One less thing for drivers writers to worry about. Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			2649 lines
		
	
	
	
		
			67 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2649 lines
		
	
	
	
		
			67 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
 | 
						|
 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
 | 
						|
 *
 | 
						|
 * This version of the driver is specific to the FADS implementation,
 | 
						|
 * since the board contains control registers external to the processor
 | 
						|
 * for the control of the LevelOne LXT970 transceiver.  The MPC860T manual
 | 
						|
 * describes connections using the internal parallel port I/O, which
 | 
						|
 * is basically all of Port D.
 | 
						|
 *
 | 
						|
 * Right now, I am very wasteful with the buffers.  I allocate memory
 | 
						|
 * pages and then divide them into 2K frame buffers.  This way I know I
 | 
						|
 * have buffers large enough to hold one frame within one buffer descriptor.
 | 
						|
 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
 | 
						|
 * will be much more memory efficient and will easily handle lots of
 | 
						|
 * small packets.
 | 
						|
 *
 | 
						|
 * Much better multiple PHY support by Magnus Damm.
 | 
						|
 * Copyright (c) 2000 Ericsson Radio Systems AB.
 | 
						|
 *
 | 
						|
 * Support for FEC controller of ColdFire processors.
 | 
						|
 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
 | 
						|
 *
 | 
						|
 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
 | 
						|
 * Copyright (c) 2004-2006 Macq Electronique SA.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/ptrace.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/ioport.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/pci.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/netdevice.h>
 | 
						|
#include <linux/etherdevice.h>
 | 
						|
#include <linux/skbuff.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/workqueue.h>
 | 
						|
#include <linux/bitops.h>
 | 
						|
 | 
						|
#include <asm/irq.h>
 | 
						|
#include <asm/uaccess.h>
 | 
						|
#include <asm/io.h>
 | 
						|
#include <asm/pgtable.h>
 | 
						|
 | 
						|
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
 | 
						|
    defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
 | 
						|
    defined(CONFIG_M520x) || defined(CONFIG_M532x)
 | 
						|
#include <asm/coldfire.h>
 | 
						|
#include <asm/mcfsim.h>
 | 
						|
#include "fec.h"
 | 
						|
#else
 | 
						|
#include <asm/8xx_immap.h>
 | 
						|
#include <asm/mpc8xx.h>
 | 
						|
#include "commproc.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(CONFIG_FEC2)
 | 
						|
#define	FEC_MAX_PORTS	2
 | 
						|
#else
 | 
						|
#define	FEC_MAX_PORTS	1
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Define the fixed address of the FEC hardware.
 | 
						|
 */
 | 
						|
static unsigned int fec_hw[] = {
 | 
						|
#if defined(CONFIG_M5272)
 | 
						|
	(MCF_MBAR + 0x840),
 | 
						|
#elif defined(CONFIG_M527x)
 | 
						|
	(MCF_MBAR + 0x1000),
 | 
						|
	(MCF_MBAR + 0x1800),
 | 
						|
#elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
 | 
						|
	(MCF_MBAR + 0x1000),
 | 
						|
#elif defined(CONFIG_M520x)
 | 
						|
	(MCF_MBAR+0x30000),
 | 
						|
#elif defined(CONFIG_M532x)
 | 
						|
	(MCF_MBAR+0xfc030000),
 | 
						|
#else
 | 
						|
	&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
static unsigned char	fec_mac_default[] = {
 | 
						|
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Some hardware gets it MAC address out of local flash memory.
 | 
						|
 * if this is non-zero then assume it is the address to get MAC from.
 | 
						|
 */
 | 
						|
#if defined(CONFIG_NETtel)
 | 
						|
#define	FEC_FLASHMAC	0xf0006006
 | 
						|
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 | 
						|
#define	FEC_FLASHMAC	0xf0006000
 | 
						|
#elif defined (CONFIG_MTD_KeyTechnology)
 | 
						|
#define	FEC_FLASHMAC	0xffe04000
 | 
						|
#elif defined(CONFIG_CANCam)
 | 
						|
#define	FEC_FLASHMAC	0xf0020000
 | 
						|
#elif defined (CONFIG_M5272C3)
 | 
						|
#define	FEC_FLASHMAC	(0xffe04000 + 4)
 | 
						|
#elif defined(CONFIG_MOD5272)
 | 
						|
#define FEC_FLASHMAC 	0xffc0406b
 | 
						|
#else
 | 
						|
#define	FEC_FLASHMAC	0
 | 
						|
#endif
 | 
						|
 | 
						|
/* Forward declarations of some structures to support different PHYs
 | 
						|
*/
 | 
						|
 | 
						|
typedef struct {
 | 
						|
	uint mii_data;
 | 
						|
	void (*funct)(uint mii_reg, struct net_device *dev);
 | 
						|
} phy_cmd_t;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
	uint id;
 | 
						|
	char *name;
 | 
						|
 | 
						|
	const phy_cmd_t *config;
 | 
						|
	const phy_cmd_t *startup;
 | 
						|
	const phy_cmd_t *ack_int;
 | 
						|
	const phy_cmd_t *shutdown;
 | 
						|
} phy_info_t;
 | 
						|
 | 
						|
/* The number of Tx and Rx buffers.  These are allocated from the page
 | 
						|
 * pool.  The code may assume these are power of two, so it it best
 | 
						|
 * to keep them that size.
 | 
						|
 * We don't need to allocate pages for the transmitter.  We just use
 | 
						|
 * the skbuffer directly.
 | 
						|
 */
 | 
						|
#define FEC_ENET_RX_PAGES	8
 | 
						|
#define FEC_ENET_RX_FRSIZE	2048
 | 
						|
#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
 | 
						|
#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
 | 
						|
#define FEC_ENET_TX_FRSIZE	2048
 | 
						|
#define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE)
 | 
						|
#define TX_RING_SIZE		16	/* Must be power of two */
 | 
						|
#define TX_RING_MOD_MASK	15	/*   for this to work */
 | 
						|
 | 
						|
#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
 | 
						|
#error "FEC: descriptor ring size constants too large"
 | 
						|
#endif
 | 
						|
 | 
						|
/* Interrupt events/masks.
 | 
						|
*/
 | 
						|
#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
 | 
						|
#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
 | 
						|
#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
 | 
						|
#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
 | 
						|
#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
 | 
						|
#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
 | 
						|
#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
 | 
						|
#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
 | 
						|
#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
 | 
						|
#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
 | 
						|
 | 
						|
/* The FEC stores dest/src/type, data, and checksum for receive packets.
 | 
						|
 */
 | 
						|
#define PKT_MAXBUF_SIZE		1518
 | 
						|
#define PKT_MINBUF_SIZE		64
 | 
						|
#define PKT_MAXBLR_SIZE		1520
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 | 
						|
 * size bits. Other FEC hardware does not, so we need to take that into
 | 
						|
 * account when setting it.
 | 
						|
 */
 | 
						|
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 | 
						|
    defined(CONFIG_M520x) || defined(CONFIG_M532x)
 | 
						|
#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 | 
						|
#else
 | 
						|
#define	OPT_FRAME_SIZE	0
 | 
						|
#endif
 | 
						|
 | 
						|
/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
 | 
						|
 * tx_bd_base always point to the base of the buffer descriptors.  The
 | 
						|
 * cur_rx and cur_tx point to the currently available buffer.
 | 
						|
 * The dirty_tx tracks the current buffer that is being sent by the
 | 
						|
 * controller.  The cur_tx and dirty_tx are equal under both completely
 | 
						|
 * empty and completely full conditions.  The empty/ready indicator in
 | 
						|
 * the buffer descriptor determines the actual condition.
 | 
						|
 */
 | 
						|
struct fec_enet_private {
 | 
						|
	/* Hardware registers of the FEC device */
 | 
						|
	volatile fec_t	*hwp;
 | 
						|
 | 
						|
	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
 | 
						|
	unsigned char *tx_bounce[TX_RING_SIZE];
 | 
						|
	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
 | 
						|
	ushort	skb_cur;
 | 
						|
	ushort	skb_dirty;
 | 
						|
 | 
						|
	/* CPM dual port RAM relative addresses.
 | 
						|
	*/
 | 
						|
	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */
 | 
						|
	cbd_t	*tx_bd_base;
 | 
						|
	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */
 | 
						|
	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */
 | 
						|
	struct	net_device_stats stats;
 | 
						|
	uint	tx_full;
 | 
						|
	spinlock_t lock;
 | 
						|
 | 
						|
	uint	phy_id;
 | 
						|
	uint	phy_id_done;
 | 
						|
	uint	phy_status;
 | 
						|
	uint	phy_speed;
 | 
						|
	phy_info_t const	*phy;
 | 
						|
	struct work_struct phy_task;
 | 
						|
 | 
						|
	uint	sequence_done;
 | 
						|
	uint	mii_phy_task_queued;
 | 
						|
 | 
						|
	uint	phy_addr;
 | 
						|
 | 
						|
	int	index;
 | 
						|
	int	opened;
 | 
						|
	int	link;
 | 
						|
	int	old_link;
 | 
						|
	int	full_duplex;
 | 
						|
};
 | 
						|
 | 
						|
static int fec_enet_open(struct net_device *dev);
 | 
						|
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
 | 
						|
static void fec_enet_mii(struct net_device *dev);
 | 
						|
static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
 | 
						|
static void fec_enet_tx(struct net_device *dev);
 | 
						|
static void fec_enet_rx(struct net_device *dev);
 | 
						|
static int fec_enet_close(struct net_device *dev);
 | 
						|
static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
 | 
						|
static void set_multicast_list(struct net_device *dev);
 | 
						|
static void fec_restart(struct net_device *dev, int duplex);
 | 
						|
static void fec_stop(struct net_device *dev);
 | 
						|
static void fec_set_mac_address(struct net_device *dev);
 | 
						|
 | 
						|
 | 
						|
/* MII processing.  We keep this as simple as possible.  Requests are
 | 
						|
 * placed on the list (if there is room).  When the request is finished
 | 
						|
 * by the MII, an optional function may be called.
 | 
						|
 */
 | 
						|
typedef struct mii_list {
 | 
						|
	uint	mii_regval;
 | 
						|
	void	(*mii_func)(uint val, struct net_device *dev);
 | 
						|
	struct	mii_list *mii_next;
 | 
						|
} mii_list_t;
 | 
						|
 | 
						|
#define		NMII	20
 | 
						|
static mii_list_t	mii_cmds[NMII];
 | 
						|
static mii_list_t	*mii_free;
 | 
						|
static mii_list_t	*mii_head;
 | 
						|
static mii_list_t	*mii_tail;
 | 
						|
 | 
						|
static int	mii_queue(struct net_device *dev, int request,
 | 
						|
				void (*func)(uint, struct net_device *));
 | 
						|
 | 
						|
/* Make MII read/write commands for the FEC.
 | 
						|
*/
 | 
						|
#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
 | 
						|
#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \
 | 
						|
						(VAL & 0xffff))
 | 
						|
#define mk_mii_end	0
 | 
						|
 | 
						|
/* Transmitter timeout.
 | 
						|
*/
 | 
						|
#define TX_TIMEOUT (2*HZ)
 | 
						|
 | 
						|
/* Register definitions for the PHY.
 | 
						|
*/
 | 
						|
 | 
						|
#define MII_REG_CR          0  /* Control Register                         */
 | 
						|
#define MII_REG_SR          1  /* Status Register                          */
 | 
						|
#define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */
 | 
						|
#define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */
 | 
						|
#define MII_REG_ANAR        4  /* A-N Advertisement Register               */
 | 
						|
#define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */
 | 
						|
#define MII_REG_ANER        6  /* A-N Expansion Register                   */
 | 
						|
#define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */
 | 
						|
#define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */
 | 
						|
 | 
						|
/* values for phy_status */
 | 
						|
 | 
						|
#define PHY_CONF_ANE	0x0001  /* 1 auto-negotiation enabled */
 | 
						|
#define PHY_CONF_LOOP	0x0002  /* 1 loopback mode enabled */
 | 
						|
#define PHY_CONF_SPMASK	0x00f0  /* mask for speed */
 | 
						|
#define PHY_CONF_10HDX	0x0010  /* 10 Mbit half duplex supported */
 | 
						|
#define PHY_CONF_10FDX	0x0020  /* 10 Mbit full duplex supported */
 | 
						|
#define PHY_CONF_100HDX	0x0040  /* 100 Mbit half duplex supported */
 | 
						|
#define PHY_CONF_100FDX	0x0080  /* 100 Mbit full duplex supported */
 | 
						|
 | 
						|
#define PHY_STAT_LINK	0x0100  /* 1 up - 0 down */
 | 
						|
#define PHY_STAT_FAULT	0x0200  /* 1 remote fault */
 | 
						|
#define PHY_STAT_ANC	0x0400  /* 1 auto-negotiation complete	*/
 | 
						|
#define PHY_STAT_SPMASK	0xf000  /* mask for speed */
 | 
						|
#define PHY_STAT_10HDX	0x1000  /* 10 Mbit half duplex selected	*/
 | 
						|
#define PHY_STAT_10FDX	0x2000  /* 10 Mbit full duplex selected	*/
 | 
						|
#define PHY_STAT_100HDX	0x4000  /* 100 Mbit half duplex selected */
 | 
						|
#define PHY_STAT_100FDX	0x8000  /* 100 Mbit full duplex selected */
 | 
						|
 | 
						|
 | 
						|
static int
 | 
						|
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep;
 | 
						|
	volatile fec_t	*fecp;
 | 
						|
	volatile cbd_t	*bdp;
 | 
						|
	unsigned short	status;
 | 
						|
 | 
						|
	fep = netdev_priv(dev);
 | 
						|
	fecp = (volatile fec_t*)dev->base_addr;
 | 
						|
 | 
						|
	if (!fep->link) {
 | 
						|
		/* Link is down or autonegotiation is in progress. */
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Fill in a Tx ring entry */
 | 
						|
	bdp = fep->cur_tx;
 | 
						|
 | 
						|
	status = bdp->cbd_sc;
 | 
						|
#ifndef final_version
 | 
						|
	if (status & BD_ENET_TX_READY) {
 | 
						|
		/* Ooops.  All transmit buffers are full.  Bail out.
 | 
						|
		 * This should not happen, since dev->tbusy should be set.
 | 
						|
		 */
 | 
						|
		printk("%s: tx queue full!.\n", dev->name);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Clear all of the status flags.
 | 
						|
	 */
 | 
						|
	status &= ~BD_ENET_TX_STATS;
 | 
						|
 | 
						|
	/* Set buffer length and buffer pointer.
 | 
						|
	*/
 | 
						|
	bdp->cbd_bufaddr = __pa(skb->data);
 | 
						|
	bdp->cbd_datlen = skb->len;
 | 
						|
 | 
						|
	/*
 | 
						|
	 *	On some FEC implementations data must be aligned on
 | 
						|
	 *	4-byte boundaries. Use bounce buffers to copy data
 | 
						|
	 *	and get it aligned. Ugh.
 | 
						|
	 */
 | 
						|
	if (bdp->cbd_bufaddr & 0x3) {
 | 
						|
		unsigned int index;
 | 
						|
		index = bdp - fep->tx_bd_base;
 | 
						|
		memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
 | 
						|
		bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Save skb pointer.
 | 
						|
	*/
 | 
						|
	fep->tx_skbuff[fep->skb_cur] = skb;
 | 
						|
 | 
						|
	fep->stats.tx_bytes += skb->len;
 | 
						|
	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
 | 
						|
 | 
						|
	/* Push the data cache so the CPM does not get stale memory
 | 
						|
	 * data.
 | 
						|
	 */
 | 
						|
	flush_dcache_range((unsigned long)skb->data,
 | 
						|
			   (unsigned long)skb->data + skb->len);
 | 
						|
 | 
						|
	spin_lock_irq(&fep->lock);
 | 
						|
 | 
						|
	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 | 
						|
	 * it's the last BD of the frame, and to put the CRC on the end.
 | 
						|
	 */
 | 
						|
 | 
						|
	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
 | 
						|
			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
 | 
						|
	bdp->cbd_sc = status;
 | 
						|
 | 
						|
	dev->trans_start = jiffies;
 | 
						|
 | 
						|
	/* Trigger transmission start */
 | 
						|
	fecp->fec_x_des_active = 0;
 | 
						|
 | 
						|
	/* If this was the last BD in the ring, start at the beginning again.
 | 
						|
	*/
 | 
						|
	if (status & BD_ENET_TX_WRAP) {
 | 
						|
		bdp = fep->tx_bd_base;
 | 
						|
	} else {
 | 
						|
		bdp++;
 | 
						|
	}
 | 
						|
 | 
						|
	if (bdp == fep->dirty_tx) {
 | 
						|
		fep->tx_full = 1;
 | 
						|
		netif_stop_queue(dev);
 | 
						|
	}
 | 
						|
 | 
						|
	fep->cur_tx = (cbd_t *)bdp;
 | 
						|
 | 
						|
	spin_unlock_irq(&fep->lock);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
fec_timeout(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
 | 
						|
	printk("%s: transmit timed out.\n", dev->name);
 | 
						|
	fep->stats.tx_errors++;
 | 
						|
#ifndef final_version
 | 
						|
	{
 | 
						|
	int	i;
 | 
						|
	cbd_t	*bdp;
 | 
						|
 | 
						|
	printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
 | 
						|
	       (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
 | 
						|
	       (unsigned long)fep->dirty_tx,
 | 
						|
	       (unsigned long)fep->cur_rx);
 | 
						|
 | 
						|
	bdp = fep->tx_bd_base;
 | 
						|
	printk(" tx: %u buffers\n",  TX_RING_SIZE);
 | 
						|
	for (i = 0 ; i < TX_RING_SIZE; i++) {
 | 
						|
		printk("  %08x: %04x %04x %08x\n",
 | 
						|
		       (uint) bdp,
 | 
						|
		       bdp->cbd_sc,
 | 
						|
		       bdp->cbd_datlen,
 | 
						|
		       (int) bdp->cbd_bufaddr);
 | 
						|
		bdp++;
 | 
						|
	}
 | 
						|
 | 
						|
	bdp = fep->rx_bd_base;
 | 
						|
	printk(" rx: %lu buffers\n",  (unsigned long) RX_RING_SIZE);
 | 
						|
	for (i = 0 ; i < RX_RING_SIZE; i++) {
 | 
						|
		printk("  %08x: %04x %04x %08x\n",
 | 
						|
		       (uint) bdp,
 | 
						|
		       bdp->cbd_sc,
 | 
						|
		       bdp->cbd_datlen,
 | 
						|
		       (int) bdp->cbd_bufaddr);
 | 
						|
		bdp++;
 | 
						|
	}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	fec_restart(dev, fep->full_duplex);
 | 
						|
	netif_wake_queue(dev);
 | 
						|
}
 | 
						|
 | 
						|
/* The interrupt handler.
 | 
						|
 * This is called from the MPC core interrupt.
 | 
						|
 */
 | 
						|
static irqreturn_t
 | 
						|
fec_enet_interrupt(int irq, void * dev_id)
 | 
						|
{
 | 
						|
	struct	net_device *dev = dev_id;
 | 
						|
	volatile fec_t	*fecp;
 | 
						|
	uint	int_events;
 | 
						|
	int handled = 0;
 | 
						|
 | 
						|
	fecp = (volatile fec_t*)dev->base_addr;
 | 
						|
 | 
						|
	/* Get the interrupt events that caused us to be here.
 | 
						|
	*/
 | 
						|
	while ((int_events = fecp->fec_ievent) != 0) {
 | 
						|
		fecp->fec_ievent = int_events;
 | 
						|
 | 
						|
		/* Handle receive event in its own function.
 | 
						|
		 */
 | 
						|
		if (int_events & FEC_ENET_RXF) {
 | 
						|
			handled = 1;
 | 
						|
			fec_enet_rx(dev);
 | 
						|
		}
 | 
						|
 | 
						|
		/* Transmit OK, or non-fatal error. Update the buffer
 | 
						|
		   descriptors. FEC handles all errors, we just discover
 | 
						|
		   them as part of the transmit process.
 | 
						|
		*/
 | 
						|
		if (int_events & FEC_ENET_TXF) {
 | 
						|
			handled = 1;
 | 
						|
			fec_enet_tx(dev);
 | 
						|
		}
 | 
						|
 | 
						|
		if (int_events & FEC_ENET_MII) {
 | 
						|
			handled = 1;
 | 
						|
			fec_enet_mii(dev);
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
	return IRQ_RETVAL(handled);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void
 | 
						|
fec_enet_tx(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct	fec_enet_private *fep;
 | 
						|
	volatile cbd_t	*bdp;
 | 
						|
	unsigned short status;
 | 
						|
	struct	sk_buff	*skb;
 | 
						|
 | 
						|
	fep = netdev_priv(dev);
 | 
						|
	spin_lock(&fep->lock);
 | 
						|
	bdp = fep->dirty_tx;
 | 
						|
 | 
						|
	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
 | 
						|
		if (bdp == fep->cur_tx && fep->tx_full == 0) break;
 | 
						|
 | 
						|
		skb = fep->tx_skbuff[fep->skb_dirty];
 | 
						|
		/* Check for errors. */
 | 
						|
		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 | 
						|
				   BD_ENET_TX_RL | BD_ENET_TX_UN |
 | 
						|
				   BD_ENET_TX_CSL)) {
 | 
						|
			fep->stats.tx_errors++;
 | 
						|
			if (status & BD_ENET_TX_HB)  /* No heartbeat */
 | 
						|
				fep->stats.tx_heartbeat_errors++;
 | 
						|
			if (status & BD_ENET_TX_LC)  /* Late collision */
 | 
						|
				fep->stats.tx_window_errors++;
 | 
						|
			if (status & BD_ENET_TX_RL)  /* Retrans limit */
 | 
						|
				fep->stats.tx_aborted_errors++;
 | 
						|
			if (status & BD_ENET_TX_UN)  /* Underrun */
 | 
						|
				fep->stats.tx_fifo_errors++;
 | 
						|
			if (status & BD_ENET_TX_CSL) /* Carrier lost */
 | 
						|
				fep->stats.tx_carrier_errors++;
 | 
						|
		} else {
 | 
						|
			fep->stats.tx_packets++;
 | 
						|
		}
 | 
						|
 | 
						|
#ifndef final_version
 | 
						|
		if (status & BD_ENET_TX_READY)
 | 
						|
			printk("HEY! Enet xmit interrupt and TX_READY.\n");
 | 
						|
#endif
 | 
						|
		/* Deferred means some collisions occurred during transmit,
 | 
						|
		 * but we eventually sent the packet OK.
 | 
						|
		 */
 | 
						|
		if (status & BD_ENET_TX_DEF)
 | 
						|
			fep->stats.collisions++;
 | 
						|
 | 
						|
		/* Free the sk buffer associated with this last transmit.
 | 
						|
		 */
 | 
						|
		dev_kfree_skb_any(skb);
 | 
						|
		fep->tx_skbuff[fep->skb_dirty] = NULL;
 | 
						|
		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
 | 
						|
 | 
						|
		/* Update pointer to next buffer descriptor to be transmitted.
 | 
						|
		 */
 | 
						|
		if (status & BD_ENET_TX_WRAP)
 | 
						|
			bdp = fep->tx_bd_base;
 | 
						|
		else
 | 
						|
			bdp++;
 | 
						|
 | 
						|
		/* Since we have freed up a buffer, the ring is no longer
 | 
						|
		 * full.
 | 
						|
		 */
 | 
						|
		if (fep->tx_full) {
 | 
						|
			fep->tx_full = 0;
 | 
						|
			if (netif_queue_stopped(dev))
 | 
						|
				netif_wake_queue(dev);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	fep->dirty_tx = (cbd_t *)bdp;
 | 
						|
	spin_unlock(&fep->lock);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* During a receive, the cur_rx points to the current incoming buffer.
 | 
						|
 * When we update through the ring, if the next incoming buffer has
 | 
						|
 * not been given to the system, we just set the empty indicator,
 | 
						|
 * effectively tossing the packet.
 | 
						|
 */
 | 
						|
static void
 | 
						|
fec_enet_rx(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct	fec_enet_private *fep;
 | 
						|
	volatile fec_t	*fecp;
 | 
						|
	volatile cbd_t *bdp;
 | 
						|
	unsigned short status;
 | 
						|
	struct	sk_buff	*skb;
 | 
						|
	ushort	pkt_len;
 | 
						|
	__u8 *data;
 | 
						|
 | 
						|
#ifdef CONFIG_M532x
 | 
						|
	flush_cache_all();
 | 
						|
#endif
 | 
						|
 | 
						|
	fep = netdev_priv(dev);
 | 
						|
	fecp = (volatile fec_t*)dev->base_addr;
 | 
						|
 | 
						|
	/* First, grab all of the stats for the incoming packet.
 | 
						|
	 * These get messed up if we get called due to a busy condition.
 | 
						|
	 */
 | 
						|
	bdp = fep->cur_rx;
 | 
						|
 | 
						|
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
 | 
						|
 | 
						|
#ifndef final_version
 | 
						|
	/* Since we have allocated space to hold a complete frame,
 | 
						|
	 * the last indicator should be set.
 | 
						|
	 */
 | 
						|
	if ((status & BD_ENET_RX_LAST) == 0)
 | 
						|
		printk("FEC ENET: rcv is not +last\n");
 | 
						|
#endif
 | 
						|
 | 
						|
	if (!fep->opened)
 | 
						|
		goto rx_processing_done;
 | 
						|
 | 
						|
	/* Check for errors. */
 | 
						|
	if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
 | 
						|
			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 | 
						|
		fep->stats.rx_errors++;
 | 
						|
		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
 | 
						|
		/* Frame too long or too short. */
 | 
						|
			fep->stats.rx_length_errors++;
 | 
						|
		}
 | 
						|
		if (status & BD_ENET_RX_NO)	/* Frame alignment */
 | 
						|
			fep->stats.rx_frame_errors++;
 | 
						|
		if (status & BD_ENET_RX_CR)	/* CRC Error */
 | 
						|
			fep->stats.rx_crc_errors++;
 | 
						|
		if (status & BD_ENET_RX_OV)	/* FIFO overrun */
 | 
						|
			fep->stats.rx_fifo_errors++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Report late collisions as a frame error.
 | 
						|
	 * On this error, the BD is closed, but we don't know what we
 | 
						|
	 * have in the buffer.  So, just drop this frame on the floor.
 | 
						|
	 */
 | 
						|
	if (status & BD_ENET_RX_CL) {
 | 
						|
		fep->stats.rx_errors++;
 | 
						|
		fep->stats.rx_frame_errors++;
 | 
						|
		goto rx_processing_done;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Process the incoming frame.
 | 
						|
	 */
 | 
						|
	fep->stats.rx_packets++;
 | 
						|
	pkt_len = bdp->cbd_datlen;
 | 
						|
	fep->stats.rx_bytes += pkt_len;
 | 
						|
	data = (__u8*)__va(bdp->cbd_bufaddr);
 | 
						|
 | 
						|
	/* This does 16 byte alignment, exactly what we need.
 | 
						|
	 * The packet length includes FCS, but we don't want to
 | 
						|
	 * include that when passing upstream as it messes up
 | 
						|
	 * bridging applications.
 | 
						|
	 */
 | 
						|
	skb = dev_alloc_skb(pkt_len-4);
 | 
						|
 | 
						|
	if (skb == NULL) {
 | 
						|
		printk("%s: Memory squeeze, dropping packet.\n", dev->name);
 | 
						|
		fep->stats.rx_dropped++;
 | 
						|
	} else {
 | 
						|
		skb_put(skb,pkt_len-4);	/* Make room */
 | 
						|
		eth_copy_and_sum(skb, data, pkt_len-4, 0);
 | 
						|
		skb->protocol=eth_type_trans(skb,dev);
 | 
						|
		netif_rx(skb);
 | 
						|
	}
 | 
						|
  rx_processing_done:
 | 
						|
 | 
						|
	/* Clear the status flags for this buffer.
 | 
						|
	*/
 | 
						|
	status &= ~BD_ENET_RX_STATS;
 | 
						|
 | 
						|
	/* Mark the buffer empty.
 | 
						|
	*/
 | 
						|
	status |= BD_ENET_RX_EMPTY;
 | 
						|
	bdp->cbd_sc = status;
 | 
						|
 | 
						|
	/* Update BD pointer to next entry.
 | 
						|
	*/
 | 
						|
	if (status & BD_ENET_RX_WRAP)
 | 
						|
		bdp = fep->rx_bd_base;
 | 
						|
	else
 | 
						|
		bdp++;
 | 
						|
 | 
						|
#if 1
 | 
						|
	/* Doing this here will keep the FEC running while we process
 | 
						|
	 * incoming frames.  On a heavily loaded network, we should be
 | 
						|
	 * able to keep up at the expense of system resources.
 | 
						|
	 */
 | 
						|
	fecp->fec_r_des_active = 0;
 | 
						|
#endif
 | 
						|
   } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
 | 
						|
	fep->cur_rx = (cbd_t *)bdp;
 | 
						|
 | 
						|
#if 0
 | 
						|
	/* Doing this here will allow us to process all frames in the
 | 
						|
	 * ring before the FEC is allowed to put more there.  On a heavily
 | 
						|
	 * loaded network, some frames may be lost.  Unfortunately, this
 | 
						|
	 * increases the interrupt overhead since we can potentially work
 | 
						|
	 * our way back to the interrupt return only to come right back
 | 
						|
	 * here.
 | 
						|
	 */
 | 
						|
	fecp->fec_r_des_active = 0;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* called from interrupt context */
 | 
						|
static void
 | 
						|
fec_enet_mii(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct	fec_enet_private *fep;
 | 
						|
	volatile fec_t	*ep;
 | 
						|
	mii_list_t	*mip;
 | 
						|
	uint		mii_reg;
 | 
						|
 | 
						|
	fep = netdev_priv(dev);
 | 
						|
	ep = fep->hwp;
 | 
						|
	mii_reg = ep->fec_mii_data;
 | 
						|
 | 
						|
	spin_lock(&fep->lock);
 | 
						|
 | 
						|
	if ((mip = mii_head) == NULL) {
 | 
						|
		printk("MII and no head!\n");
 | 
						|
		goto unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	if (mip->mii_func != NULL)
 | 
						|
		(*(mip->mii_func))(mii_reg, dev);
 | 
						|
 | 
						|
	mii_head = mip->mii_next;
 | 
						|
	mip->mii_next = mii_free;
 | 
						|
	mii_free = mip;
 | 
						|
 | 
						|
	if ((mip = mii_head) != NULL)
 | 
						|
		ep->fec_mii_data = mip->mii_regval;
 | 
						|
 | 
						|
unlock:
 | 
						|
	spin_unlock(&fep->lock);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep;
 | 
						|
	unsigned long	flags;
 | 
						|
	mii_list_t	*mip;
 | 
						|
	int		retval;
 | 
						|
 | 
						|
	/* Add PHY address to register command.
 | 
						|
	*/
 | 
						|
	fep = netdev_priv(dev);
 | 
						|
	regval |= fep->phy_addr << 23;
 | 
						|
 | 
						|
	retval = 0;
 | 
						|
 | 
						|
	spin_lock_irqsave(&fep->lock,flags);
 | 
						|
 | 
						|
	if ((mip = mii_free) != NULL) {
 | 
						|
		mii_free = mip->mii_next;
 | 
						|
		mip->mii_regval = regval;
 | 
						|
		mip->mii_func = func;
 | 
						|
		mip->mii_next = NULL;
 | 
						|
		if (mii_head) {
 | 
						|
			mii_tail->mii_next = mip;
 | 
						|
			mii_tail = mip;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			mii_head = mii_tail = mip;
 | 
						|
			fep->hwp->fec_mii_data = regval;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		retval = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock_irqrestore(&fep->lock,flags);
 | 
						|
 | 
						|
	return(retval);
 | 
						|
}
 | 
						|
 | 
						|
static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
 | 
						|
{
 | 
						|
	int k;
 | 
						|
 | 
						|
	if(!c)
 | 
						|
		return;
 | 
						|
 | 
						|
	for(k = 0; (c+k)->mii_data != mk_mii_end; k++) {
 | 
						|
		mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void mii_parse_sr(uint mii_reg, struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
	volatile uint *s = &(fep->phy_status);
 | 
						|
	uint status;
 | 
						|
 | 
						|
	status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
 | 
						|
 | 
						|
	if (mii_reg & 0x0004)
 | 
						|
		status |= PHY_STAT_LINK;
 | 
						|
	if (mii_reg & 0x0010)
 | 
						|
		status |= PHY_STAT_FAULT;
 | 
						|
	if (mii_reg & 0x0020)
 | 
						|
		status |= PHY_STAT_ANC;
 | 
						|
 | 
						|
	*s = status;
 | 
						|
}
 | 
						|
 | 
						|
static void mii_parse_cr(uint mii_reg, struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
	volatile uint *s = &(fep->phy_status);
 | 
						|
	uint status;
 | 
						|
 | 
						|
	status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
 | 
						|
 | 
						|
	if (mii_reg & 0x1000)
 | 
						|
		status |= PHY_CONF_ANE;
 | 
						|
	if (mii_reg & 0x4000)
 | 
						|
		status |= PHY_CONF_LOOP;
 | 
						|
	*s = status;
 | 
						|
}
 | 
						|
 | 
						|
static void mii_parse_anar(uint mii_reg, struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
	volatile uint *s = &(fep->phy_status);
 | 
						|
	uint status;
 | 
						|
 | 
						|
	status = *s & ~(PHY_CONF_SPMASK);
 | 
						|
 | 
						|
	if (mii_reg & 0x0020)
 | 
						|
		status |= PHY_CONF_10HDX;
 | 
						|
	if (mii_reg & 0x0040)
 | 
						|
		status |= PHY_CONF_10FDX;
 | 
						|
	if (mii_reg & 0x0080)
 | 
						|
		status |= PHY_CONF_100HDX;
 | 
						|
	if (mii_reg & 0x00100)
 | 
						|
		status |= PHY_CONF_100FDX;
 | 
						|
	*s = status;
 | 
						|
}
 | 
						|
 | 
						|
/* ------------------------------------------------------------------------- */
 | 
						|
/* The Level one LXT970 is used by many boards				     */
 | 
						|
 | 
						|
#define MII_LXT970_MIRROR    16  /* Mirror register           */
 | 
						|
#define MII_LXT970_IER       17  /* Interrupt Enable Register */
 | 
						|
#define MII_LXT970_ISR       18  /* Interrupt Status Register */
 | 
						|
#define MII_LXT970_CONFIG    19  /* Configuration Register    */
 | 
						|
#define MII_LXT970_CSR       20  /* Chip Status Register      */
 | 
						|
 | 
						|
static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
	volatile uint *s = &(fep->phy_status);
 | 
						|
	uint status;
 | 
						|
 | 
						|
	status = *s & ~(PHY_STAT_SPMASK);
 | 
						|
	if (mii_reg & 0x0800) {
 | 
						|
		if (mii_reg & 0x1000)
 | 
						|
			status |= PHY_STAT_100FDX;
 | 
						|
		else
 | 
						|
			status |= PHY_STAT_100HDX;
 | 
						|
	} else {
 | 
						|
		if (mii_reg & 0x1000)
 | 
						|
			status |= PHY_STAT_10FDX;
 | 
						|
		else
 | 
						|
			status |= PHY_STAT_10HDX;
 | 
						|
	}
 | 
						|
	*s = status;
 | 
						|
}
 | 
						|
 | 
						|
static phy_cmd_t const phy_cmd_lxt970_config[] = {
 | 
						|
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
 | 
						|
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
 | 
						|
		{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
 | 
						|
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
 | 
						|
		/* read SR and ISR to acknowledge */
 | 
						|
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | 
						|
		{ mk_mii_read(MII_LXT970_ISR), NULL },
 | 
						|
 | 
						|
		/* find out the current status */
 | 
						|
		{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
 | 
						|
		{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_info_t const phy_info_lxt970 = {
 | 
						|
	.id = 0x07810000,
 | 
						|
	.name = "LXT970",
 | 
						|
	.config = phy_cmd_lxt970_config,
 | 
						|
	.startup = phy_cmd_lxt970_startup,
 | 
						|
	.ack_int = phy_cmd_lxt970_ack_int,
 | 
						|
	.shutdown = phy_cmd_lxt970_shutdown
 | 
						|
};
 | 
						|
 | 
						|
/* ------------------------------------------------------------------------- */
 | 
						|
/* The Level one LXT971 is used on some of my custom boards                  */
 | 
						|
 | 
						|
/* register definitions for the 971 */
 | 
						|
 | 
						|
#define MII_LXT971_PCR       16  /* Port Control Register     */
 | 
						|
#define MII_LXT971_SR2       17  /* Status Register 2         */
 | 
						|
#define MII_LXT971_IER       18  /* Interrupt Enable Register */
 | 
						|
#define MII_LXT971_ISR       19  /* Interrupt Status Register */
 | 
						|
#define MII_LXT971_LCR       20  /* LED Control Register      */
 | 
						|
#define MII_LXT971_TCR       30  /* Transmit Control Register */
 | 
						|
 | 
						|
/*
 | 
						|
 * I had some nice ideas of running the MDIO faster...
 | 
						|
 * The 971 should support 8MHz and I tried it, but things acted really
 | 
						|
 * weird, so 2.5 MHz ought to be enough for anyone...
 | 
						|
 */
 | 
						|
 | 
						|
static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
	volatile uint *s = &(fep->phy_status);
 | 
						|
	uint status;
 | 
						|
 | 
						|
	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
 | 
						|
 | 
						|
	if (mii_reg & 0x0400) {
 | 
						|
		fep->link = 1;
 | 
						|
		status |= PHY_STAT_LINK;
 | 
						|
	} else {
 | 
						|
		fep->link = 0;
 | 
						|
	}
 | 
						|
	if (mii_reg & 0x0080)
 | 
						|
		status |= PHY_STAT_ANC;
 | 
						|
	if (mii_reg & 0x4000) {
 | 
						|
		if (mii_reg & 0x0200)
 | 
						|
			status |= PHY_STAT_100FDX;
 | 
						|
		else
 | 
						|
			status |= PHY_STAT_100HDX;
 | 
						|
	} else {
 | 
						|
		if (mii_reg & 0x0200)
 | 
						|
			status |= PHY_STAT_10FDX;
 | 
						|
		else
 | 
						|
			status |= PHY_STAT_10HDX;
 | 
						|
	}
 | 
						|
	if (mii_reg & 0x0008)
 | 
						|
		status |= PHY_STAT_FAULT;
 | 
						|
 | 
						|
	*s = status;
 | 
						|
}
 | 
						|
 | 
						|
static phy_cmd_t const phy_cmd_lxt971_config[] = {
 | 
						|
		/* limit to 10MBit because my prototype board
 | 
						|
		 * doesn't work with 100. */
 | 
						|
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
 | 
						|
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
 | 
						|
		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_cmd_t const phy_cmd_lxt971_startup[] = {  /* enable interrupts */
 | 
						|
		{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
 | 
						|
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 | 
						|
		{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
 | 
						|
		/* Somehow does the 971 tell me that the link is down
 | 
						|
		 * the first read after power-up.
 | 
						|
		 * read here to get a valid value in ack_int */
 | 
						|
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
 | 
						|
		/* acknowledge the int before reading status ! */
 | 
						|
		{ mk_mii_read(MII_LXT971_ISR), NULL },
 | 
						|
		/* find out the current status */
 | 
						|
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | 
						|
		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
 | 
						|
		{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_info_t const phy_info_lxt971 = {
 | 
						|
	.id = 0x0001378e,
 | 
						|
	.name = "LXT971",
 | 
						|
	.config = phy_cmd_lxt971_config,
 | 
						|
	.startup = phy_cmd_lxt971_startup,
 | 
						|
	.ack_int = phy_cmd_lxt971_ack_int,
 | 
						|
	.shutdown = phy_cmd_lxt971_shutdown
 | 
						|
};
 | 
						|
 | 
						|
/* ------------------------------------------------------------------------- */
 | 
						|
/* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */
 | 
						|
 | 
						|
/* register definitions */
 | 
						|
 | 
						|
#define MII_QS6612_MCR       17  /* Mode Control Register      */
 | 
						|
#define MII_QS6612_FTR       27  /* Factory Test Register      */
 | 
						|
#define MII_QS6612_MCO       28  /* Misc. Control Register     */
 | 
						|
#define MII_QS6612_ISR       29  /* Interrupt Source Register  */
 | 
						|
#define MII_QS6612_IMR       30  /* Interrupt Mask Register    */
 | 
						|
#define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */
 | 
						|
 | 
						|
static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
	volatile uint *s = &(fep->phy_status);
 | 
						|
	uint status;
 | 
						|
 | 
						|
	status = *s & ~(PHY_STAT_SPMASK);
 | 
						|
 | 
						|
	switch((mii_reg >> 2) & 7) {
 | 
						|
	case 1: status |= PHY_STAT_10HDX; break;
 | 
						|
	case 2: status |= PHY_STAT_100HDX; break;
 | 
						|
	case 5: status |= PHY_STAT_10FDX; break;
 | 
						|
	case 6: status |= PHY_STAT_100FDX; break;
 | 
						|
}
 | 
						|
 | 
						|
	*s = status;
 | 
						|
}
 | 
						|
 | 
						|
static phy_cmd_t const phy_cmd_qs6612_config[] = {
 | 
						|
		/* The PHY powers up isolated on the RPX,
 | 
						|
		 * so send a command to allow operation.
 | 
						|
		 */
 | 
						|
		{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
 | 
						|
 | 
						|
		/* parse cr and anar to get some info */
 | 
						|
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
 | 
						|
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_cmd_t const phy_cmd_qs6612_startup[] = {  /* enable interrupts */
 | 
						|
		{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
 | 
						|
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
 | 
						|
		/* we need to read ISR, SR and ANER to acknowledge */
 | 
						|
		{ mk_mii_read(MII_QS6612_ISR), NULL },
 | 
						|
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | 
						|
		{ mk_mii_read(MII_REG_ANER), NULL },
 | 
						|
 | 
						|
		/* read pcr to get info */
 | 
						|
		{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
 | 
						|
		{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_info_t const phy_info_qs6612 = {
 | 
						|
	.id = 0x00181440,
 | 
						|
	.name = "QS6612",
 | 
						|
	.config = phy_cmd_qs6612_config,
 | 
						|
	.startup = phy_cmd_qs6612_startup,
 | 
						|
	.ack_int = phy_cmd_qs6612_ack_int,
 | 
						|
	.shutdown = phy_cmd_qs6612_shutdown
 | 
						|
};
 | 
						|
 | 
						|
/* ------------------------------------------------------------------------- */
 | 
						|
/* AMD AM79C874 phy                                                          */
 | 
						|
 | 
						|
/* register definitions for the 874 */
 | 
						|
 | 
						|
#define MII_AM79C874_MFR       16  /* Miscellaneous Feature Register */
 | 
						|
#define MII_AM79C874_ICSR      17  /* Interrupt/Status Register      */
 | 
						|
#define MII_AM79C874_DR        18  /* Diagnostic Register            */
 | 
						|
#define MII_AM79C874_PMLR      19  /* Power and Loopback Register    */
 | 
						|
#define MII_AM79C874_MCR       21  /* ModeControl Register           */
 | 
						|
#define MII_AM79C874_DC        23  /* Disconnect Counter             */
 | 
						|
#define MII_AM79C874_REC       24  /* Recieve Error Counter          */
 | 
						|
 | 
						|
static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
	volatile uint *s = &(fep->phy_status);
 | 
						|
	uint status;
 | 
						|
 | 
						|
	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
 | 
						|
 | 
						|
	if (mii_reg & 0x0080)
 | 
						|
		status |= PHY_STAT_ANC;
 | 
						|
	if (mii_reg & 0x0400)
 | 
						|
		status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
 | 
						|
	else
 | 
						|
		status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
 | 
						|
 | 
						|
	*s = status;
 | 
						|
}
 | 
						|
 | 
						|
static phy_cmd_t const phy_cmd_am79c874_config[] = {
 | 
						|
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
 | 
						|
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
 | 
						|
		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_cmd_t const phy_cmd_am79c874_startup[] = {  /* enable interrupts */
 | 
						|
		{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
 | 
						|
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 | 
						|
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
 | 
						|
		/* find out the current status */
 | 
						|
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | 
						|
		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
 | 
						|
		/* we only need to read ISR to acknowledge */
 | 
						|
		{ mk_mii_read(MII_AM79C874_ICSR), NULL },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
 | 
						|
		{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_info_t const phy_info_am79c874 = {
 | 
						|
	.id = 0x00022561,
 | 
						|
	.name = "AM79C874",
 | 
						|
	.config = phy_cmd_am79c874_config,
 | 
						|
	.startup = phy_cmd_am79c874_startup,
 | 
						|
	.ack_int = phy_cmd_am79c874_ack_int,
 | 
						|
	.shutdown = phy_cmd_am79c874_shutdown
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* ------------------------------------------------------------------------- */
 | 
						|
/* Kendin KS8721BL phy                                                       */
 | 
						|
 | 
						|
/* register definitions for the 8721 */
 | 
						|
 | 
						|
#define MII_KS8721BL_RXERCR	21
 | 
						|
#define MII_KS8721BL_ICSR	22
 | 
						|
#define	MII_KS8721BL_PHYCR	31
 | 
						|
 | 
						|
static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
 | 
						|
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
 | 
						|
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_cmd_t const phy_cmd_ks8721bl_startup[] = {  /* enable interrupts */
 | 
						|
		{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
 | 
						|
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 | 
						|
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
 | 
						|
		/* find out the current status */
 | 
						|
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | 
						|
		/* we only need to read ISR to acknowledge */
 | 
						|
		{ mk_mii_read(MII_KS8721BL_ICSR), NULL },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
 | 
						|
		{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	};
 | 
						|
static phy_info_t const phy_info_ks8721bl = {
 | 
						|
	.id = 0x00022161,
 | 
						|
	.name = "KS8721BL",
 | 
						|
	.config = phy_cmd_ks8721bl_config,
 | 
						|
	.startup = phy_cmd_ks8721bl_startup,
 | 
						|
	.ack_int = phy_cmd_ks8721bl_ack_int,
 | 
						|
	.shutdown = phy_cmd_ks8721bl_shutdown
 | 
						|
};
 | 
						|
 | 
						|
/* ------------------------------------------------------------------------- */
 | 
						|
/* register definitions for the DP83848 */
 | 
						|
 | 
						|
#define MII_DP8384X_PHYSTST    16  /* PHY Status Register */
 | 
						|
 | 
						|
static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = dev->priv;
 | 
						|
	volatile uint *s = &(fep->phy_status);
 | 
						|
 | 
						|
	*s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
 | 
						|
 | 
						|
	/* Link up */
 | 
						|
	if (mii_reg & 0x0001) {
 | 
						|
		fep->link = 1;
 | 
						|
		*s |= PHY_STAT_LINK;
 | 
						|
	} else
 | 
						|
		fep->link = 0;
 | 
						|
	/* Status of link */
 | 
						|
	if (mii_reg & 0x0010)   /* Autonegotioation complete */
 | 
						|
		*s |= PHY_STAT_ANC;
 | 
						|
	if (mii_reg & 0x0002) {   /* 10MBps? */
 | 
						|
		if (mii_reg & 0x0004)   /* Full Duplex? */
 | 
						|
			*s |= PHY_STAT_10FDX;
 | 
						|
		else
 | 
						|
			*s |= PHY_STAT_10HDX;
 | 
						|
	} else {                  /* 100 Mbps? */
 | 
						|
		if (mii_reg & 0x0004)   /* Full Duplex? */
 | 
						|
			*s |= PHY_STAT_100FDX;
 | 
						|
		else
 | 
						|
			*s |= PHY_STAT_100HDX;
 | 
						|
	}
 | 
						|
	if (mii_reg & 0x0008)
 | 
						|
		*s |= PHY_STAT_FAULT;
 | 
						|
}
 | 
						|
 | 
						|
static phy_info_t phy_info_dp83848= {
 | 
						|
	0x020005c9,
 | 
						|
	"DP83848",
 | 
						|
 | 
						|
	(const phy_cmd_t []) {  /* config */
 | 
						|
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
 | 
						|
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
 | 
						|
		{ mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	},
 | 
						|
	(const phy_cmd_t []) {  /* startup - enable interrupts */
 | 
						|
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 | 
						|
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
 | 
						|
		{ mk_mii_end, }
 | 
						|
	},
 | 
						|
	(const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
 | 
						|
		{ mk_mii_end, }
 | 
						|
	},
 | 
						|
	(const phy_cmd_t []) {  /* shutdown */
 | 
						|
		{ mk_mii_end, }
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
/* ------------------------------------------------------------------------- */
 | 
						|
 | 
						|
static phy_info_t const * const phy_info[] = {
 | 
						|
	&phy_info_lxt970,
 | 
						|
	&phy_info_lxt971,
 | 
						|
	&phy_info_qs6612,
 | 
						|
	&phy_info_am79c874,
 | 
						|
	&phy_info_ks8721bl,
 | 
						|
	&phy_info_dp83848,
 | 
						|
	NULL
 | 
						|
};
 | 
						|
 | 
						|
/* ------------------------------------------------------------------------- */
 | 
						|
#if !defined(CONFIG_M532x)
 | 
						|
#ifdef CONFIG_RPXCLASSIC
 | 
						|
static void
 | 
						|
mii_link_interrupt(void *dev_id);
 | 
						|
#else
 | 
						|
static irqreturn_t
 | 
						|
mii_link_interrupt(int irq, void * dev_id);
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(CONFIG_M5272)
 | 
						|
 | 
						|
/*
 | 
						|
 *	Code specific to Coldfire 5272 setup.
 | 
						|
 */
 | 
						|
static void __inline__ fec_request_intrs(struct net_device *dev)
 | 
						|
{
 | 
						|
	volatile unsigned long *icrp;
 | 
						|
	static const struct idesc {
 | 
						|
		char *name;
 | 
						|
		unsigned short irq;
 | 
						|
		irq_handler_t handler;
 | 
						|
	} *idp, id[] = {
 | 
						|
		{ "fec(RX)", 86, fec_enet_interrupt },
 | 
						|
		{ "fec(TX)", 87, fec_enet_interrupt },
 | 
						|
		{ "fec(OTHER)", 88, fec_enet_interrupt },
 | 
						|
		{ "fec(MII)", 66, mii_link_interrupt },
 | 
						|
		{ NULL },
 | 
						|
	};
 | 
						|
 | 
						|
	/* Setup interrupt handlers. */
 | 
						|
	for (idp = id; idp->name; idp++) {
 | 
						|
		if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0)
 | 
						|
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Unmask interrupt at ColdFire 5272 SIM */
 | 
						|
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
 | 
						|
	*icrp = 0x00000ddd;
 | 
						|
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
 | 
						|
	*icrp = (*icrp & 0x70777777) | 0x0d000000;
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
 | 
						|
{
 | 
						|
	volatile fec_t *fecp;
 | 
						|
 | 
						|
	fecp = fep->hwp;
 | 
						|
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
 | 
						|
	fecp->fec_x_cntrl = 0x00;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set MII speed to 2.5 MHz
 | 
						|
	 * See 5272 manual section 11.5.8: MSCR
 | 
						|
	 */
 | 
						|
	fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
 | 
						|
	fecp->fec_mii_speed = fep->phy_speed;
 | 
						|
 | 
						|
	fec_restart(dev, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_get_mac(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
	volatile fec_t *fecp;
 | 
						|
	unsigned char *iap, tmpaddr[ETH_ALEN];
 | 
						|
 | 
						|
	fecp = fep->hwp;
 | 
						|
 | 
						|
	if (FEC_FLASHMAC) {
 | 
						|
		/*
 | 
						|
		 * Get MAC address from FLASH.
 | 
						|
		 * If it is all 1's or 0's, use the default.
 | 
						|
		 */
 | 
						|
		iap = (unsigned char *)FEC_FLASHMAC;
 | 
						|
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
 | 
						|
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
 | 
						|
			iap = fec_mac_default;
 | 
						|
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
 | 
						|
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
 | 
						|
			iap = fec_mac_default;
 | 
						|
	} else {
 | 
						|
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
 | 
						|
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
 | 
						|
		iap = &tmpaddr[0];
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy(dev->dev_addr, iap, ETH_ALEN);
 | 
						|
 | 
						|
	/* Adjust MAC if using default MAC address */
 | 
						|
	if (iap == fec_mac_default)
 | 
						|
		 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_enable_phy_intr(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_disable_phy_intr(void)
 | 
						|
{
 | 
						|
	volatile unsigned long *icrp;
 | 
						|
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
 | 
						|
	*icrp = (*icrp & 0x70777777) | 0x08000000;
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_phy_ack_intr(void)
 | 
						|
{
 | 
						|
	volatile unsigned long *icrp;
 | 
						|
	/* Acknowledge the interrupt */
 | 
						|
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
 | 
						|
	*icrp = (*icrp & 0x77777777) | 0x08000000;
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_localhw_setup(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *	Do not need to make region uncached on 5272.
 | 
						|
 */
 | 
						|
static void __inline__ fec_uncache(unsigned long addr)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/* ------------------------------------------------------------------------- */
 | 
						|
 | 
						|
#elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
 | 
						|
 | 
						|
/*
 | 
						|
 *	Code specific to Coldfire 5230/5231/5232/5234/5235,
 | 
						|
 *	the 5270/5271/5274/5275 and 5280/5282 setups.
 | 
						|
 */
 | 
						|
static void __inline__ fec_request_intrs(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep;
 | 
						|
	int b;
 | 
						|
	static const struct idesc {
 | 
						|
		char *name;
 | 
						|
		unsigned short irq;
 | 
						|
	} *idp, id[] = {
 | 
						|
		{ "fec(TXF)", 23 },
 | 
						|
		{ "fec(TXB)", 24 },
 | 
						|
		{ "fec(TXFIFO)", 25 },
 | 
						|
		{ "fec(TXCR)", 26 },
 | 
						|
		{ "fec(RXF)", 27 },
 | 
						|
		{ "fec(RXB)", 28 },
 | 
						|
		{ "fec(MII)", 29 },
 | 
						|
		{ "fec(LC)", 30 },
 | 
						|
		{ "fec(HBERR)", 31 },
 | 
						|
		{ "fec(GRA)", 32 },
 | 
						|
		{ "fec(EBERR)", 33 },
 | 
						|
		{ "fec(BABT)", 34 },
 | 
						|
		{ "fec(BABR)", 35 },
 | 
						|
		{ NULL },
 | 
						|
	};
 | 
						|
 | 
						|
	fep = netdev_priv(dev);
 | 
						|
	b = (fep->index) ? 128 : 64;
 | 
						|
 | 
						|
	/* Setup interrupt handlers. */
 | 
						|
	for (idp = id; idp->name; idp++) {
 | 
						|
		if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0)
 | 
						|
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
 | 
						|
	{
 | 
						|
		volatile unsigned char  *icrp;
 | 
						|
		volatile unsigned long  *imrp;
 | 
						|
		int i, ilip;
 | 
						|
 | 
						|
		b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
 | 
						|
		icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
 | 
						|
			MCFINTC_ICR0);
 | 
						|
		for (i = 23, ilip = 0x28; (i < 36); i++)
 | 
						|
			icrp[i] = ilip--;
 | 
						|
 | 
						|
		imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
 | 
						|
			MCFINTC_IMRH);
 | 
						|
		*imrp &= ~0x0000000f;
 | 
						|
		imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
 | 
						|
			MCFINTC_IMRL);
 | 
						|
		*imrp &= ~0xff800001;
 | 
						|
	}
 | 
						|
 | 
						|
#if defined(CONFIG_M528x)
 | 
						|
	/* Set up gpio outputs for MII lines */
 | 
						|
	{
 | 
						|
		volatile u16 *gpio_paspar;
 | 
						|
		volatile u8 *gpio_pehlpar;
 | 
						|
 | 
						|
		gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
 | 
						|
		gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
 | 
						|
		*gpio_paspar |= 0x0f00;
 | 
						|
		*gpio_pehlpar = 0xc0;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
 | 
						|
{
 | 
						|
	volatile fec_t *fecp;
 | 
						|
 | 
						|
	fecp = fep->hwp;
 | 
						|
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
 | 
						|
	fecp->fec_x_cntrl = 0x00;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set MII speed to 2.5 MHz
 | 
						|
	 * See 5282 manual section 17.5.4.7: MSCR
 | 
						|
	 */
 | 
						|
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
 | 
						|
	fecp->fec_mii_speed = fep->phy_speed;
 | 
						|
 | 
						|
	fec_restart(dev, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_get_mac(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
	volatile fec_t *fecp;
 | 
						|
	unsigned char *iap, tmpaddr[ETH_ALEN];
 | 
						|
 | 
						|
	fecp = fep->hwp;
 | 
						|
 | 
						|
	if (FEC_FLASHMAC) {
 | 
						|
		/*
 | 
						|
		 * Get MAC address from FLASH.
 | 
						|
		 * If it is all 1's or 0's, use the default.
 | 
						|
		 */
 | 
						|
		iap = FEC_FLASHMAC;
 | 
						|
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
 | 
						|
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
 | 
						|
			iap = fec_mac_default;
 | 
						|
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
 | 
						|
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
 | 
						|
			iap = fec_mac_default;
 | 
						|
	} else {
 | 
						|
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
 | 
						|
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
 | 
						|
		iap = &tmpaddr[0];
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy(dev->dev_addr, iap, ETH_ALEN);
 | 
						|
 | 
						|
	/* Adjust MAC if using default MAC address */
 | 
						|
	if (iap == fec_mac_default)
 | 
						|
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_enable_phy_intr(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_disable_phy_intr(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_phy_ack_intr(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_localhw_setup(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *	Do not need to make region uncached on 5272.
 | 
						|
 */
 | 
						|
static void __inline__ fec_uncache(unsigned long addr)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/* ------------------------------------------------------------------------- */
 | 
						|
 | 
						|
#elif defined(CONFIG_M520x)
 | 
						|
 | 
						|
/*
 | 
						|
 *	Code specific to Coldfire 520x
 | 
						|
 */
 | 
						|
static void __inline__ fec_request_intrs(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep;
 | 
						|
	int b;
 | 
						|
	static const struct idesc {
 | 
						|
		char *name;
 | 
						|
		unsigned short irq;
 | 
						|
	} *idp, id[] = {
 | 
						|
		{ "fec(TXF)", 23 },
 | 
						|
		{ "fec(TXB)", 24 },
 | 
						|
		{ "fec(TXFIFO)", 25 },
 | 
						|
		{ "fec(TXCR)", 26 },
 | 
						|
		{ "fec(RXF)", 27 },
 | 
						|
		{ "fec(RXB)", 28 },
 | 
						|
		{ "fec(MII)", 29 },
 | 
						|
		{ "fec(LC)", 30 },
 | 
						|
		{ "fec(HBERR)", 31 },
 | 
						|
		{ "fec(GRA)", 32 },
 | 
						|
		{ "fec(EBERR)", 33 },
 | 
						|
		{ "fec(BABT)", 34 },
 | 
						|
		{ "fec(BABR)", 35 },
 | 
						|
		{ NULL },
 | 
						|
	};
 | 
						|
 | 
						|
	fep = netdev_priv(dev);
 | 
						|
	b = 64 + 13;
 | 
						|
 | 
						|
	/* Setup interrupt handlers. */
 | 
						|
	for (idp = id; idp->name; idp++) {
 | 
						|
		if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
 | 
						|
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Unmask interrupts at ColdFire interrupt controller */
 | 
						|
	{
 | 
						|
		volatile unsigned char  *icrp;
 | 
						|
		volatile unsigned long  *imrp;
 | 
						|
 | 
						|
		icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
 | 
						|
			MCFINTC_ICR0);
 | 
						|
		for (b = 36; (b < 49); b++)
 | 
						|
			icrp[b] = 0x04;
 | 
						|
		imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
 | 
						|
			MCFINTC_IMRH);
 | 
						|
		*imrp &= ~0x0001FFF0;
 | 
						|
	}
 | 
						|
	*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
 | 
						|
	*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
 | 
						|
{
 | 
						|
	volatile fec_t *fecp;
 | 
						|
 | 
						|
	fecp = fep->hwp;
 | 
						|
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
 | 
						|
	fecp->fec_x_cntrl = 0x00;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set MII speed to 2.5 MHz
 | 
						|
	 * See 5282 manual section 17.5.4.7: MSCR
 | 
						|
	 */
 | 
						|
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
 | 
						|
	fecp->fec_mii_speed = fep->phy_speed;
 | 
						|
 | 
						|
	fec_restart(dev, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_get_mac(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
	volatile fec_t *fecp;
 | 
						|
	unsigned char *iap, tmpaddr[ETH_ALEN];
 | 
						|
 | 
						|
	fecp = fep->hwp;
 | 
						|
 | 
						|
	if (FEC_FLASHMAC) {
 | 
						|
		/*
 | 
						|
		 * Get MAC address from FLASH.
 | 
						|
		 * If it is all 1's or 0's, use the default.
 | 
						|
		 */
 | 
						|
		iap = FEC_FLASHMAC;
 | 
						|
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
 | 
						|
		   (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
 | 
						|
			iap = fec_mac_default;
 | 
						|
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
 | 
						|
		   (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
 | 
						|
			iap = fec_mac_default;
 | 
						|
	} else {
 | 
						|
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
 | 
						|
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
 | 
						|
		iap = &tmpaddr[0];
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy(dev->dev_addr, iap, ETH_ALEN);
 | 
						|
 | 
						|
	/* Adjust MAC if using default MAC address */
 | 
						|
	if (iap == fec_mac_default)
 | 
						|
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_enable_phy_intr(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_disable_phy_intr(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_phy_ack_intr(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_localhw_setup(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_uncache(unsigned long addr)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/* ------------------------------------------------------------------------- */
 | 
						|
 | 
						|
#elif defined(CONFIG_M532x)
 | 
						|
/*
 | 
						|
 * Code specific for M532x
 | 
						|
 */
 | 
						|
static void __inline__ fec_request_intrs(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep;
 | 
						|
	int b;
 | 
						|
	static const struct idesc {
 | 
						|
		char *name;
 | 
						|
		unsigned short irq;
 | 
						|
	} *idp, id[] = {
 | 
						|
	    { "fec(TXF)", 36 },
 | 
						|
	    { "fec(TXB)", 37 },
 | 
						|
	    { "fec(TXFIFO)", 38 },
 | 
						|
	    { "fec(TXCR)", 39 },
 | 
						|
	    { "fec(RXF)", 40 },
 | 
						|
	    { "fec(RXB)", 41 },
 | 
						|
	    { "fec(MII)", 42 },
 | 
						|
	    { "fec(LC)", 43 },
 | 
						|
	    { "fec(HBERR)", 44 },
 | 
						|
	    { "fec(GRA)", 45 },
 | 
						|
	    { "fec(EBERR)", 46 },
 | 
						|
	    { "fec(BABT)", 47 },
 | 
						|
	    { "fec(BABR)", 48 },
 | 
						|
	    { NULL },
 | 
						|
	};
 | 
						|
 | 
						|
	fep = netdev_priv(dev);
 | 
						|
	b = (fep->index) ? 128 : 64;
 | 
						|
 | 
						|
	/* Setup interrupt handlers. */
 | 
						|
	for (idp = id; idp->name; idp++) {
 | 
						|
		if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
 | 
						|
			printk("FEC: Could not allocate %s IRQ(%d)!\n",
 | 
						|
				idp->name, b+idp->irq);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Unmask interrupts */
 | 
						|
	MCF_INTC0_ICR36 = 0x2;
 | 
						|
	MCF_INTC0_ICR37 = 0x2;
 | 
						|
	MCF_INTC0_ICR38 = 0x2;
 | 
						|
	MCF_INTC0_ICR39 = 0x2;
 | 
						|
	MCF_INTC0_ICR40 = 0x2;
 | 
						|
	MCF_INTC0_ICR41 = 0x2;
 | 
						|
	MCF_INTC0_ICR42 = 0x2;
 | 
						|
	MCF_INTC0_ICR43 = 0x2;
 | 
						|
	MCF_INTC0_ICR44 = 0x2;
 | 
						|
	MCF_INTC0_ICR45 = 0x2;
 | 
						|
	MCF_INTC0_ICR46 = 0x2;
 | 
						|
	MCF_INTC0_ICR47 = 0x2;
 | 
						|
	MCF_INTC0_ICR48 = 0x2;
 | 
						|
 | 
						|
	MCF_INTC0_IMRH &= ~(
 | 
						|
		MCF_INTC_IMRH_INT_MASK36 |
 | 
						|
		MCF_INTC_IMRH_INT_MASK37 |
 | 
						|
		MCF_INTC_IMRH_INT_MASK38 |
 | 
						|
		MCF_INTC_IMRH_INT_MASK39 |
 | 
						|
		MCF_INTC_IMRH_INT_MASK40 |
 | 
						|
		MCF_INTC_IMRH_INT_MASK41 |
 | 
						|
		MCF_INTC_IMRH_INT_MASK42 |
 | 
						|
		MCF_INTC_IMRH_INT_MASK43 |
 | 
						|
		MCF_INTC_IMRH_INT_MASK44 |
 | 
						|
		MCF_INTC_IMRH_INT_MASK45 |
 | 
						|
		MCF_INTC_IMRH_INT_MASK46 |
 | 
						|
		MCF_INTC_IMRH_INT_MASK47 |
 | 
						|
		MCF_INTC_IMRH_INT_MASK48 );
 | 
						|
 | 
						|
	/* Set up gpio outputs for MII lines */
 | 
						|
	MCF_GPIO_PAR_FECI2C |= (0 |
 | 
						|
		MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
 | 
						|
		MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
 | 
						|
	MCF_GPIO_PAR_FEC = (0 |
 | 
						|
		MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
 | 
						|
		MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
 | 
						|
{
 | 
						|
	volatile fec_t *fecp;
 | 
						|
 | 
						|
	fecp = fep->hwp;
 | 
						|
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
 | 
						|
	fecp->fec_x_cntrl = 0x00;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set MII speed to 2.5 MHz
 | 
						|
	 */
 | 
						|
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
 | 
						|
	fecp->fec_mii_speed = fep->phy_speed;
 | 
						|
 | 
						|
	fec_restart(dev, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_get_mac(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
	volatile fec_t *fecp;
 | 
						|
	unsigned char *iap, tmpaddr[ETH_ALEN];
 | 
						|
 | 
						|
	fecp = fep->hwp;
 | 
						|
 | 
						|
	if (FEC_FLASHMAC) {
 | 
						|
		/*
 | 
						|
		 * Get MAC address from FLASH.
 | 
						|
		 * If it is all 1's or 0's, use the default.
 | 
						|
		 */
 | 
						|
		iap = FEC_FLASHMAC;
 | 
						|
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
 | 
						|
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
 | 
						|
			iap = fec_mac_default;
 | 
						|
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
 | 
						|
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
 | 
						|
			iap = fec_mac_default;
 | 
						|
	} else {
 | 
						|
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
 | 
						|
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
 | 
						|
		iap = &tmpaddr[0];
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy(dev->dev_addr, iap, ETH_ALEN);
 | 
						|
 | 
						|
	/* Adjust MAC if using default MAC address */
 | 
						|
	if (iap == fec_mac_default)
 | 
						|
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_enable_phy_intr(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_disable_phy_intr(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_phy_ack_intr(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_localhw_setup(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *	Do not need to make region uncached on 532x.
 | 
						|
 */
 | 
						|
static void __inline__ fec_uncache(unsigned long addr)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/* ------------------------------------------------------------------------- */
 | 
						|
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
/*
 | 
						|
 *	Code specific to the MPC860T setup.
 | 
						|
 */
 | 
						|
static void __inline__ fec_request_intrs(struct net_device *dev)
 | 
						|
{
 | 
						|
	volatile immap_t *immap;
 | 
						|
 | 
						|
	immap = (immap_t *)IMAP_ADDR;	/* pointer to internal registers */
 | 
						|
 | 
						|
	if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
 | 
						|
		panic("Could not allocate FEC IRQ!");
 | 
						|
 | 
						|
#ifdef CONFIG_RPXCLASSIC
 | 
						|
	/* Make Port C, bit 15 an input that causes interrupts.
 | 
						|
	*/
 | 
						|
	immap->im_ioport.iop_pcpar &= ~0x0001;
 | 
						|
	immap->im_ioport.iop_pcdir &= ~0x0001;
 | 
						|
	immap->im_ioport.iop_pcso &= ~0x0001;
 | 
						|
	immap->im_ioport.iop_pcint |= 0x0001;
 | 
						|
	cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
 | 
						|
 | 
						|
	/* Make LEDS reflect Link status.
 | 
						|
	*/
 | 
						|
	*((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_FADS
 | 
						|
	if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
 | 
						|
		panic("Could not allocate MII IRQ!");
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_get_mac(struct net_device *dev)
 | 
						|
{
 | 
						|
	bd_t *bd;
 | 
						|
 | 
						|
	bd = (bd_t *)__res;
 | 
						|
	memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
 | 
						|
 | 
						|
#ifdef CONFIG_RPXCLASSIC
 | 
						|
	/* The Embedded Planet boards have only one MAC address in
 | 
						|
	 * the EEPROM, but can have two Ethernet ports.  For the
 | 
						|
	 * FEC port, we create another address by setting one of
 | 
						|
	 * the address bits above something that would have (up to
 | 
						|
	 * now) been allocated.
 | 
						|
	 */
 | 
						|
	dev->dev_adrd[3] |= 0x80;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
 | 
						|
{
 | 
						|
	extern uint _get_IMMR(void);
 | 
						|
	volatile immap_t *immap;
 | 
						|
	volatile fec_t *fecp;
 | 
						|
 | 
						|
	fecp = fep->hwp;
 | 
						|
	immap = (immap_t *)IMAP_ADDR;	/* pointer to internal registers */
 | 
						|
 | 
						|
	/* Configure all of port D for MII.
 | 
						|
	*/
 | 
						|
	immap->im_ioport.iop_pdpar = 0x1fff;
 | 
						|
 | 
						|
	/* Bits moved from Rev. D onward.
 | 
						|
	*/
 | 
						|
	if ((_get_IMMR() & 0xffff) < 0x0501)
 | 
						|
		immap->im_ioport.iop_pddir = 0x1c58;	/* Pre rev. D */
 | 
						|
	else
 | 
						|
		immap->im_ioport.iop_pddir = 0x1fff;	/* Rev. D and later */
 | 
						|
 | 
						|
	/* Set MII speed to 2.5 MHz
 | 
						|
	*/
 | 
						|
	fecp->fec_mii_speed = fep->phy_speed =
 | 
						|
		((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_enable_phy_intr(void)
 | 
						|
{
 | 
						|
	volatile fec_t *fecp;
 | 
						|
 | 
						|
	fecp = fep->hwp;
 | 
						|
 | 
						|
	/* Enable MII command finished interrupt
 | 
						|
	*/
 | 
						|
	fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_disable_phy_intr(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_phy_ack_intr(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_localhw_setup(void)
 | 
						|
{
 | 
						|
	volatile fec_t *fecp;
 | 
						|
 | 
						|
	fecp = fep->hwp;
 | 
						|
	fecp->fec_r_hash = PKT_MAXBUF_SIZE;
 | 
						|
	/* Enable big endian and don't care about SDMA FC.
 | 
						|
	*/
 | 
						|
	fecp->fec_fun_code = 0x78000000;
 | 
						|
}
 | 
						|
 | 
						|
static void __inline__ fec_uncache(unsigned long addr)
 | 
						|
{
 | 
						|
	pte_t *pte;
 | 
						|
	pte = va_to_pte(mem_addr);
 | 
						|
	pte_val(*pte) |= _PAGE_NO_CACHE;
 | 
						|
	flush_tlb_page(init_mm.mmap, mem_addr);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/* ------------------------------------------------------------------------- */
 | 
						|
 | 
						|
static void mii_display_status(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
	volatile uint *s = &(fep->phy_status);
 | 
						|
 | 
						|
	if (!fep->link && !fep->old_link) {
 | 
						|
		/* Link is still down - don't print anything */
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	printk("%s: status: ", dev->name);
 | 
						|
 | 
						|
	if (!fep->link) {
 | 
						|
		printk("link down");
 | 
						|
	} else {
 | 
						|
		printk("link up");
 | 
						|
 | 
						|
		switch(*s & PHY_STAT_SPMASK) {
 | 
						|
		case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
 | 
						|
		case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
 | 
						|
		case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
 | 
						|
		case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
 | 
						|
		default:
 | 
						|
			printk(", Unknown speed/duplex");
 | 
						|
		}
 | 
						|
 | 
						|
		if (*s & PHY_STAT_ANC)
 | 
						|
			printk(", auto-negotiation complete");
 | 
						|
	}
 | 
						|
 | 
						|
	if (*s & PHY_STAT_FAULT)
 | 
						|
		printk(", remote fault");
 | 
						|
 | 
						|
	printk(".\n");
 | 
						|
}
 | 
						|
 | 
						|
static void mii_display_config(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
	uint status = fep->phy_status;
 | 
						|
 | 
						|
	/*
 | 
						|
	** When we get here, phy_task is already removed from
 | 
						|
	** the workqueue.  It is thus safe to allow to reuse it.
 | 
						|
	*/
 | 
						|
	fep->mii_phy_task_queued = 0;
 | 
						|
	printk("%s: config: auto-negotiation ", dev->name);
 | 
						|
 | 
						|
	if (status & PHY_CONF_ANE)
 | 
						|
		printk("on");
 | 
						|
	else
 | 
						|
		printk("off");
 | 
						|
 | 
						|
	if (status & PHY_CONF_100FDX)
 | 
						|
		printk(", 100FDX");
 | 
						|
	if (status & PHY_CONF_100HDX)
 | 
						|
		printk(", 100HDX");
 | 
						|
	if (status & PHY_CONF_10FDX)
 | 
						|
		printk(", 10FDX");
 | 
						|
	if (status & PHY_CONF_10HDX)
 | 
						|
		printk(", 10HDX");
 | 
						|
	if (!(status & PHY_CONF_SPMASK))
 | 
						|
		printk(", No speed/duplex selected?");
 | 
						|
 | 
						|
	if (status & PHY_CONF_LOOP)
 | 
						|
		printk(", loopback enabled");
 | 
						|
 | 
						|
	printk(".\n");
 | 
						|
 | 
						|
	fep->sequence_done = 1;
 | 
						|
}
 | 
						|
 | 
						|
static void mii_relink(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
	int duplex;
 | 
						|
 | 
						|
	/*
 | 
						|
	** When we get here, phy_task is already removed from
 | 
						|
	** the workqueue.  It is thus safe to allow to reuse it.
 | 
						|
	*/
 | 
						|
	fep->mii_phy_task_queued = 0;
 | 
						|
	fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
 | 
						|
	mii_display_status(dev);
 | 
						|
	fep->old_link = fep->link;
 | 
						|
 | 
						|
	if (fep->link) {
 | 
						|
		duplex = 0;
 | 
						|
		if (fep->phy_status
 | 
						|
		    & (PHY_STAT_100FDX | PHY_STAT_10FDX))
 | 
						|
			duplex = 1;
 | 
						|
		fec_restart(dev, duplex);
 | 
						|
	}
 | 
						|
	else
 | 
						|
		fec_stop(dev);
 | 
						|
 | 
						|
#if 0
 | 
						|
	enable_irq(fep->mii_irq);
 | 
						|
#endif
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
 | 
						|
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
 | 
						|
	/*
 | 
						|
	** We cannot queue phy_task twice in the workqueue.  It
 | 
						|
	** would cause an endless loop in the workqueue.
 | 
						|
	** Fortunately, if the last mii_relink entry has not yet been
 | 
						|
	** executed now, it will do the job for the current interrupt,
 | 
						|
	** which is just what we want.
 | 
						|
	*/
 | 
						|
	if (fep->mii_phy_task_queued)
 | 
						|
		return;
 | 
						|
 | 
						|
	fep->mii_phy_task_queued = 1;
 | 
						|
	INIT_WORK(&fep->phy_task, (void*)mii_relink, dev);
 | 
						|
	schedule_work(&fep->phy_task);
 | 
						|
}
 | 
						|
 | 
						|
/* mii_queue_config is called in interrupt context from fec_enet_mii */
 | 
						|
static void mii_queue_config(uint mii_reg, struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
 | 
						|
	if (fep->mii_phy_task_queued)
 | 
						|
		return;
 | 
						|
 | 
						|
	fep->mii_phy_task_queued = 1;
 | 
						|
	INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev);
 | 
						|
	schedule_work(&fep->phy_task);
 | 
						|
}
 | 
						|
 | 
						|
phy_cmd_t const phy_cmd_relink[] = {
 | 
						|
	{ mk_mii_read(MII_REG_CR), mii_queue_relink },
 | 
						|
	{ mk_mii_end, }
 | 
						|
	};
 | 
						|
phy_cmd_t const phy_cmd_config[] = {
 | 
						|
	{ mk_mii_read(MII_REG_CR), mii_queue_config },
 | 
						|
	{ mk_mii_end, }
 | 
						|
	};
 | 
						|
 | 
						|
/* Read remainder of PHY ID.
 | 
						|
*/
 | 
						|
static void
 | 
						|
mii_discover_phy3(uint mii_reg, struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep;
 | 
						|
	int i;
 | 
						|
 | 
						|
	fep = netdev_priv(dev);
 | 
						|
	fep->phy_id |= (mii_reg & 0xffff);
 | 
						|
	printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
 | 
						|
 | 
						|
	for(i = 0; phy_info[i]; i++) {
 | 
						|
		if(phy_info[i]->id == (fep->phy_id >> 4))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (phy_info[i])
 | 
						|
		printk(" -- %s\n", phy_info[i]->name);
 | 
						|
	else
 | 
						|
		printk(" -- unknown PHY!\n");
 | 
						|
 | 
						|
	fep->phy = phy_info[i];
 | 
						|
	fep->phy_id_done = 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Scan all of the MII PHY addresses looking for someone to respond
 | 
						|
 * with a valid ID.  This usually happens quickly.
 | 
						|
 */
 | 
						|
static void
 | 
						|
mii_discover_phy(uint mii_reg, struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep;
 | 
						|
	volatile fec_t *fecp;
 | 
						|
	uint phytype;
 | 
						|
 | 
						|
	fep = netdev_priv(dev);
 | 
						|
	fecp = fep->hwp;
 | 
						|
 | 
						|
	if (fep->phy_addr < 32) {
 | 
						|
		if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
 | 
						|
 | 
						|
			/* Got first part of ID, now get remainder.
 | 
						|
			*/
 | 
						|
			fep->phy_id = phytype << 16;
 | 
						|
			mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
 | 
						|
							mii_discover_phy3);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			fep->phy_addr++;
 | 
						|
			mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
 | 
						|
							mii_discover_phy);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		printk("FEC: No PHY device found.\n");
 | 
						|
		/* Disable external MII interface */
 | 
						|
		fecp->fec_mii_speed = fep->phy_speed = 0;
 | 
						|
		fec_disable_phy_intr();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* This interrupt occurs when the PHY detects a link change.
 | 
						|
*/
 | 
						|
#ifdef CONFIG_RPXCLASSIC
 | 
						|
static void
 | 
						|
mii_link_interrupt(void *dev_id)
 | 
						|
#else
 | 
						|
static irqreturn_t
 | 
						|
mii_link_interrupt(int irq, void * dev_id)
 | 
						|
#endif
 | 
						|
{
 | 
						|
	struct	net_device *dev = dev_id;
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
 | 
						|
	fec_phy_ack_intr();
 | 
						|
 | 
						|
#if 0
 | 
						|
	disable_irq(fep->mii_irq);  /* disable now, enable later */
 | 
						|
#endif
 | 
						|
 | 
						|
	mii_do_cmd(dev, fep->phy->ack_int);
 | 
						|
	mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */
 | 
						|
 | 
						|
	return IRQ_HANDLED;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
fec_enet_open(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
 | 
						|
	/* I should reset the ring buffers here, but I don't yet know
 | 
						|
	 * a simple way to do that.
 | 
						|
	 */
 | 
						|
	fec_set_mac_address(dev);
 | 
						|
 | 
						|
	fep->sequence_done = 0;
 | 
						|
	fep->link = 0;
 | 
						|
 | 
						|
	if (fep->phy) {
 | 
						|
		mii_do_cmd(dev, fep->phy->ack_int);
 | 
						|
		mii_do_cmd(dev, fep->phy->config);
 | 
						|
		mii_do_cmd(dev, phy_cmd_config);  /* display configuration */
 | 
						|
 | 
						|
		/* Poll until the PHY tells us its configuration
 | 
						|
		 * (not link state).
 | 
						|
		 * Request is initiated by mii_do_cmd above, but answer
 | 
						|
		 * comes by interrupt.
 | 
						|
		 * This should take about 25 usec per register at 2.5 MHz,
 | 
						|
		 * and we read approximately 5 registers.
 | 
						|
		 */
 | 
						|
		while(!fep->sequence_done)
 | 
						|
			schedule();
 | 
						|
 | 
						|
		mii_do_cmd(dev, fep->phy->startup);
 | 
						|
 | 
						|
		/* Set the initial link state to true. A lot of hardware
 | 
						|
		 * based on this device does not implement a PHY interrupt,
 | 
						|
		 * so we are never notified of link change.
 | 
						|
		 */
 | 
						|
		fep->link = 1;
 | 
						|
	} else {
 | 
						|
		fep->link = 1; /* lets just try it and see */
 | 
						|
		/* no phy,  go full duplex,  it's most likely a hub chip */
 | 
						|
		fec_restart(dev, 1);
 | 
						|
	}
 | 
						|
 | 
						|
	netif_start_queue(dev);
 | 
						|
	fep->opened = 1;
 | 
						|
	return 0;		/* Success */
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
fec_enet_close(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
 | 
						|
	/* Don't know what to do yet.
 | 
						|
	*/
 | 
						|
	fep->opened = 0;
 | 
						|
	netif_stop_queue(dev);
 | 
						|
	fec_stop(dev);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
 | 
						|
	return &fep->stats;
 | 
						|
}
 | 
						|
 | 
						|
/* Set or clear the multicast filter for this adaptor.
 | 
						|
 * Skeleton taken from sunlance driver.
 | 
						|
 * The CPM Ethernet implementation allows Multicast as well as individual
 | 
						|
 * MAC address filtering.  Some of the drivers check to make sure it is
 | 
						|
 * a group multicast address, and discard those that are not.  I guess I
 | 
						|
 * will do the same for now, but just remove the test if you want
 | 
						|
 * individual filtering as well (do the upper net layers want or support
 | 
						|
 * this kind of feature?).
 | 
						|
 */
 | 
						|
 | 
						|
#define HASH_BITS	6		/* #bits in hash */
 | 
						|
#define CRC32_POLY	0xEDB88320
 | 
						|
 | 
						|
static void set_multicast_list(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep;
 | 
						|
	volatile fec_t *ep;
 | 
						|
	struct dev_mc_list *dmi;
 | 
						|
	unsigned int i, j, bit, data, crc;
 | 
						|
	unsigned char hash;
 | 
						|
 | 
						|
	fep = netdev_priv(dev);
 | 
						|
	ep = fep->hwp;
 | 
						|
 | 
						|
	if (dev->flags&IFF_PROMISC) {
 | 
						|
		ep->fec_r_cntrl |= 0x0008;
 | 
						|
	} else {
 | 
						|
 | 
						|
		ep->fec_r_cntrl &= ~0x0008;
 | 
						|
 | 
						|
		if (dev->flags & IFF_ALLMULTI) {
 | 
						|
			/* Catch all multicast addresses, so set the
 | 
						|
			 * filter to all 1's.
 | 
						|
			 */
 | 
						|
			ep->fec_hash_table_high = 0xffffffff;
 | 
						|
			ep->fec_hash_table_low = 0xffffffff;
 | 
						|
		} else {
 | 
						|
			/* Clear filter and add the addresses in hash register.
 | 
						|
			*/
 | 
						|
			ep->fec_hash_table_high = 0;
 | 
						|
			ep->fec_hash_table_low = 0;
 | 
						|
 | 
						|
			dmi = dev->mc_list;
 | 
						|
 | 
						|
			for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
 | 
						|
			{
 | 
						|
				/* Only support group multicast for now.
 | 
						|
				*/
 | 
						|
				if (!(dmi->dmi_addr[0] & 1))
 | 
						|
					continue;
 | 
						|
 | 
						|
				/* calculate crc32 value of mac address
 | 
						|
				*/
 | 
						|
				crc = 0xffffffff;
 | 
						|
 | 
						|
				for (i = 0; i < dmi->dmi_addrlen; i++)
 | 
						|
				{
 | 
						|
					data = dmi->dmi_addr[i];
 | 
						|
					for (bit = 0; bit < 8; bit++, data >>= 1)
 | 
						|
					{
 | 
						|
						crc = (crc >> 1) ^
 | 
						|
						(((crc ^ data) & 1) ? CRC32_POLY : 0);
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				/* only upper 6 bits (HASH_BITS) are used
 | 
						|
				   which point to specific bit in he hash registers
 | 
						|
				*/
 | 
						|
				hash = (crc >> (32 - HASH_BITS)) & 0x3f;
 | 
						|
 | 
						|
				if (hash > 31)
 | 
						|
					ep->fec_hash_table_high |= 1 << (hash - 32);
 | 
						|
				else
 | 
						|
					ep->fec_hash_table_low |= 1 << hash;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Set a MAC change in hardware.
 | 
						|
 */
 | 
						|
static void
 | 
						|
fec_set_mac_address(struct net_device *dev)
 | 
						|
{
 | 
						|
	volatile fec_t *fecp;
 | 
						|
 | 
						|
	fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
 | 
						|
 | 
						|
	/* Set station address. */
 | 
						|
	fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
 | 
						|
		(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
 | 
						|
	fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
 | 
						|
		(dev->dev_addr[4] << 24);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
 | 
						|
 */
 | 
						|
 /*
 | 
						|
  * XXX:  We need to clean up on failure exits here.
 | 
						|
  */
 | 
						|
int __init fec_enet_init(struct net_device *dev)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep = netdev_priv(dev);
 | 
						|
	unsigned long	mem_addr;
 | 
						|
	volatile cbd_t	*bdp;
 | 
						|
	cbd_t		*cbd_base;
 | 
						|
	volatile fec_t	*fecp;
 | 
						|
	int 		i, j;
 | 
						|
	static int	index = 0;
 | 
						|
 | 
						|
	/* Only allow us to be probed once. */
 | 
						|
	if (index >= FEC_MAX_PORTS)
 | 
						|
		return -ENXIO;
 | 
						|
 | 
						|
	/* Allocate memory for buffer descriptors.
 | 
						|
	*/
 | 
						|
	mem_addr = __get_free_page(GFP_KERNEL);
 | 
						|
	if (mem_addr == 0) {
 | 
						|
		printk("FEC: allocate descriptor memory failed?\n");
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Create an Ethernet device instance.
 | 
						|
	*/
 | 
						|
	fecp = (volatile fec_t *) fec_hw[index];
 | 
						|
 | 
						|
	fep->index = index;
 | 
						|
	fep->hwp = fecp;
 | 
						|
 | 
						|
	/* Whack a reset.  We should wait for this.
 | 
						|
	*/
 | 
						|
	fecp->fec_ecntrl = 1;
 | 
						|
	udelay(10);
 | 
						|
 | 
						|
	/* Set the Ethernet address.  If using multiple Enets on the 8xx,
 | 
						|
	 * this needs some work to get unique addresses.
 | 
						|
	 *
 | 
						|
	 * This is our default MAC address unless the user changes
 | 
						|
	 * it via eth_mac_addr (our dev->set_mac_addr handler).
 | 
						|
	 */
 | 
						|
	fec_get_mac(dev);
 | 
						|
 | 
						|
	cbd_base = (cbd_t *)mem_addr;
 | 
						|
	/* XXX: missing check for allocation failure */
 | 
						|
 | 
						|
	fec_uncache(mem_addr);
 | 
						|
 | 
						|
	/* Set receive and transmit descriptor base.
 | 
						|
	*/
 | 
						|
	fep->rx_bd_base = cbd_base;
 | 
						|
	fep->tx_bd_base = cbd_base + RX_RING_SIZE;
 | 
						|
 | 
						|
	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 | 
						|
	fep->cur_rx = fep->rx_bd_base;
 | 
						|
 | 
						|
	fep->skb_cur = fep->skb_dirty = 0;
 | 
						|
 | 
						|
	/* Initialize the receive buffer descriptors.
 | 
						|
	*/
 | 
						|
	bdp = fep->rx_bd_base;
 | 
						|
	for (i=0; i<FEC_ENET_RX_PAGES; i++) {
 | 
						|
 | 
						|
		/* Allocate a page.
 | 
						|
		*/
 | 
						|
		mem_addr = __get_free_page(GFP_KERNEL);
 | 
						|
		/* XXX: missing check for allocation failure */
 | 
						|
 | 
						|
		fec_uncache(mem_addr);
 | 
						|
 | 
						|
		/* Initialize the BD for every fragment in the page.
 | 
						|
		*/
 | 
						|
		for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
 | 
						|
			bdp->cbd_sc = BD_ENET_RX_EMPTY;
 | 
						|
			bdp->cbd_bufaddr = __pa(mem_addr);
 | 
						|
			mem_addr += FEC_ENET_RX_FRSIZE;
 | 
						|
			bdp++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Set the last buffer to wrap.
 | 
						|
	*/
 | 
						|
	bdp--;
 | 
						|
	bdp->cbd_sc |= BD_SC_WRAP;
 | 
						|
 | 
						|
	/* ...and the same for transmmit.
 | 
						|
	*/
 | 
						|
	bdp = fep->tx_bd_base;
 | 
						|
	for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
 | 
						|
		if (j >= FEC_ENET_TX_FRPPG) {
 | 
						|
			mem_addr = __get_free_page(GFP_KERNEL);
 | 
						|
			j = 1;
 | 
						|
		} else {
 | 
						|
			mem_addr += FEC_ENET_TX_FRSIZE;
 | 
						|
			j++;
 | 
						|
		}
 | 
						|
		fep->tx_bounce[i] = (unsigned char *) mem_addr;
 | 
						|
 | 
						|
		/* Initialize the BD for every fragment in the page.
 | 
						|
		*/
 | 
						|
		bdp->cbd_sc = 0;
 | 
						|
		bdp->cbd_bufaddr = 0;
 | 
						|
		bdp++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Set the last buffer to wrap.
 | 
						|
	*/
 | 
						|
	bdp--;
 | 
						|
	bdp->cbd_sc |= BD_SC_WRAP;
 | 
						|
 | 
						|
	/* Set receive and transmit descriptor base.
 | 
						|
	*/
 | 
						|
	fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
 | 
						|
	fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
 | 
						|
 | 
						|
	/* Install our interrupt handlers. This varies depending on
 | 
						|
	 * the architecture.
 | 
						|
	*/
 | 
						|
	fec_request_intrs(dev);
 | 
						|
 | 
						|
	fecp->fec_hash_table_high = 0;
 | 
						|
	fecp->fec_hash_table_low = 0;
 | 
						|
	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
 | 
						|
	fecp->fec_ecntrl = 2;
 | 
						|
	fecp->fec_r_des_active = 0;
 | 
						|
 | 
						|
	dev->base_addr = (unsigned long)fecp;
 | 
						|
 | 
						|
	/* The FEC Ethernet specific entries in the device structure. */
 | 
						|
	dev->open = fec_enet_open;
 | 
						|
	dev->hard_start_xmit = fec_enet_start_xmit;
 | 
						|
	dev->tx_timeout = fec_timeout;
 | 
						|
	dev->watchdog_timeo = TX_TIMEOUT;
 | 
						|
	dev->stop = fec_enet_close;
 | 
						|
	dev->get_stats = fec_enet_get_stats;
 | 
						|
	dev->set_multicast_list = set_multicast_list;
 | 
						|
 | 
						|
	for (i=0; i<NMII-1; i++)
 | 
						|
		mii_cmds[i].mii_next = &mii_cmds[i+1];
 | 
						|
	mii_free = mii_cmds;
 | 
						|
 | 
						|
	/* setup MII interface */
 | 
						|
	fec_set_mii(dev, fep);
 | 
						|
 | 
						|
	/* Clear and enable interrupts */
 | 
						|
	fecp->fec_ievent = 0xffc00000;
 | 
						|
	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
 | 
						|
		FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
 | 
						|
 | 
						|
	/* Queue up command to detect the PHY and initialize the
 | 
						|
	 * remainder of the interface.
 | 
						|
	 */
 | 
						|
	fep->phy_id_done = 0;
 | 
						|
	fep->phy_addr = 0;
 | 
						|
	mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
 | 
						|
 | 
						|
	index++;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* This function is called to start or restart the FEC during a link
 | 
						|
 * change.  This only happens when switching between half and full
 | 
						|
 * duplex.
 | 
						|
 */
 | 
						|
static void
 | 
						|
fec_restart(struct net_device *dev, int duplex)
 | 
						|
{
 | 
						|
	struct fec_enet_private *fep;
 | 
						|
	volatile cbd_t *bdp;
 | 
						|
	volatile fec_t *fecp;
 | 
						|
	int i;
 | 
						|
 | 
						|
	fep = netdev_priv(dev);
 | 
						|
	fecp = fep->hwp;
 | 
						|
 | 
						|
	/* Whack a reset.  We should wait for this.
 | 
						|
	*/
 | 
						|
	fecp->fec_ecntrl = 1;
 | 
						|
	udelay(10);
 | 
						|
 | 
						|
	/* Clear any outstanding interrupt.
 | 
						|
	*/
 | 
						|
	fecp->fec_ievent = 0xffc00000;
 | 
						|
	fec_enable_phy_intr();
 | 
						|
 | 
						|
	/* Set station address.
 | 
						|
	*/
 | 
						|
	fec_set_mac_address(dev);
 | 
						|
 | 
						|
	/* Reset all multicast.
 | 
						|
	*/
 | 
						|
	fecp->fec_hash_table_high = 0;
 | 
						|
	fecp->fec_hash_table_low = 0;
 | 
						|
 | 
						|
	/* Set maximum receive buffer size.
 | 
						|
	*/
 | 
						|
	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
 | 
						|
 | 
						|
	fec_localhw_setup();
 | 
						|
 | 
						|
	/* Set receive and transmit descriptor base.
 | 
						|
	*/
 | 
						|
	fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
 | 
						|
	fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
 | 
						|
 | 
						|
	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 | 
						|
	fep->cur_rx = fep->rx_bd_base;
 | 
						|
 | 
						|
	/* Reset SKB transmit buffers.
 | 
						|
	*/
 | 
						|
	fep->skb_cur = fep->skb_dirty = 0;
 | 
						|
	for (i=0; i<=TX_RING_MOD_MASK; i++) {
 | 
						|
		if (fep->tx_skbuff[i] != NULL) {
 | 
						|
			dev_kfree_skb_any(fep->tx_skbuff[i]);
 | 
						|
			fep->tx_skbuff[i] = NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Initialize the receive buffer descriptors.
 | 
						|
	*/
 | 
						|
	bdp = fep->rx_bd_base;
 | 
						|
	for (i=0; i<RX_RING_SIZE; i++) {
 | 
						|
 | 
						|
		/* Initialize the BD for every fragment in the page.
 | 
						|
		*/
 | 
						|
		bdp->cbd_sc = BD_ENET_RX_EMPTY;
 | 
						|
		bdp++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Set the last buffer to wrap.
 | 
						|
	*/
 | 
						|
	bdp--;
 | 
						|
	bdp->cbd_sc |= BD_SC_WRAP;
 | 
						|
 | 
						|
	/* ...and the same for transmmit.
 | 
						|
	*/
 | 
						|
	bdp = fep->tx_bd_base;
 | 
						|
	for (i=0; i<TX_RING_SIZE; i++) {
 | 
						|
 | 
						|
		/* Initialize the BD for every fragment in the page.
 | 
						|
		*/
 | 
						|
		bdp->cbd_sc = 0;
 | 
						|
		bdp->cbd_bufaddr = 0;
 | 
						|
		bdp++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Set the last buffer to wrap.
 | 
						|
	*/
 | 
						|
	bdp--;
 | 
						|
	bdp->cbd_sc |= BD_SC_WRAP;
 | 
						|
 | 
						|
	/* Enable MII mode.
 | 
						|
	*/
 | 
						|
	if (duplex) {
 | 
						|
		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
 | 
						|
		fecp->fec_x_cntrl = 0x04;		  /* FD enable */
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* MII enable|No Rcv on Xmit */
 | 
						|
		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
 | 
						|
		fecp->fec_x_cntrl = 0x00;
 | 
						|
	}
 | 
						|
	fep->full_duplex = duplex;
 | 
						|
 | 
						|
	/* Set MII speed.
 | 
						|
	*/
 | 
						|
	fecp->fec_mii_speed = fep->phy_speed;
 | 
						|
 | 
						|
	/* And last, enable the transmit and receive processing.
 | 
						|
	*/
 | 
						|
	fecp->fec_ecntrl = 2;
 | 
						|
	fecp->fec_r_des_active = 0;
 | 
						|
 | 
						|
	/* Enable interrupts we wish to service.
 | 
						|
	*/
 | 
						|
	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
 | 
						|
		FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
fec_stop(struct net_device *dev)
 | 
						|
{
 | 
						|
	volatile fec_t *fecp;
 | 
						|
	struct fec_enet_private *fep;
 | 
						|
 | 
						|
	fep = netdev_priv(dev);
 | 
						|
	fecp = fep->hwp;
 | 
						|
 | 
						|
	/*
 | 
						|
	** We cannot expect a graceful transmit stop without link !!!
 | 
						|
	*/
 | 
						|
	if (fep->link)
 | 
						|
		{
 | 
						|
		fecp->fec_x_cntrl = 0x01;	/* Graceful transmit stop */
 | 
						|
		udelay(10);
 | 
						|
		if (!(fecp->fec_ievent & FEC_ENET_GRA))
 | 
						|
			printk("fec_stop : Graceful transmit stop did not complete !\n");
 | 
						|
		}
 | 
						|
 | 
						|
	/* Whack a reset.  We should wait for this.
 | 
						|
	*/
 | 
						|
	fecp->fec_ecntrl = 1;
 | 
						|
	udelay(10);
 | 
						|
 | 
						|
	/* Clear outstanding MII command interrupts.
 | 
						|
	*/
 | 
						|
	fecp->fec_ievent = FEC_ENET_MII;
 | 
						|
	fec_enable_phy_intr();
 | 
						|
 | 
						|
	fecp->fec_imask = FEC_ENET_MII;
 | 
						|
	fecp->fec_mii_speed = fep->phy_speed;
 | 
						|
}
 | 
						|
 | 
						|
static int __init fec_enet_module_init(void)
 | 
						|
{
 | 
						|
	struct net_device *dev;
 | 
						|
	int i, j, err;
 | 
						|
 | 
						|
	printk("FEC ENET Version 0.2\n");
 | 
						|
 | 
						|
	for (i = 0; (i < FEC_MAX_PORTS); i++) {
 | 
						|
		dev = alloc_etherdev(sizeof(struct fec_enet_private));
 | 
						|
		if (!dev)
 | 
						|
			return -ENOMEM;
 | 
						|
		err = fec_enet_init(dev);
 | 
						|
		if (err) {
 | 
						|
			free_netdev(dev);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		if (register_netdev(dev) != 0) {
 | 
						|
			/* XXX: missing cleanup here */
 | 
						|
			free_netdev(dev);
 | 
						|
			return -EIO;
 | 
						|
		}
 | 
						|
 | 
						|
		printk("%s: ethernet ", dev->name);
 | 
						|
		for (j = 0; (j < 5); j++)
 | 
						|
			printk("%02x:", dev->dev_addr[j]);
 | 
						|
		printk("%02x\n", dev->dev_addr[5]);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
module_init(fec_enet_module_init);
 | 
						|
 | 
						|
MODULE_LICENSE("GPL");
 |