | |
| 
 | |
| 		txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
 | |
| 		txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
 | |
| 		txbd->tx_bd_mss_nbytes = len | (mss << 16);
 | |
| 		txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
 | |
| 
 | |
| 	}
 | |
| 	txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
 | |
| 
 | |
| 	prod = NEXT_TX_BD(prod);
 | |
| 	txr->tx_prod_bseq += skb->len;
 | |
| 
 | |
| 	REG_WR16(bp, txr->tx_bidx_addr, prod);
 | |
| 	REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
 | |
| 
 | |
| 	mmiowb();
 | |
| 
 | |
| 	txr->tx_prod = prod;
 | |
| 
 | |
| 	if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
 | |
| 		netif_tx_stop_queue(txq);
 | |
| 		if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
 | |
| 			netif_tx_wake_queue(txq);
 | |
| 	}
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| dma_error:
 | |
| 	/* save value of frag that failed */
 | |
| 	last_frag = i;
 | |
| 
 | |
| 	/* start back at beginning and unmap skb */
 | |
| 	prod = txr->tx_prod;
 | |
| 	ring_prod = TX_RING_IDX(prod);
 | |
| 	tx_buf = &txr->tx_buf_ring[ring_prod];
 | |
| 	tx_buf->skb = NULL;
 | |
| 	pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
 | |
| 			 skb_headlen(skb), PCI_DMA_TODEVICE);
 | |
| 
 | |
| 	/* unmap remaining mapped pages */
 | |
| 	for (i = 0; i < last_frag; i++) {
 | |
| 		prod = NEXT_TX_BD(prod);
 | |
| 		ring_prod = TX_RING_IDX(prod);
 | |
| 		tx_buf = &txr->tx_buf_ring[ring_prod];
 | |
| 		pci_unmap_page(bp->pdev, pci_unmap_addr(tx_buf, mapping),
 | |
| 			       skb_shinfo(skb)->frags[i].size,
 | |
| 			       PCI_DMA_TODEVICE);
 | |
| 	}
 | |
| 
 | |
| 	dev_kfree_skb(skb);
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| /* Called with rtnl_lock */
 | |
| static int
 | |
| bnx2_close(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	cancel_work_sync(&bp->reset_task);
 | |
| 
 | |
| 	bnx2_disable_int_sync(bp);
 | |
| 	bnx2_napi_disable(bp);
 | |
| 	del_timer_sync(&bp->timer);
 | |
| 	bnx2_shutdown_chip(bp);
 | |
| 	bnx2_free_irq(bp);
 | |
| 	bnx2_free_skbs(bp);
 | |
| 	bnx2_free_mem(bp);
 | |
| 	bp->link_up = 0;
 | |
| 	netif_carrier_off(bp->dev);
 | |
| 	bnx2_set_power_state(bp, PCI_D3hot);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_save_stats(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 *hw_stats = (u32 *) bp->stats_blk;
 | |
| 	u32 *temp_stats = (u32 *) bp->temp_stats_blk;
 | |
| 	int i;
 | |
| 
 | |
| 	/* The 1st 10 counters are 64-bit counters */
 | |
| 	for (i = 0; i < 20; i += 2) {
 | |
| 		u32 hi;
 | |
| 		u64 lo;
 | |
| 
 | |
| 		hi = temp_stats[i] + hw_stats[i];
 | |
| 		lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
 | |
| 		if (lo > 0xffffffff)
 | |
| 			hi++;
 | |
| 		temp_stats[i] = hi;
 | |
| 		temp_stats[i + 1] = lo & 0xffffffff;
 | |
| 	}
 | |
| 
 | |
| 	for ( ; i < sizeof(struct statistics_block) / 4; i++)
 | |
| 		temp_stats[i] += hw_stats[i];
 | |
| }
 | |
| 
 | |
| #define GET_64BIT_NET_STATS64(ctr)				\
 | |
| 	(unsigned long) ((unsigned long) (ctr##_hi) << 32) +	\
 | |
| 	(unsigned long) (ctr##_lo)
 | |
| 
 | |
| #define GET_64BIT_NET_STATS32(ctr)				\
 | |
| 	(ctr##_lo)
 | |
| 
 | |
| #if (BITS_PER_LONG == 64)
 | |
| #define GET_64BIT_NET_STATS(ctr)				\
 | |
| 	GET_64BIT_NET_STATS64(bp->stats_blk->ctr) +		\
 | |
| 	GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
 | |
| #else
 | |
| #define GET_64BIT_NET_STATS(ctr)				\
 | |
| 	GET_64BIT_NET_STATS32(bp->stats_blk->ctr) +		\
 | |
| 	GET_64BIT_NET_STATS32(bp->temp_stats_blk->ctr)
 | |
| #endif
 | |
| 
 | |
| #define GET_32BIT_NET_STATS(ctr)				\
 | |
| 	(unsigned long) (bp->stats_blk->ctr +			\
 | |
| 			 bp->temp_stats_blk->ctr)
 | |
| 
 | |
| static struct net_device_stats *
 | |
| bnx2_get_stats(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	struct net_device_stats *net_stats = &dev->stats;
 | |
| 
 | |
| 	if (bp->stats_blk == NULL) {
 | |
| 		return net_stats;
 | |
| 	}
 | |
| 	net_stats->rx_packets =
 | |
| 		GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
 | |
| 		GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
 | |
| 		GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
 | |
| 
 | |
| 	net_stats->tx_packets =
 | |
| 		GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
 | |
| 		GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
 | |
| 		GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
 | |
| 
 | |
| 	net_stats->rx_bytes =
 | |
| 		GET_64BIT_NET_STATS(stat_IfHCInOctets);
 | |
| 
 | |
| 	net_stats->tx_bytes =
 | |
| 		GET_64BIT_NET_STATS(stat_IfHCOutOctets);
 | |
| 
 | |
| 	net_stats->multicast =
 | |
| 		GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts);
 | |
| 
 | |
| 	net_stats->collisions =
 | |
| 		GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
 | |
| 
 | |
| 	net_stats->rx_length_errors =
 | |
| 		GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
 | |
| 		GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
 | |
| 
 | |
| 	net_stats->rx_over_errors =
 | |
| 		GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
 | |
| 		GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
 | |
| 
 | |
| 	net_stats->rx_frame_errors =
 | |
| 		GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
 | |
| 
 | |
| 	net_stats->rx_crc_errors =
 | |
| 		GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
 | |
| 
 | |
| 	net_stats->rx_errors = net_stats->rx_length_errors +
 | |
| 		net_stats->rx_over_errors + net_stats->rx_frame_errors +
 | |
| 		net_stats->rx_crc_errors;
 | |
| 
 | |
| 	net_stats->tx_aborted_errors =
 | |
| 		GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
 | |
| 		GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
 | |
| 
 | |
| 	if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
 | |
| 	    (CHIP_ID(bp) == CHIP_ID_5708_A0))
 | |
| 		net_stats->tx_carrier_errors = 0;
 | |
| 	else {
 | |
| 		net_stats->tx_carrier_errors =
 | |
| 			GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
 | |
| 	}
 | |
| 
 | |
| 	net_stats->tx_errors =
 | |
| 		GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
 | |
| 		net_stats->tx_aborted_errors +
 | |
| 		net_stats->tx_carrier_errors;
 | |
| 
 | |
| 	net_stats->rx_missed_errors =
 | |
| 		GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
 | |
| 		GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
 | |
| 		GET_32BIT_NET_STATS(stat_FwRxDrop);
 | |
| 
 | |
| 	return net_stats;
 | |
| }
 | |
| 
 | |
| /* All ethtool functions called with rtnl_lock */
 | |
| 
 | |
| static int
 | |
| bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	int support_serdes = 0, support_copper = 0;
 | |
| 
 | |
| 	cmd->supported = SUPPORTED_Autoneg;
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
 | |
| 		support_serdes = 1;
 | |
| 		support_copper = 1;
 | |
| 	} else if (bp->phy_port == PORT_FIBRE)
 | |
| 		support_serdes = 1;
 | |
| 	else
 | |
| 		support_copper = 1;
 | |
| 
 | |
| 	if (support_serdes) {
 | |
| 		cmd->supported |= SUPPORTED_1000baseT_Full |
 | |
| 			SUPPORTED_FIBRE;
 | |
| 		if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
 | |
| 			cmd->supported |= SUPPORTED_2500baseX_Full;
 | |
| 
 | |
| 	}
 | |
| 	if (support_copper) {
 | |
| 		cmd->supported |= SUPPORTED_10baseT_Half |
 | |
| 			SUPPORTED_10baseT_Full |
 | |
| 			SUPPORTED_100baseT_Half |
 | |
| 			SUPPORTED_100baseT_Full |
 | |
| 			SUPPORTED_1000baseT_Full |
 | |
| 			SUPPORTED_TP;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_bh(&bp->phy_lock);
 | |
| 	cmd->port = bp->phy_port;
 | |
| 	cmd->advertising = bp->advertising;
 | |
| 
 | |
| 	if (bp->autoneg & AUTONEG_SPEED) {
 | |
| 		cmd->autoneg = AUTONEG_ENABLE;
 | |
| 	}
 | |
| 	else {
 | |
| 		cmd->autoneg = AUTONEG_DISABLE;
 | |
| 	}
 | |
| 
 | |
| 	if (netif_carrier_ok(dev)) {
 | |
| 		cmd->speed = bp->line_speed;
 | |
| 		cmd->duplex = bp->duplex;
 | |
| 	}
 | |
| 	else {
 | |
| 		cmd->speed = -1;
 | |
| 		cmd->duplex = -1;
 | |
| 	}
 | |
| 	spin_unlock_bh(&bp->phy_lock);
 | |
| 
 | |
| 	cmd->transceiver = XCVR_INTERNAL;
 | |
| 	cmd->phy_address = bp->phy_addr;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	u8 autoneg = bp->autoneg;
 | |
| 	u8 req_duplex = bp->req_duplex;
 | |
| 	u16 req_line_speed = bp->req_line_speed;
 | |
| 	u32 advertising = bp->advertising;
 | |
| 	int err = -EINVAL;
 | |
| 
 | |
| 	spin_lock_bh(&bp->phy_lock);
 | |
| 
 | |
| 	if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
 | |
| 		goto err_out_unlock;
 | |
| 
 | |
| 	if (cmd->port != bp->phy_port &&
 | |
| 	    !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
 | |
| 		goto err_out_unlock;
 | |
| 
 | |
| 	/* If device is down, we can store the settings only if the user
 | |
| 	 * is setting the currently active port.
 | |
| 	 */
 | |
| 	if (!netif_running(dev) && cmd->port != bp->phy_port)
 | |
| 		goto err_out_unlock;
 | |
| 
 | |
| 	if (cmd->autoneg == AUTONEG_ENABLE) {
 | |
| 		autoneg |= AUTONEG_SPEED;
 | |
| 
 | |
| 		advertising = cmd->advertising;
 | |
| 		if (cmd->port == PORT_TP) {
 | |
| 			advertising &= ETHTOOL_ALL_COPPER_SPEED;
 | |
| 			if (!advertising)
 | |
| 				advertising = ETHTOOL_ALL_COPPER_SPEED;
 | |
| 		} else {
 | |
| 			advertising &= ETHTOOL_ALL_FIBRE_SPEED;
 | |
| 			if (!advertising)
 | |
| 				advertising = ETHTOOL_ALL_FIBRE_SPEED;
 | |
| 		}
 | |
| 		advertising |= ADVERTISED_Autoneg;
 | |
| 	}
 | |
| 	else {
 | |
| 		if (cmd->port == PORT_FIBRE) {
 | |
| 			if ((cmd->speed != SPEED_1000 &&
 | |
| 			     cmd->speed != SPEED_2500) ||
 | |
| 			    (cmd->duplex != DUPLEX_FULL))
 | |
| 				goto err_out_unlock;
 | |
| 
 | |
| 			if (cmd->speed == SPEED_2500 &&
 | |
| 			    !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
 | |
| 				goto err_out_unlock;
 | |
| 		}
 | |
| 		else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
 | |
| 			goto err_out_unlock;
 | |
| 
 | |
| 		autoneg &= ~AUTONEG_SPEED;
 | |
| 		req_line_speed = cmd->speed;
 | |
| 		req_duplex = cmd->duplex;
 | |
| 		advertising = 0;
 | |
| 	}
 | |
| 
 | |
| 	bp->autoneg = autoneg;
 | |
| 	bp->advertising = advertising;
 | |
| 	bp->req_line_speed = req_line_speed;
 | |
| 	bp->req_duplex = req_duplex;
 | |
| 
 | |
| 	err = 0;
 | |
| 	/* If device is down, the new settings will be picked up when it is
 | |
| 	 * brought up.
 | |
| 	 */
 | |
| 	if (netif_running(dev))
 | |
| 		err = bnx2_setup_phy(bp, cmd->port);
 | |
| 
 | |
| err_out_unlock:
 | |
| 	spin_unlock_bh(&bp->phy_lock);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	strcpy(info->driver, DRV_MODULE_NAME);
 | |
| 	strcpy(info->version, DRV_MODULE_VERSION);
 | |
| 	strcpy(info->bus_info, pci_name(bp->pdev));
 | |
| 	strcpy(info->fw_version, bp->fw_version);
 | |
| }
 | |
| 
 | |
| #define BNX2_REGDUMP_LEN		(32 * 1024)
 | |
| 
 | |
| static int
 | |
| bnx2_get_regs_len(struct net_device *dev)
 | |
| {
 | |
| 	return BNX2_REGDUMP_LEN;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
 | |
| {
 | |
| 	u32 *p = _p, i, offset;
 | |
| 	u8 *orig_p = _p;
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
 | |
| 				 0x0800, 0x0880, 0x0c00, 0x0c10,
 | |
| 				 0x0c30, 0x0d08, 0x1000, 0x101c,
 | |
| 				 0x1040, 0x1048, 0x1080, 0x10a4,
 | |
| 				 0x1400, 0x1490, 0x1498, 0x14f0,
 | |
| 				 0x1500, 0x155c, 0x1580, 0x15dc,
 | |
| 				 0x1600, 0x1658, 0x1680, 0x16d8,
 | |
| 				 0x1800, 0x1820, 0x1840, 0x1854,
 | |
| 				 0x1880, 0x1894, 0x1900, 0x1984,
 | |
| 				 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
 | |
| 				 0x1c80, 0x1c94, 0x1d00, 0x1d84,
 | |
| 				 0x2000, 0x2030, 0x23c0, 0x2400,
 | |
| 				 0x2800, 0x2820, 0x2830, 0x2850,
 | |
| 				 0x2b40, 0x2c10, 0x2fc0, 0x3058,
 | |
| 				 0x3c00, 0x3c94, 0x4000, 0x4010,
 | |
| 				 0x4080, 0x4090, 0x43c0, 0x4458,
 | |
| 				 0x4c00, 0x4c18, 0x4c40, 0x4c54,
 | |
| 				 0x4fc0, 0x5010, 0x53c0, 0x5444,
 | |
| 				 0x5c00, 0x5c18, 0x5c80, 0x5c90,
 | |
| 				 0x5fc0, 0x6000, 0x6400, 0x6428,
 | |
| 				 0x6800, 0x6848, 0x684c, 0x6860,
 | |
| 				 0x6888, 0x6910, 0x8000 };
 | |
| 
 | |
| 	regs->version = 0;
 | |
| 
 | |
| 	memset(p, 0, BNX2_REGDUMP_LEN);
 | |
| 
 | |
| 	if (!netif_running(bp->dev))
 | |
| 		return;
 | |
| 
 | |
| 	i = 0;
 | |
| 	offset = reg_boundaries[0];
 | |
| 	p += offset;
 | |
| 	while (offset < BNX2_REGDUMP_LEN) {
 | |
| 		*p++ = REG_RD(bp, offset);
 | |
| 		offset += 4;
 | |
| 		if (offset == reg_boundaries[i + 1]) {
 | |
| 			offset = reg_boundaries[i + 2];
 | |
| 			p = (u32 *) (orig_p + offset);
 | |
| 			i += 2;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	if (bp->flags & BNX2_FLAG_NO_WOL) {
 | |
| 		wol->supported = 0;
 | |
| 		wol->wolopts = 0;
 | |
| 	}
 | |
| 	else {
 | |
| 		wol->supported = WAKE_MAGIC;
 | |
| 		if (bp->wol)
 | |
| 			wol->wolopts = WAKE_MAGIC;
 | |
| 		else
 | |
| 			wol->wolopts = 0;
 | |
| 	}
 | |
| 	memset(&wol->sopass, 0, sizeof(wol->sopass));
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	if (wol->wolopts & ~WAKE_MAGIC)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (wol->wolopts & WAKE_MAGIC) {
 | |
| 		if (bp->flags & BNX2_FLAG_NO_WOL)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		bp->wol = 1;
 | |
| 	}
 | |
| 	else {
 | |
| 		bp->wol = 0;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_nway_reset(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	u32 bmcr;
 | |
| 
 | |
| 	if (!netif_running(dev))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	if (!(bp->autoneg & AUTONEG_SPEED)) {
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_bh(&bp->phy_lock);
 | |
| 
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
 | |
| 		int rc;
 | |
| 
 | |
| 		rc = bnx2_setup_remote_phy(bp, bp->phy_port);
 | |
| 		spin_unlock_bh(&bp->phy_lock);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	/* Force a link down visible on the other side */
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
 | |
| 		bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
 | |
| 		spin_unlock_bh(&bp->phy_lock);
 | |
| 
 | |
| 		msleep(20);
 | |
| 
 | |
| 		spin_lock_bh(&bp->phy_lock);
 | |
| 
 | |
| 		bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
 | |
| 		bp->serdes_an_pending = 1;
 | |
| 		mod_timer(&bp->timer, jiffies + bp->current_interval);
 | |
| 	}
 | |
| 
 | |
| 	bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
 | |
| 	bmcr &= ~BMCR_LOOPBACK;
 | |
| 	bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
 | |
| 
 | |
| 	spin_unlock_bh(&bp->phy_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32
 | |
| bnx2_get_link(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	return bp->link_up;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_get_eeprom_len(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	if (bp->flash_info == NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	return (int) bp->flash_size;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 | |
| 		u8 *eebuf)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!netif_running(dev))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	/* parameters already validated in ethtool_get_eeprom */
 | |
| 
 | |
| 	rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 | |
| 		u8 *eebuf)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!netif_running(dev))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	/* parameters already validated in ethtool_set_eeprom */
 | |
| 
 | |
| 	rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	memset(coal, 0, sizeof(struct ethtool_coalesce));
 | |
| 
 | |
| 	coal->rx_coalesce_usecs = bp->rx_ticks;
 | |
| 	coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
 | |
| 	coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
 | |
| 	coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
 | |
| 
 | |
| 	coal->tx_coalesce_usecs = bp->tx_ticks;
 | |
| 	coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
 | |
| 	coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
 | |
| 	coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
 | |
| 
 | |
| 	coal->stats_block_coalesce_usecs = bp->stats_ticks;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
 | |
| 	if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
 | |
| 
 | |
| 	bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
 | |
| 	if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
 | |
| 
 | |
| 	bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
 | |
| 	if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
 | |
| 
 | |
| 	bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
 | |
| 	if (bp->rx_quick_cons_trip_int > 0xff)
 | |
| 		bp->rx_quick_cons_trip_int = 0xff;
 | |
| 
 | |
| 	bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
 | |
| 	if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
 | |
| 
 | |
| 	bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
 | |
| 	if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
 | |
| 
 | |
| 	bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
 | |
| 	if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
 | |
| 
 | |
| 	bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
 | |
| 	if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
 | |
| 		0xff;
 | |
| 
 | |
| 	bp->stats_ticks = coal->stats_block_coalesce_usecs;
 | |
| 	if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
 | |
| 		if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
 | |
| 			bp->stats_ticks = USEC_PER_SEC;
 | |
| 	}
 | |
| 	if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
 | |
| 		bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
 | |
| 	bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
 | |
| 
 | |
| 	if (netif_running(bp->dev)) {
 | |
| 		bnx2_netif_stop(bp);
 | |
| 		bnx2_init_nic(bp, 0);
 | |
| 		bnx2_netif_start(bp);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
 | |
| 	ering->rx_mini_max_pending = 0;
 | |
| 	ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
 | |
| 
 | |
| 	ering->rx_pending = bp->rx_ring_size;
 | |
| 	ering->rx_mini_pending = 0;
 | |
| 	ering->rx_jumbo_pending = bp->rx_pg_ring_size;
 | |
| 
 | |
| 	ering->tx_max_pending = MAX_TX_DESC_CNT;
 | |
| 	ering->tx_pending = bp->tx_ring_size;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
 | |
| {
 | |
| 	if (netif_running(bp->dev)) {
 | |
| 		/* Reset will erase chipset stats; save them */
 | |
| 		bnx2_save_stats(bp);
 | |
| 
 | |
| 		bnx2_netif_stop(bp);
 | |
| 		bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
 | |
| 		bnx2_free_skbs(bp);
 | |
| 		bnx2_free_mem(bp);
 | |
| 	}
 | |
| 
 | |
| 	bnx2_set_rx_ring_size(bp, rx);
 | |
| 	bp->tx_ring_size = tx;
 | |
| 
 | |
| 	if (netif_running(bp->dev)) {
 | |
| 		int rc;
 | |
| 
 | |
| 		rc = bnx2_alloc_mem(bp);
 | |
| 		if (!rc)
 | |
| 			rc = bnx2_init_nic(bp, 0);
 | |
| 
 | |
| 		if (rc) {
 | |
| 			bnx2_napi_enable(bp);
 | |
| 			dev_close(bp->dev);
 | |
| 			return rc;
 | |
| 		}
 | |
| #ifdef BCM_CNIC
 | |
| 		mutex_lock(&bp->cnic_lock);
 | |
| 		/* Let cnic know about the new status block. */
 | |
| 		if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
 | |
| 			bnx2_setup_cnic_irq_info(bp);
 | |
| 		mutex_unlock(&bp->cnic_lock);
 | |
| #endif
 | |
| 		bnx2_netif_start(bp);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	int rc;
 | |
| 
 | |
| 	if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
 | |
| 		(ering->tx_pending > MAX_TX_DESC_CNT) ||
 | |
| 		(ering->tx_pending <= MAX_SKB_FRAGS)) {
 | |
| 
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
 | |
| 	epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
 | |
| 	epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	bp->req_flow_ctrl = 0;
 | |
| 	if (epause->rx_pause)
 | |
| 		bp->req_flow_ctrl |= FLOW_CTRL_RX;
 | |
| 	if (epause->tx_pause)
 | |
| 		bp->req_flow_ctrl |= FLOW_CTRL_TX;
 | |
| 
 | |
| 	if (epause->autoneg) {
 | |
| 		bp->autoneg |= AUTONEG_FLOW_CTRL;
 | |
| 	}
 | |
| 	else {
 | |
| 		bp->autoneg &= ~AUTONEG_FLOW_CTRL;
 | |
| 	}
 | |
| 
 | |
| 	if (netif_running(dev)) {
 | |
| 		spin_lock_bh(&bp->phy_lock);
 | |
| 		bnx2_setup_phy(bp, bp->phy_port);
 | |
| 		spin_unlock_bh(&bp->phy_lock);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32
 | |
| bnx2_get_rx_csum(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	return bp->rx_csum;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_set_rx_csum(struct net_device *dev, u32 data)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	bp->rx_csum = data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_set_tso(struct net_device *dev, u32 data)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	if (data) {
 | |
| 		dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
 | |
| 		if (CHIP_NUM(bp) == CHIP_NUM_5709)
 | |
| 			dev->features |= NETIF_F_TSO6;
 | |
| 	} else
 | |
| 		dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
 | |
| 				   NETIF_F_TSO_ECN);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct {
 | |
| 	char string[ETH_GSTRING_LEN];
 | |
| } bnx2_stats_str_arr[] = {
 | |
| 	{ "rx_bytes" },
 | |
| 	{ "rx_error_bytes" },
 | |
| 	{ "tx_bytes" },
 | |
| 	{ "tx_error_bytes" },
 | |
| 	{ "rx_ucast_packets" },
 | |
| 	{ "rx_mcast_packets" },
 | |
| 	{ "rx_bcast_packets" },
 | |
| 	{ "tx_ucast_packets" },
 | |
| 	{ "tx_mcast_packets" },
 | |
| 	{ "tx_bcast_packets" },
 | |
| 	{ "tx_mac_errors" },
 | |
| 	{ "tx_carrier_errors" },
 | |
| 	{ "rx_crc_errors" },
 | |
| 	{ "rx_align_errors" },
 | |
| 	{ "tx_single_collisions" },
 | |
| 	{ "tx_multi_collisions" },
 | |
| 	{ "tx_deferred" },
 | |
| 	{ "tx_excess_collisions" },
 | |
| 	{ "tx_late_collisions" },
 | |
| 	{ "tx_total_collisions" },
 | |
| 	{ "rx_fragments" },
 | |
| 	{ "rx_jabbers" },
 | |
| 	{ "rx_undersize_packets" },
 | |
| 	{ "rx_oversize_packets" },
 | |
| 	{ "rx_64_byte_packets" },
 | |
| 	{ "rx_65_to_127_byte_packets" },
 | |
| 	{ "rx_128_to_255_byte_packets" },
 | |
| 	{ "rx_256_to_511_byte_packets" },
 | |
| 	{ "rx_512_to_1023_byte_packets" },
 | |
| 	{ "rx_1024_to_1522_byte_packets" },
 | |
| 	{ "rx_1523_to_9022_byte_packets" },
 | |
| 	{ "tx_64_byte_packets" },
 | |
| 	{ "tx_65_to_127_byte_packets" },
 | |
| 	{ "tx_128_to_255_byte_packets" },
 | |
| 	{ "tx_256_to_511_byte_packets" },
 | |
| 	{ "tx_512_to_1023_byte_packets" },
 | |
| 	{ "tx_1024_to_1522_byte_packets" },
 | |
| 	{ "tx_1523_to_9022_byte_packets" },
 | |
| 	{ "rx_xon_frames" },
 | |
| 	{ "rx_xoff_frames" },
 | |
| 	{ "tx_xon_frames" },
 | |
| 	{ "tx_xoff_frames" },
 | |
| 	{ "rx_mac_ctrl_frames" },
 | |
| 	{ "rx_filtered_packets" },
 | |
| 	{ "rx_ftq_discards" },
 | |
| 	{ "rx_discards" },
 | |
| 	{ "rx_fw_discards" },
 | |
| };
 | |
| 
 | |
| #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
 | |
| 			sizeof(bnx2_stats_str_arr[0]))
 | |
| 
 | |
| #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
 | |
| 
 | |
| static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
 | |
|     STATS_OFFSET32(stat_IfHCInOctets_hi),
 | |
|     STATS_OFFSET32(stat_IfHCInBadOctets_hi),
 | |
|     STATS_OFFSET32(stat_IfHCOutOctets_hi),
 | |
|     STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
 | |
|     STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
 | |
|     STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
 | |
|     STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
 | |
|     STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
 | |
|     STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
 | |
|     STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
 | |
|     STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
 | |
|     STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
 | |
|     STATS_OFFSET32(stat_Dot3StatsFCSErrors),
 | |
|     STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
 | |
|     STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
 | |
|     STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
 | |
|     STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
 | |
|     STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
 | |
|     STATS_OFFSET32(stat_Dot3StatsLateCollisions),
 | |
|     STATS_OFFSET32(stat_EtherStatsCollisions),
 | |
|     STATS_OFFSET32(stat_EtherStatsFragments),
 | |
|     STATS_OFFSET32(stat_EtherStatsJabbers),
 | |
|     STATS_OFFSET32(stat_EtherStatsUndersizePkts),
 | |
|     STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
 | |
|     STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
 | |
|     STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
 | |
|     STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
 | |
|     STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
 | |
|     STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
 | |
|     STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
 | |
|     STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
 | |
|     STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
 | |
|     STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
 | |
|     STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
 | |
|     STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
 | |
|     STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
 | |
|     STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
 | |
|     STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
 | |
|     STATS_OFFSET32(stat_XonPauseFramesReceived),
 | |
|     STATS_OFFSET32(stat_XoffPauseFramesReceived),
 | |
|     STATS_OFFSET32(stat_OutXonSent),
 | |
|     STATS_OFFSET32(stat_OutXoffSent),
 | |
|     STATS_OFFSET32(stat_MacControlFramesReceived),
 | |
|     STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
 | |
|     STATS_OFFSET32(stat_IfInFTQDiscards),
 | |
|     STATS_OFFSET32(stat_IfInMBUFDiscards),
 | |
|     STATS_OFFSET32(stat_FwRxDrop),
 | |
| };
 | |
| 
 | |
| /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
 | |
|  * skipped because of errata.
 | |
|  */
 | |
| static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
 | |
| 	8,0,8,8,8,8,8,8,8,8,
 | |
| 	4,0,4,4,4,4,4,4,4,4,
 | |
| 	4,4,4,4,4,4,4,4,4,4,
 | |
| 	4,4,4,4,4,4,4,4,4,4,
 | |
| 	4,4,4,4,4,4,4,
 | |
| };
 | |
| 
 | |
| static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
 | |
| 	8,0,8,8,8,8,8,8,8,8,
 | |
| 	4,4,4,4,4,4,4,4,4,4,
 | |
| 	4,4,4,4,4,4,4,4,4,4,
 | |
| 	4,4,4,4,4,4,4,4,4,4,
 | |
| 	4,4,4,4,4,4,4,
 | |
| };
 | |
| 
 | |
| #define BNX2_NUM_TESTS 6
 | |
| 
 | |
| static struct {
 | |
| 	char string[ETH_GSTRING_LEN];
 | |
| } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
 | |
| 	{ "register_test (offline)" },
 | |
| 	{ "memory_test (offline)" },
 | |
| 	{ "loopback_test (offline)" },
 | |
| 	{ "nvram_test (online)" },
 | |
| 	{ "interrupt_test (online)" },
 | |
| 	{ "link_test (online)" },
 | |
| };
 | |
| 
 | |
| static int
 | |
| bnx2_get_sset_count(struct net_device *dev, int sset)
 | |
| {
 | |
| 	switch (sset) {
 | |
| 	case ETH_SS_TEST:
 | |
| 		return BNX2_NUM_TESTS;
 | |
| 	case ETH_SS_STATS:
 | |
| 		return BNX2_NUM_STATS;
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	bnx2_set_power_state(bp, PCI_D0);
 | |
| 
 | |
| 	memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
 | |
| 	if (etest->flags & ETH_TEST_FL_OFFLINE) {
 | |
| 		int i;
 | |
| 
 | |
| 		bnx2_netif_stop(bp);
 | |
| 		bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
 | |
| 		bnx2_free_skbs(bp);
 | |
| 
 | |
| 		if (bnx2_test_registers(bp) != 0) {
 | |
| 			buf[0] = 1;
 | |
| 			etest->flags |= ETH_TEST_FL_FAILED;
 | |
| 		}
 | |
| 		if (bnx2_test_memory(bp) != 0) {
 | |
| 			buf[1] = 1;
 | |
| 			etest->flags |= ETH_TEST_FL_FAILED;
 | |
| 		}
 | |
| 		if ((buf[2] = bnx2_test_loopback(bp)) != 0)
 | |
| 			etest->flags |= ETH_TEST_FL_FAILED;
 | |
| 
 | |
| 		if (!netif_running(bp->dev))
 | |
| 			bnx2_shutdown_chip(bp);
 | |
| 		else {
 | |
| 			bnx2_init_nic(bp, 1);
 | |
| 			bnx2_netif_start(bp);
 | |
| 		}
 | |
| 
 | |
| 		/* wait for link up */
 | |
| 		for (i = 0; i < 7; i++) {
 | |
| 			if (bp->link_up)
 | |
| 				break;
 | |
| 			msleep_interruptible(1000);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (bnx2_test_nvram(bp) != 0) {
 | |
| 		buf[3] = 1;
 | |
| 		etest->flags |= ETH_TEST_FL_FAILED;
 | |
| 	}
 | |
| 	if (bnx2_test_intr(bp) != 0) {
 | |
| 		buf[4] = 1;
 | |
| 		etest->flags |= ETH_TEST_FL_FAILED;
 | |
| 	}
 | |
| 
 | |
| 	if (bnx2_test_link(bp) != 0) {
 | |
| 		buf[5] = 1;
 | |
| 		etest->flags |= ETH_TEST_FL_FAILED;
 | |
| 
 | |
| 	}
 | |
| 	if (!netif_running(bp->dev))
 | |
| 		bnx2_set_power_state(bp, PCI_D3hot);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
 | |
| {
 | |
| 	switch (stringset) {
 | |
| 	case ETH_SS_STATS:
 | |
| 		memcpy(buf, bnx2_stats_str_arr,
 | |
| 			sizeof(bnx2_stats_str_arr));
 | |
| 		break;
 | |
| 	case ETH_SS_TEST:
 | |
| 		memcpy(buf, bnx2_tests_str_arr,
 | |
| 			sizeof(bnx2_tests_str_arr));
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| bnx2_get_ethtool_stats(struct net_device *dev,
 | |
| 		struct ethtool_stats *stats, u64 *buf)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	int i;
 | |
| 	u32 *hw_stats = (u32 *) bp->stats_blk;
 | |
| 	u32 *temp_stats = (u32 *) bp->temp_stats_blk;
 | |
| 	u8 *stats_len_arr = NULL;
 | |
| 
 | |
| 	if (hw_stats == NULL) {
 | |
| 		memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
 | |
| 	    (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
 | |
| 	    (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
 | |
| 	    (CHIP_ID(bp) == CHIP_ID_5708_A0))
 | |
| 		stats_len_arr = bnx2_5706_stats_len_arr;
 | |
| 	else
 | |
| 		stats_len_arr = bnx2_5708_stats_len_arr;
 | |
| 
 | |
| 	for (i = 0; i < BNX2_NUM_STATS; i++) {
 | |
| 		unsigned long offset;
 | |
| 
 | |
| 		if (stats_len_arr[i] == 0) {
 | |
| 			/* skip this counter */
 | |
| 			buf[i] = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		offset = bnx2_stats_offset_arr[i];
 | |
| 		if (stats_len_arr[i] == 4) {
 | |
| 			/* 4-byte counter */
 | |
| 			buf[i] = (u64) *(hw_stats + offset) +
 | |
| 				 *(temp_stats + offset);
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* 8-byte counter */
 | |
| 		buf[i] = (((u64) *(hw_stats + offset)) << 32) +
 | |
| 			 *(hw_stats + offset + 1) +
 | |
| 			 (((u64) *(temp_stats + offset)) << 32) +
 | |
| 			 *(temp_stats + offset + 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_phys_id(struct net_device *dev, u32 data)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	int i;
 | |
| 	u32 save;
 | |
| 
 | |
| 	bnx2_set_power_state(bp, PCI_D0);
 | |
| 
 | |
| 	if (data == 0)
 | |
| 		data = 2;
 | |
| 
 | |
| 	save = REG_RD(bp, BNX2_MISC_CFG);
 | |
| 	REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
 | |
| 
 | |
| 	for (i = 0; i < (data * 2); i++) {
 | |
| 		if ((i % 2) == 0) {
 | |
| 			REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
 | |
| 		}
 | |
| 		else {
 | |
| 			REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
 | |
| 				BNX2_EMAC_LED_1000MB_OVERRIDE |
 | |
| 				BNX2_EMAC_LED_100MB_OVERRIDE |
 | |
| 				BNX2_EMAC_LED_10MB_OVERRIDE |
 | |
| 				BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
 | |
| 				BNX2_EMAC_LED_TRAFFIC);
 | |
| 		}
 | |
| 		msleep_interruptible(500);
 | |
| 		if (signal_pending(current))
 | |
| 			break;
 | |
| 	}
 | |
| 	REG_WR(bp, BNX2_EMAC_LED, 0);
 | |
| 	REG_WR(bp, BNX2_MISC_CFG, save);
 | |
| 
 | |
| 	if (!netif_running(dev))
 | |
| 		bnx2_set_power_state(bp, PCI_D3hot);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_set_tx_csum(struct net_device *dev, u32 data)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709)
 | |
| 		return (ethtool_op_set_tx_ipv6_csum(dev, data));
 | |
| 	else
 | |
| 		return (ethtool_op_set_tx_csum(dev, data));
 | |
| }
 | |
| 
 | |
| static const struct ethtool_ops bnx2_ethtool_ops = {
 | |
| 	.get_settings		= bnx2_get_settings,
 | |
| 	.set_settings		= bnx2_set_settings,
 | |
| 	.get_drvinfo		= bnx2_get_drvinfo,
 | |
| 	.get_regs_len		= bnx2_get_regs_len,
 | |
| 	.get_regs		= bnx2_get_regs,
 | |
| 	.get_wol		= bnx2_get_wol,
 | |
| 	.set_wol		= bnx2_set_wol,
 | |
| 	.nway_reset		= bnx2_nway_reset,
 | |
| 	.get_link		= bnx2_get_link,
 | |
| 	.get_eeprom_len		= bnx2_get_eeprom_len,
 | |
| 	.get_eeprom		= bnx2_get_eeprom,
 | |
| 	.set_eeprom		= bnx2_set_eeprom,
 | |
| 	.get_coalesce		= bnx2_get_coalesce,
 | |
| 	.set_coalesce		= bnx2_set_coalesce,
 | |
| 	.get_ringparam		= bnx2_get_ringparam,
 | |
| 	.set_ringparam		= bnx2_set_ringparam,
 | |
| 	.get_pauseparam		= bnx2_get_pauseparam,
 | |
| 	.set_pauseparam		= bnx2_set_pauseparam,
 | |
| 	.get_rx_csum		= bnx2_get_rx_csum,
 | |
| 	.set_rx_csum		= bnx2_set_rx_csum,
 | |
| 	.set_tx_csum		= bnx2_set_tx_csum,
 | |
| 	.set_sg			= ethtool_op_set_sg,
 | |
| 	.set_tso		= bnx2_set_tso,
 | |
| 	.self_test		= bnx2_self_test,
 | |
| 	.get_strings		= bnx2_get_strings,
 | |
| 	.phys_id		= bnx2_phys_id,
 | |
| 	.get_ethtool_stats	= bnx2_get_ethtool_stats,
 | |
| 	.get_sset_count		= bnx2_get_sset_count,
 | |
| };
 | |
| 
 | |
| /* Called with rtnl_lock */
 | |
| static int
 | |
| bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 | |
| {
 | |
| 	struct mii_ioctl_data *data = if_mii(ifr);
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	int err;
 | |
| 
 | |
| 	switch(cmd) {
 | |
| 	case SIOCGMIIPHY:
 | |
| 		data->phy_id = bp->phy_addr;
 | |
| 
 | |
| 		/* fallthru */
 | |
| 	case SIOCGMIIREG: {
 | |
| 		u32 mii_regval;
 | |
| 
 | |
| 		if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
 | |
| 			return -EOPNOTSUPP;
 | |
| 
 | |
| 		if (!netif_running(dev))
 | |
| 			return -EAGAIN;
 | |
| 
 | |
| 		spin_lock_bh(&bp->phy_lock);
 | |
| 		err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
 | |
| 		spin_unlock_bh(&bp->phy_lock);
 | |
| 
 | |
| 		data->val_out = mii_regval;
 | |
| 
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	case SIOCSMIIREG:
 | |
| 		if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
 | |
| 			return -EOPNOTSUPP;
 | |
| 
 | |
| 		if (!netif_running(dev))
 | |
| 			return -EAGAIN;
 | |
| 
 | |
| 		spin_lock_bh(&bp->phy_lock);
 | |
| 		err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
 | |
| 		spin_unlock_bh(&bp->phy_lock);
 | |
| 
 | |
| 		return err;
 | |
| 
 | |
| 	default:
 | |
| 		/* do nothing */
 | |
| 		break;
 | |
| 	}
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| 
 | |
| /* Called with rtnl_lock */
 | |
| static int
 | |
| bnx2_change_mac_addr(struct net_device *dev, void *p)
 | |
| {
 | |
| 	struct sockaddr *addr = p;
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	if (!is_valid_ether_addr(addr->sa_data))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
 | |
| 	if (netif_running(dev))
 | |
| 		bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Called with rtnl_lock */
 | |
| static int
 | |
| bnx2_change_mtu(struct net_device *dev, int new_mtu)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
 | |
| 		((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	dev->mtu = new_mtu;
 | |
| 	return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| static void
 | |
| poll_bnx2(struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < bp->irq_nvecs; i++) {
 | |
| 		disable_irq(bp->irq_tbl[i].vector);
 | |
| 		bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
 | |
| 		enable_irq(bp->irq_tbl[i].vector);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void __devinit
 | |
| bnx2_get_5709_media(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
 | |
| 	u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
 | |
| 	u32 strap;
 | |
| 
 | |
| 	if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
 | |
| 		return;
 | |
| 	else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
 | |
| 		bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
 | |
| 		strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
 | |
| 	else
 | |
| 		strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
 | |
| 
 | |
| 	if (PCI_FUNC(bp->pdev->devfn) == 0) {
 | |
| 		switch (strap) {
 | |
| 		case 0x4:
 | |
| 		case 0x5:
 | |
| 		case 0x6:
 | |
| 			bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
 | |
| 			return;
 | |
| 		}
 | |
| 	} else {
 | |
| 		switch (strap) {
 | |
| 		case 0x1:
 | |
| 		case 0x2:
 | |
| 		case 0x4:
 | |
| 			bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __devinit
 | |
| bnx2_get_pci_speed(struct bnx2 *bp)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
 | |
| 	if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
 | |
| 		u32 clkreg;
 | |
| 
 | |
| 		bp->flags |= BNX2_FLAG_PCIX;
 | |
| 
 | |
| 		clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
 | |
| 
 | |
| 		clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
 | |
| 		switch (clkreg) {
 | |
| 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
 | |
| 			bp->bus_speed_mhz = 133;
 | |
| 			break;
 | |
| 
 | |
| 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
 | |
| 			bp->bus_speed_mhz = 100;
 | |
| 			break;
 | |
| 
 | |
| 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
 | |
| 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
 | |
| 			bp->bus_speed_mhz = 66;
 | |
| 			break;
 | |
| 
 | |
| 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
 | |
| 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
 | |
| 			bp->bus_speed_mhz = 50;
 | |
| 			break;
 | |
| 
 | |
| 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
 | |
| 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
 | |
| 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
 | |
| 			bp->bus_speed_mhz = 33;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
 | |
| 			bp->bus_speed_mhz = 66;
 | |
| 		else
 | |
| 			bp->bus_speed_mhz = 33;
 | |
| 	}
 | |
| 
 | |
| 	if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
 | |
| 		bp->flags |= BNX2_FLAG_PCI_32BIT;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void __devinit
 | |
| bnx2_read_vpd_fw_ver(struct bnx2 *bp)
 | |
| {
 | |
| 	int rc, i, j;
 | |
| 	u8 *data;
 | |
| 	unsigned int block_end, rosize, len;
 | |
| 
 | |
| #define BNX2_VPD_NVRAM_OFFSET	0x300
 | |
| #define BNX2_VPD_LEN		128
 | |
| #define BNX2_MAX_VER_SLEN	30
 | |
| 
 | |
| 	data = kmalloc(256, GFP_KERNEL);
 | |
| 	if (!data)
 | |
| 		return;
 | |
| 
 | |
| 	rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
 | |
| 			     BNX2_VPD_LEN);
 | |
| 	if (rc)
 | |
| 		goto vpd_done;
 | |
| 
 | |
| 	for (i = 0; i < BNX2_VPD_LEN; i += 4) {
 | |
| 		data[i] = data[i + BNX2_VPD_LEN + 3];
 | |
| 		data[i + 1] = data[i + BNX2_VPD_LEN + 2];
 | |
| 		data[i + 2] = data[i + BNX2_VPD_LEN + 1];
 | |
| 		data[i + 3] = data[i + BNX2_VPD_LEN];
 | |
| 	}
 | |
| 
 | |
| 	i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
 | |
| 	if (i < 0)
 | |
| 		goto vpd_done;
 | |
| 
 | |
| 	rosize = pci_vpd_lrdt_size(&data[i]);
 | |
| 	i += PCI_VPD_LRDT_TAG_SIZE;
 | |
| 	block_end = i + rosize;
 | |
| 
 | |
| 	if (block_end > BNX2_VPD_LEN)
 | |
| 		goto vpd_done;
 | |
| 
 | |
| 	j = pci_vpd_find_info_keyword(data, i, rosize,
 | |
| 				      PCI_VPD_RO_KEYWORD_MFR_ID);
 | |
| 	if (j < 0)
 | |
| 		goto vpd_done;
 | |
| 
 | |
| 	len = pci_vpd_info_field_size(&data[j]);
 | |
| 
 | |
| 	j += PCI_VPD_INFO_FLD_HDR_SIZE;
 | |
| 	if (j + len > block_end || len != 4 ||
 | |
| 	    memcmp(&data[j], "1028", 4))
 | |
| 		goto vpd_done;
 | |
| 
 | |
| 	j = pci_vpd_find_info_keyword(data, i, rosize,
 | |
| 				      PCI_VPD_RO_KEYWORD_VENDOR0);
 | |
| 	if (j < 0)
 | |
| 		goto vpd_done;
 | |
| 
 | |
| 	len = pci_vpd_info_field_size(&data[j]);
 | |
| 
 | |
| 	j += PCI_VPD_INFO_FLD_HDR_SIZE;
 | |
| 	if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
 | |
| 		goto vpd_done;
 | |
| 
 | |
| 	memcpy(bp->fw_version, &data[j], len);
 | |
| 	bp->fw_version[len] = ' ';
 | |
| 
 | |
| vpd_done:
 | |
| 	kfree(data);
 | |
| }
 | |
| 
 | |
| static int __devinit
 | |
| bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
 | |
| {
 | |
| 	struct bnx2 *bp;
 | |
| 	unsigned long mem_len;
 | |
| 	int rc, i, j;
 | |
| 	u32 reg;
 | |
| 	u64 dma_mask, persist_dma_mask;
 | |
| 
 | |
| 	SET_NETDEV_DEV(dev, &pdev->dev);
 | |
| 	bp = netdev_priv(dev);
 | |
| 
 | |
| 	bp->flags = 0;
 | |
| 	bp->phy_flags = 0;
 | |
| 
 | |
| 	bp->temp_stats_blk =
 | |
| 		kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
 | |
| 
 | |
| 	if (bp->temp_stats_blk == NULL) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
 | |
| 	rc = pci_enable_device(pdev);
 | |
| 	if (rc) {
 | |
| 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"Cannot find PCI device base address, aborting\n");
 | |
| 		rc = -ENODEV;
 | |
| 		goto err_out_disable;
 | |
| 	}
 | |
| 
 | |
| 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
 | |
| 	if (rc) {
 | |
| 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
 | |
| 		goto err_out_disable;
 | |
| 	}
 | |
| 
 | |
| 	pci_set_master(pdev);
 | |
| 	pci_save_state(pdev);
 | |
| 
 | |
| 	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
 | |
| 	if (bp->pm_cap == 0) {
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"Cannot find power management capability, aborting\n");
 | |
| 		rc = -EIO;
 | |
| 		goto err_out_release;
 | |
| 	}
 | |
| 
 | |
| 	bp->dev = dev;
 | |
| 	bp->pdev = pdev;
 | |
| 
 | |
| 	spin_lock_init(&bp->phy_lock);
 | |
| 	spin_lock_init(&bp->indirect_lock);
 | |
| #ifdef BCM_CNIC
 | |
| 	mutex_init(&bp->cnic_lock);
 | |
| #endif
 | |
| 	INIT_WORK(&bp->reset_task, bnx2_reset_task);
 | |
| 
 | |
| 	dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
 | |
| 	mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
 | |
| 	dev->mem_end = dev->mem_start + mem_len;
 | |
| 	dev->irq = pdev->irq;
 | |
| 
 | |
| 	bp->regview = ioremap_nocache(dev->base_addr, mem_len);
 | |
| 
 | |
| 	if (!bp->regview) {
 | |
| 		dev_err(&pdev->dev, "Cannot map register space, aborting\n");
 | |
| 		rc = -ENOMEM;
 | |
| 		goto err_out_release;
 | |
| 	}
 | |
| 
 | |
| 	/* Configure byte swap and enable write to the reg_window registers.
 | |
| 	 * Rely on CPU to do target byte swapping on big endian systems
 | |
| 	 * The chip's target access swapping will not swap all accesses
 | |
| 	 */
 | |
| 	pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
 | |
| 			       BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
 | |
| 			       BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
 | |
| 
 | |
| 	bnx2_set_power_state(bp, PCI_D0);
 | |
| 
 | |
| 	bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 		if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
 | |
| 			dev_err(&pdev->dev,
 | |
| 				"Cannot find PCIE capability, aborting\n");
 | |
| 			rc = -EIO;
 | |
| 			goto err_out_unmap;
 | |
| 		}
 | |
| 		bp->flags |= BNX2_FLAG_PCIE;
 | |
| 		if (CHIP_REV(bp) == CHIP_REV_Ax)
 | |
| 			bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
 | |
| 	} else {
 | |
| 		bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
 | |
| 		if (bp->pcix_cap == 0) {
 | |
| 			dev_err(&pdev->dev,
 | |
| 				"Cannot find PCIX capability, aborting\n");
 | |
| 			rc = -EIO;
 | |
| 			goto err_out_unmap;
 | |
| 		}
 | |
| 		bp->flags |= BNX2_FLAG_BROKEN_STATS;
 | |
| 	}
 | |
| 
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
 | |
| 		if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
 | |
| 			bp->flags |= BNX2_FLAG_MSIX_CAP;
 | |
| 	}
 | |
| 
 | |
| 	if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
 | |
| 		if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
 | |
| 			bp->flags |= BNX2_FLAG_MSI_CAP;
 | |
| 	}
 | |
| 
 | |
| 	/* 5708 cannot support DMA addresses > 40-bit.  */
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5708)
 | |
| 		persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
 | |
| 	else
 | |
| 		persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
 | |
| 
 | |
| 	/* Configure DMA attributes. */
 | |
| 	if (pci_set_dma_mask(pdev, dma_mask) == 0) {
 | |
| 		dev->features |= NETIF_F_HIGHDMA;
 | |
| 		rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
 | |
| 		if (rc) {
 | |
| 			dev_err(&pdev->dev,
 | |
| 				"pci_set_consistent_dma_mask failed, aborting\n");
 | |
| 			goto err_out_unmap;
 | |
| 		}
 | |
| 	} else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
 | |
| 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
 | |
| 		goto err_out_unmap;
 | |
| 	}
 | |
| 
 | |
| 	if (!(bp->flags & BNX2_FLAG_PCIE))
 | |
| 		bnx2_get_pci_speed(bp);
 | |
| 
 | |
| 	/* 5706A0 may falsely detect SERR and PERR. */
 | |
| 	if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
 | |
| 		reg = REG_RD(bp, PCI_COMMAND);
 | |
| 		reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
 | |
| 		REG_WR(bp, PCI_COMMAND, reg);
 | |
| 	}
 | |
| 	else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
 | |
| 		!(bp->flags & BNX2_FLAG_PCIX)) {
 | |
| 
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"5706 A1 can only be used in a PCIX bus, aborting\n");
 | |
| 		goto err_out_unmap;
 | |
| 	}
 | |
| 
 | |
| 	bnx2_init_nvram(bp);
 | |
| 
 | |
| 	reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
 | |
| 
 | |
| 	if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
 | |
| 	    BNX2_SHM_HDR_SIGNATURE_SIG) {
 | |
| 		u32 off = PCI_FUNC(pdev->devfn) << 2;
 | |
| 
 | |
| 		bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
 | |
| 	} else
 | |
| 		bp->shmem_base = HOST_VIEW_SHMEM_BASE;
 | |
| 
 | |
| 	/* Get the permanent MAC address.  First we need to make sure the
 | |
| 	 * firmware is actually running.
 | |
| 	 */
 | |
| 	reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
 | |
| 
 | |
| 	if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
 | |
| 	    BNX2_DEV_INFO_SIGNATURE_MAGIC) {
 | |
| 		dev_err(&pdev->dev, "Firmware not running, aborting\n");
 | |
| 		rc = -ENODEV;
 | |
| 		goto err_out_unmap;
 | |
| 	}
 | |
| 
 | |
| 	bnx2_read_vpd_fw_ver(bp);
 | |
| 
 | |
| 	j = strlen(bp->fw_version);
 | |
| 	reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
 | |
| 	for (i = 0; i < 3 && j < 24; i++) {
 | |
| 		u8 num, k, skip0;
 | |
| 
 | |
| 		if (i == 0) {
 | |
| 			bp->fw_version[j++] = 'b';
 | |
| 			bp->fw_version[j++] = 'c';
 | |
| 			bp->fw_version[j++] = ' ';
 | |
| 		}
 | |
| 		num = (u8) (reg >> (24 - (i * 8)));
 | |
| 		for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
 | |
| 			if (num >= k || !skip0 || k == 1) {
 | |
| 				bp->fw_version[j++] = (num / k) + '0';
 | |
| 				skip0 = 0;
 | |
| 			}
 | |
| 		}
 | |
| 		if (i != 2)
 | |
| 			bp->fw_version[j++] = '.';
 | |
| 	}
 | |
| 	reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
 | |
| 	if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
 | |
| 		bp->wol = 1;
 | |
| 
 | |
| 	if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
 | |
| 		bp->flags |= BNX2_FLAG_ASF_ENABLE;
 | |
| 
 | |
| 		for (i = 0; i < 30; i++) {
 | |
| 			reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
 | |
| 			if (reg & BNX2_CONDITION_MFW_RUN_MASK)
 | |
| 				break;
 | |
| 			msleep(10);
 | |
| 		}
 | |
| 	}
 | |
| 	reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
 | |
| 	reg &= BNX2_CONDITION_MFW_RUN_MASK;
 | |
| 	if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
 | |
| 	    reg != BNX2_CONDITION_MFW_RUN_NONE) {
 | |
| 		u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
 | |
| 
 | |
| 		if (j < 32)
 | |
| 			bp->fw_version[j++] = ' ';
 | |
| 		for (i = 0; i < 3 && j < 28; i++) {
 | |
| 			reg = bnx2_reg_rd_ind(bp, addr + i * 4);
 | |
| 			reg = swab32(reg);
 | |
| 			memcpy(&bp->fw_version[j], ®, 4);
 | |
| 			j += 4;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
 | |
| 	bp->mac_addr[0] = (u8) (reg >> 8);
 | |
| 	bp->mac_addr[1] = (u8) reg;
 | |
| 
 | |
| 	reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
 | |
| 	bp->mac_addr[2] = (u8) (reg >> 24);
 | |
| 	bp->mac_addr[3] = (u8) (reg >> 16);
 | |
| 	bp->mac_addr[4] = (u8) (reg >> 8);
 | |
| 	bp->mac_addr[5] = (u8) reg;
 | |
| 
 | |
| 	bp->tx_ring_size = MAX_TX_DESC_CNT;
 | |
| 	bnx2_set_rx_ring_size(bp, 255);
 | |
| 
 | |
| 	bp->rx_csum = 1;
 | |
| 
 | |
| 	bp->tx_quick_cons_trip_int = 2;
 | |
| 	bp->tx_quick_cons_trip = 20;
 | |
| 	bp->tx_ticks_int = 18;
 | |
| 	bp->tx_ticks = 80;
 | |
| 
 | |
| 	bp->rx_quick_cons_trip_int = 2;
 | |
| 	bp->rx_quick_cons_trip = 12;
 | |
| 	bp->rx_ticks_int = 18;
 | |
| 	bp->rx_ticks = 18;
 | |
| 
 | |
| 	bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
 | |
| 
 | |
| 	bp->current_interval = BNX2_TIMER_INTERVAL;
 | |
| 
 | |
| 	bp->phy_addr = 1;
 | |
| 
 | |
| 	/* Disable WOL support if we are running on a SERDES chip. */
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709)
 | |
| 		bnx2_get_5709_media(bp);
 | |
| 	else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
 | |
| 		bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
 | |
| 
 | |
| 	bp->phy_port = PORT_TP;
 | |
| 	if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
 | |
| 		bp->phy_port = PORT_FIBRE;
 | |
| 		reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
 | |
| 		if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
 | |
| 			bp->flags |= BNX2_FLAG_NO_WOL;
 | |
| 			bp->wol = 0;
 | |
| 		}
 | |
| 		if (CHIP_NUM(bp) == CHIP_NUM_5706) {
 | |
| 			/* Don't do parallel detect on this board because of
 | |
| 			 * some board problems.  The link will not go down
 | |
| 			 * if we do parallel detect.
 | |
| 			 */
 | |
| 			if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
 | |
| 			    pdev->subsystem_device == 0x310c)
 | |
| 				bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
 | |
| 		} else {
 | |
| 			bp->phy_addr = 2;
 | |
| 			if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
 | |
| 				bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
 | |
| 		}
 | |
| 	} else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
 | |
| 		   CHIP_NUM(bp) == CHIP_NUM_5708)
 | |
| 		bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
 | |
| 	else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
 | |
| 		 (CHIP_REV(bp) == CHIP_REV_Ax ||
 | |
| 		  CHIP_REV(bp) == CHIP_REV_Bx))
 | |
| 		bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
 | |
| 
 | |
| 	bnx2_init_fw_cap(bp);
 | |
| 
 | |
| 	if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
 | |
| 	    (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
 | |
| 	    (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
 | |
| 	    !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
 | |
| 		bp->flags |= BNX2_FLAG_NO_WOL;
 | |
| 		bp->wol = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
 | |
| 		bp->tx_quick_cons_trip_int =
 | |
| 			bp->tx_quick_cons_trip;
 | |
| 		bp->tx_ticks_int = bp->tx_ticks;
 | |
| 		bp->rx_quick_cons_trip_int =
 | |
| 			bp->rx_quick_cons_trip;
 | |
| 		bp->rx_ticks_int = bp->rx_ticks;
 | |
| 		bp->comp_prod_trip_int = bp->comp_prod_trip;
 | |
| 		bp->com_ticks_int = bp->com_ticks;
 | |
| 		bp->cmd_ticks_int = bp->cmd_ticks;
 | |
| 	}
 | |
| 
 | |
| 	/* Disable MSI on 5706 if AMD 8132 bridge is found.
 | |
| 	 *
 | |
| 	 * MSI is defined to be 32-bit write.  The 5706 does 64-bit MSI writes
 | |
| 	 * with byte enables disabled on the unused 32-bit word.  This is legal
 | |
| 	 * but causes problems on the AMD 8132 which will eventually stop
 | |
| 	 * responding after a while.
 | |
| 	 *
 | |
| 	 * AMD believes this incompatibility is unique to the 5706, and
 | |
| 	 * prefers to locally disable MSI rather than globally disabling it.
 | |
| 	 */
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
 | |
| 		struct pci_dev *amd_8132 = NULL;
 | |
| 
 | |
| 		while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
 | |
| 						  PCI_DEVICE_ID_AMD_8132_BRIDGE,
 | |
| 						  amd_8132))) {
 | |
| 
 | |
| 			if (amd_8132->revision >= 0x10 &&
 | |
| 			    amd_8132->revision <= 0x13) {
 | |
| 				disable_msi = 1;
 | |
| 				pci_dev_put(amd_8132);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bnx2_set_default_link(bp);
 | |
| 	bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
 | |
| 
 | |
| 	init_timer(&bp->timer);
 | |
| 	bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
 | |
| 	bp->timer.data = (unsigned long) bp;
 | |
| 	bp->timer.function = bnx2_timer;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_out_unmap:
 | |
| 	if (bp->regview) {
 | |
| 		iounmap(bp->regview);
 | |
| 		bp->regview = NULL;
 | |
| 	}
 | |
| 
 | |
| err_out_release:
 | |
| 	pci_release_regions(pdev);
 | |
| 
 | |
| err_out_disable:
 | |
| 	pci_disable_device(pdev);
 | |
| 	pci_set_drvdata(pdev, NULL);
 | |
| 
 | |
| err_out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static char * __devinit
 | |
| bnx2_bus_string(struct bnx2 *bp, char *str)
 | |
| {
 | |
| 	char *s = str;
 | |
| 
 | |
| 	if (bp->flags & BNX2_FLAG_PCIE) {
 | |
| 		s += sprintf(s, "PCI Express");
 | |
| 	} else {
 | |
| 		s += sprintf(s, "PCI");
 | |
| 		if (bp->flags & BNX2_FLAG_PCIX)
 | |
| 			s += sprintf(s, "-X");
 | |
| 		if (bp->flags & BNX2_FLAG_PCI_32BIT)
 | |
| 			s += sprintf(s, " 32-bit");
 | |
| 		else
 | |
| 			s += sprintf(s, " 64-bit");
 | |
| 		s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
 | |
| 	}
 | |
| 	return str;
 | |
| }
 | |
| 
 | |
| static void __devinit
 | |
| bnx2_init_napi(struct bnx2 *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
 | |
| 		struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
 | |
| 		int (*poll)(struct napi_struct *, int);
 | |
| 
 | |
| 		if (i == 0)
 | |
| 			poll = bnx2_poll;
 | |
| 		else
 | |
| 			poll = bnx2_poll_msix;
 | |
| 
 | |
| 		netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
 | |
| 		bnapi->bp = bp;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct net_device_ops bnx2_netdev_ops = {
 | |
| 	.ndo_open		= bnx2_open,
 | |
| 	.ndo_start_xmit		= bnx2_start_xmit,
 | |
| 	.ndo_stop		= bnx2_close,
 | |
| 	.ndo_get_stats		= bnx2_get_stats,
 | |
| 	.ndo_set_rx_mode	= bnx2_set_rx_mode,
 | |
| 	.ndo_do_ioctl		= bnx2_ioctl,
 | |
| 	.ndo_validate_addr	= eth_validate_addr,
 | |
| 	.ndo_set_mac_address	= bnx2_change_mac_addr,
 | |
| 	.ndo_change_mtu		= bnx2_change_mtu,
 | |
| 	.ndo_tx_timeout		= bnx2_tx_timeout,
 | |
| #ifdef BCM_VLAN
 | |
| 	.ndo_vlan_rx_register	= bnx2_vlan_rx_register,
 | |
| #endif
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| 	.ndo_poll_controller	= poll_bnx2,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
 | |
| {
 | |
| #ifdef BCM_VLAN
 | |
| 	dev->vlan_features |= flags;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int __devinit
 | |
| bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
 | |
| {
 | |
| 	static int version_printed = 0;
 | |
| 	struct net_device *dev = NULL;
 | |
| 	struct bnx2 *bp;
 | |
| 	int rc;
 | |
| 	char str[40];
 | |
| 
 | |
| 	if (version_printed++ == 0)
 | |
| 		pr_info("%s", version);
 | |
| 
 | |
| 	/* dev zeroed in init_etherdev */
 | |
| 	dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
 | |
| 
 | |
| 	if (!dev)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	rc = bnx2_init_board(pdev, dev);
 | |
| 	if (rc < 0) {
 | |
| 		free_netdev(dev);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	dev->netdev_ops = &bnx2_netdev_ops;
 | |
| 	dev->watchdog_timeo = TX_TIMEOUT;
 | |
| 	dev->ethtool_ops = &bnx2_ethtool_ops;
 | |
| 
 | |
| 	bp = netdev_priv(dev);
 | |
| 	bnx2_init_napi(bp);
 | |
| 
 | |
| 	pci_set_drvdata(pdev, dev);
 | |
| 
 | |
| 	rc = bnx2_request_firmware(bp);
 | |
| 	if (rc)
 | |
| 		goto error;
 | |
| 
 | |
| 	memcpy(dev->dev_addr, bp->mac_addr, 6);
 | |
| 	memcpy(dev->perm_addr, bp->mac_addr, 6);
 | |
| 
 | |
| 	dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
 | |
| 	vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 		dev->features |= NETIF_F_IPV6_CSUM;
 | |
| 		vlan_features_add(dev, NETIF_F_IPV6_CSUM);
 | |
| 	}
 | |
| #ifdef BCM_VLAN
 | |
| 	dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
 | |
| #endif
 | |
| 	dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
 | |
| 	vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
 | |
| 	if (CHIP_NUM(bp) == CHIP_NUM_5709) {
 | |
| 		dev->features |= NETIF_F_TSO6;
 | |
| 		vlan_features_add(dev, NETIF_F_TSO6);
 | |
| 	}
 | |
| 	if ((rc = register_netdev(dev))) {
 | |
| 		dev_err(&pdev->dev, "Cannot register net device\n");
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
 | |
| 		    board_info[ent->driver_data].name,
 | |
| 		    ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
 | |
| 		    ((CHIP_ID(bp) & 0x0ff0) >> 4),
 | |
| 		    bnx2_bus_string(bp, str),
 | |
| 		    dev->base_addr,
 | |
| 		    bp->pdev->irq, dev->dev_addr);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error:
 | |
| 	if (bp->mips_firmware)
 | |
| 		release_firmware(bp->mips_firmware);
 | |
| 	if (bp->rv2p_firmware)
 | |
| 		release_firmware(bp->rv2p_firmware);
 | |
| 
 | |
| 	if (bp->regview)
 | |
| 		iounmap(bp->regview);
 | |
| 	pci_release_regions(pdev);
 | |
| 	pci_disable_device(pdev);
 | |
| 	pci_set_drvdata(pdev, NULL);
 | |
| 	free_netdev(dev);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void __devexit
 | |
| bnx2_remove_one(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	flush_scheduled_work();
 | |
| 
 | |
| 	unregister_netdev(dev);
 | |
| 
 | |
| 	if (bp->mips_firmware)
 | |
| 		release_firmware(bp->mips_firmware);
 | |
| 	if (bp->rv2p_firmware)
 | |
| 		release_firmware(bp->rv2p_firmware);
 | |
| 
 | |
| 	if (bp->regview)
 | |
| 		iounmap(bp->regview);
 | |
| 
 | |
| 	kfree(bp->temp_stats_blk);
 | |
| 
 | |
| 	free_netdev(dev);
 | |
| 	pci_release_regions(pdev);
 | |
| 	pci_disable_device(pdev);
 | |
| 	pci_set_drvdata(pdev, NULL);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	/* PCI register 4 needs to be saved whether netif_running() or not.
 | |
| 	 * MSI address and data need to be saved if using MSI and
 | |
| 	 * netif_running().
 | |
| 	 */
 | |
| 	pci_save_state(pdev);
 | |
| 	if (!netif_running(dev))
 | |
| 		return 0;
 | |
| 
 | |
| 	flush_scheduled_work();
 | |
| 	bnx2_netif_stop(bp);
 | |
| 	netif_device_detach(dev);
 | |
| 	del_timer_sync(&bp->timer);
 | |
| 	bnx2_shutdown_chip(bp);
 | |
| 	bnx2_free_skbs(bp);
 | |
| 	bnx2_set_power_state(bp, pci_choose_state(pdev, state));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bnx2_resume(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	pci_restore_state(pdev);
 | |
| 	if (!netif_running(dev))
 | |
| 		return 0;
 | |
| 
 | |
| 	bnx2_set_power_state(bp, PCI_D0);
 | |
| 	netif_device_attach(dev);
 | |
| 	bnx2_init_nic(bp, 1);
 | |
| 	bnx2_netif_start(bp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2_io_error_detected - called when PCI error is detected
 | |
|  * @pdev: Pointer to PCI device
 | |
|  * @state: The current pci connection state
 | |
|  *
 | |
|  * This function is called after a PCI bus error affecting
 | |
|  * this device has been detected.
 | |
|  */
 | |
| static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
 | |
| 					       pci_channel_state_t state)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 	netif_device_detach(dev);
 | |
| 
 | |
| 	if (state == pci_channel_io_perm_failure) {
 | |
| 		rtnl_unlock();
 | |
| 		return PCI_ERS_RESULT_DISCONNECT;
 | |
| 	}
 | |
| 
 | |
| 	if (netif_running(dev)) {
 | |
| 		bnx2_netif_stop(bp);
 | |
| 		del_timer_sync(&bp->timer);
 | |
| 		bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
 | |
| 	}
 | |
| 
 | |
| 	pci_disable_device(pdev);
 | |
| 	rtnl_unlock();
 | |
| 
 | |
| 	/* Request a slot slot reset. */
 | |
| 	return PCI_ERS_RESULT_NEED_RESET;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2_io_slot_reset - called after the pci bus has been reset.
 | |
|  * @pdev: Pointer to PCI device
 | |
|  *
 | |
|  * Restart the card from scratch, as if from a cold-boot.
 | |
|  */
 | |
| static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 	if (pci_enable_device(pdev)) {
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"Cannot re-enable PCI device after reset\n");
 | |
| 		rtnl_unlock();
 | |
| 		return PCI_ERS_RESULT_DISCONNECT;
 | |
| 	}
 | |
| 	pci_set_master(pdev);
 | |
| 	pci_restore_state(pdev);
 | |
| 	pci_save_state(pdev);
 | |
| 
 | |
| 	if (netif_running(dev)) {
 | |
| 		bnx2_set_power_state(bp, PCI_D0);
 | |
| 		bnx2_init_nic(bp, 1);
 | |
| 	}
 | |
| 
 | |
| 	rtnl_unlock();
 | |
| 	return PCI_ERS_RESULT_RECOVERED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bnx2_io_resume - called when traffic can start flowing again.
 | |
|  * @pdev: Pointer to PCI device
 | |
|  *
 | |
|  * This callback is called when the error recovery driver tells us that
 | |
|  * its OK to resume normal operation.
 | |
|  */
 | |
| static void bnx2_io_resume(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	struct bnx2 *bp = netdev_priv(dev);
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 	if (netif_running(dev))
 | |
| 		bnx2_netif_start(bp);
 | |
| 
 | |
| 	netif_device_attach(dev);
 | |
| 	rtnl_unlock();
 | |
| }
 | |
| 
 | |
| static struct pci_error_handlers bnx2_err_handler = {
 | |
| 	.error_detected	= bnx2_io_error_detected,
 | |
| 	.slot_reset	= bnx2_io_slot_reset,
 | |
| 	.resume		= bnx2_io_resume,
 | |
| };
 | |
| 
 | |
| static struct pci_driver bnx2_pci_driver = {
 | |
| 	.name		= DRV_MODULE_NAME,
 | |
| 	.id_table	= bnx2_pci_tbl,
 | |
| 	.probe		= bnx2_init_one,
 | |
| 	.remove		= __devexit_p(bnx2_remove_one),
 | |
| 	.suspend	= bnx2_suspend,
 | |
| 	.resume		= bnx2_resume,
 | |
| 	.err_handler	= &bnx2_err_handler,
 | |
| };
 | |
| 
 | |
| static int __init bnx2_init(void)
 | |
| {
 | |
| 	return pci_register_driver(&bnx2_pci_driver);
 | |
| }
 | |
| 
 | |
| static void __exit bnx2_cleanup(void)
 | |
| {
 | |
| 	pci_unregister_driver(&bnx2_pci_driver);
 | |
| }
 | |
| 
 | |
| module_init(bnx2_init);
 | |
| module_exit(bnx2_cleanup);
 | |
| 
 | |
| 
 | |
| 
 |