 5b7bf42e3d
			
		
	
	
	5b7bf42e3d
	
	
	
		
			
			rds_iw_flush_goal() just returns a count, but it is only called in one place and its return value is ignored there. So delete all the dead code. Signed-off-by: Roland Dreier <roland@purestorage.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			871 lines
		
	
	
	
		
			24 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			871 lines
		
	
	
	
		
			24 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2006 Oracle.  All rights reserved.
 | |
|  *
 | |
|  * This software is available to you under a choice of one of two
 | |
|  * licenses.  You may choose to be licensed under the terms of the GNU
 | |
|  * General Public License (GPL) Version 2, available from the file
 | |
|  * COPYING in the main directory of this source tree, or the
 | |
|  * OpenIB.org BSD license below:
 | |
|  *
 | |
|  *     Redistribution and use in source and binary forms, with or
 | |
|  *     without modification, are permitted provided that the following
 | |
|  *     conditions are met:
 | |
|  *
 | |
|  *      - Redistributions of source code must retain the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer.
 | |
|  *
 | |
|  *      - Redistributions in binary form must reproduce the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer in the documentation and/or other materials
 | |
|  *        provided with the distribution.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
|  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
|  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | |
|  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 | |
|  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
|  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|  * SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/ratelimit.h>
 | |
| 
 | |
| #include "rds.h"
 | |
| #include "iw.h"
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This is stored as mr->r_trans_private.
 | |
|  */
 | |
| struct rds_iw_mr {
 | |
| 	struct rds_iw_device	*device;
 | |
| 	struct rds_iw_mr_pool	*pool;
 | |
| 	struct rdma_cm_id	*cm_id;
 | |
| 
 | |
| 	struct ib_mr	*mr;
 | |
| 	struct ib_fast_reg_page_list *page_list;
 | |
| 
 | |
| 	struct rds_iw_mapping	mapping;
 | |
| 	unsigned char		remap_count;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Our own little MR pool
 | |
|  */
 | |
| struct rds_iw_mr_pool {
 | |
| 	struct rds_iw_device	*device;		/* back ptr to the device that owns us */
 | |
| 
 | |
| 	struct mutex		flush_lock;		/* serialize fmr invalidate */
 | |
| 	struct work_struct	flush_worker;		/* flush worker */
 | |
| 
 | |
| 	spinlock_t		list_lock;		/* protect variables below */
 | |
| 	atomic_t		item_count;		/* total # of MRs */
 | |
| 	atomic_t		dirty_count;		/* # dirty of MRs */
 | |
| 	struct list_head	dirty_list;		/* dirty mappings */
 | |
| 	struct list_head	clean_list;		/* unused & unamapped MRs */
 | |
| 	atomic_t		free_pinned;		/* memory pinned by free MRs */
 | |
| 	unsigned long		max_message_size;	/* in pages */
 | |
| 	unsigned long		max_items;
 | |
| 	unsigned long		max_items_soft;
 | |
| 	unsigned long		max_free_pinned;
 | |
| 	int			max_pages;
 | |
| };
 | |
| 
 | |
| static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
 | |
| static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
 | |
| static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
 | |
| static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
 | |
| 			  struct rds_iw_mr *ibmr,
 | |
| 			  struct scatterlist *sg, unsigned int nents);
 | |
| static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
 | |
| static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
 | |
| 			struct list_head *unmap_list,
 | |
| 			struct list_head *kill_list,
 | |
| 			int *unpinned);
 | |
| static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
 | |
| 
 | |
| static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id)
 | |
| {
 | |
| 	struct rds_iw_device *iwdev;
 | |
| 	struct rds_iw_cm_id *i_cm_id;
 | |
| 
 | |
| 	*rds_iwdev = NULL;
 | |
| 	*cm_id = NULL;
 | |
| 
 | |
| 	list_for_each_entry(iwdev, &rds_iw_devices, list) {
 | |
| 		spin_lock_irq(&iwdev->spinlock);
 | |
| 		list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
 | |
| 			struct sockaddr_in *src_addr, *dst_addr;
 | |
| 
 | |
| 			src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
 | |
| 			dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
 | |
| 
 | |
| 			rdsdebug("local ipaddr = %x port %d, "
 | |
| 				 "remote ipaddr = %x port %d"
 | |
| 				 "..looking for %x port %d, "
 | |
| 				 "remote ipaddr = %x port %d\n",
 | |
| 				src_addr->sin_addr.s_addr,
 | |
| 				src_addr->sin_port,
 | |
| 				dst_addr->sin_addr.s_addr,
 | |
| 				dst_addr->sin_port,
 | |
| 				rs->rs_bound_addr,
 | |
| 				rs->rs_bound_port,
 | |
| 				rs->rs_conn_addr,
 | |
| 				rs->rs_conn_port);
 | |
| #ifdef WORKING_TUPLE_DETECTION
 | |
| 			if (src_addr->sin_addr.s_addr == rs->rs_bound_addr &&
 | |
| 			    src_addr->sin_port == rs->rs_bound_port &&
 | |
| 			    dst_addr->sin_addr.s_addr == rs->rs_conn_addr &&
 | |
| 			    dst_addr->sin_port == rs->rs_conn_port) {
 | |
| #else
 | |
| 			/* FIXME - needs to compare the local and remote
 | |
| 			 * ipaddr/port tuple, but the ipaddr is the only
 | |
| 			 * available information in the rds_sock (as the rest are
 | |
| 			 * zero'ed.  It doesn't appear to be properly populated
 | |
| 			 * during connection setup...
 | |
| 			 */
 | |
| 			if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) {
 | |
| #endif
 | |
| 				spin_unlock_irq(&iwdev->spinlock);
 | |
| 				*rds_iwdev = iwdev;
 | |
| 				*cm_id = i_cm_id->cm_id;
 | |
| 				return 0;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock_irq(&iwdev->spinlock);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
 | |
| {
 | |
| 	struct rds_iw_cm_id *i_cm_id;
 | |
| 
 | |
| 	i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
 | |
| 	if (!i_cm_id)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	i_cm_id->cm_id = cm_id;
 | |
| 
 | |
| 	spin_lock_irq(&rds_iwdev->spinlock);
 | |
| 	list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
 | |
| 	spin_unlock_irq(&rds_iwdev->spinlock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
 | |
| 				struct rdma_cm_id *cm_id)
 | |
| {
 | |
| 	struct rds_iw_cm_id *i_cm_id;
 | |
| 
 | |
| 	spin_lock_irq(&rds_iwdev->spinlock);
 | |
| 	list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
 | |
| 		if (i_cm_id->cm_id == cm_id) {
 | |
| 			list_del(&i_cm_id->list);
 | |
| 			kfree(i_cm_id);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irq(&rds_iwdev->spinlock);
 | |
| }
 | |
| 
 | |
| 
 | |
| int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
 | |
| {
 | |
| 	struct sockaddr_in *src_addr, *dst_addr;
 | |
| 	struct rds_iw_device *rds_iwdev_old;
 | |
| 	struct rds_sock rs;
 | |
| 	struct rdma_cm_id *pcm_id;
 | |
| 	int rc;
 | |
| 
 | |
| 	src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
 | |
| 	dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
 | |
| 
 | |
| 	rs.rs_bound_addr = src_addr->sin_addr.s_addr;
 | |
| 	rs.rs_bound_port = src_addr->sin_port;
 | |
| 	rs.rs_conn_addr = dst_addr->sin_addr.s_addr;
 | |
| 	rs.rs_conn_port = dst_addr->sin_port;
 | |
| 
 | |
| 	rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id);
 | |
| 	if (rc)
 | |
| 		rds_iw_remove_cm_id(rds_iwdev, cm_id);
 | |
| 
 | |
| 	return rds_iw_add_cm_id(rds_iwdev, cm_id);
 | |
| }
 | |
| 
 | |
| void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
 | |
| {
 | |
| 	struct rds_iw_connection *ic = conn->c_transport_data;
 | |
| 
 | |
| 	/* conn was previously on the nodev_conns_list */
 | |
| 	spin_lock_irq(&iw_nodev_conns_lock);
 | |
| 	BUG_ON(list_empty(&iw_nodev_conns));
 | |
| 	BUG_ON(list_empty(&ic->iw_node));
 | |
| 	list_del(&ic->iw_node);
 | |
| 
 | |
| 	spin_lock(&rds_iwdev->spinlock);
 | |
| 	list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
 | |
| 	spin_unlock(&rds_iwdev->spinlock);
 | |
| 	spin_unlock_irq(&iw_nodev_conns_lock);
 | |
| 
 | |
| 	ic->rds_iwdev = rds_iwdev;
 | |
| }
 | |
| 
 | |
| void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
 | |
| {
 | |
| 	struct rds_iw_connection *ic = conn->c_transport_data;
 | |
| 
 | |
| 	/* place conn on nodev_conns_list */
 | |
| 	spin_lock(&iw_nodev_conns_lock);
 | |
| 
 | |
| 	spin_lock_irq(&rds_iwdev->spinlock);
 | |
| 	BUG_ON(list_empty(&ic->iw_node));
 | |
| 	list_del(&ic->iw_node);
 | |
| 	spin_unlock_irq(&rds_iwdev->spinlock);
 | |
| 
 | |
| 	list_add_tail(&ic->iw_node, &iw_nodev_conns);
 | |
| 
 | |
| 	spin_unlock(&iw_nodev_conns_lock);
 | |
| 
 | |
| 	rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
 | |
| 	ic->rds_iwdev = NULL;
 | |
| }
 | |
| 
 | |
| void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
 | |
| {
 | |
| 	struct rds_iw_connection *ic, *_ic;
 | |
| 	LIST_HEAD(tmp_list);
 | |
| 
 | |
| 	/* avoid calling conn_destroy with irqs off */
 | |
| 	spin_lock_irq(list_lock);
 | |
| 	list_splice(list, &tmp_list);
 | |
| 	INIT_LIST_HEAD(list);
 | |
| 	spin_unlock_irq(list_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
 | |
| 		rds_conn_destroy(ic->conn);
 | |
| }
 | |
| 
 | |
| static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
 | |
| 		struct scatterlist *list, unsigned int sg_len)
 | |
| {
 | |
| 	sg->list = list;
 | |
| 	sg->len = sg_len;
 | |
| 	sg->dma_len = 0;
 | |
| 	sg->dma_npages = 0;
 | |
| 	sg->bytes = 0;
 | |
| }
 | |
| 
 | |
| static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
 | |
| 			struct rds_iw_scatterlist *sg)
 | |
| {
 | |
| 	struct ib_device *dev = rds_iwdev->dev;
 | |
| 	u64 *dma_pages = NULL;
 | |
| 	int i, j, ret;
 | |
| 
 | |
| 	WARN_ON(sg->dma_len);
 | |
| 
 | |
| 	sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
 | |
| 	if (unlikely(!sg->dma_len)) {
 | |
| 		printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
 | |
| 		return ERR_PTR(-EBUSY);
 | |
| 	}
 | |
| 
 | |
| 	sg->bytes = 0;
 | |
| 	sg->dma_npages = 0;
 | |
| 
 | |
| 	ret = -EINVAL;
 | |
| 	for (i = 0; i < sg->dma_len; ++i) {
 | |
| 		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
 | |
| 		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
 | |
| 		u64 end_addr;
 | |
| 
 | |
| 		sg->bytes += dma_len;
 | |
| 
 | |
| 		end_addr = dma_addr + dma_len;
 | |
| 		if (dma_addr & PAGE_MASK) {
 | |
| 			if (i > 0)
 | |
| 				goto out_unmap;
 | |
| 			dma_addr &= ~PAGE_MASK;
 | |
| 		}
 | |
| 		if (end_addr & PAGE_MASK) {
 | |
| 			if (i < sg->dma_len - 1)
 | |
| 				goto out_unmap;
 | |
| 			end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
 | |
| 		}
 | |
| 
 | |
| 		sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	/* Now gather the dma addrs into one list */
 | |
| 	if (sg->dma_npages > fastreg_message_size)
 | |
| 		goto out_unmap;
 | |
| 
 | |
| 	dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
 | |
| 	if (!dma_pages) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_unmap;
 | |
| 	}
 | |
| 
 | |
| 	for (i = j = 0; i < sg->dma_len; ++i) {
 | |
| 		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
 | |
| 		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
 | |
| 		u64 end_addr;
 | |
| 
 | |
| 		end_addr = dma_addr + dma_len;
 | |
| 		dma_addr &= ~PAGE_MASK;
 | |
| 		for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
 | |
| 			dma_pages[j++] = dma_addr;
 | |
| 		BUG_ON(j > sg->dma_npages);
 | |
| 	}
 | |
| 
 | |
| 	return dma_pages;
 | |
| 
 | |
| out_unmap:
 | |
| 	ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
 | |
| 	sg->dma_len = 0;
 | |
| 	kfree(dma_pages);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| 
 | |
| struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
 | |
| {
 | |
| 	struct rds_iw_mr_pool *pool;
 | |
| 
 | |
| 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
 | |
| 	if (!pool) {
 | |
| 		printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	pool->device = rds_iwdev;
 | |
| 	INIT_LIST_HEAD(&pool->dirty_list);
 | |
| 	INIT_LIST_HEAD(&pool->clean_list);
 | |
| 	mutex_init(&pool->flush_lock);
 | |
| 	spin_lock_init(&pool->list_lock);
 | |
| 	INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
 | |
| 
 | |
| 	pool->max_message_size = fastreg_message_size;
 | |
| 	pool->max_items = fastreg_pool_size;
 | |
| 	pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
 | |
| 	pool->max_pages = fastreg_message_size;
 | |
| 
 | |
| 	/* We never allow more than max_items MRs to be allocated.
 | |
| 	 * When we exceed more than max_items_soft, we start freeing
 | |
| 	 * items more aggressively.
 | |
| 	 * Make sure that max_items > max_items_soft > max_items / 2
 | |
| 	 */
 | |
| 	pool->max_items_soft = pool->max_items * 3 / 4;
 | |
| 
 | |
| 	return pool;
 | |
| }
 | |
| 
 | |
| void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
 | |
| {
 | |
| 	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
 | |
| 
 | |
| 	iinfo->rdma_mr_max = pool->max_items;
 | |
| 	iinfo->rdma_mr_size = pool->max_pages;
 | |
| }
 | |
| 
 | |
| void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
 | |
| {
 | |
| 	flush_workqueue(rds_wq);
 | |
| 	rds_iw_flush_mr_pool(pool, 1);
 | |
| 	BUG_ON(atomic_read(&pool->item_count));
 | |
| 	BUG_ON(atomic_read(&pool->free_pinned));
 | |
| 	kfree(pool);
 | |
| }
 | |
| 
 | |
| static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
 | |
| {
 | |
| 	struct rds_iw_mr *ibmr = NULL;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&pool->list_lock, flags);
 | |
| 	if (!list_empty(&pool->clean_list)) {
 | |
| 		ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
 | |
| 		list_del_init(&ibmr->mapping.m_list);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&pool->list_lock, flags);
 | |
| 
 | |
| 	return ibmr;
 | |
| }
 | |
| 
 | |
| static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
 | |
| {
 | |
| 	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
 | |
| 	struct rds_iw_mr *ibmr = NULL;
 | |
| 	int err = 0, iter = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ibmr = rds_iw_reuse_fmr(pool);
 | |
| 		if (ibmr)
 | |
| 			return ibmr;
 | |
| 
 | |
| 		/* No clean MRs - now we have the choice of either
 | |
| 		 * allocating a fresh MR up to the limit imposed by the
 | |
| 		 * driver, or flush any dirty unused MRs.
 | |
| 		 * We try to avoid stalling in the send path if possible,
 | |
| 		 * so we allocate as long as we're allowed to.
 | |
| 		 *
 | |
| 		 * We're fussy with enforcing the FMR limit, though. If the driver
 | |
| 		 * tells us we can't use more than N fmrs, we shouldn't start
 | |
| 		 * arguing with it */
 | |
| 		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
 | |
| 			break;
 | |
| 
 | |
| 		atomic_dec(&pool->item_count);
 | |
| 
 | |
| 		if (++iter > 2) {
 | |
| 			rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
 | |
| 			return ERR_PTR(-EAGAIN);
 | |
| 		}
 | |
| 
 | |
| 		/* We do have some empty MRs. Flush them out. */
 | |
| 		rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
 | |
| 		rds_iw_flush_mr_pool(pool, 0);
 | |
| 	}
 | |
| 
 | |
| 	ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
 | |
| 	if (!ibmr) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out_no_cigar;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_init(&ibmr->mapping.m_lock);
 | |
| 	INIT_LIST_HEAD(&ibmr->mapping.m_list);
 | |
| 	ibmr->mapping.m_mr = ibmr;
 | |
| 
 | |
| 	err = rds_iw_init_fastreg(pool, ibmr);
 | |
| 	if (err)
 | |
| 		goto out_no_cigar;
 | |
| 
 | |
| 	rds_iw_stats_inc(s_iw_rdma_mr_alloc);
 | |
| 	return ibmr;
 | |
| 
 | |
| out_no_cigar:
 | |
| 	if (ibmr) {
 | |
| 		rds_iw_destroy_fastreg(pool, ibmr);
 | |
| 		kfree(ibmr);
 | |
| 	}
 | |
| 	atomic_dec(&pool->item_count);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| void rds_iw_sync_mr(void *trans_private, int direction)
 | |
| {
 | |
| 	struct rds_iw_mr *ibmr = trans_private;
 | |
| 	struct rds_iw_device *rds_iwdev = ibmr->device;
 | |
| 
 | |
| 	switch (direction) {
 | |
| 	case DMA_FROM_DEVICE:
 | |
| 		ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
 | |
| 			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
 | |
| 		break;
 | |
| 	case DMA_TO_DEVICE:
 | |
| 		ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
 | |
| 			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush our pool of MRs.
 | |
|  * At a minimum, all currently unused MRs are unmapped.
 | |
|  * If the number of MRs allocated exceeds the limit, we also try
 | |
|  * to free as many MRs as needed to get back to this limit.
 | |
|  */
 | |
| static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
 | |
| {
 | |
| 	struct rds_iw_mr *ibmr, *next;
 | |
| 	LIST_HEAD(unmap_list);
 | |
| 	LIST_HEAD(kill_list);
 | |
| 	unsigned long flags;
 | |
| 	unsigned int nfreed = 0, ncleaned = 0, unpinned = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
 | |
| 
 | |
| 	mutex_lock(&pool->flush_lock);
 | |
| 
 | |
| 	spin_lock_irqsave(&pool->list_lock, flags);
 | |
| 	/* Get the list of all mappings to be destroyed */
 | |
| 	list_splice_init(&pool->dirty_list, &unmap_list);
 | |
| 	if (free_all)
 | |
| 		list_splice_init(&pool->clean_list, &kill_list);
 | |
| 	spin_unlock_irqrestore(&pool->list_lock, flags);
 | |
| 
 | |
| 	/* Batched invalidate of dirty MRs.
 | |
| 	 * For FMR based MRs, the mappings on the unmap list are
 | |
| 	 * actually members of an ibmr (ibmr->mapping). They either
 | |
| 	 * migrate to the kill_list, or have been cleaned and should be
 | |
| 	 * moved to the clean_list.
 | |
| 	 * For fastregs, they will be dynamically allocated, and
 | |
| 	 * will be destroyed by the unmap function.
 | |
| 	 */
 | |
| 	if (!list_empty(&unmap_list)) {
 | |
| 		ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list,
 | |
| 						     &kill_list, &unpinned);
 | |
| 		/* If we've been asked to destroy all MRs, move those
 | |
| 		 * that were simply cleaned to the kill list */
 | |
| 		if (free_all)
 | |
| 			list_splice_init(&unmap_list, &kill_list);
 | |
| 	}
 | |
| 
 | |
| 	/* Destroy any MRs that are past their best before date */
 | |
| 	list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
 | |
| 		rds_iw_stats_inc(s_iw_rdma_mr_free);
 | |
| 		list_del(&ibmr->mapping.m_list);
 | |
| 		rds_iw_destroy_fastreg(pool, ibmr);
 | |
| 		kfree(ibmr);
 | |
| 		nfreed++;
 | |
| 	}
 | |
| 
 | |
| 	/* Anything that remains are laundered ibmrs, which we can add
 | |
| 	 * back to the clean list. */
 | |
| 	if (!list_empty(&unmap_list)) {
 | |
| 		spin_lock_irqsave(&pool->list_lock, flags);
 | |
| 		list_splice(&unmap_list, &pool->clean_list);
 | |
| 		spin_unlock_irqrestore(&pool->list_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	atomic_sub(unpinned, &pool->free_pinned);
 | |
| 	atomic_sub(ncleaned, &pool->dirty_count);
 | |
| 	atomic_sub(nfreed, &pool->item_count);
 | |
| 
 | |
| 	mutex_unlock(&pool->flush_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
 | |
| {
 | |
| 	struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
 | |
| 
 | |
| 	rds_iw_flush_mr_pool(pool, 0);
 | |
| }
 | |
| 
 | |
| void rds_iw_free_mr(void *trans_private, int invalidate)
 | |
| {
 | |
| 	struct rds_iw_mr *ibmr = trans_private;
 | |
| 	struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
 | |
| 
 | |
| 	rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
 | |
| 	if (!pool)
 | |
| 		return;
 | |
| 
 | |
| 	/* Return it to the pool's free list */
 | |
| 	rds_iw_free_fastreg(pool, ibmr);
 | |
| 
 | |
| 	/* If we've pinned too many pages, request a flush */
 | |
| 	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
 | |
| 	    atomic_read(&pool->dirty_count) >= pool->max_items / 10)
 | |
| 		queue_work(rds_wq, &pool->flush_worker);
 | |
| 
 | |
| 	if (invalidate) {
 | |
| 		if (likely(!in_interrupt())) {
 | |
| 			rds_iw_flush_mr_pool(pool, 0);
 | |
| 		} else {
 | |
| 			/* We get here if the user created a MR marked
 | |
| 			 * as use_once and invalidate at the same time. */
 | |
| 			queue_work(rds_wq, &pool->flush_worker);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void rds_iw_flush_mrs(void)
 | |
| {
 | |
| 	struct rds_iw_device *rds_iwdev;
 | |
| 
 | |
| 	list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
 | |
| 		struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
 | |
| 
 | |
| 		if (pool)
 | |
| 			rds_iw_flush_mr_pool(pool, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
 | |
| 		    struct rds_sock *rs, u32 *key_ret)
 | |
| {
 | |
| 	struct rds_iw_device *rds_iwdev;
 | |
| 	struct rds_iw_mr *ibmr = NULL;
 | |
| 	struct rdma_cm_id *cm_id;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id);
 | |
| 	if (ret || !cm_id) {
 | |
| 		ret = -ENODEV;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!rds_iwdev->mr_pool) {
 | |
| 		ret = -ENODEV;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ibmr = rds_iw_alloc_mr(rds_iwdev);
 | |
| 	if (IS_ERR(ibmr))
 | |
| 		return ibmr;
 | |
| 
 | |
| 	ibmr->cm_id = cm_id;
 | |
| 	ibmr->device = rds_iwdev;
 | |
| 
 | |
| 	ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
 | |
| 	if (ret == 0)
 | |
| 		*key_ret = ibmr->mr->rkey;
 | |
| 	else
 | |
| 		printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
 | |
| 
 | |
| out:
 | |
| 	if (ret) {
 | |
| 		if (ibmr)
 | |
| 			rds_iw_free_mr(ibmr, 0);
 | |
| 		ibmr = ERR_PTR(ret);
 | |
| 	}
 | |
| 	return ibmr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * iWARP fastreg handling
 | |
|  *
 | |
|  * The life cycle of a fastreg registration is a bit different from
 | |
|  * FMRs.
 | |
|  * The idea behind fastreg is to have one MR, to which we bind different
 | |
|  * mappings over time. To avoid stalling on the expensive map and invalidate
 | |
|  * operations, these operations are pipelined on the same send queue on
 | |
|  * which we want to send the message containing the r_key.
 | |
|  *
 | |
|  * This creates a bit of a problem for us, as we do not have the destination
 | |
|  * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
 | |
|  * RDMA to be correctly setup.  If a fastreg request is present, rds_iw_xmit
 | |
|  * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
 | |
|  * before queuing the SEND. When completions for these arrive, they are
 | |
|  * dispatched to the MR has a bit set showing that RDMa can be performed.
 | |
|  *
 | |
|  * There is another interesting aspect that's related to invalidation.
 | |
|  * The application can request that a mapping is invalidated in FREE_MR.
 | |
|  * The expectation there is that this invalidation step includes ALL
 | |
|  * PREVIOUSLY FREED MRs.
 | |
|  */
 | |
| static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
 | |
| 				struct rds_iw_mr *ibmr)
 | |
| {
 | |
| 	struct rds_iw_device *rds_iwdev = pool->device;
 | |
| 	struct ib_fast_reg_page_list *page_list = NULL;
 | |
| 	struct ib_mr *mr;
 | |
| 	int err;
 | |
| 
 | |
| 	mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
 | |
| 	if (IS_ERR(mr)) {
 | |
| 		err = PTR_ERR(mr);
 | |
| 
 | |
| 		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
 | |
| 	 * is not filled in.
 | |
| 	 */
 | |
| 	page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
 | |
| 	if (IS_ERR(page_list)) {
 | |
| 		err = PTR_ERR(page_list);
 | |
| 
 | |
| 		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
 | |
| 		ib_dereg_mr(mr);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	ibmr->page_list = page_list;
 | |
| 	ibmr->mr = mr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
 | |
| {
 | |
| 	struct rds_iw_mr *ibmr = mapping->m_mr;
 | |
| 	struct ib_send_wr f_wr, *failed_wr;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Perform a WR for the fast_reg_mr. Each individual page
 | |
| 	 * in the sg list is added to the fast reg page list and placed
 | |
| 	 * inside the fast_reg_mr WR.  The key used is a rolling 8bit
 | |
| 	 * counter, which should guarantee uniqueness.
 | |
| 	 */
 | |
| 	ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
 | |
| 	mapping->m_rkey = ibmr->mr->rkey;
 | |
| 
 | |
| 	memset(&f_wr, 0, sizeof(f_wr));
 | |
| 	f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
 | |
| 	f_wr.opcode = IB_WR_FAST_REG_MR;
 | |
| 	f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
 | |
| 	f_wr.wr.fast_reg.rkey = mapping->m_rkey;
 | |
| 	f_wr.wr.fast_reg.page_list = ibmr->page_list;
 | |
| 	f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
 | |
| 	f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
 | |
| 	f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
 | |
| 				IB_ACCESS_REMOTE_READ |
 | |
| 				IB_ACCESS_REMOTE_WRITE;
 | |
| 	f_wr.wr.fast_reg.iova_start = 0;
 | |
| 	f_wr.send_flags = IB_SEND_SIGNALED;
 | |
| 
 | |
| 	failed_wr = &f_wr;
 | |
| 	ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
 | |
| 	BUG_ON(failed_wr != &f_wr);
 | |
| 	if (ret)
 | |
| 		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
 | |
| 			__func__, __LINE__, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
 | |
| {
 | |
| 	struct ib_send_wr s_wr, *failed_wr;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!ibmr->cm_id->qp || !ibmr->mr)
 | |
| 		goto out;
 | |
| 
 | |
| 	memset(&s_wr, 0, sizeof(s_wr));
 | |
| 	s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
 | |
| 	s_wr.opcode = IB_WR_LOCAL_INV;
 | |
| 	s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
 | |
| 	s_wr.send_flags = IB_SEND_SIGNALED;
 | |
| 
 | |
| 	failed_wr = &s_wr;
 | |
| 	ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
 | |
| 	if (ret) {
 | |
| 		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
 | |
| 			__func__, __LINE__, ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
 | |
| 			struct rds_iw_mr *ibmr,
 | |
| 			struct scatterlist *sg,
 | |
| 			unsigned int sg_len)
 | |
| {
 | |
| 	struct rds_iw_device *rds_iwdev = pool->device;
 | |
| 	struct rds_iw_mapping *mapping = &ibmr->mapping;
 | |
| 	u64 *dma_pages;
 | |
| 	int i, ret = 0;
 | |
| 
 | |
| 	rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
 | |
| 
 | |
| 	dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
 | |
| 	if (IS_ERR(dma_pages)) {
 | |
| 		ret = PTR_ERR(dma_pages);
 | |
| 		dma_pages = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (mapping->m_sg.dma_len > pool->max_message_size) {
 | |
| 		ret = -EMSGSIZE;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < mapping->m_sg.dma_npages; ++i)
 | |
| 		ibmr->page_list->page_list[i] = dma_pages[i];
 | |
| 
 | |
| 	ret = rds_iw_rdma_build_fastreg(mapping);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	rds_iw_stats_inc(s_iw_rdma_mr_used);
 | |
| 
 | |
| out:
 | |
| 	kfree(dma_pages);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * "Free" a fastreg MR.
 | |
|  */
 | |
| static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
 | |
| 		struct rds_iw_mr *ibmr)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!ibmr->mapping.m_sg.dma_len)
 | |
| 		return;
 | |
| 
 | |
| 	ret = rds_iw_rdma_fastreg_inv(ibmr);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	/* Try to post the LOCAL_INV WR to the queue. */
 | |
| 	spin_lock_irqsave(&pool->list_lock, flags);
 | |
| 
 | |
| 	list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
 | |
| 	atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
 | |
| 	atomic_inc(&pool->dirty_count);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&pool->list_lock, flags);
 | |
| }
 | |
| 
 | |
| static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
 | |
| 				struct list_head *unmap_list,
 | |
| 				struct list_head *kill_list,
 | |
| 				int *unpinned)
 | |
| {
 | |
| 	struct rds_iw_mapping *mapping, *next;
 | |
| 	unsigned int ncleaned = 0;
 | |
| 	LIST_HEAD(laundered);
 | |
| 
 | |
| 	/* Batched invalidation of fastreg MRs.
 | |
| 	 * Why do we do it this way, even though we could pipeline unmap
 | |
| 	 * and remap? The reason is the application semantics - when the
 | |
| 	 * application requests an invalidation of MRs, it expects all
 | |
| 	 * previously released R_Keys to become invalid.
 | |
| 	 *
 | |
| 	 * If we implement MR reuse naively, we risk memory corruption
 | |
| 	 * (this has actually been observed). So the default behavior
 | |
| 	 * requires that a MR goes through an explicit unmap operation before
 | |
| 	 * we can reuse it again.
 | |
| 	 *
 | |
| 	 * We could probably improve on this a little, by allowing immediate
 | |
| 	 * reuse of a MR on the same socket (eg you could add small
 | |
| 	 * cache of unused MRs to strct rds_socket - GET_MR could grab one
 | |
| 	 * of these without requiring an explicit invalidate).
 | |
| 	 */
 | |
| 	while (!list_empty(unmap_list)) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		spin_lock_irqsave(&pool->list_lock, flags);
 | |
| 		list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
 | |
| 			*unpinned += mapping->m_sg.len;
 | |
| 			list_move(&mapping->m_list, &laundered);
 | |
| 			ncleaned++;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&pool->list_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	/* Move all laundered mappings back to the unmap list.
 | |
| 	 * We do not kill any WRs right now - it doesn't seem the
 | |
| 	 * fastreg API has a max_remap limit. */
 | |
| 	list_splice_init(&laundered, unmap_list);
 | |
| 
 | |
| 	return ncleaned;
 | |
| }
 | |
| 
 | |
| static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
 | |
| 		struct rds_iw_mr *ibmr)
 | |
| {
 | |
| 	if (ibmr->page_list)
 | |
| 		ib_free_fast_reg_page_list(ibmr->page_list);
 | |
| 	if (ibmr->mr)
 | |
| 		ib_dereg_mr(ibmr->mr);
 | |
| }
 |