This patch removes obsolete block operations of the simple cipher type from drivers. These were preserved so that existing users can make a smooth transition. Now that the transition is complete, they are no longer needed. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			663 lines
		
	
	
	
		
			18 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			663 lines
		
	
	
	
		
			18 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/* 
 | 
						|
 * Cryptographic API.
 | 
						|
 *
 | 
						|
 * Support for VIA PadLock hardware crypto engine.
 | 
						|
 *
 | 
						|
 * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
 | 
						|
 *
 | 
						|
 * Key expansion routine taken from crypto/aes.c
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * ---------------------------------------------------------------------------
 | 
						|
 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * LICENSE TERMS
 | 
						|
 *
 | 
						|
 * The free distribution and use of this software in both source and binary
 | 
						|
 * form is allowed (with or without changes) provided that:
 | 
						|
 *
 | 
						|
 *   1. distributions of this source code include the above copyright
 | 
						|
 *      notice, this list of conditions and the following disclaimer;
 | 
						|
 *
 | 
						|
 *   2. distributions in binary form include the above copyright
 | 
						|
 *      notice, this list of conditions and the following disclaimer
 | 
						|
 *      in the documentation and/or other associated materials;
 | 
						|
 *
 | 
						|
 *   3. the copyright holder's name is not used to endorse products
 | 
						|
 *      built using this software without specific written permission.
 | 
						|
 *
 | 
						|
 * ALTERNATIVELY, provided that this notice is retained in full, this product
 | 
						|
 * may be distributed under the terms of the GNU General Public License (GPL),
 | 
						|
 * in which case the provisions of the GPL apply INSTEAD OF those given above.
 | 
						|
 *
 | 
						|
 * DISCLAIMER
 | 
						|
 *
 | 
						|
 * This software is provided 'as is' with no explicit or implied warranties
 | 
						|
 * in respect of its properties, including, but not limited to, correctness
 | 
						|
 * and/or fitness for purpose.
 | 
						|
 * ---------------------------------------------------------------------------
 | 
						|
 */
 | 
						|
 | 
						|
#include <crypto/algapi.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <asm/byteorder.h>
 | 
						|
#include "padlock.h"
 | 
						|
 | 
						|
#define AES_MIN_KEY_SIZE	16	/* in uint8_t units */
 | 
						|
#define AES_MAX_KEY_SIZE	32	/* ditto */
 | 
						|
#define AES_BLOCK_SIZE		16	/* ditto */
 | 
						|
#define AES_EXTENDED_KEY_SIZE	64	/* in uint32_t units */
 | 
						|
#define AES_EXTENDED_KEY_SIZE_B	(AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
 | 
						|
 | 
						|
/* Control word. */
 | 
						|
struct cword {
 | 
						|
	unsigned int __attribute__ ((__packed__))
 | 
						|
		rounds:4,
 | 
						|
		algo:3,
 | 
						|
		keygen:1,
 | 
						|
		interm:1,
 | 
						|
		encdec:1,
 | 
						|
		ksize:2;
 | 
						|
} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 | 
						|
 | 
						|
/* Whenever making any changes to the following
 | 
						|
 * structure *make sure* you keep E, d_data
 | 
						|
 * and cword aligned on 16 Bytes boundaries!!! */
 | 
						|
struct aes_ctx {
 | 
						|
	struct {
 | 
						|
		struct cword encrypt;
 | 
						|
		struct cword decrypt;
 | 
						|
	} cword;
 | 
						|
	u32 *D;
 | 
						|
	int key_length;
 | 
						|
	u32 E[AES_EXTENDED_KEY_SIZE]
 | 
						|
		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 | 
						|
	u32 d_data[AES_EXTENDED_KEY_SIZE]
 | 
						|
		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 | 
						|
};
 | 
						|
 | 
						|
/* ====== Key management routines ====== */
 | 
						|
 | 
						|
static inline uint32_t
 | 
						|
generic_rotr32 (const uint32_t x, const unsigned bits)
 | 
						|
{
 | 
						|
	const unsigned n = bits % 32;
 | 
						|
	return (x >> n) | (x << (32 - n));
 | 
						|
}
 | 
						|
 | 
						|
static inline uint32_t
 | 
						|
generic_rotl32 (const uint32_t x, const unsigned bits)
 | 
						|
{
 | 
						|
	const unsigned n = bits % 32;
 | 
						|
	return (x << n) | (x >> (32 - n));
 | 
						|
}
 | 
						|
 | 
						|
#define rotl generic_rotl32
 | 
						|
#define rotr generic_rotr32
 | 
						|
 | 
						|
/*
 | 
						|
 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) 
 | 
						|
 */
 | 
						|
static inline uint8_t
 | 
						|
byte(const uint32_t x, const unsigned n)
 | 
						|
{
 | 
						|
	return x >> (n << 3);
 | 
						|
}
 | 
						|
 | 
						|
#define E_KEY ctx->E
 | 
						|
#define D_KEY ctx->D
 | 
						|
 | 
						|
static uint8_t pow_tab[256];
 | 
						|
static uint8_t log_tab[256];
 | 
						|
static uint8_t sbx_tab[256];
 | 
						|
static uint8_t isb_tab[256];
 | 
						|
static uint32_t rco_tab[10];
 | 
						|
static uint32_t ft_tab[4][256];
 | 
						|
static uint32_t it_tab[4][256];
 | 
						|
 | 
						|
static uint32_t fl_tab[4][256];
 | 
						|
static uint32_t il_tab[4][256];
 | 
						|
 | 
						|
static inline uint8_t
 | 
						|
f_mult (uint8_t a, uint8_t b)
 | 
						|
{
 | 
						|
	uint8_t aa = log_tab[a], cc = aa + log_tab[b];
 | 
						|
 | 
						|
	return pow_tab[cc + (cc < aa ? 1 : 0)];
 | 
						|
}
 | 
						|
 | 
						|
#define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
 | 
						|
 | 
						|
#define f_rn(bo, bi, n, k)					\
 | 
						|
    bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\
 | 
						|
             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
 | 
						|
             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
 | 
						|
             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
 | 
						|
 | 
						|
#define i_rn(bo, bi, n, k)					\
 | 
						|
    bo[n] =  it_tab[0][byte(bi[n],0)] ^				\
 | 
						|
             it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
 | 
						|
             it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
 | 
						|
             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
 | 
						|
 | 
						|
#define ls_box(x)				\
 | 
						|
    ( fl_tab[0][byte(x, 0)] ^			\
 | 
						|
      fl_tab[1][byte(x, 1)] ^			\
 | 
						|
      fl_tab[2][byte(x, 2)] ^			\
 | 
						|
      fl_tab[3][byte(x, 3)] )
 | 
						|
 | 
						|
#define f_rl(bo, bi, n, k)					\
 | 
						|
    bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\
 | 
						|
             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
 | 
						|
             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
 | 
						|
             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
 | 
						|
 | 
						|
#define i_rl(bo, bi, n, k)					\
 | 
						|
    bo[n] =  il_tab[0][byte(bi[n],0)] ^				\
 | 
						|
             il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
 | 
						|
             il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
 | 
						|
             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
 | 
						|
 | 
						|
static void
 | 
						|
gen_tabs (void)
 | 
						|
{
 | 
						|
	uint32_t i, t;
 | 
						|
	uint8_t p, q;
 | 
						|
 | 
						|
	/* log and power tables for GF(2**8) finite field with
 | 
						|
	   0x011b as modular polynomial - the simplest prmitive
 | 
						|
	   root is 0x03, used here to generate the tables */
 | 
						|
 | 
						|
	for (i = 0, p = 1; i < 256; ++i) {
 | 
						|
		pow_tab[i] = (uint8_t) p;
 | 
						|
		log_tab[p] = (uint8_t) i;
 | 
						|
 | 
						|
		p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
 | 
						|
	}
 | 
						|
 | 
						|
	log_tab[1] = 0;
 | 
						|
 | 
						|
	for (i = 0, p = 1; i < 10; ++i) {
 | 
						|
		rco_tab[i] = p;
 | 
						|
 | 
						|
		p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < 256; ++i) {
 | 
						|
		p = (i ? pow_tab[255 - log_tab[i]] : 0);
 | 
						|
		q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
 | 
						|
		p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
 | 
						|
		sbx_tab[i] = p;
 | 
						|
		isb_tab[p] = (uint8_t) i;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < 256; ++i) {
 | 
						|
		p = sbx_tab[i];
 | 
						|
 | 
						|
		t = p;
 | 
						|
		fl_tab[0][i] = t;
 | 
						|
		fl_tab[1][i] = rotl (t, 8);
 | 
						|
		fl_tab[2][i] = rotl (t, 16);
 | 
						|
		fl_tab[3][i] = rotl (t, 24);
 | 
						|
 | 
						|
		t = ((uint32_t) ff_mult (2, p)) |
 | 
						|
		    ((uint32_t) p << 8) |
 | 
						|
		    ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
 | 
						|
 | 
						|
		ft_tab[0][i] = t;
 | 
						|
		ft_tab[1][i] = rotl (t, 8);
 | 
						|
		ft_tab[2][i] = rotl (t, 16);
 | 
						|
		ft_tab[3][i] = rotl (t, 24);
 | 
						|
 | 
						|
		p = isb_tab[i];
 | 
						|
 | 
						|
		t = p;
 | 
						|
		il_tab[0][i] = t;
 | 
						|
		il_tab[1][i] = rotl (t, 8);
 | 
						|
		il_tab[2][i] = rotl (t, 16);
 | 
						|
		il_tab[3][i] = rotl (t, 24);
 | 
						|
 | 
						|
		t = ((uint32_t) ff_mult (14, p)) |
 | 
						|
		    ((uint32_t) ff_mult (9, p) << 8) |
 | 
						|
		    ((uint32_t) ff_mult (13, p) << 16) |
 | 
						|
		    ((uint32_t) ff_mult (11, p) << 24);
 | 
						|
 | 
						|
		it_tab[0][i] = t;
 | 
						|
		it_tab[1][i] = rotl (t, 8);
 | 
						|
		it_tab[2][i] = rotl (t, 16);
 | 
						|
		it_tab[3][i] = rotl (t, 24);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
 | 
						|
 | 
						|
#define imix_col(y,x)       \
 | 
						|
    u   = star_x(x);        \
 | 
						|
    v   = star_x(u);        \
 | 
						|
    w   = star_x(v);        \
 | 
						|
    t   = w ^ (x);          \
 | 
						|
   (y)  = u ^ v ^ w;        \
 | 
						|
   (y) ^= rotr(u ^ t,  8) ^ \
 | 
						|
          rotr(v ^ t, 16) ^ \
 | 
						|
          rotr(t,24)
 | 
						|
 | 
						|
/* initialise the key schedule from the user supplied key */
 | 
						|
 | 
						|
#define loop4(i)                                    \
 | 
						|
{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
 | 
						|
    t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
 | 
						|
    t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
 | 
						|
    t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
 | 
						|
    t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
 | 
						|
}
 | 
						|
 | 
						|
#define loop6(i)                                    \
 | 
						|
{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
 | 
						|
    t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
 | 
						|
    t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
 | 
						|
    t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
 | 
						|
    t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
 | 
						|
    t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
 | 
						|
    t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
 | 
						|
}
 | 
						|
 | 
						|
#define loop8(i)                                    \
 | 
						|
{   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
 | 
						|
    t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
 | 
						|
    t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
 | 
						|
    t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
 | 
						|
    t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
 | 
						|
    t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
 | 
						|
    E_KEY[8 * i + 12] = t;                \
 | 
						|
    t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
 | 
						|
    t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
 | 
						|
    t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
 | 
						|
}
 | 
						|
 | 
						|
/* Tells whether the ACE is capable to generate
 | 
						|
   the extended key for a given key_len. */
 | 
						|
static inline int
 | 
						|
aes_hw_extkey_available(uint8_t key_len)
 | 
						|
{
 | 
						|
	/* TODO: We should check the actual CPU model/stepping
 | 
						|
	         as it's possible that the capability will be
 | 
						|
	         added in the next CPU revisions. */
 | 
						|
	if (key_len == 16)
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct aes_ctx *aes_ctx_common(void *ctx)
 | 
						|
{
 | 
						|
	unsigned long addr = (unsigned long)ctx;
 | 
						|
	unsigned long align = PADLOCK_ALIGNMENT;
 | 
						|
 | 
						|
	if (align <= crypto_tfm_ctx_alignment())
 | 
						|
		align = 1;
 | 
						|
	return (struct aes_ctx *)ALIGN(addr, align);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
 | 
						|
{
 | 
						|
	return aes_ctx_common(crypto_tfm_ctx(tfm));
 | 
						|
}
 | 
						|
 | 
						|
static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
 | 
						|
{
 | 
						|
	return aes_ctx_common(crypto_blkcipher_ctx(tfm));
 | 
						|
}
 | 
						|
 | 
						|
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
 | 
						|
		       unsigned int key_len)
 | 
						|
{
 | 
						|
	struct aes_ctx *ctx = aes_ctx(tfm);
 | 
						|
	const __le32 *key = (const __le32 *)in_key;
 | 
						|
	u32 *flags = &tfm->crt_flags;
 | 
						|
	uint32_t i, t, u, v, w;
 | 
						|
	uint32_t P[AES_EXTENDED_KEY_SIZE];
 | 
						|
	uint32_t rounds;
 | 
						|
 | 
						|
	if (key_len % 8) {
 | 
						|
		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	ctx->key_length = key_len;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the hardware is capable of generating the extended key
 | 
						|
	 * itself we must supply the plain key for both encryption
 | 
						|
	 * and decryption.
 | 
						|
	 */
 | 
						|
	ctx->D = ctx->E;
 | 
						|
 | 
						|
	E_KEY[0] = le32_to_cpu(key[0]);
 | 
						|
	E_KEY[1] = le32_to_cpu(key[1]);
 | 
						|
	E_KEY[2] = le32_to_cpu(key[2]);
 | 
						|
	E_KEY[3] = le32_to_cpu(key[3]);
 | 
						|
 | 
						|
	/* Prepare control words. */
 | 
						|
	memset(&ctx->cword, 0, sizeof(ctx->cword));
 | 
						|
 | 
						|
	ctx->cword.decrypt.encdec = 1;
 | 
						|
	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
 | 
						|
	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
 | 
						|
	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
 | 
						|
	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
 | 
						|
 | 
						|
	/* Don't generate extended keys if the hardware can do it. */
 | 
						|
	if (aes_hw_extkey_available(key_len))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	ctx->D = ctx->d_data;
 | 
						|
	ctx->cword.encrypt.keygen = 1;
 | 
						|
	ctx->cword.decrypt.keygen = 1;
 | 
						|
 | 
						|
	switch (key_len) {
 | 
						|
	case 16:
 | 
						|
		t = E_KEY[3];
 | 
						|
		for (i = 0; i < 10; ++i)
 | 
						|
			loop4 (i);
 | 
						|
		break;
 | 
						|
 | 
						|
	case 24:
 | 
						|
		E_KEY[4] = le32_to_cpu(key[4]);
 | 
						|
		t = E_KEY[5] = le32_to_cpu(key[5]);
 | 
						|
		for (i = 0; i < 8; ++i)
 | 
						|
			loop6 (i);
 | 
						|
		break;
 | 
						|
 | 
						|
	case 32:
 | 
						|
		E_KEY[4] = le32_to_cpu(key[4]);
 | 
						|
		E_KEY[5] = le32_to_cpu(key[5]);
 | 
						|
		E_KEY[6] = le32_to_cpu(key[6]);
 | 
						|
		t = E_KEY[7] = le32_to_cpu(key[7]);
 | 
						|
		for (i = 0; i < 7; ++i)
 | 
						|
			loop8 (i);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	D_KEY[0] = E_KEY[0];
 | 
						|
	D_KEY[1] = E_KEY[1];
 | 
						|
	D_KEY[2] = E_KEY[2];
 | 
						|
	D_KEY[3] = E_KEY[3];
 | 
						|
 | 
						|
	for (i = 4; i < key_len + 24; ++i) {
 | 
						|
		imix_col (D_KEY[i], E_KEY[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	/* PadLock needs a different format of the decryption key. */
 | 
						|
	rounds = 10 + (key_len - 16) / 4;
 | 
						|
 | 
						|
	for (i = 0; i < rounds; i++) {
 | 
						|
		P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
 | 
						|
		P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
 | 
						|
		P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
 | 
						|
		P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
 | 
						|
	}
 | 
						|
 | 
						|
	P[0] = E_KEY[(rounds * 4) + 0];
 | 
						|
	P[1] = E_KEY[(rounds * 4) + 1];
 | 
						|
	P[2] = E_KEY[(rounds * 4) + 2];
 | 
						|
	P[3] = E_KEY[(rounds * 4) + 3];
 | 
						|
 | 
						|
	memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* ====== Encryption/decryption routines ====== */
 | 
						|
 | 
						|
/* These are the real call to PadLock. */
 | 
						|
static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
 | 
						|
				      void *control_word, u32 count)
 | 
						|
{
 | 
						|
	asm volatile ("pushfl; popfl");		/* enforce key reload. */
 | 
						|
	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
 | 
						|
		      : "+S"(input), "+D"(output)
 | 
						|
		      : "d"(control_word), "b"(key), "c"(count));
 | 
						|
}
 | 
						|
 | 
						|
static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
 | 
						|
				     u8 *iv, void *control_word, u32 count)
 | 
						|
{
 | 
						|
	/* Enforce key reload. */
 | 
						|
	asm volatile ("pushfl; popfl");
 | 
						|
	/* rep xcryptcbc */
 | 
						|
	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
 | 
						|
		      : "+S" (input), "+D" (output), "+a" (iv)
 | 
						|
		      : "d" (control_word), "b" (key), "c" (count));
 | 
						|
	return iv;
 | 
						|
}
 | 
						|
 | 
						|
static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
 | 
						|
{
 | 
						|
	struct aes_ctx *ctx = aes_ctx(tfm);
 | 
						|
	padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt, 1);
 | 
						|
}
 | 
						|
 | 
						|
static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
 | 
						|
{
 | 
						|
	struct aes_ctx *ctx = aes_ctx(tfm);
 | 
						|
	padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt, 1);
 | 
						|
}
 | 
						|
 | 
						|
static struct crypto_alg aes_alg = {
 | 
						|
	.cra_name		=	"aes",
 | 
						|
	.cra_driver_name	=	"aes-padlock",
 | 
						|
	.cra_priority		=	PADLOCK_CRA_PRIORITY,
 | 
						|
	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
 | 
						|
	.cra_blocksize		=	AES_BLOCK_SIZE,
 | 
						|
	.cra_ctxsize		=	sizeof(struct aes_ctx),
 | 
						|
	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
 | 
						|
	.cra_module		=	THIS_MODULE,
 | 
						|
	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
 | 
						|
	.cra_u			=	{
 | 
						|
		.cipher = {
 | 
						|
			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
 | 
						|
			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
 | 
						|
			.cia_setkey	   	= 	aes_set_key,
 | 
						|
			.cia_encrypt	 	=	aes_encrypt,
 | 
						|
			.cia_decrypt	  	=	aes_decrypt,
 | 
						|
		}
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
static int ecb_aes_encrypt(struct blkcipher_desc *desc,
 | 
						|
			   struct scatterlist *dst, struct scatterlist *src,
 | 
						|
			   unsigned int nbytes)
 | 
						|
{
 | 
						|
	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
 | 
						|
	struct blkcipher_walk walk;
 | 
						|
	int err;
 | 
						|
 | 
						|
	blkcipher_walk_init(&walk, dst, src, nbytes);
 | 
						|
	err = blkcipher_walk_virt(desc, &walk);
 | 
						|
 | 
						|
	while ((nbytes = walk.nbytes)) {
 | 
						|
		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
 | 
						|
				   ctx->E, &ctx->cword.encrypt,
 | 
						|
				   nbytes / AES_BLOCK_SIZE);
 | 
						|
		nbytes &= AES_BLOCK_SIZE - 1;
 | 
						|
		err = blkcipher_walk_done(desc, &walk, nbytes);
 | 
						|
	}
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static int ecb_aes_decrypt(struct blkcipher_desc *desc,
 | 
						|
			   struct scatterlist *dst, struct scatterlist *src,
 | 
						|
			   unsigned int nbytes)
 | 
						|
{
 | 
						|
	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
 | 
						|
	struct blkcipher_walk walk;
 | 
						|
	int err;
 | 
						|
 | 
						|
	blkcipher_walk_init(&walk, dst, src, nbytes);
 | 
						|
	err = blkcipher_walk_virt(desc, &walk);
 | 
						|
 | 
						|
	while ((nbytes = walk.nbytes)) {
 | 
						|
		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
 | 
						|
				   ctx->D, &ctx->cword.decrypt,
 | 
						|
				   nbytes / AES_BLOCK_SIZE);
 | 
						|
		nbytes &= AES_BLOCK_SIZE - 1;
 | 
						|
		err = blkcipher_walk_done(desc, &walk, nbytes);
 | 
						|
	}
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static struct crypto_alg ecb_aes_alg = {
 | 
						|
	.cra_name		=	"ecb(aes)",
 | 
						|
	.cra_driver_name	=	"ecb-aes-padlock",
 | 
						|
	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
 | 
						|
	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
 | 
						|
	.cra_blocksize		=	AES_BLOCK_SIZE,
 | 
						|
	.cra_ctxsize		=	sizeof(struct aes_ctx),
 | 
						|
	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
 | 
						|
	.cra_type		=	&crypto_blkcipher_type,
 | 
						|
	.cra_module		=	THIS_MODULE,
 | 
						|
	.cra_list		=	LIST_HEAD_INIT(ecb_aes_alg.cra_list),
 | 
						|
	.cra_u			=	{
 | 
						|
		.blkcipher = {
 | 
						|
			.min_keysize		=	AES_MIN_KEY_SIZE,
 | 
						|
			.max_keysize		=	AES_MAX_KEY_SIZE,
 | 
						|
			.setkey	   		= 	aes_set_key,
 | 
						|
			.encrypt		=	ecb_aes_encrypt,
 | 
						|
			.decrypt		=	ecb_aes_decrypt,
 | 
						|
		}
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
static int cbc_aes_encrypt(struct blkcipher_desc *desc,
 | 
						|
			   struct scatterlist *dst, struct scatterlist *src,
 | 
						|
			   unsigned int nbytes)
 | 
						|
{
 | 
						|
	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
 | 
						|
	struct blkcipher_walk walk;
 | 
						|
	int err;
 | 
						|
 | 
						|
	blkcipher_walk_init(&walk, dst, src, nbytes);
 | 
						|
	err = blkcipher_walk_virt(desc, &walk);
 | 
						|
 | 
						|
	while ((nbytes = walk.nbytes)) {
 | 
						|
		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
 | 
						|
					    walk.dst.virt.addr, ctx->E,
 | 
						|
					    walk.iv, &ctx->cword.encrypt,
 | 
						|
					    nbytes / AES_BLOCK_SIZE);
 | 
						|
		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
 | 
						|
		nbytes &= AES_BLOCK_SIZE - 1;
 | 
						|
		err = blkcipher_walk_done(desc, &walk, nbytes);
 | 
						|
	}
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static int cbc_aes_decrypt(struct blkcipher_desc *desc,
 | 
						|
			   struct scatterlist *dst, struct scatterlist *src,
 | 
						|
			   unsigned int nbytes)
 | 
						|
{
 | 
						|
	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
 | 
						|
	struct blkcipher_walk walk;
 | 
						|
	int err;
 | 
						|
 | 
						|
	blkcipher_walk_init(&walk, dst, src, nbytes);
 | 
						|
	err = blkcipher_walk_virt(desc, &walk);
 | 
						|
 | 
						|
	while ((nbytes = walk.nbytes)) {
 | 
						|
		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
 | 
						|
				   ctx->D, walk.iv, &ctx->cword.decrypt,
 | 
						|
				   nbytes / AES_BLOCK_SIZE);
 | 
						|
		nbytes &= AES_BLOCK_SIZE - 1;
 | 
						|
		err = blkcipher_walk_done(desc, &walk, nbytes);
 | 
						|
	}
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static struct crypto_alg cbc_aes_alg = {
 | 
						|
	.cra_name		=	"cbc(aes)",
 | 
						|
	.cra_driver_name	=	"cbc-aes-padlock",
 | 
						|
	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
 | 
						|
	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
 | 
						|
	.cra_blocksize		=	AES_BLOCK_SIZE,
 | 
						|
	.cra_ctxsize		=	sizeof(struct aes_ctx),
 | 
						|
	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
 | 
						|
	.cra_type		=	&crypto_blkcipher_type,
 | 
						|
	.cra_module		=	THIS_MODULE,
 | 
						|
	.cra_list		=	LIST_HEAD_INIT(cbc_aes_alg.cra_list),
 | 
						|
	.cra_u			=	{
 | 
						|
		.blkcipher = {
 | 
						|
			.min_keysize		=	AES_MIN_KEY_SIZE,
 | 
						|
			.max_keysize		=	AES_MAX_KEY_SIZE,
 | 
						|
			.ivsize			=	AES_BLOCK_SIZE,
 | 
						|
			.setkey	   		= 	aes_set_key,
 | 
						|
			.encrypt		=	cbc_aes_encrypt,
 | 
						|
			.decrypt		=	cbc_aes_decrypt,
 | 
						|
		}
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
static int __init padlock_init(void)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!cpu_has_xcrypt) {
 | 
						|
		printk(KERN_ERR PFX "VIA PadLock not detected.\n");
 | 
						|
		return -ENODEV;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!cpu_has_xcrypt_enabled) {
 | 
						|
		printk(KERN_ERR PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
 | 
						|
		return -ENODEV;
 | 
						|
	}
 | 
						|
 | 
						|
	gen_tabs();
 | 
						|
	if ((ret = crypto_register_alg(&aes_alg)))
 | 
						|
		goto aes_err;
 | 
						|
 | 
						|
	if ((ret = crypto_register_alg(&ecb_aes_alg)))
 | 
						|
		goto ecb_aes_err;
 | 
						|
 | 
						|
	if ((ret = crypto_register_alg(&cbc_aes_alg)))
 | 
						|
		goto cbc_aes_err;
 | 
						|
 | 
						|
	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
 | 
						|
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
 | 
						|
cbc_aes_err:
 | 
						|
	crypto_unregister_alg(&ecb_aes_alg);
 | 
						|
ecb_aes_err:
 | 
						|
	crypto_unregister_alg(&aes_alg);
 | 
						|
aes_err:
 | 
						|
	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
 | 
						|
	goto out;
 | 
						|
}
 | 
						|
 | 
						|
static void __exit padlock_fini(void)
 | 
						|
{
 | 
						|
	crypto_unregister_alg(&cbc_aes_alg);
 | 
						|
	crypto_unregister_alg(&ecb_aes_alg);
 | 
						|
	crypto_unregister_alg(&aes_alg);
 | 
						|
}
 | 
						|
 | 
						|
module_init(padlock_init);
 | 
						|
module_exit(padlock_fini);
 | 
						|
 | 
						|
MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
 | 
						|
MODULE_LICENSE("GPL");
 | 
						|
MODULE_AUTHOR("Michal Ludvig");
 | 
						|
 | 
						|
MODULE_ALIAS("aes-padlock");
 |