4499 lines
		
	
	
	
		
			111 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4499 lines
		
	
	
	
		
			111 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *	Routines having to do with the 'struct sk_buff' memory handlers.
 | |
|  *
 | |
|  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
 | |
|  *			Florian La Roche <rzsfl@rz.uni-sb.de>
 | |
|  *
 | |
|  *	Fixes:
 | |
|  *		Alan Cox	:	Fixed the worst of the load
 | |
|  *					balancer bugs.
 | |
|  *		Dave Platt	:	Interrupt stacking fix.
 | |
|  *	Richard Kooijman	:	Timestamp fixes.
 | |
|  *		Alan Cox	:	Changed buffer format.
 | |
|  *		Alan Cox	:	destructor hook for AF_UNIX etc.
 | |
|  *		Linus Torvalds	:	Better skb_clone.
 | |
|  *		Alan Cox	:	Added skb_copy.
 | |
|  *		Alan Cox	:	Added all the changed routines Linus
 | |
|  *					only put in the headers
 | |
|  *		Ray VanTassle	:	Fixed --skb->lock in free
 | |
|  *		Alan Cox	:	skb_copy copy arp field
 | |
|  *		Andi Kleen	:	slabified it.
 | |
|  *		Robert Olsson	:	Removed skb_head_pool
 | |
|  *
 | |
|  *	NOTE:
 | |
|  *		The __skb_ routines should be called with interrupts
 | |
|  *	disabled, or you better be *real* sure that the operation is atomic
 | |
|  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
 | |
|  *	or via disabling bottom half handlers, etc).
 | |
|  *
 | |
|  *	This program is free software; you can redistribute it and/or
 | |
|  *	modify it under the terms of the GNU General Public License
 | |
|  *	as published by the Free Software Foundation; either version
 | |
|  *	2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *	The functions in this file will not compile correctly with gcc 2.4.x
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/kmemcheck.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/inet.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/tcp.h>
 | |
| #include <linux/udp.h>
 | |
| #include <linux/netdevice.h>
 | |
| #ifdef CONFIG_NET_CLS_ACT
 | |
| #include <net/pkt_sched.h>
 | |
| #endif
 | |
| #include <linux/string.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/splice.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/rtnetlink.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/errqueue.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/if_vlan.h>
 | |
| 
 | |
| #include <net/protocol.h>
 | |
| #include <net/dst.h>
 | |
| #include <net/sock.h>
 | |
| #include <net/checksum.h>
 | |
| #include <net/ip6_checksum.h>
 | |
| #include <net/xfrm.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <trace/events/skb.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/user_namespace.h>
 | |
| 
 | |
| struct kmem_cache *skbuff_head_cache __read_mostly;
 | |
| static struct kmem_cache *skbuff_fclone_cache __read_mostly;
 | |
| 
 | |
| /**
 | |
|  *	skb_panic - private function for out-of-line support
 | |
|  *	@skb:	buffer
 | |
|  *	@sz:	size
 | |
|  *	@addr:	address
 | |
|  *	@msg:	skb_over_panic or skb_under_panic
 | |
|  *
 | |
|  *	Out-of-line support for skb_put() and skb_push().
 | |
|  *	Called via the wrapper skb_over_panic() or skb_under_panic().
 | |
|  *	Keep out of line to prevent kernel bloat.
 | |
|  *	__builtin_return_address is not used because it is not always reliable.
 | |
|  */
 | |
| static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
 | |
| 		      const char msg[])
 | |
| {
 | |
| 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
 | |
| 		 msg, addr, skb->len, sz, skb->head, skb->data,
 | |
| 		 (unsigned long)skb->tail, (unsigned long)skb->end,
 | |
| 		 skb->dev ? skb->dev->name : "<NULL>");
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 | |
| {
 | |
| 	skb_panic(skb, sz, addr, __func__);
 | |
| }
 | |
| 
 | |
| static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 | |
| {
 | |
| 	skb_panic(skb, sz, addr, __func__);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 | |
|  * the caller if emergency pfmemalloc reserves are being used. If it is and
 | |
|  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 | |
|  * may be used. Otherwise, the packet data may be discarded until enough
 | |
|  * memory is free
 | |
|  */
 | |
| #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 | |
| 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 | |
| 
 | |
| static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 | |
| 			       unsigned long ip, bool *pfmemalloc)
 | |
| {
 | |
| 	void *obj;
 | |
| 	bool ret_pfmemalloc = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Try a regular allocation, when that fails and we're not entitled
 | |
| 	 * to the reserves, fail.
 | |
| 	 */
 | |
| 	obj = kmalloc_node_track_caller(size,
 | |
| 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 | |
| 					node);
 | |
| 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Try again but now we are using pfmemalloc reserves */
 | |
| 	ret_pfmemalloc = true;
 | |
| 	obj = kmalloc_node_track_caller(size, flags, node);
 | |
| 
 | |
| out:
 | |
| 	if (pfmemalloc)
 | |
| 		*pfmemalloc = ret_pfmemalloc;
 | |
| 
 | |
| 	return obj;
 | |
| }
 | |
| 
 | |
| /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
 | |
|  *	'private' fields and also do memory statistics to find all the
 | |
|  *	[BEEP] leaks.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	/* Get the HEAD */
 | |
| 	skb = kmem_cache_alloc_node(skbuff_head_cache,
 | |
| 				    gfp_mask & ~__GFP_DMA, node);
 | |
| 	if (!skb)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only clear those fields we need to clear, not those that we will
 | |
| 	 * actually initialise below. Hence, don't put any more fields after
 | |
| 	 * the tail pointer in struct sk_buff!
 | |
| 	 */
 | |
| 	memset(skb, 0, offsetof(struct sk_buff, tail));
 | |
| 	skb->head = NULL;
 | |
| 	skb->truesize = sizeof(struct sk_buff);
 | |
| 	atomic_set(&skb->users, 1);
 | |
| 
 | |
| 	skb->mac_header = (typeof(skb->mac_header))~0U;
 | |
| out:
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	__alloc_skb	-	allocate a network buffer
 | |
|  *	@size: size to allocate
 | |
|  *	@gfp_mask: allocation mask
 | |
|  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 | |
|  *		instead of head cache and allocate a cloned (child) skb.
 | |
|  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 | |
|  *		allocations in case the data is required for writeback
 | |
|  *	@node: numa node to allocate memory on
 | |
|  *
 | |
|  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
 | |
|  *	tail room of at least size bytes. The object has a reference count
 | |
|  *	of one. The return is the buffer. On a failure the return is %NULL.
 | |
|  *
 | |
|  *	Buffers may only be allocated from interrupts using a @gfp_mask of
 | |
|  *	%GFP_ATOMIC.
 | |
|  */
 | |
| struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 | |
| 			    int flags, int node)
 | |
| {
 | |
| 	struct kmem_cache *cache;
 | |
| 	struct skb_shared_info *shinfo;
 | |
| 	struct sk_buff *skb;
 | |
| 	u8 *data;
 | |
| 	bool pfmemalloc;
 | |
| 
 | |
| 	cache = (flags & SKB_ALLOC_FCLONE)
 | |
| 		? skbuff_fclone_cache : skbuff_head_cache;
 | |
| 
 | |
| 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 | |
| 		gfp_mask |= __GFP_MEMALLOC;
 | |
| 
 | |
| 	/* Get the HEAD */
 | |
| 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 | |
| 	if (!skb)
 | |
| 		goto out;
 | |
| 	prefetchw(skb);
 | |
| 
 | |
| 	/* We do our best to align skb_shared_info on a separate cache
 | |
| 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 | |
| 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 | |
| 	 * Both skb->head and skb_shared_info are cache line aligned.
 | |
| 	 */
 | |
| 	size = SKB_DATA_ALIGN(size);
 | |
| 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 | |
| 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 | |
| 	if (!data)
 | |
| 		goto nodata;
 | |
| 	/* kmalloc(size) might give us more room than requested.
 | |
| 	 * Put skb_shared_info exactly at the end of allocated zone,
 | |
| 	 * to allow max possible filling before reallocation.
 | |
| 	 */
 | |
| 	size = SKB_WITH_OVERHEAD(ksize(data));
 | |
| 	prefetchw(data + size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Only clear those fields we need to clear, not those that we will
 | |
| 	 * actually initialise below. Hence, don't put any more fields after
 | |
| 	 * the tail pointer in struct sk_buff!
 | |
| 	 */
 | |
| 	memset(skb, 0, offsetof(struct sk_buff, tail));
 | |
| 	/* Account for allocated memory : skb + skb->head */
 | |
| 	skb->truesize = SKB_TRUESIZE(size);
 | |
| 	skb->pfmemalloc = pfmemalloc;
 | |
| 	atomic_set(&skb->users, 1);
 | |
| 	skb->head = data;
 | |
| 	skb->data = data;
 | |
| 	skb_reset_tail_pointer(skb);
 | |
| 	skb->end = skb->tail + size;
 | |
| 	skb->mac_header = (typeof(skb->mac_header))~0U;
 | |
| 	skb->transport_header = (typeof(skb->transport_header))~0U;
 | |
| 
 | |
| 	/* make sure we initialize shinfo sequentially */
 | |
| 	shinfo = skb_shinfo(skb);
 | |
| 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 | |
| 	atomic_set(&shinfo->dataref, 1);
 | |
| 	kmemcheck_annotate_variable(shinfo->destructor_arg);
 | |
| 
 | |
| 	if (flags & SKB_ALLOC_FCLONE) {
 | |
| 		struct sk_buff_fclones *fclones;
 | |
| 
 | |
| 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 | |
| 
 | |
| 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
 | |
| 		skb->fclone = SKB_FCLONE_ORIG;
 | |
| 		atomic_set(&fclones->fclone_ref, 1);
 | |
| 
 | |
| 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
 | |
| 		fclones->skb2.pfmemalloc = pfmemalloc;
 | |
| 	}
 | |
| out:
 | |
| 	return skb;
 | |
| nodata:
 | |
| 	kmem_cache_free(cache, skb);
 | |
| 	skb = NULL;
 | |
| 	goto out;
 | |
| }
 | |
| EXPORT_SYMBOL(__alloc_skb);
 | |
| 
 | |
| /**
 | |
|  * __build_skb - build a network buffer
 | |
|  * @data: data buffer provided by caller
 | |
|  * @frag_size: size of data, or 0 if head was kmalloced
 | |
|  *
 | |
|  * Allocate a new &sk_buff. Caller provides space holding head and
 | |
|  * skb_shared_info. @data must have been allocated by kmalloc() only if
 | |
|  * @frag_size is 0, otherwise data should come from the page allocator
 | |
|  *  or vmalloc()
 | |
|  * The return is the new skb buffer.
 | |
|  * On a failure the return is %NULL, and @data is not freed.
 | |
|  * Notes :
 | |
|  *  Before IO, driver allocates only data buffer where NIC put incoming frame
 | |
|  *  Driver should add room at head (NET_SKB_PAD) and
 | |
|  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 | |
|  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 | |
|  *  before giving packet to stack.
 | |
|  *  RX rings only contains data buffers, not full skbs.
 | |
|  */
 | |
| struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 | |
| {
 | |
| 	struct skb_shared_info *shinfo;
 | |
| 	struct sk_buff *skb;
 | |
| 	unsigned int size = frag_size ? : ksize(data);
 | |
| 
 | |
| 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 | |
| 	if (!skb)
 | |
| 		return NULL;
 | |
| 
 | |
| 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 | |
| 
 | |
| 	memset(skb, 0, offsetof(struct sk_buff, tail));
 | |
| 	skb->truesize = SKB_TRUESIZE(size);
 | |
| 	atomic_set(&skb->users, 1);
 | |
| 	skb->head = data;
 | |
| 	skb->data = data;
 | |
| 	skb_reset_tail_pointer(skb);
 | |
| 	skb->end = skb->tail + size;
 | |
| 	skb->mac_header = (typeof(skb->mac_header))~0U;
 | |
| 	skb->transport_header = (typeof(skb->transport_header))~0U;
 | |
| 
 | |
| 	/* make sure we initialize shinfo sequentially */
 | |
| 	shinfo = skb_shinfo(skb);
 | |
| 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 | |
| 	atomic_set(&shinfo->dataref, 1);
 | |
| 	kmemcheck_annotate_variable(shinfo->destructor_arg);
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| /* build_skb() is wrapper over __build_skb(), that specifically
 | |
|  * takes care of skb->head and skb->pfmemalloc
 | |
|  * This means that if @frag_size is not zero, then @data must be backed
 | |
|  * by a page fragment, not kmalloc() or vmalloc()
 | |
|  */
 | |
| struct sk_buff *build_skb(void *data, unsigned int frag_size)
 | |
| {
 | |
| 	struct sk_buff *skb = __build_skb(data, frag_size);
 | |
| 
 | |
| 	if (skb && frag_size) {
 | |
| 		skb->head_frag = 1;
 | |
| 		if (virt_to_head_page(data)->pfmemalloc)
 | |
| 			skb->pfmemalloc = 1;
 | |
| 	}
 | |
| 	return skb;
 | |
| }
 | |
| EXPORT_SYMBOL(build_skb);
 | |
| 
 | |
| static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 | |
| static DEFINE_PER_CPU(struct page_frag_cache, napi_alloc_cache);
 | |
| 
 | |
| static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct page_frag_cache *nc;
 | |
| 	unsigned long flags;
 | |
| 	void *data;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	nc = this_cpu_ptr(&netdev_alloc_cache);
 | |
| 	data = __alloc_page_frag(nc, fragsz, gfp_mask);
 | |
| 	local_irq_restore(flags);
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * netdev_alloc_frag - allocate a page fragment
 | |
|  * @fragsz: fragment size
 | |
|  *
 | |
|  * Allocates a frag from a page for receive buffer.
 | |
|  * Uses GFP_ATOMIC allocations.
 | |
|  */
 | |
| void *netdev_alloc_frag(unsigned int fragsz)
 | |
| {
 | |
| 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 | |
| }
 | |
| EXPORT_SYMBOL(netdev_alloc_frag);
 | |
| 
 | |
| static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct page_frag_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 | |
| 
 | |
| 	return __alloc_page_frag(nc, fragsz, gfp_mask);
 | |
| }
 | |
| 
 | |
| void *napi_alloc_frag(unsigned int fragsz)
 | |
| {
 | |
| 	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 | |
| }
 | |
| EXPORT_SYMBOL(napi_alloc_frag);
 | |
| 
 | |
| /**
 | |
|  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
 | |
|  *	@dev: network device to receive on
 | |
|  *	@length: length to allocate
 | |
|  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
 | |
|  *
 | |
|  *	Allocate a new &sk_buff and assign it a usage count of one. The
 | |
|  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
 | |
|  *	the headroom they think they need without accounting for the
 | |
|  *	built in space. The built in space is used for optimisations.
 | |
|  *
 | |
|  *	%NULL is returned if there is no free memory.
 | |
|  */
 | |
| struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 | |
| 				   gfp_t gfp_mask)
 | |
| {
 | |
| 	struct page_frag_cache *nc;
 | |
| 	unsigned long flags;
 | |
| 	struct sk_buff *skb;
 | |
| 	bool pfmemalloc;
 | |
| 	void *data;
 | |
| 
 | |
| 	len += NET_SKB_PAD;
 | |
| 
 | |
| 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 | |
| 	    (gfp_mask & (__GFP_WAIT | GFP_DMA))) {
 | |
| 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 | |
| 		if (!skb)
 | |
| 			goto skb_fail;
 | |
| 		goto skb_success;
 | |
| 	}
 | |
| 
 | |
| 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 | |
| 	len = SKB_DATA_ALIGN(len);
 | |
| 
 | |
| 	if (sk_memalloc_socks())
 | |
| 		gfp_mask |= __GFP_MEMALLOC;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	nc = this_cpu_ptr(&netdev_alloc_cache);
 | |
| 	data = __alloc_page_frag(nc, len, gfp_mask);
 | |
| 	pfmemalloc = nc->pfmemalloc;
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	if (unlikely(!data))
 | |
| 		return NULL;
 | |
| 
 | |
| 	skb = __build_skb(data, len);
 | |
| 	if (unlikely(!skb)) {
 | |
| 		skb_free_frag(data);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* use OR instead of assignment to avoid clearing of bits in mask */
 | |
| 	if (pfmemalloc)
 | |
| 		skb->pfmemalloc = 1;
 | |
| 	skb->head_frag = 1;
 | |
| 
 | |
| skb_success:
 | |
| 	skb_reserve(skb, NET_SKB_PAD);
 | |
| 	skb->dev = dev;
 | |
| 
 | |
| skb_fail:
 | |
| 	return skb;
 | |
| }
 | |
| EXPORT_SYMBOL(__netdev_alloc_skb);
 | |
| 
 | |
| /**
 | |
|  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 | |
|  *	@napi: napi instance this buffer was allocated for
 | |
|  *	@length: length to allocate
 | |
|  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 | |
|  *
 | |
|  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
 | |
|  *	attempt to allocate the head from a special reserved region used
 | |
|  *	only for NAPI Rx allocation.  By doing this we can save several
 | |
|  *	CPU cycles by avoiding having to disable and re-enable IRQs.
 | |
|  *
 | |
|  *	%NULL is returned if there is no free memory.
 | |
|  */
 | |
| struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 | |
| 				 gfp_t gfp_mask)
 | |
| {
 | |
| 	struct page_frag_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 | |
| 	struct sk_buff *skb;
 | |
| 	void *data;
 | |
| 
 | |
| 	len += NET_SKB_PAD + NET_IP_ALIGN;
 | |
| 
 | |
| 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 | |
| 	    (gfp_mask & (__GFP_WAIT | GFP_DMA))) {
 | |
| 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 | |
| 		if (!skb)
 | |
| 			goto skb_fail;
 | |
| 		goto skb_success;
 | |
| 	}
 | |
| 
 | |
| 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 | |
| 	len = SKB_DATA_ALIGN(len);
 | |
| 
 | |
| 	if (sk_memalloc_socks())
 | |
| 		gfp_mask |= __GFP_MEMALLOC;
 | |
| 
 | |
| 	data = __alloc_page_frag(nc, len, gfp_mask);
 | |
| 	if (unlikely(!data))
 | |
| 		return NULL;
 | |
| 
 | |
| 	skb = __build_skb(data, len);
 | |
| 	if (unlikely(!skb)) {
 | |
| 		skb_free_frag(data);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* use OR instead of assignment to avoid clearing of bits in mask */
 | |
| 	if (nc->pfmemalloc)
 | |
| 		skb->pfmemalloc = 1;
 | |
| 	skb->head_frag = 1;
 | |
| 
 | |
| skb_success:
 | |
| 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 | |
| 	skb->dev = napi->dev;
 | |
| 
 | |
| skb_fail:
 | |
| 	return skb;
 | |
| }
 | |
| EXPORT_SYMBOL(__napi_alloc_skb);
 | |
| 
 | |
| void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 | |
| 		     int size, unsigned int truesize)
 | |
| {
 | |
| 	skb_fill_page_desc(skb, i, page, off, size);
 | |
| 	skb->len += size;
 | |
| 	skb->data_len += size;
 | |
| 	skb->truesize += truesize;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_add_rx_frag);
 | |
| 
 | |
| void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 | |
| 			  unsigned int truesize)
 | |
| {
 | |
| 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 | |
| 
 | |
| 	skb_frag_size_add(frag, size);
 | |
| 	skb->len += size;
 | |
| 	skb->data_len += size;
 | |
| 	skb->truesize += truesize;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_coalesce_rx_frag);
 | |
| 
 | |
| static void skb_drop_list(struct sk_buff **listp)
 | |
| {
 | |
| 	kfree_skb_list(*listp);
 | |
| 	*listp = NULL;
 | |
| }
 | |
| 
 | |
| static inline void skb_drop_fraglist(struct sk_buff *skb)
 | |
| {
 | |
| 	skb_drop_list(&skb_shinfo(skb)->frag_list);
 | |
| }
 | |
| 
 | |
| static void skb_clone_fraglist(struct sk_buff *skb)
 | |
| {
 | |
| 	struct sk_buff *list;
 | |
| 
 | |
| 	skb_walk_frags(skb, list)
 | |
| 		skb_get(list);
 | |
| }
 | |
| 
 | |
| static void skb_free_head(struct sk_buff *skb)
 | |
| {
 | |
| 	unsigned char *head = skb->head;
 | |
| 
 | |
| 	if (skb->head_frag)
 | |
| 		skb_free_frag(head);
 | |
| 	else
 | |
| 		kfree(head);
 | |
| }
 | |
| 
 | |
| static void skb_release_data(struct sk_buff *skb)
 | |
| {
 | |
| 	struct skb_shared_info *shinfo = skb_shinfo(skb);
 | |
| 	int i;
 | |
| 
 | |
| 	if (skb->cloned &&
 | |
| 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 | |
| 			      &shinfo->dataref))
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < shinfo->nr_frags; i++)
 | |
| 		__skb_frag_unref(&shinfo->frags[i]);
 | |
| 
 | |
| 	/*
 | |
| 	 * If skb buf is from userspace, we need to notify the caller
 | |
| 	 * the lower device DMA has done;
 | |
| 	 */
 | |
| 	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
 | |
| 		struct ubuf_info *uarg;
 | |
| 
 | |
| 		uarg = shinfo->destructor_arg;
 | |
| 		if (uarg->callback)
 | |
| 			uarg->callback(uarg, true);
 | |
| 	}
 | |
| 
 | |
| 	if (shinfo->frag_list)
 | |
| 		kfree_skb_list(shinfo->frag_list);
 | |
| 
 | |
| 	skb_free_head(skb);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Free an skbuff by memory without cleaning the state.
 | |
|  */
 | |
| static void kfree_skbmem(struct sk_buff *skb)
 | |
| {
 | |
| 	struct sk_buff_fclones *fclones;
 | |
| 
 | |
| 	switch (skb->fclone) {
 | |
| 	case SKB_FCLONE_UNAVAILABLE:
 | |
| 		kmem_cache_free(skbuff_head_cache, skb);
 | |
| 		return;
 | |
| 
 | |
| 	case SKB_FCLONE_ORIG:
 | |
| 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 | |
| 
 | |
| 		/* We usually free the clone (TX completion) before original skb
 | |
| 		 * This test would have no chance to be true for the clone,
 | |
| 		 * while here, branch prediction will be good.
 | |
| 		 */
 | |
| 		if (atomic_read(&fclones->fclone_ref) == 1)
 | |
| 			goto fastpath;
 | |
| 		break;
 | |
| 
 | |
| 	default: /* SKB_FCLONE_CLONE */
 | |
| 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
 | |
| 		break;
 | |
| 	}
 | |
| 	if (!atomic_dec_and_test(&fclones->fclone_ref))
 | |
| 		return;
 | |
| fastpath:
 | |
| 	kmem_cache_free(skbuff_fclone_cache, fclones);
 | |
| }
 | |
| 
 | |
| static void skb_release_head_state(struct sk_buff *skb)
 | |
| {
 | |
| 	skb_dst_drop(skb);
 | |
| #ifdef CONFIG_XFRM
 | |
| 	secpath_put(skb->sp);
 | |
| #endif
 | |
| 	if (skb->destructor) {
 | |
| 		WARN_ON(in_irq());
 | |
| 		skb->destructor(skb);
 | |
| 	}
 | |
| #if IS_ENABLED(CONFIG_NF_CONNTRACK)
 | |
| 	nf_conntrack_put(skb->nfct);
 | |
| #endif
 | |
| #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 | |
| 	nf_bridge_put(skb->nf_bridge);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Free everything but the sk_buff shell. */
 | |
| static void skb_release_all(struct sk_buff *skb)
 | |
| {
 | |
| 	skb_release_head_state(skb);
 | |
| 	if (likely(skb->head))
 | |
| 		skb_release_data(skb);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	__kfree_skb - private function
 | |
|  *	@skb: buffer
 | |
|  *
 | |
|  *	Free an sk_buff. Release anything attached to the buffer.
 | |
|  *	Clean the state. This is an internal helper function. Users should
 | |
|  *	always call kfree_skb
 | |
|  */
 | |
| 
 | |
| void __kfree_skb(struct sk_buff *skb)
 | |
| {
 | |
| 	skb_release_all(skb);
 | |
| 	kfree_skbmem(skb);
 | |
| }
 | |
| EXPORT_SYMBOL(__kfree_skb);
 | |
| 
 | |
| /**
 | |
|  *	kfree_skb - free an sk_buff
 | |
|  *	@skb: buffer to free
 | |
|  *
 | |
|  *	Drop a reference to the buffer and free it if the usage count has
 | |
|  *	hit zero.
 | |
|  */
 | |
| void kfree_skb(struct sk_buff *skb)
 | |
| {
 | |
| 	if (unlikely(!skb))
 | |
| 		return;
 | |
| 	if (likely(atomic_read(&skb->users) == 1))
 | |
| 		smp_rmb();
 | |
| 	else if (likely(!atomic_dec_and_test(&skb->users)))
 | |
| 		return;
 | |
| 	trace_kfree_skb(skb, __builtin_return_address(0));
 | |
| 	__kfree_skb(skb);
 | |
| }
 | |
| EXPORT_SYMBOL(kfree_skb);
 | |
| 
 | |
| void kfree_skb_list(struct sk_buff *segs)
 | |
| {
 | |
| 	while (segs) {
 | |
| 		struct sk_buff *next = segs->next;
 | |
| 
 | |
| 		kfree_skb(segs);
 | |
| 		segs = next;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(kfree_skb_list);
 | |
| 
 | |
| /**
 | |
|  *	skb_tx_error - report an sk_buff xmit error
 | |
|  *	@skb: buffer that triggered an error
 | |
|  *
 | |
|  *	Report xmit error if a device callback is tracking this skb.
 | |
|  *	skb must be freed afterwards.
 | |
|  */
 | |
| void skb_tx_error(struct sk_buff *skb)
 | |
| {
 | |
| 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 | |
| 		struct ubuf_info *uarg;
 | |
| 
 | |
| 		uarg = skb_shinfo(skb)->destructor_arg;
 | |
| 		if (uarg->callback)
 | |
| 			uarg->callback(uarg, false);
 | |
| 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(skb_tx_error);
 | |
| 
 | |
| /**
 | |
|  *	consume_skb - free an skbuff
 | |
|  *	@skb: buffer to free
 | |
|  *
 | |
|  *	Drop a ref to the buffer and free it if the usage count has hit zero
 | |
|  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
 | |
|  *	is being dropped after a failure and notes that
 | |
|  */
 | |
| void consume_skb(struct sk_buff *skb)
 | |
| {
 | |
| 	if (unlikely(!skb))
 | |
| 		return;
 | |
| 	if (likely(atomic_read(&skb->users) == 1))
 | |
| 		smp_rmb();
 | |
| 	else if (likely(!atomic_dec_and_test(&skb->users)))
 | |
| 		return;
 | |
| 	trace_consume_skb(skb);
 | |
| 	__kfree_skb(skb);
 | |
| }
 | |
| EXPORT_SYMBOL(consume_skb);
 | |
| 
 | |
| /* Make sure a field is enclosed inside headers_start/headers_end section */
 | |
| #define CHECK_SKB_FIELD(field) \
 | |
| 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
 | |
| 		     offsetof(struct sk_buff, headers_start));	\
 | |
| 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
 | |
| 		     offsetof(struct sk_buff, headers_end));	\
 | |
| 
 | |
| static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 | |
| {
 | |
| 	new->tstamp		= old->tstamp;
 | |
| 	/* We do not copy old->sk */
 | |
| 	new->dev		= old->dev;
 | |
| 	memcpy(new->cb, old->cb, sizeof(old->cb));
 | |
| 	skb_dst_copy(new, old);
 | |
| #ifdef CONFIG_XFRM
 | |
| 	new->sp			= secpath_get(old->sp);
 | |
| #endif
 | |
| 	__nf_copy(new, old, false);
 | |
| 
 | |
| 	/* Note : this field could be in headers_start/headers_end section
 | |
| 	 * It is not yet because we do not want to have a 16 bit hole
 | |
| 	 */
 | |
| 	new->queue_mapping = old->queue_mapping;
 | |
| 
 | |
| 	memcpy(&new->headers_start, &old->headers_start,
 | |
| 	       offsetof(struct sk_buff, headers_end) -
 | |
| 	       offsetof(struct sk_buff, headers_start));
 | |
| 	CHECK_SKB_FIELD(protocol);
 | |
| 	CHECK_SKB_FIELD(csum);
 | |
| 	CHECK_SKB_FIELD(hash);
 | |
| 	CHECK_SKB_FIELD(priority);
 | |
| 	CHECK_SKB_FIELD(skb_iif);
 | |
| 	CHECK_SKB_FIELD(vlan_proto);
 | |
| 	CHECK_SKB_FIELD(vlan_tci);
 | |
| 	CHECK_SKB_FIELD(transport_header);
 | |
| 	CHECK_SKB_FIELD(network_header);
 | |
| 	CHECK_SKB_FIELD(mac_header);
 | |
| 	CHECK_SKB_FIELD(inner_protocol);
 | |
| 	CHECK_SKB_FIELD(inner_transport_header);
 | |
| 	CHECK_SKB_FIELD(inner_network_header);
 | |
| 	CHECK_SKB_FIELD(inner_mac_header);
 | |
| 	CHECK_SKB_FIELD(mark);
 | |
| #ifdef CONFIG_NETWORK_SECMARK
 | |
| 	CHECK_SKB_FIELD(secmark);
 | |
| #endif
 | |
| #ifdef CONFIG_NET_RX_BUSY_POLL
 | |
| 	CHECK_SKB_FIELD(napi_id);
 | |
| #endif
 | |
| #ifdef CONFIG_XPS
 | |
| 	CHECK_SKB_FIELD(sender_cpu);
 | |
| #endif
 | |
| #ifdef CONFIG_NET_SCHED
 | |
| 	CHECK_SKB_FIELD(tc_index);
 | |
| #ifdef CONFIG_NET_CLS_ACT
 | |
| 	CHECK_SKB_FIELD(tc_verd);
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * You should not add any new code to this function.  Add it to
 | |
|  * __copy_skb_header above instead.
 | |
|  */
 | |
| static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 | |
| {
 | |
| #define C(x) n->x = skb->x
 | |
| 
 | |
| 	n->next = n->prev = NULL;
 | |
| 	n->sk = NULL;
 | |
| 	__copy_skb_header(n, skb);
 | |
| 
 | |
| 	C(len);
 | |
| 	C(data_len);
 | |
| 	C(mac_len);
 | |
| 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 | |
| 	n->cloned = 1;
 | |
| 	n->nohdr = 0;
 | |
| 	n->destructor = NULL;
 | |
| 	C(tail);
 | |
| 	C(end);
 | |
| 	C(head);
 | |
| 	C(head_frag);
 | |
| 	C(data);
 | |
| 	C(truesize);
 | |
| 	atomic_set(&n->users, 1);
 | |
| 
 | |
| 	atomic_inc(&(skb_shinfo(skb)->dataref));
 | |
| 	skb->cloned = 1;
 | |
| 
 | |
| 	return n;
 | |
| #undef C
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	skb_morph	-	morph one skb into another
 | |
|  *	@dst: the skb to receive the contents
 | |
|  *	@src: the skb to supply the contents
 | |
|  *
 | |
|  *	This is identical to skb_clone except that the target skb is
 | |
|  *	supplied by the user.
 | |
|  *
 | |
|  *	The target skb is returned upon exit.
 | |
|  */
 | |
| struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 | |
| {
 | |
| 	skb_release_all(dst);
 | |
| 	return __skb_clone(dst, src);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_morph);
 | |
| 
 | |
| /**
 | |
|  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
 | |
|  *	@skb: the skb to modify
 | |
|  *	@gfp_mask: allocation priority
 | |
|  *
 | |
|  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
 | |
|  *	It will copy all frags into kernel and drop the reference
 | |
|  *	to userspace pages.
 | |
|  *
 | |
|  *	If this function is called from an interrupt gfp_mask() must be
 | |
|  *	%GFP_ATOMIC.
 | |
|  *
 | |
|  *	Returns 0 on success or a negative error code on failure
 | |
|  *	to allocate kernel memory to copy to.
 | |
|  */
 | |
| int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
 | |
| {
 | |
| 	int i;
 | |
| 	int num_frags = skb_shinfo(skb)->nr_frags;
 | |
| 	struct page *page, *head = NULL;
 | |
| 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
 | |
| 
 | |
| 	for (i = 0; i < num_frags; i++) {
 | |
| 		u8 *vaddr;
 | |
| 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 | |
| 
 | |
| 		page = alloc_page(gfp_mask);
 | |
| 		if (!page) {
 | |
| 			while (head) {
 | |
| 				struct page *next = (struct page *)page_private(head);
 | |
| 				put_page(head);
 | |
| 				head = next;
 | |
| 			}
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		vaddr = kmap_atomic(skb_frag_page(f));
 | |
| 		memcpy(page_address(page),
 | |
| 		       vaddr + f->page_offset, skb_frag_size(f));
 | |
| 		kunmap_atomic(vaddr);
 | |
| 		set_page_private(page, (unsigned long)head);
 | |
| 		head = page;
 | |
| 	}
 | |
| 
 | |
| 	/* skb frags release userspace buffers */
 | |
| 	for (i = 0; i < num_frags; i++)
 | |
| 		skb_frag_unref(skb, i);
 | |
| 
 | |
| 	uarg->callback(uarg, false);
 | |
| 
 | |
| 	/* skb frags point to kernel buffers */
 | |
| 	for (i = num_frags - 1; i >= 0; i--) {
 | |
| 		__skb_fill_page_desc(skb, i, head, 0,
 | |
| 				     skb_shinfo(skb)->frags[i].size);
 | |
| 		head = (struct page *)page_private(head);
 | |
| 	}
 | |
| 
 | |
| 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_copy_ubufs);
 | |
| 
 | |
| /**
 | |
|  *	skb_clone	-	duplicate an sk_buff
 | |
|  *	@skb: buffer to clone
 | |
|  *	@gfp_mask: allocation priority
 | |
|  *
 | |
|  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
 | |
|  *	copies share the same packet data but not structure. The new
 | |
|  *	buffer has a reference count of 1. If the allocation fails the
 | |
|  *	function returns %NULL otherwise the new buffer is returned.
 | |
|  *
 | |
|  *	If this function is called from an interrupt gfp_mask() must be
 | |
|  *	%GFP_ATOMIC.
 | |
|  */
 | |
| 
 | |
| struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct sk_buff_fclones *fclones = container_of(skb,
 | |
| 						       struct sk_buff_fclones,
 | |
| 						       skb1);
 | |
| 	struct sk_buff *n;
 | |
| 
 | |
| 	if (skb_orphan_frags(skb, gfp_mask))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (skb->fclone == SKB_FCLONE_ORIG &&
 | |
| 	    atomic_read(&fclones->fclone_ref) == 1) {
 | |
| 		n = &fclones->skb2;
 | |
| 		atomic_set(&fclones->fclone_ref, 2);
 | |
| 	} else {
 | |
| 		if (skb_pfmemalloc(skb))
 | |
| 			gfp_mask |= __GFP_MEMALLOC;
 | |
| 
 | |
| 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
 | |
| 		if (!n)
 | |
| 			return NULL;
 | |
| 
 | |
| 		kmemcheck_annotate_bitfield(n, flags1);
 | |
| 		n->fclone = SKB_FCLONE_UNAVAILABLE;
 | |
| 	}
 | |
| 
 | |
| 	return __skb_clone(n, skb);
 | |
| }
 | |
| EXPORT_SYMBOL(skb_clone);
 | |
| 
 | |
| static void skb_headers_offset_update(struct sk_buff *skb, int off)
 | |
| {
 | |
| 	/* Only adjust this if it actually is csum_start rather than csum */
 | |
| 	if (skb->ip_summed == CHECKSUM_PARTIAL)
 | |
| 		skb->csum_start += off;
 | |
| 	/* {transport,network,mac}_header and tail are relative to skb->head */
 | |
| 	skb->transport_header += off;
 | |
| 	skb->network_header   += off;
 | |
| 	if (skb_mac_header_was_set(skb))
 | |
| 		skb->mac_header += off;
 | |
| 	skb->inner_transport_header += off;
 | |
| 	skb->inner_network_header += off;
 | |
| 	skb->inner_mac_header += off;
 | |
| }
 | |
| 
 | |
| static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 | |
| {
 | |
| 	__copy_skb_header(new, old);
 | |
| 
 | |
| 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
 | |
| 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
 | |
| 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
 | |
| }
 | |
| 
 | |
| static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
 | |
| {
 | |
| 	if (skb_pfmemalloc(skb))
 | |
| 		return SKB_ALLOC_RX;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	skb_copy	-	create private copy of an sk_buff
 | |
|  *	@skb: buffer to copy
 | |
|  *	@gfp_mask: allocation priority
 | |
|  *
 | |
|  *	Make a copy of both an &sk_buff and its data. This is used when the
 | |
|  *	caller wishes to modify the data and needs a private copy of the
 | |
|  *	data to alter. Returns %NULL on failure or the pointer to the buffer
 | |
|  *	on success. The returned buffer has a reference count of 1.
 | |
|  *
 | |
|  *	As by-product this function converts non-linear &sk_buff to linear
 | |
|  *	one, so that &sk_buff becomes completely private and caller is allowed
 | |
|  *	to modify all the data of returned buffer. This means that this
 | |
|  *	function is not recommended for use in circumstances when only
 | |
|  *	header is going to be modified. Use pskb_copy() instead.
 | |
|  */
 | |
| 
 | |
| struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
 | |
| {
 | |
| 	int headerlen = skb_headroom(skb);
 | |
| 	unsigned int size = skb_end_offset(skb) + skb->data_len;
 | |
| 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
 | |
| 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
 | |
| 
 | |
| 	if (!n)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Set the data pointer */
 | |
| 	skb_reserve(n, headerlen);
 | |
| 	/* Set the tail pointer and length */
 | |
| 	skb_put(n, skb->len);
 | |
| 
 | |
| 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
 | |
| 		BUG();
 | |
| 
 | |
| 	copy_skb_header(n, skb);
 | |
| 	return n;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_copy);
 | |
| 
 | |
| /**
 | |
|  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
 | |
|  *	@skb: buffer to copy
 | |
|  *	@headroom: headroom of new skb
 | |
|  *	@gfp_mask: allocation priority
 | |
|  *	@fclone: if true allocate the copy of the skb from the fclone
 | |
|  *	cache instead of the head cache; it is recommended to set this
 | |
|  *	to true for the cases where the copy will likely be cloned
 | |
|  *
 | |
|  *	Make a copy of both an &sk_buff and part of its data, located
 | |
|  *	in header. Fragmented data remain shared. This is used when
 | |
|  *	the caller wishes to modify only header of &sk_buff and needs
 | |
|  *	private copy of the header to alter. Returns %NULL on failure
 | |
|  *	or the pointer to the buffer on success.
 | |
|  *	The returned buffer has a reference count of 1.
 | |
|  */
 | |
| 
 | |
| struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
 | |
| 				   gfp_t gfp_mask, bool fclone)
 | |
| {
 | |
| 	unsigned int size = skb_headlen(skb) + headroom;
 | |
| 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
 | |
| 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
 | |
| 
 | |
| 	if (!n)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Set the data pointer */
 | |
| 	skb_reserve(n, headroom);
 | |
| 	/* Set the tail pointer and length */
 | |
| 	skb_put(n, skb_headlen(skb));
 | |
| 	/* Copy the bytes */
 | |
| 	skb_copy_from_linear_data(skb, n->data, n->len);
 | |
| 
 | |
| 	n->truesize += skb->data_len;
 | |
| 	n->data_len  = skb->data_len;
 | |
| 	n->len	     = skb->len;
 | |
| 
 | |
| 	if (skb_shinfo(skb)->nr_frags) {
 | |
| 		int i;
 | |
| 
 | |
| 		if (skb_orphan_frags(skb, gfp_mask)) {
 | |
| 			kfree_skb(n);
 | |
| 			n = NULL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 | |
| 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
 | |
| 			skb_frag_ref(skb, i);
 | |
| 		}
 | |
| 		skb_shinfo(n)->nr_frags = i;
 | |
| 	}
 | |
| 
 | |
| 	if (skb_has_frag_list(skb)) {
 | |
| 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
 | |
| 		skb_clone_fraglist(n);
 | |
| 	}
 | |
| 
 | |
| 	copy_skb_header(n, skb);
 | |
| out:
 | |
| 	return n;
 | |
| }
 | |
| EXPORT_SYMBOL(__pskb_copy_fclone);
 | |
| 
 | |
| /**
 | |
|  *	pskb_expand_head - reallocate header of &sk_buff
 | |
|  *	@skb: buffer to reallocate
 | |
|  *	@nhead: room to add at head
 | |
|  *	@ntail: room to add at tail
 | |
|  *	@gfp_mask: allocation priority
 | |
|  *
 | |
|  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
 | |
|  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
 | |
|  *	reference count of 1. Returns zero in the case of success or error,
 | |
|  *	if expansion failed. In the last case, &sk_buff is not changed.
 | |
|  *
 | |
|  *	All the pointers pointing into skb header may change and must be
 | |
|  *	reloaded after call to this function.
 | |
|  */
 | |
| 
 | |
| int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
 | |
| 		     gfp_t gfp_mask)
 | |
| {
 | |
| 	int i;
 | |
| 	u8 *data;
 | |
| 	int size = nhead + skb_end_offset(skb) + ntail;
 | |
| 	long off;
 | |
| 
 | |
| 	BUG_ON(nhead < 0);
 | |
| 
 | |
| 	if (skb_shared(skb))
 | |
| 		BUG();
 | |
| 
 | |
| 	size = SKB_DATA_ALIGN(size);
 | |
| 
 | |
| 	if (skb_pfmemalloc(skb))
 | |
| 		gfp_mask |= __GFP_MEMALLOC;
 | |
| 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
 | |
| 			       gfp_mask, NUMA_NO_NODE, NULL);
 | |
| 	if (!data)
 | |
| 		goto nodata;
 | |
| 	size = SKB_WITH_OVERHEAD(ksize(data));
 | |
| 
 | |
| 	/* Copy only real data... and, alas, header. This should be
 | |
| 	 * optimized for the cases when header is void.
 | |
| 	 */
 | |
| 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
 | |
| 
 | |
| 	memcpy((struct skb_shared_info *)(data + size),
 | |
| 	       skb_shinfo(skb),
 | |
| 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
 | |
| 
 | |
| 	/*
 | |
| 	 * if shinfo is shared we must drop the old head gracefully, but if it
 | |
| 	 * is not we can just drop the old head and let the existing refcount
 | |
| 	 * be since all we did is relocate the values
 | |
| 	 */
 | |
| 	if (skb_cloned(skb)) {
 | |
| 		/* copy this zero copy skb frags */
 | |
| 		if (skb_orphan_frags(skb, gfp_mask))
 | |
| 			goto nofrags;
 | |
| 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
 | |
| 			skb_frag_ref(skb, i);
 | |
| 
 | |
| 		if (skb_has_frag_list(skb))
 | |
| 			skb_clone_fraglist(skb);
 | |
| 
 | |
| 		skb_release_data(skb);
 | |
| 	} else {
 | |
| 		skb_free_head(skb);
 | |
| 	}
 | |
| 	off = (data + nhead) - skb->head;
 | |
| 
 | |
| 	skb->head     = data;
 | |
| 	skb->head_frag = 0;
 | |
| 	skb->data    += off;
 | |
| #ifdef NET_SKBUFF_DATA_USES_OFFSET
 | |
| 	skb->end      = size;
 | |
| 	off           = nhead;
 | |
| #else
 | |
| 	skb->end      = skb->head + size;
 | |
| #endif
 | |
| 	skb->tail	      += off;
 | |
| 	skb_headers_offset_update(skb, nhead);
 | |
| 	skb->cloned   = 0;
 | |
| 	skb->hdr_len  = 0;
 | |
| 	skb->nohdr    = 0;
 | |
| 	atomic_set(&skb_shinfo(skb)->dataref, 1);
 | |
| 	return 0;
 | |
| 
 | |
| nofrags:
 | |
| 	kfree(data);
 | |
| nodata:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| EXPORT_SYMBOL(pskb_expand_head);
 | |
| 
 | |
| /* Make private copy of skb with writable head and some headroom */
 | |
| 
 | |
| struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
 | |
| {
 | |
| 	struct sk_buff *skb2;
 | |
| 	int delta = headroom - skb_headroom(skb);
 | |
| 
 | |
| 	if (delta <= 0)
 | |
| 		skb2 = pskb_copy(skb, GFP_ATOMIC);
 | |
| 	else {
 | |
| 		skb2 = skb_clone(skb, GFP_ATOMIC);
 | |
| 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
 | |
| 					     GFP_ATOMIC)) {
 | |
| 			kfree_skb(skb2);
 | |
| 			skb2 = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	return skb2;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_realloc_headroom);
 | |
| 
 | |
| /**
 | |
|  *	skb_copy_expand	-	copy and expand sk_buff
 | |
|  *	@skb: buffer to copy
 | |
|  *	@newheadroom: new free bytes at head
 | |
|  *	@newtailroom: new free bytes at tail
 | |
|  *	@gfp_mask: allocation priority
 | |
|  *
 | |
|  *	Make a copy of both an &sk_buff and its data and while doing so
 | |
|  *	allocate additional space.
 | |
|  *
 | |
|  *	This is used when the caller wishes to modify the data and needs a
 | |
|  *	private copy of the data to alter as well as more space for new fields.
 | |
|  *	Returns %NULL on failure or the pointer to the buffer
 | |
|  *	on success. The returned buffer has a reference count of 1.
 | |
|  *
 | |
|  *	You must pass %GFP_ATOMIC as the allocation priority if this function
 | |
|  *	is called from an interrupt.
 | |
|  */
 | |
| struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
 | |
| 				int newheadroom, int newtailroom,
 | |
| 				gfp_t gfp_mask)
 | |
| {
 | |
| 	/*
 | |
| 	 *	Allocate the copy buffer
 | |
| 	 */
 | |
| 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
 | |
| 					gfp_mask, skb_alloc_rx_flag(skb),
 | |
| 					NUMA_NO_NODE);
 | |
| 	int oldheadroom = skb_headroom(skb);
 | |
| 	int head_copy_len, head_copy_off;
 | |
| 
 | |
| 	if (!n)
 | |
| 		return NULL;
 | |
| 
 | |
| 	skb_reserve(n, newheadroom);
 | |
| 
 | |
| 	/* Set the tail pointer and length */
 | |
| 	skb_put(n, skb->len);
 | |
| 
 | |
| 	head_copy_len = oldheadroom;
 | |
| 	head_copy_off = 0;
 | |
| 	if (newheadroom <= head_copy_len)
 | |
| 		head_copy_len = newheadroom;
 | |
| 	else
 | |
| 		head_copy_off = newheadroom - head_copy_len;
 | |
| 
 | |
| 	/* Copy the linear header and data. */
 | |
| 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
 | |
| 			  skb->len + head_copy_len))
 | |
| 		BUG();
 | |
| 
 | |
| 	copy_skb_header(n, skb);
 | |
| 
 | |
| 	skb_headers_offset_update(n, newheadroom - oldheadroom);
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_copy_expand);
 | |
| 
 | |
| /**
 | |
|  *	skb_pad			-	zero pad the tail of an skb
 | |
|  *	@skb: buffer to pad
 | |
|  *	@pad: space to pad
 | |
|  *
 | |
|  *	Ensure that a buffer is followed by a padding area that is zero
 | |
|  *	filled. Used by network drivers which may DMA or transfer data
 | |
|  *	beyond the buffer end onto the wire.
 | |
|  *
 | |
|  *	May return error in out of memory cases. The skb is freed on error.
 | |
|  */
 | |
| 
 | |
| int skb_pad(struct sk_buff *skb, int pad)
 | |
| {
 | |
| 	int err;
 | |
| 	int ntail;
 | |
| 
 | |
| 	/* If the skbuff is non linear tailroom is always zero.. */
 | |
| 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
 | |
| 		memset(skb->data+skb->len, 0, pad);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ntail = skb->data_len + pad - (skb->end - skb->tail);
 | |
| 	if (likely(skb_cloned(skb) || ntail > 0)) {
 | |
| 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
 | |
| 		if (unlikely(err))
 | |
| 			goto free_skb;
 | |
| 	}
 | |
| 
 | |
| 	/* FIXME: The use of this function with non-linear skb's really needs
 | |
| 	 * to be audited.
 | |
| 	 */
 | |
| 	err = skb_linearize(skb);
 | |
| 	if (unlikely(err))
 | |
| 		goto free_skb;
 | |
| 
 | |
| 	memset(skb->data + skb->len, 0, pad);
 | |
| 	return 0;
 | |
| 
 | |
| free_skb:
 | |
| 	kfree_skb(skb);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_pad);
 | |
| 
 | |
| /**
 | |
|  *	pskb_put - add data to the tail of a potentially fragmented buffer
 | |
|  *	@skb: start of the buffer to use
 | |
|  *	@tail: tail fragment of the buffer to use
 | |
|  *	@len: amount of data to add
 | |
|  *
 | |
|  *	This function extends the used data area of the potentially
 | |
|  *	fragmented buffer. @tail must be the last fragment of @skb -- or
 | |
|  *	@skb itself. If this would exceed the total buffer size the kernel
 | |
|  *	will panic. A pointer to the first byte of the extra data is
 | |
|  *	returned.
 | |
|  */
 | |
| 
 | |
| unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
 | |
| {
 | |
| 	if (tail != skb) {
 | |
| 		skb->data_len += len;
 | |
| 		skb->len += len;
 | |
| 	}
 | |
| 	return skb_put(tail, len);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pskb_put);
 | |
| 
 | |
| /**
 | |
|  *	skb_put - add data to a buffer
 | |
|  *	@skb: buffer to use
 | |
|  *	@len: amount of data to add
 | |
|  *
 | |
|  *	This function extends the used data area of the buffer. If this would
 | |
|  *	exceed the total buffer size the kernel will panic. A pointer to the
 | |
|  *	first byte of the extra data is returned.
 | |
|  */
 | |
| unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
 | |
| {
 | |
| 	unsigned char *tmp = skb_tail_pointer(skb);
 | |
| 	SKB_LINEAR_ASSERT(skb);
 | |
| 	skb->tail += len;
 | |
| 	skb->len  += len;
 | |
| 	if (unlikely(skb->tail > skb->end))
 | |
| 		skb_over_panic(skb, len, __builtin_return_address(0));
 | |
| 	return tmp;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_put);
 | |
| 
 | |
| /**
 | |
|  *	skb_push - add data to the start of a buffer
 | |
|  *	@skb: buffer to use
 | |
|  *	@len: amount of data to add
 | |
|  *
 | |
|  *	This function extends the used data area of the buffer at the buffer
 | |
|  *	start. If this would exceed the total buffer headroom the kernel will
 | |
|  *	panic. A pointer to the first byte of the extra data is returned.
 | |
|  */
 | |
| unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
 | |
| {
 | |
| 	skb->data -= len;
 | |
| 	skb->len  += len;
 | |
| 	if (unlikely(skb->data<skb->head))
 | |
| 		skb_under_panic(skb, len, __builtin_return_address(0));
 | |
| 	return skb->data;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_push);
 | |
| 
 | |
| /**
 | |
|  *	skb_pull - remove data from the start of a buffer
 | |
|  *	@skb: buffer to use
 | |
|  *	@len: amount of data to remove
 | |
|  *
 | |
|  *	This function removes data from the start of a buffer, returning
 | |
|  *	the memory to the headroom. A pointer to the next data in the buffer
 | |
|  *	is returned. Once the data has been pulled future pushes will overwrite
 | |
|  *	the old data.
 | |
|  */
 | |
| unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
 | |
| {
 | |
| 	return skb_pull_inline(skb, len);
 | |
| }
 | |
| EXPORT_SYMBOL(skb_pull);
 | |
| 
 | |
| /**
 | |
|  *	skb_trim - remove end from a buffer
 | |
|  *	@skb: buffer to alter
 | |
|  *	@len: new length
 | |
|  *
 | |
|  *	Cut the length of a buffer down by removing data from the tail. If
 | |
|  *	the buffer is already under the length specified it is not modified.
 | |
|  *	The skb must be linear.
 | |
|  */
 | |
| void skb_trim(struct sk_buff *skb, unsigned int len)
 | |
| {
 | |
| 	if (skb->len > len)
 | |
| 		__skb_trim(skb, len);
 | |
| }
 | |
| EXPORT_SYMBOL(skb_trim);
 | |
| 
 | |
| /* Trims skb to length len. It can change skb pointers.
 | |
|  */
 | |
| 
 | |
| int ___pskb_trim(struct sk_buff *skb, unsigned int len)
 | |
| {
 | |
| 	struct sk_buff **fragp;
 | |
| 	struct sk_buff *frag;
 | |
| 	int offset = skb_headlen(skb);
 | |
| 	int nfrags = skb_shinfo(skb)->nr_frags;
 | |
| 	int i;
 | |
| 	int err;
 | |
| 
 | |
| 	if (skb_cloned(skb) &&
 | |
| 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
 | |
| 		return err;
 | |
| 
 | |
| 	i = 0;
 | |
| 	if (offset >= len)
 | |
| 		goto drop_pages;
 | |
| 
 | |
| 	for (; i < nfrags; i++) {
 | |
| 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
 | |
| 
 | |
| 		if (end < len) {
 | |
| 			offset = end;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
 | |
| 
 | |
| drop_pages:
 | |
| 		skb_shinfo(skb)->nr_frags = i;
 | |
| 
 | |
| 		for (; i < nfrags; i++)
 | |
| 			skb_frag_unref(skb, i);
 | |
| 
 | |
| 		if (skb_has_frag_list(skb))
 | |
| 			skb_drop_fraglist(skb);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
 | |
| 	     fragp = &frag->next) {
 | |
| 		int end = offset + frag->len;
 | |
| 
 | |
| 		if (skb_shared(frag)) {
 | |
| 			struct sk_buff *nfrag;
 | |
| 
 | |
| 			nfrag = skb_clone(frag, GFP_ATOMIC);
 | |
| 			if (unlikely(!nfrag))
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			nfrag->next = frag->next;
 | |
| 			consume_skb(frag);
 | |
| 			frag = nfrag;
 | |
| 			*fragp = frag;
 | |
| 		}
 | |
| 
 | |
| 		if (end < len) {
 | |
| 			offset = end;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (end > len &&
 | |
| 		    unlikely((err = pskb_trim(frag, len - offset))))
 | |
| 			return err;
 | |
| 
 | |
| 		if (frag->next)
 | |
| 			skb_drop_list(&frag->next);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	if (len > skb_headlen(skb)) {
 | |
| 		skb->data_len -= skb->len - len;
 | |
| 		skb->len       = len;
 | |
| 	} else {
 | |
| 		skb->len       = len;
 | |
| 		skb->data_len  = 0;
 | |
| 		skb_set_tail_pointer(skb, len);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(___pskb_trim);
 | |
| 
 | |
| /**
 | |
|  *	__pskb_pull_tail - advance tail of skb header
 | |
|  *	@skb: buffer to reallocate
 | |
|  *	@delta: number of bytes to advance tail
 | |
|  *
 | |
|  *	The function makes a sense only on a fragmented &sk_buff,
 | |
|  *	it expands header moving its tail forward and copying necessary
 | |
|  *	data from fragmented part.
 | |
|  *
 | |
|  *	&sk_buff MUST have reference count of 1.
 | |
|  *
 | |
|  *	Returns %NULL (and &sk_buff does not change) if pull failed
 | |
|  *	or value of new tail of skb in the case of success.
 | |
|  *
 | |
|  *	All the pointers pointing into skb header may change and must be
 | |
|  *	reloaded after call to this function.
 | |
|  */
 | |
| 
 | |
| /* Moves tail of skb head forward, copying data from fragmented part,
 | |
|  * when it is necessary.
 | |
|  * 1. It may fail due to malloc failure.
 | |
|  * 2. It may change skb pointers.
 | |
|  *
 | |
|  * It is pretty complicated. Luckily, it is called only in exceptional cases.
 | |
|  */
 | |
| unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
 | |
| {
 | |
| 	/* If skb has not enough free space at tail, get new one
 | |
| 	 * plus 128 bytes for future expansions. If we have enough
 | |
| 	 * room at tail, reallocate without expansion only if skb is cloned.
 | |
| 	 */
 | |
| 	int i, k, eat = (skb->tail + delta) - skb->end;
 | |
| 
 | |
| 	if (eat > 0 || skb_cloned(skb)) {
 | |
| 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
 | |
| 				     GFP_ATOMIC))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
 | |
| 		BUG();
 | |
| 
 | |
| 	/* Optimization: no fragments, no reasons to preestimate
 | |
| 	 * size of pulled pages. Superb.
 | |
| 	 */
 | |
| 	if (!skb_has_frag_list(skb))
 | |
| 		goto pull_pages;
 | |
| 
 | |
| 	/* Estimate size of pulled pages. */
 | |
| 	eat = delta;
 | |
| 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 | |
| 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
 | |
| 
 | |
| 		if (size >= eat)
 | |
| 			goto pull_pages;
 | |
| 		eat -= size;
 | |
| 	}
 | |
| 
 | |
| 	/* If we need update frag list, we are in troubles.
 | |
| 	 * Certainly, it possible to add an offset to skb data,
 | |
| 	 * but taking into account that pulling is expected to
 | |
| 	 * be very rare operation, it is worth to fight against
 | |
| 	 * further bloating skb head and crucify ourselves here instead.
 | |
| 	 * Pure masohism, indeed. 8)8)
 | |
| 	 */
 | |
| 	if (eat) {
 | |
| 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
 | |
| 		struct sk_buff *clone = NULL;
 | |
| 		struct sk_buff *insp = NULL;
 | |
| 
 | |
| 		do {
 | |
| 			BUG_ON(!list);
 | |
| 
 | |
| 			if (list->len <= eat) {
 | |
| 				/* Eaten as whole. */
 | |
| 				eat -= list->len;
 | |
| 				list = list->next;
 | |
| 				insp = list;
 | |
| 			} else {
 | |
| 				/* Eaten partially. */
 | |
| 
 | |
| 				if (skb_shared(list)) {
 | |
| 					/* Sucks! We need to fork list. :-( */
 | |
| 					clone = skb_clone(list, GFP_ATOMIC);
 | |
| 					if (!clone)
 | |
| 						return NULL;
 | |
| 					insp = list->next;
 | |
| 					list = clone;
 | |
| 				} else {
 | |
| 					/* This may be pulled without
 | |
| 					 * problems. */
 | |
| 					insp = list;
 | |
| 				}
 | |
| 				if (!pskb_pull(list, eat)) {
 | |
| 					kfree_skb(clone);
 | |
| 					return NULL;
 | |
| 				}
 | |
| 				break;
 | |
| 			}
 | |
| 		} while (eat);
 | |
| 
 | |
| 		/* Free pulled out fragments. */
 | |
| 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
 | |
| 			skb_shinfo(skb)->frag_list = list->next;
 | |
| 			kfree_skb(list);
 | |
| 		}
 | |
| 		/* And insert new clone at head. */
 | |
| 		if (clone) {
 | |
| 			clone->next = list;
 | |
| 			skb_shinfo(skb)->frag_list = clone;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Success! Now we may commit changes to skb data. */
 | |
| 
 | |
| pull_pages:
 | |
| 	eat = delta;
 | |
| 	k = 0;
 | |
| 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 | |
| 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
 | |
| 
 | |
| 		if (size <= eat) {
 | |
| 			skb_frag_unref(skb, i);
 | |
| 			eat -= size;
 | |
| 		} else {
 | |
| 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
 | |
| 			if (eat) {
 | |
| 				skb_shinfo(skb)->frags[k].page_offset += eat;
 | |
| 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
 | |
| 				eat = 0;
 | |
| 			}
 | |
| 			k++;
 | |
| 		}
 | |
| 	}
 | |
| 	skb_shinfo(skb)->nr_frags = k;
 | |
| 
 | |
| 	skb->tail     += delta;
 | |
| 	skb->data_len -= delta;
 | |
| 
 | |
| 	return skb_tail_pointer(skb);
 | |
| }
 | |
| EXPORT_SYMBOL(__pskb_pull_tail);
 | |
| 
 | |
| /**
 | |
|  *	skb_copy_bits - copy bits from skb to kernel buffer
 | |
|  *	@skb: source skb
 | |
|  *	@offset: offset in source
 | |
|  *	@to: destination buffer
 | |
|  *	@len: number of bytes to copy
 | |
|  *
 | |
|  *	Copy the specified number of bytes from the source skb to the
 | |
|  *	destination buffer.
 | |
|  *
 | |
|  *	CAUTION ! :
 | |
|  *		If its prototype is ever changed,
 | |
|  *		check arch/{*}/net/{*}.S files,
 | |
|  *		since it is called from BPF assembly code.
 | |
|  */
 | |
| int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
 | |
| {
 | |
| 	int start = skb_headlen(skb);
 | |
| 	struct sk_buff *frag_iter;
 | |
| 	int i, copy;
 | |
| 
 | |
| 	if (offset > (int)skb->len - len)
 | |
| 		goto fault;
 | |
| 
 | |
| 	/* Copy header. */
 | |
| 	if ((copy = start - offset) > 0) {
 | |
| 		if (copy > len)
 | |
| 			copy = len;
 | |
| 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
 | |
| 		if ((len -= copy) == 0)
 | |
| 			return 0;
 | |
| 		offset += copy;
 | |
| 		to     += copy;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 | |
| 		int end;
 | |
| 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 | |
| 
 | |
| 		WARN_ON(start > offset + len);
 | |
| 
 | |
| 		end = start + skb_frag_size(f);
 | |
| 		if ((copy = end - offset) > 0) {
 | |
| 			u8 *vaddr;
 | |
| 
 | |
| 			if (copy > len)
 | |
| 				copy = len;
 | |
| 
 | |
| 			vaddr = kmap_atomic(skb_frag_page(f));
 | |
| 			memcpy(to,
 | |
| 			       vaddr + f->page_offset + offset - start,
 | |
| 			       copy);
 | |
| 			kunmap_atomic(vaddr);
 | |
| 
 | |
| 			if ((len -= copy) == 0)
 | |
| 				return 0;
 | |
| 			offset += copy;
 | |
| 			to     += copy;
 | |
| 		}
 | |
| 		start = end;
 | |
| 	}
 | |
| 
 | |
| 	skb_walk_frags(skb, frag_iter) {
 | |
| 		int end;
 | |
| 
 | |
| 		WARN_ON(start > offset + len);
 | |
| 
 | |
| 		end = start + frag_iter->len;
 | |
| 		if ((copy = end - offset) > 0) {
 | |
| 			if (copy > len)
 | |
| 				copy = len;
 | |
| 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
 | |
| 				goto fault;
 | |
| 			if ((len -= copy) == 0)
 | |
| 				return 0;
 | |
| 			offset += copy;
 | |
| 			to     += copy;
 | |
| 		}
 | |
| 		start = end;
 | |
| 	}
 | |
| 
 | |
| 	if (!len)
 | |
| 		return 0;
 | |
| 
 | |
| fault:
 | |
| 	return -EFAULT;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_copy_bits);
 | |
| 
 | |
| /*
 | |
|  * Callback from splice_to_pipe(), if we need to release some pages
 | |
|  * at the end of the spd in case we error'ed out in filling the pipe.
 | |
|  */
 | |
| static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
 | |
| {
 | |
| 	put_page(spd->pages[i]);
 | |
| }
 | |
| 
 | |
| static struct page *linear_to_page(struct page *page, unsigned int *len,
 | |
| 				   unsigned int *offset,
 | |
| 				   struct sock *sk)
 | |
| {
 | |
| 	struct page_frag *pfrag = sk_page_frag(sk);
 | |
| 
 | |
| 	if (!sk_page_frag_refill(sk, pfrag))
 | |
| 		return NULL;
 | |
| 
 | |
| 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
 | |
| 
 | |
| 	memcpy(page_address(pfrag->page) + pfrag->offset,
 | |
| 	       page_address(page) + *offset, *len);
 | |
| 	*offset = pfrag->offset;
 | |
| 	pfrag->offset += *len;
 | |
| 
 | |
| 	return pfrag->page;
 | |
| }
 | |
| 
 | |
| static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
 | |
| 			     struct page *page,
 | |
| 			     unsigned int offset)
 | |
| {
 | |
| 	return	spd->nr_pages &&
 | |
| 		spd->pages[spd->nr_pages - 1] == page &&
 | |
| 		(spd->partial[spd->nr_pages - 1].offset +
 | |
| 		 spd->partial[spd->nr_pages - 1].len == offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fill page/offset/length into spd, if it can hold more pages.
 | |
|  */
 | |
| static bool spd_fill_page(struct splice_pipe_desc *spd,
 | |
| 			  struct pipe_inode_info *pipe, struct page *page,
 | |
| 			  unsigned int *len, unsigned int offset,
 | |
| 			  bool linear,
 | |
| 			  struct sock *sk)
 | |
| {
 | |
| 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
 | |
| 		return true;
 | |
| 
 | |
| 	if (linear) {
 | |
| 		page = linear_to_page(page, len, &offset, sk);
 | |
| 		if (!page)
 | |
| 			return true;
 | |
| 	}
 | |
| 	if (spd_can_coalesce(spd, page, offset)) {
 | |
| 		spd->partial[spd->nr_pages - 1].len += *len;
 | |
| 		return false;
 | |
| 	}
 | |
| 	get_page(page);
 | |
| 	spd->pages[spd->nr_pages] = page;
 | |
| 	spd->partial[spd->nr_pages].len = *len;
 | |
| 	spd->partial[spd->nr_pages].offset = offset;
 | |
| 	spd->nr_pages++;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool __splice_segment(struct page *page, unsigned int poff,
 | |
| 			     unsigned int plen, unsigned int *off,
 | |
| 			     unsigned int *len,
 | |
| 			     struct splice_pipe_desc *spd, bool linear,
 | |
| 			     struct sock *sk,
 | |
| 			     struct pipe_inode_info *pipe)
 | |
| {
 | |
| 	if (!*len)
 | |
| 		return true;
 | |
| 
 | |
| 	/* skip this segment if already processed */
 | |
| 	if (*off >= plen) {
 | |
| 		*off -= plen;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* ignore any bits we already processed */
 | |
| 	poff += *off;
 | |
| 	plen -= *off;
 | |
| 	*off = 0;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned int flen = min(*len, plen);
 | |
| 
 | |
| 		if (spd_fill_page(spd, pipe, page, &flen, poff,
 | |
| 				  linear, sk))
 | |
| 			return true;
 | |
| 		poff += flen;
 | |
| 		plen -= flen;
 | |
| 		*len -= flen;
 | |
| 	} while (*len && plen);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Map linear and fragment data from the skb to spd. It reports true if the
 | |
|  * pipe is full or if we already spliced the requested length.
 | |
|  */
 | |
| static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
 | |
| 			      unsigned int *offset, unsigned int *len,
 | |
| 			      struct splice_pipe_desc *spd, struct sock *sk)
 | |
| {
 | |
| 	int seg;
 | |
| 
 | |
| 	/* map the linear part :
 | |
| 	 * If skb->head_frag is set, this 'linear' part is backed by a
 | |
| 	 * fragment, and if the head is not shared with any clones then
 | |
| 	 * we can avoid a copy since we own the head portion of this page.
 | |
| 	 */
 | |
| 	if (__splice_segment(virt_to_page(skb->data),
 | |
| 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
 | |
| 			     skb_headlen(skb),
 | |
| 			     offset, len, spd,
 | |
| 			     skb_head_is_locked(skb),
 | |
| 			     sk, pipe))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * then map the fragments
 | |
| 	 */
 | |
| 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
 | |
| 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
 | |
| 
 | |
| 		if (__splice_segment(skb_frag_page(f),
 | |
| 				     f->page_offset, skb_frag_size(f),
 | |
| 				     offset, len, spd, false, sk, pipe))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| ssize_t skb_socket_splice(struct sock *sk,
 | |
| 			  struct pipe_inode_info *pipe,
 | |
| 			  struct splice_pipe_desc *spd)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Drop the socket lock, otherwise we have reverse
 | |
| 	 * locking dependencies between sk_lock and i_mutex
 | |
| 	 * here as compared to sendfile(). We enter here
 | |
| 	 * with the socket lock held, and splice_to_pipe() will
 | |
| 	 * grab the pipe inode lock. For sendfile() emulation,
 | |
| 	 * we call into ->sendpage() with the i_mutex lock held
 | |
| 	 * and networking will grab the socket lock.
 | |
| 	 */
 | |
| 	release_sock(sk);
 | |
| 	ret = splice_to_pipe(pipe, spd);
 | |
| 	lock_sock(sk);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Map data from the skb to a pipe. Should handle both the linear part,
 | |
|  * the fragments, and the frag list. It does NOT handle frag lists within
 | |
|  * the frag list, if such a thing exists. We'd probably need to recurse to
 | |
|  * handle that cleanly.
 | |
|  */
 | |
| int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
 | |
| 		    struct pipe_inode_info *pipe, unsigned int tlen,
 | |
| 		    unsigned int flags,
 | |
| 		    ssize_t (*splice_cb)(struct sock *,
 | |
| 					 struct pipe_inode_info *,
 | |
| 					 struct splice_pipe_desc *))
 | |
| {
 | |
| 	struct partial_page partial[MAX_SKB_FRAGS];
 | |
| 	struct page *pages[MAX_SKB_FRAGS];
 | |
| 	struct splice_pipe_desc spd = {
 | |
| 		.pages = pages,
 | |
| 		.partial = partial,
 | |
| 		.nr_pages_max = MAX_SKB_FRAGS,
 | |
| 		.flags = flags,
 | |
| 		.ops = &nosteal_pipe_buf_ops,
 | |
| 		.spd_release = sock_spd_release,
 | |
| 	};
 | |
| 	struct sk_buff *frag_iter;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * __skb_splice_bits() only fails if the output has no room left,
 | |
| 	 * so no point in going over the frag_list for the error case.
 | |
| 	 */
 | |
| 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
 | |
| 		goto done;
 | |
| 	else if (!tlen)
 | |
| 		goto done;
 | |
| 
 | |
| 	/*
 | |
| 	 * now see if we have a frag_list to map
 | |
| 	 */
 | |
| 	skb_walk_frags(skb, frag_iter) {
 | |
| 		if (!tlen)
 | |
| 			break;
 | |
| 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	if (spd.nr_pages)
 | |
| 		ret = splice_cb(sk, pipe, &spd);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_splice_bits);
 | |
| 
 | |
| /**
 | |
|  *	skb_store_bits - store bits from kernel buffer to skb
 | |
|  *	@skb: destination buffer
 | |
|  *	@offset: offset in destination
 | |
|  *	@from: source buffer
 | |
|  *	@len: number of bytes to copy
 | |
|  *
 | |
|  *	Copy the specified number of bytes from the source buffer to the
 | |
|  *	destination skb.  This function handles all the messy bits of
 | |
|  *	traversing fragment lists and such.
 | |
|  */
 | |
| 
 | |
| int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
 | |
| {
 | |
| 	int start = skb_headlen(skb);
 | |
| 	struct sk_buff *frag_iter;
 | |
| 	int i, copy;
 | |
| 
 | |
| 	if (offset > (int)skb->len - len)
 | |
| 		goto fault;
 | |
| 
 | |
| 	if ((copy = start - offset) > 0) {
 | |
| 		if (copy > len)
 | |
| 			copy = len;
 | |
| 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
 | |
| 		if ((len -= copy) == 0)
 | |
| 			return 0;
 | |
| 		offset += copy;
 | |
| 		from += copy;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 | |
| 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 | |
| 		int end;
 | |
| 
 | |
| 		WARN_ON(start > offset + len);
 | |
| 
 | |
| 		end = start + skb_frag_size(frag);
 | |
| 		if ((copy = end - offset) > 0) {
 | |
| 			u8 *vaddr;
 | |
| 
 | |
| 			if (copy > len)
 | |
| 				copy = len;
 | |
| 
 | |
| 			vaddr = kmap_atomic(skb_frag_page(frag));
 | |
| 			memcpy(vaddr + frag->page_offset + offset - start,
 | |
| 			       from, copy);
 | |
| 			kunmap_atomic(vaddr);
 | |
| 
 | |
| 			if ((len -= copy) == 0)
 | |
| 				return 0;
 | |
| 			offset += copy;
 | |
| 			from += copy;
 | |
| 		}
 | |
| 		start = end;
 | |
| 	}
 | |
| 
 | |
| 	skb_walk_frags(skb, frag_iter) {
 | |
| 		int end;
 | |
| 
 | |
| 		WARN_ON(start > offset + len);
 | |
| 
 | |
| 		end = start + frag_iter->len;
 | |
| 		if ((copy = end - offset) > 0) {
 | |
| 			if (copy > len)
 | |
| 				copy = len;
 | |
| 			if (skb_store_bits(frag_iter, offset - start,
 | |
| 					   from, copy))
 | |
| 				goto fault;
 | |
| 			if ((len -= copy) == 0)
 | |
| 				return 0;
 | |
| 			offset += copy;
 | |
| 			from += copy;
 | |
| 		}
 | |
| 		start = end;
 | |
| 	}
 | |
| 	if (!len)
 | |
| 		return 0;
 | |
| 
 | |
| fault:
 | |
| 	return -EFAULT;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_store_bits);
 | |
| 
 | |
| /* Checksum skb data. */
 | |
| __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
 | |
| 		      __wsum csum, const struct skb_checksum_ops *ops)
 | |
| {
 | |
| 	int start = skb_headlen(skb);
 | |
| 	int i, copy = start - offset;
 | |
| 	struct sk_buff *frag_iter;
 | |
| 	int pos = 0;
 | |
| 
 | |
| 	/* Checksum header. */
 | |
| 	if (copy > 0) {
 | |
| 		if (copy > len)
 | |
| 			copy = len;
 | |
| 		csum = ops->update(skb->data + offset, copy, csum);
 | |
| 		if ((len -= copy) == 0)
 | |
| 			return csum;
 | |
| 		offset += copy;
 | |
| 		pos	= copy;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 | |
| 		int end;
 | |
| 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 | |
| 
 | |
| 		WARN_ON(start > offset + len);
 | |
| 
 | |
| 		end = start + skb_frag_size(frag);
 | |
| 		if ((copy = end - offset) > 0) {
 | |
| 			__wsum csum2;
 | |
| 			u8 *vaddr;
 | |
| 
 | |
| 			if (copy > len)
 | |
| 				copy = len;
 | |
| 			vaddr = kmap_atomic(skb_frag_page(frag));
 | |
| 			csum2 = ops->update(vaddr + frag->page_offset +
 | |
| 					    offset - start, copy, 0);
 | |
| 			kunmap_atomic(vaddr);
 | |
| 			csum = ops->combine(csum, csum2, pos, copy);
 | |
| 			if (!(len -= copy))
 | |
| 				return csum;
 | |
| 			offset += copy;
 | |
| 			pos    += copy;
 | |
| 		}
 | |
| 		start = end;
 | |
| 	}
 | |
| 
 | |
| 	skb_walk_frags(skb, frag_iter) {
 | |
| 		int end;
 | |
| 
 | |
| 		WARN_ON(start > offset + len);
 | |
| 
 | |
| 		end = start + frag_iter->len;
 | |
| 		if ((copy = end - offset) > 0) {
 | |
| 			__wsum csum2;
 | |
| 			if (copy > len)
 | |
| 				copy = len;
 | |
| 			csum2 = __skb_checksum(frag_iter, offset - start,
 | |
| 					       copy, 0, ops);
 | |
| 			csum = ops->combine(csum, csum2, pos, copy);
 | |
| 			if ((len -= copy) == 0)
 | |
| 				return csum;
 | |
| 			offset += copy;
 | |
| 			pos    += copy;
 | |
| 		}
 | |
| 		start = end;
 | |
| 	}
 | |
| 	BUG_ON(len);
 | |
| 
 | |
| 	return csum;
 | |
| }
 | |
| EXPORT_SYMBOL(__skb_checksum);
 | |
| 
 | |
| __wsum skb_checksum(const struct sk_buff *skb, int offset,
 | |
| 		    int len, __wsum csum)
 | |
| {
 | |
| 	const struct skb_checksum_ops ops = {
 | |
| 		.update  = csum_partial_ext,
 | |
| 		.combine = csum_block_add_ext,
 | |
| 	};
 | |
| 
 | |
| 	return __skb_checksum(skb, offset, len, csum, &ops);
 | |
| }
 | |
| EXPORT_SYMBOL(skb_checksum);
 | |
| 
 | |
| /* Both of above in one bottle. */
 | |
| 
 | |
| __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
 | |
| 				    u8 *to, int len, __wsum csum)
 | |
| {
 | |
| 	int start = skb_headlen(skb);
 | |
| 	int i, copy = start - offset;
 | |
| 	struct sk_buff *frag_iter;
 | |
| 	int pos = 0;
 | |
| 
 | |
| 	/* Copy header. */
 | |
| 	if (copy > 0) {
 | |
| 		if (copy > len)
 | |
| 			copy = len;
 | |
| 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
 | |
| 						 copy, csum);
 | |
| 		if ((len -= copy) == 0)
 | |
| 			return csum;
 | |
| 		offset += copy;
 | |
| 		to     += copy;
 | |
| 		pos	= copy;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 | |
| 		int end;
 | |
| 
 | |
| 		WARN_ON(start > offset + len);
 | |
| 
 | |
| 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
 | |
| 		if ((copy = end - offset) > 0) {
 | |
| 			__wsum csum2;
 | |
| 			u8 *vaddr;
 | |
| 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 | |
| 
 | |
| 			if (copy > len)
 | |
| 				copy = len;
 | |
| 			vaddr = kmap_atomic(skb_frag_page(frag));
 | |
| 			csum2 = csum_partial_copy_nocheck(vaddr +
 | |
| 							  frag->page_offset +
 | |
| 							  offset - start, to,
 | |
| 							  copy, 0);
 | |
| 			kunmap_atomic(vaddr);
 | |
| 			csum = csum_block_add(csum, csum2, pos);
 | |
| 			if (!(len -= copy))
 | |
| 				return csum;
 | |
| 			offset += copy;
 | |
| 			to     += copy;
 | |
| 			pos    += copy;
 | |
| 		}
 | |
| 		start = end;
 | |
| 	}
 | |
| 
 | |
| 	skb_walk_frags(skb, frag_iter) {
 | |
| 		__wsum csum2;
 | |
| 		int end;
 | |
| 
 | |
| 		WARN_ON(start > offset + len);
 | |
| 
 | |
| 		end = start + frag_iter->len;
 | |
| 		if ((copy = end - offset) > 0) {
 | |
| 			if (copy > len)
 | |
| 				copy = len;
 | |
| 			csum2 = skb_copy_and_csum_bits(frag_iter,
 | |
| 						       offset - start,
 | |
| 						       to, copy, 0);
 | |
| 			csum = csum_block_add(csum, csum2, pos);
 | |
| 			if ((len -= copy) == 0)
 | |
| 				return csum;
 | |
| 			offset += copy;
 | |
| 			to     += copy;
 | |
| 			pos    += copy;
 | |
| 		}
 | |
| 		start = end;
 | |
| 	}
 | |
| 	BUG_ON(len);
 | |
| 	return csum;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_copy_and_csum_bits);
 | |
| 
 | |
|  /**
 | |
|  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
 | |
|  *	@from: source buffer
 | |
|  *
 | |
|  *	Calculates the amount of linear headroom needed in the 'to' skb passed
 | |
|  *	into skb_zerocopy().
 | |
|  */
 | |
| unsigned int
 | |
| skb_zerocopy_headlen(const struct sk_buff *from)
 | |
| {
 | |
| 	unsigned int hlen = 0;
 | |
| 
 | |
| 	if (!from->head_frag ||
 | |
| 	    skb_headlen(from) < L1_CACHE_BYTES ||
 | |
| 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
 | |
| 		hlen = skb_headlen(from);
 | |
| 
 | |
| 	if (skb_has_frag_list(from))
 | |
| 		hlen = from->len;
 | |
| 
 | |
| 	return hlen;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
 | |
| 
 | |
| /**
 | |
|  *	skb_zerocopy - Zero copy skb to skb
 | |
|  *	@to: destination buffer
 | |
|  *	@from: source buffer
 | |
|  *	@len: number of bytes to copy from source buffer
 | |
|  *	@hlen: size of linear headroom in destination buffer
 | |
|  *
 | |
|  *	Copies up to `len` bytes from `from` to `to` by creating references
 | |
|  *	to the frags in the source buffer.
 | |
|  *
 | |
|  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
 | |
|  *	headroom in the `to` buffer.
 | |
|  *
 | |
|  *	Return value:
 | |
|  *	0: everything is OK
 | |
|  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
 | |
|  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
 | |
|  */
 | |
| int
 | |
| skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
 | |
| {
 | |
| 	int i, j = 0;
 | |
| 	int plen = 0; /* length of skb->head fragment */
 | |
| 	int ret;
 | |
| 	struct page *page;
 | |
| 	unsigned int offset;
 | |
| 
 | |
| 	BUG_ON(!from->head_frag && !hlen);
 | |
| 
 | |
| 	/* dont bother with small payloads */
 | |
| 	if (len <= skb_tailroom(to))
 | |
| 		return skb_copy_bits(from, 0, skb_put(to, len), len);
 | |
| 
 | |
| 	if (hlen) {
 | |
| 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
 | |
| 		if (unlikely(ret))
 | |
| 			return ret;
 | |
| 		len -= hlen;
 | |
| 	} else {
 | |
| 		plen = min_t(int, skb_headlen(from), len);
 | |
| 		if (plen) {
 | |
| 			page = virt_to_head_page(from->head);
 | |
| 			offset = from->data - (unsigned char *)page_address(page);
 | |
| 			__skb_fill_page_desc(to, 0, page, offset, plen);
 | |
| 			get_page(page);
 | |
| 			j = 1;
 | |
| 			len -= plen;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	to->truesize += len + plen;
 | |
| 	to->len += len + plen;
 | |
| 	to->data_len += len + plen;
 | |
| 
 | |
| 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
 | |
| 		skb_tx_error(from);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
 | |
| 		if (!len)
 | |
| 			break;
 | |
| 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
 | |
| 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
 | |
| 		len -= skb_shinfo(to)->frags[j].size;
 | |
| 		skb_frag_ref(to, j);
 | |
| 		j++;
 | |
| 	}
 | |
| 	skb_shinfo(to)->nr_frags = j;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_zerocopy);
 | |
| 
 | |
| void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
 | |
| {
 | |
| 	__wsum csum;
 | |
| 	long csstart;
 | |
| 
 | |
| 	if (skb->ip_summed == CHECKSUM_PARTIAL)
 | |
| 		csstart = skb_checksum_start_offset(skb);
 | |
| 	else
 | |
| 		csstart = skb_headlen(skb);
 | |
| 
 | |
| 	BUG_ON(csstart > skb_headlen(skb));
 | |
| 
 | |
| 	skb_copy_from_linear_data(skb, to, csstart);
 | |
| 
 | |
| 	csum = 0;
 | |
| 	if (csstart != skb->len)
 | |
| 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
 | |
| 					      skb->len - csstart, 0);
 | |
| 
 | |
| 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 | |
| 		long csstuff = csstart + skb->csum_offset;
 | |
| 
 | |
| 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(skb_copy_and_csum_dev);
 | |
| 
 | |
| /**
 | |
|  *	skb_dequeue - remove from the head of the queue
 | |
|  *	@list: list to dequeue from
 | |
|  *
 | |
|  *	Remove the head of the list. The list lock is taken so the function
 | |
|  *	may be used safely with other locking list functions. The head item is
 | |
|  *	returned or %NULL if the list is empty.
 | |
|  */
 | |
| 
 | |
| struct sk_buff *skb_dequeue(struct sk_buff_head *list)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct sk_buff *result;
 | |
| 
 | |
| 	spin_lock_irqsave(&list->lock, flags);
 | |
| 	result = __skb_dequeue(list);
 | |
| 	spin_unlock_irqrestore(&list->lock, flags);
 | |
| 	return result;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_dequeue);
 | |
| 
 | |
| /**
 | |
|  *	skb_dequeue_tail - remove from the tail of the queue
 | |
|  *	@list: list to dequeue from
 | |
|  *
 | |
|  *	Remove the tail of the list. The list lock is taken so the function
 | |
|  *	may be used safely with other locking list functions. The tail item is
 | |
|  *	returned or %NULL if the list is empty.
 | |
|  */
 | |
| struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct sk_buff *result;
 | |
| 
 | |
| 	spin_lock_irqsave(&list->lock, flags);
 | |
| 	result = __skb_dequeue_tail(list);
 | |
| 	spin_unlock_irqrestore(&list->lock, flags);
 | |
| 	return result;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_dequeue_tail);
 | |
| 
 | |
| /**
 | |
|  *	skb_queue_purge - empty a list
 | |
|  *	@list: list to empty
 | |
|  *
 | |
|  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
 | |
|  *	the list and one reference dropped. This function takes the list
 | |
|  *	lock and is atomic with respect to other list locking functions.
 | |
|  */
 | |
| void skb_queue_purge(struct sk_buff_head *list)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	while ((skb = skb_dequeue(list)) != NULL)
 | |
| 		kfree_skb(skb);
 | |
| }
 | |
| EXPORT_SYMBOL(skb_queue_purge);
 | |
| 
 | |
| /**
 | |
|  *	skb_queue_head - queue a buffer at the list head
 | |
|  *	@list: list to use
 | |
|  *	@newsk: buffer to queue
 | |
|  *
 | |
|  *	Queue a buffer at the start of the list. This function takes the
 | |
|  *	list lock and can be used safely with other locking &sk_buff functions
 | |
|  *	safely.
 | |
|  *
 | |
|  *	A buffer cannot be placed on two lists at the same time.
 | |
|  */
 | |
| void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&list->lock, flags);
 | |
| 	__skb_queue_head(list, newsk);
 | |
| 	spin_unlock_irqrestore(&list->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(skb_queue_head);
 | |
| 
 | |
| /**
 | |
|  *	skb_queue_tail - queue a buffer at the list tail
 | |
|  *	@list: list to use
 | |
|  *	@newsk: buffer to queue
 | |
|  *
 | |
|  *	Queue a buffer at the tail of the list. This function takes the
 | |
|  *	list lock and can be used safely with other locking &sk_buff functions
 | |
|  *	safely.
 | |
|  *
 | |
|  *	A buffer cannot be placed on two lists at the same time.
 | |
|  */
 | |
| void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&list->lock, flags);
 | |
| 	__skb_queue_tail(list, newsk);
 | |
| 	spin_unlock_irqrestore(&list->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(skb_queue_tail);
 | |
| 
 | |
| /**
 | |
|  *	skb_unlink	-	remove a buffer from a list
 | |
|  *	@skb: buffer to remove
 | |
|  *	@list: list to use
 | |
|  *
 | |
|  *	Remove a packet from a list. The list locks are taken and this
 | |
|  *	function is atomic with respect to other list locked calls
 | |
|  *
 | |
|  *	You must know what list the SKB is on.
 | |
|  */
 | |
| void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&list->lock, flags);
 | |
| 	__skb_unlink(skb, list);
 | |
| 	spin_unlock_irqrestore(&list->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(skb_unlink);
 | |
| 
 | |
| /**
 | |
|  *	skb_append	-	append a buffer
 | |
|  *	@old: buffer to insert after
 | |
|  *	@newsk: buffer to insert
 | |
|  *	@list: list to use
 | |
|  *
 | |
|  *	Place a packet after a given packet in a list. The list locks are taken
 | |
|  *	and this function is atomic with respect to other list locked calls.
 | |
|  *	A buffer cannot be placed on two lists at the same time.
 | |
|  */
 | |
| void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&list->lock, flags);
 | |
| 	__skb_queue_after(list, old, newsk);
 | |
| 	spin_unlock_irqrestore(&list->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(skb_append);
 | |
| 
 | |
| /**
 | |
|  *	skb_insert	-	insert a buffer
 | |
|  *	@old: buffer to insert before
 | |
|  *	@newsk: buffer to insert
 | |
|  *	@list: list to use
 | |
|  *
 | |
|  *	Place a packet before a given packet in a list. The list locks are
 | |
|  * 	taken and this function is atomic with respect to other list locked
 | |
|  *	calls.
 | |
|  *
 | |
|  *	A buffer cannot be placed on two lists at the same time.
 | |
|  */
 | |
| void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&list->lock, flags);
 | |
| 	__skb_insert(newsk, old->prev, old, list);
 | |
| 	spin_unlock_irqrestore(&list->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(skb_insert);
 | |
| 
 | |
| static inline void skb_split_inside_header(struct sk_buff *skb,
 | |
| 					   struct sk_buff* skb1,
 | |
| 					   const u32 len, const int pos)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
 | |
| 					 pos - len);
 | |
| 	/* And move data appendix as is. */
 | |
| 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
 | |
| 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
 | |
| 
 | |
| 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
 | |
| 	skb_shinfo(skb)->nr_frags  = 0;
 | |
| 	skb1->data_len		   = skb->data_len;
 | |
| 	skb1->len		   += skb1->data_len;
 | |
| 	skb->data_len		   = 0;
 | |
| 	skb->len		   = len;
 | |
| 	skb_set_tail_pointer(skb, len);
 | |
| }
 | |
| 
 | |
| static inline void skb_split_no_header(struct sk_buff *skb,
 | |
| 				       struct sk_buff* skb1,
 | |
| 				       const u32 len, int pos)
 | |
| {
 | |
| 	int i, k = 0;
 | |
| 	const int nfrags = skb_shinfo(skb)->nr_frags;
 | |
| 
 | |
| 	skb_shinfo(skb)->nr_frags = 0;
 | |
| 	skb1->len		  = skb1->data_len = skb->len - len;
 | |
| 	skb->len		  = len;
 | |
| 	skb->data_len		  = len - pos;
 | |
| 
 | |
| 	for (i = 0; i < nfrags; i++) {
 | |
| 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
 | |
| 
 | |
| 		if (pos + size > len) {
 | |
| 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
 | |
| 
 | |
| 			if (pos < len) {
 | |
| 				/* Split frag.
 | |
| 				 * We have two variants in this case:
 | |
| 				 * 1. Move all the frag to the second
 | |
| 				 *    part, if it is possible. F.e.
 | |
| 				 *    this approach is mandatory for TUX,
 | |
| 				 *    where splitting is expensive.
 | |
| 				 * 2. Split is accurately. We make this.
 | |
| 				 */
 | |
| 				skb_frag_ref(skb, i);
 | |
| 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
 | |
| 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
 | |
| 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
 | |
| 				skb_shinfo(skb)->nr_frags++;
 | |
| 			}
 | |
| 			k++;
 | |
| 		} else
 | |
| 			skb_shinfo(skb)->nr_frags++;
 | |
| 		pos += size;
 | |
| 	}
 | |
| 	skb_shinfo(skb1)->nr_frags = k;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * skb_split - Split fragmented skb to two parts at length len.
 | |
|  * @skb: the buffer to split
 | |
|  * @skb1: the buffer to receive the second part
 | |
|  * @len: new length for skb
 | |
|  */
 | |
| void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
 | |
| {
 | |
| 	int pos = skb_headlen(skb);
 | |
| 
 | |
| 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
 | |
| 	if (len < pos)	/* Split line is inside header. */
 | |
| 		skb_split_inside_header(skb, skb1, len, pos);
 | |
| 	else		/* Second chunk has no header, nothing to copy. */
 | |
| 		skb_split_no_header(skb, skb1, len, pos);
 | |
| }
 | |
| EXPORT_SYMBOL(skb_split);
 | |
| 
 | |
| /* Shifting from/to a cloned skb is a no-go.
 | |
|  *
 | |
|  * Caller cannot keep skb_shinfo related pointers past calling here!
 | |
|  */
 | |
| static int skb_prepare_for_shift(struct sk_buff *skb)
 | |
| {
 | |
| 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * skb_shift - Shifts paged data partially from skb to another
 | |
|  * @tgt: buffer into which tail data gets added
 | |
|  * @skb: buffer from which the paged data comes from
 | |
|  * @shiftlen: shift up to this many bytes
 | |
|  *
 | |
|  * Attempts to shift up to shiftlen worth of bytes, which may be less than
 | |
|  * the length of the skb, from skb to tgt. Returns number bytes shifted.
 | |
|  * It's up to caller to free skb if everything was shifted.
 | |
|  *
 | |
|  * If @tgt runs out of frags, the whole operation is aborted.
 | |
|  *
 | |
|  * Skb cannot include anything else but paged data while tgt is allowed
 | |
|  * to have non-paged data as well.
 | |
|  *
 | |
|  * TODO: full sized shift could be optimized but that would need
 | |
|  * specialized skb free'er to handle frags without up-to-date nr_frags.
 | |
|  */
 | |
| int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
 | |
| {
 | |
| 	int from, to, merge, todo;
 | |
| 	struct skb_frag_struct *fragfrom, *fragto;
 | |
| 
 | |
| 	BUG_ON(shiftlen > skb->len);
 | |
| 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
 | |
| 
 | |
| 	todo = shiftlen;
 | |
| 	from = 0;
 | |
| 	to = skb_shinfo(tgt)->nr_frags;
 | |
| 	fragfrom = &skb_shinfo(skb)->frags[from];
 | |
| 
 | |
| 	/* Actual merge is delayed until the point when we know we can
 | |
| 	 * commit all, so that we don't have to undo partial changes
 | |
| 	 */
 | |
| 	if (!to ||
 | |
| 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
 | |
| 			      fragfrom->page_offset)) {
 | |
| 		merge = -1;
 | |
| 	} else {
 | |
| 		merge = to - 1;
 | |
| 
 | |
| 		todo -= skb_frag_size(fragfrom);
 | |
| 		if (todo < 0) {
 | |
| 			if (skb_prepare_for_shift(skb) ||
 | |
| 			    skb_prepare_for_shift(tgt))
 | |
| 				return 0;
 | |
| 
 | |
| 			/* All previous frag pointers might be stale! */
 | |
| 			fragfrom = &skb_shinfo(skb)->frags[from];
 | |
| 			fragto = &skb_shinfo(tgt)->frags[merge];
 | |
| 
 | |
| 			skb_frag_size_add(fragto, shiftlen);
 | |
| 			skb_frag_size_sub(fragfrom, shiftlen);
 | |
| 			fragfrom->page_offset += shiftlen;
 | |
| 
 | |
| 			goto onlymerged;
 | |
| 		}
 | |
| 
 | |
| 		from++;
 | |
| 	}
 | |
| 
 | |
| 	/* Skip full, not-fitting skb to avoid expensive operations */
 | |
| 	if ((shiftlen == skb->len) &&
 | |
| 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
 | |
| 		return 0;
 | |
| 
 | |
| 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
 | |
| 		if (to == MAX_SKB_FRAGS)
 | |
| 			return 0;
 | |
| 
 | |
| 		fragfrom = &skb_shinfo(skb)->frags[from];
 | |
| 		fragto = &skb_shinfo(tgt)->frags[to];
 | |
| 
 | |
| 		if (todo >= skb_frag_size(fragfrom)) {
 | |
| 			*fragto = *fragfrom;
 | |
| 			todo -= skb_frag_size(fragfrom);
 | |
| 			from++;
 | |
| 			to++;
 | |
| 
 | |
| 		} else {
 | |
| 			__skb_frag_ref(fragfrom);
 | |
| 			fragto->page = fragfrom->page;
 | |
| 			fragto->page_offset = fragfrom->page_offset;
 | |
| 			skb_frag_size_set(fragto, todo);
 | |
| 
 | |
| 			fragfrom->page_offset += todo;
 | |
| 			skb_frag_size_sub(fragfrom, todo);
 | |
| 			todo = 0;
 | |
| 
 | |
| 			to++;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Ready to "commit" this state change to tgt */
 | |
| 	skb_shinfo(tgt)->nr_frags = to;
 | |
| 
 | |
| 	if (merge >= 0) {
 | |
| 		fragfrom = &skb_shinfo(skb)->frags[0];
 | |
| 		fragto = &skb_shinfo(tgt)->frags[merge];
 | |
| 
 | |
| 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
 | |
| 		__skb_frag_unref(fragfrom);
 | |
| 	}
 | |
| 
 | |
| 	/* Reposition in the original skb */
 | |
| 	to = 0;
 | |
| 	while (from < skb_shinfo(skb)->nr_frags)
 | |
| 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
 | |
| 	skb_shinfo(skb)->nr_frags = to;
 | |
| 
 | |
| 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
 | |
| 
 | |
| onlymerged:
 | |
| 	/* Most likely the tgt won't ever need its checksum anymore, skb on
 | |
| 	 * the other hand might need it if it needs to be resent
 | |
| 	 */
 | |
| 	tgt->ip_summed = CHECKSUM_PARTIAL;
 | |
| 	skb->ip_summed = CHECKSUM_PARTIAL;
 | |
| 
 | |
| 	/* Yak, is it really working this way? Some helper please? */
 | |
| 	skb->len -= shiftlen;
 | |
| 	skb->data_len -= shiftlen;
 | |
| 	skb->truesize -= shiftlen;
 | |
| 	tgt->len += shiftlen;
 | |
| 	tgt->data_len += shiftlen;
 | |
| 	tgt->truesize += shiftlen;
 | |
| 
 | |
| 	return shiftlen;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * skb_prepare_seq_read - Prepare a sequential read of skb data
 | |
|  * @skb: the buffer to read
 | |
|  * @from: lower offset of data to be read
 | |
|  * @to: upper offset of data to be read
 | |
|  * @st: state variable
 | |
|  *
 | |
|  * Initializes the specified state variable. Must be called before
 | |
|  * invoking skb_seq_read() for the first time.
 | |
|  */
 | |
| void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
 | |
| 			  unsigned int to, struct skb_seq_state *st)
 | |
| {
 | |
| 	st->lower_offset = from;
 | |
| 	st->upper_offset = to;
 | |
| 	st->root_skb = st->cur_skb = skb;
 | |
| 	st->frag_idx = st->stepped_offset = 0;
 | |
| 	st->frag_data = NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_prepare_seq_read);
 | |
| 
 | |
| /**
 | |
|  * skb_seq_read - Sequentially read skb data
 | |
|  * @consumed: number of bytes consumed by the caller so far
 | |
|  * @data: destination pointer for data to be returned
 | |
|  * @st: state variable
 | |
|  *
 | |
|  * Reads a block of skb data at @consumed relative to the
 | |
|  * lower offset specified to skb_prepare_seq_read(). Assigns
 | |
|  * the head of the data block to @data and returns the length
 | |
|  * of the block or 0 if the end of the skb data or the upper
 | |
|  * offset has been reached.
 | |
|  *
 | |
|  * The caller is not required to consume all of the data
 | |
|  * returned, i.e. @consumed is typically set to the number
 | |
|  * of bytes already consumed and the next call to
 | |
|  * skb_seq_read() will return the remaining part of the block.
 | |
|  *
 | |
|  * Note 1: The size of each block of data returned can be arbitrary,
 | |
|  *       this limitation is the cost for zerocopy sequential
 | |
|  *       reads of potentially non linear data.
 | |
|  *
 | |
|  * Note 2: Fragment lists within fragments are not implemented
 | |
|  *       at the moment, state->root_skb could be replaced with
 | |
|  *       a stack for this purpose.
 | |
|  */
 | |
| unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
 | |
| 			  struct skb_seq_state *st)
 | |
| {
 | |
| 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
 | |
| 	skb_frag_t *frag;
 | |
| 
 | |
| 	if (unlikely(abs_offset >= st->upper_offset)) {
 | |
| 		if (st->frag_data) {
 | |
| 			kunmap_atomic(st->frag_data);
 | |
| 			st->frag_data = NULL;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| next_skb:
 | |
| 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
 | |
| 
 | |
| 	if (abs_offset < block_limit && !st->frag_data) {
 | |
| 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
 | |
| 		return block_limit - abs_offset;
 | |
| 	}
 | |
| 
 | |
| 	if (st->frag_idx == 0 && !st->frag_data)
 | |
| 		st->stepped_offset += skb_headlen(st->cur_skb);
 | |
| 
 | |
| 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
 | |
| 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
 | |
| 		block_limit = skb_frag_size(frag) + st->stepped_offset;
 | |
| 
 | |
| 		if (abs_offset < block_limit) {
 | |
| 			if (!st->frag_data)
 | |
| 				st->frag_data = kmap_atomic(skb_frag_page(frag));
 | |
| 
 | |
| 			*data = (u8 *) st->frag_data + frag->page_offset +
 | |
| 				(abs_offset - st->stepped_offset);
 | |
| 
 | |
| 			return block_limit - abs_offset;
 | |
| 		}
 | |
| 
 | |
| 		if (st->frag_data) {
 | |
| 			kunmap_atomic(st->frag_data);
 | |
| 			st->frag_data = NULL;
 | |
| 		}
 | |
| 
 | |
| 		st->frag_idx++;
 | |
| 		st->stepped_offset += skb_frag_size(frag);
 | |
| 	}
 | |
| 
 | |
| 	if (st->frag_data) {
 | |
| 		kunmap_atomic(st->frag_data);
 | |
| 		st->frag_data = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
 | |
| 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
 | |
| 		st->frag_idx = 0;
 | |
| 		goto next_skb;
 | |
| 	} else if (st->cur_skb->next) {
 | |
| 		st->cur_skb = st->cur_skb->next;
 | |
| 		st->frag_idx = 0;
 | |
| 		goto next_skb;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_seq_read);
 | |
| 
 | |
| /**
 | |
|  * skb_abort_seq_read - Abort a sequential read of skb data
 | |
|  * @st: state variable
 | |
|  *
 | |
|  * Must be called if skb_seq_read() was not called until it
 | |
|  * returned 0.
 | |
|  */
 | |
| void skb_abort_seq_read(struct skb_seq_state *st)
 | |
| {
 | |
| 	if (st->frag_data)
 | |
| 		kunmap_atomic(st->frag_data);
 | |
| }
 | |
| EXPORT_SYMBOL(skb_abort_seq_read);
 | |
| 
 | |
| #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
 | |
| 
 | |
| static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
 | |
| 					  struct ts_config *conf,
 | |
| 					  struct ts_state *state)
 | |
| {
 | |
| 	return skb_seq_read(offset, text, TS_SKB_CB(state));
 | |
| }
 | |
| 
 | |
| static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
 | |
| {
 | |
| 	skb_abort_seq_read(TS_SKB_CB(state));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * skb_find_text - Find a text pattern in skb data
 | |
|  * @skb: the buffer to look in
 | |
|  * @from: search offset
 | |
|  * @to: search limit
 | |
|  * @config: textsearch configuration
 | |
|  *
 | |
|  * Finds a pattern in the skb data according to the specified
 | |
|  * textsearch configuration. Use textsearch_next() to retrieve
 | |
|  * subsequent occurrences of the pattern. Returns the offset
 | |
|  * to the first occurrence or UINT_MAX if no match was found.
 | |
|  */
 | |
| unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
 | |
| 			   unsigned int to, struct ts_config *config)
 | |
| {
 | |
| 	struct ts_state state;
 | |
| 	unsigned int ret;
 | |
| 
 | |
| 	config->get_next_block = skb_ts_get_next_block;
 | |
| 	config->finish = skb_ts_finish;
 | |
| 
 | |
| 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
 | |
| 
 | |
| 	ret = textsearch_find(config, &state);
 | |
| 	return (ret <= to - from ? ret : UINT_MAX);
 | |
| }
 | |
| EXPORT_SYMBOL(skb_find_text);
 | |
| 
 | |
| /**
 | |
|  * skb_append_datato_frags - append the user data to a skb
 | |
|  * @sk: sock  structure
 | |
|  * @skb: skb structure to be appended with user data.
 | |
|  * @getfrag: call back function to be used for getting the user data
 | |
|  * @from: pointer to user message iov
 | |
|  * @length: length of the iov message
 | |
|  *
 | |
|  * Description: This procedure append the user data in the fragment part
 | |
|  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
 | |
|  */
 | |
| int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
 | |
| 			int (*getfrag)(void *from, char *to, int offset,
 | |
| 					int len, int odd, struct sk_buff *skb),
 | |
| 			void *from, int length)
 | |
| {
 | |
| 	int frg_cnt = skb_shinfo(skb)->nr_frags;
 | |
| 	int copy;
 | |
| 	int offset = 0;
 | |
| 	int ret;
 | |
| 	struct page_frag *pfrag = ¤t->task_frag;
 | |
| 
 | |
| 	do {
 | |
| 		/* Return error if we don't have space for new frag */
 | |
| 		if (frg_cnt >= MAX_SKB_FRAGS)
 | |
| 			return -EMSGSIZE;
 | |
| 
 | |
| 		if (!sk_page_frag_refill(sk, pfrag))
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		/* copy the user data to page */
 | |
| 		copy = min_t(int, length, pfrag->size - pfrag->offset);
 | |
| 
 | |
| 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
 | |
| 			      offset, copy, 0, skb);
 | |
| 		if (ret < 0)
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		/* copy was successful so update the size parameters */
 | |
| 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
 | |
| 				   copy);
 | |
| 		frg_cnt++;
 | |
| 		pfrag->offset += copy;
 | |
| 		get_page(pfrag->page);
 | |
| 
 | |
| 		skb->truesize += copy;
 | |
| 		atomic_add(copy, &sk->sk_wmem_alloc);
 | |
| 		skb->len += copy;
 | |
| 		skb->data_len += copy;
 | |
| 		offset += copy;
 | |
| 		length -= copy;
 | |
| 
 | |
| 	} while (length > 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_append_datato_frags);
 | |
| 
 | |
| int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
 | |
| 			 int offset, size_t size)
 | |
| {
 | |
| 	int i = skb_shinfo(skb)->nr_frags;
 | |
| 
 | |
| 	if (skb_can_coalesce(skb, i, page, offset)) {
 | |
| 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
 | |
| 	} else if (i < MAX_SKB_FRAGS) {
 | |
| 		get_page(page);
 | |
| 		skb_fill_page_desc(skb, i, page, offset, size);
 | |
| 	} else {
 | |
| 		return -EMSGSIZE;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_append_pagefrags);
 | |
| 
 | |
| /**
 | |
|  *	skb_pull_rcsum - pull skb and update receive checksum
 | |
|  *	@skb: buffer to update
 | |
|  *	@len: length of data pulled
 | |
|  *
 | |
|  *	This function performs an skb_pull on the packet and updates
 | |
|  *	the CHECKSUM_COMPLETE checksum.  It should be used on
 | |
|  *	receive path processing instead of skb_pull unless you know
 | |
|  *	that the checksum difference is zero (e.g., a valid IP header)
 | |
|  *	or you are setting ip_summed to CHECKSUM_NONE.
 | |
|  */
 | |
| unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
 | |
| {
 | |
| 	BUG_ON(len > skb->len);
 | |
| 	skb->len -= len;
 | |
| 	BUG_ON(skb->len < skb->data_len);
 | |
| 	skb_postpull_rcsum(skb, skb->data, len);
 | |
| 	return skb->data += len;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_pull_rcsum);
 | |
| 
 | |
| /**
 | |
|  *	skb_segment - Perform protocol segmentation on skb.
 | |
|  *	@head_skb: buffer to segment
 | |
|  *	@features: features for the output path (see dev->features)
 | |
|  *
 | |
|  *	This function performs segmentation on the given skb.  It returns
 | |
|  *	a pointer to the first in a list of new skbs for the segments.
 | |
|  *	In case of error it returns ERR_PTR(err).
 | |
|  */
 | |
| struct sk_buff *skb_segment(struct sk_buff *head_skb,
 | |
| 			    netdev_features_t features)
 | |
| {
 | |
| 	struct sk_buff *segs = NULL;
 | |
| 	struct sk_buff *tail = NULL;
 | |
| 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
 | |
| 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
 | |
| 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
 | |
| 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
 | |
| 	struct sk_buff *frag_skb = head_skb;
 | |
| 	unsigned int offset = doffset;
 | |
| 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
 | |
| 	unsigned int headroom;
 | |
| 	unsigned int len;
 | |
| 	__be16 proto;
 | |
| 	bool csum;
 | |
| 	int sg = !!(features & NETIF_F_SG);
 | |
| 	int nfrags = skb_shinfo(head_skb)->nr_frags;
 | |
| 	int err = -ENOMEM;
 | |
| 	int i = 0;
 | |
| 	int pos;
 | |
| 	int dummy;
 | |
| 
 | |
| 	__skb_push(head_skb, doffset);
 | |
| 	proto = skb_network_protocol(head_skb, &dummy);
 | |
| 	if (unlikely(!proto))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	csum = !head_skb->encap_hdr_csum &&
 | |
| 	    !!can_checksum_protocol(features, proto);
 | |
| 
 | |
| 	headroom = skb_headroom(head_skb);
 | |
| 	pos = skb_headlen(head_skb);
 | |
| 
 | |
| 	do {
 | |
| 		struct sk_buff *nskb;
 | |
| 		skb_frag_t *nskb_frag;
 | |
| 		int hsize;
 | |
| 		int size;
 | |
| 
 | |
| 		len = head_skb->len - offset;
 | |
| 		if (len > mss)
 | |
| 			len = mss;
 | |
| 
 | |
| 		hsize = skb_headlen(head_skb) - offset;
 | |
| 		if (hsize < 0)
 | |
| 			hsize = 0;
 | |
| 		if (hsize > len || !sg)
 | |
| 			hsize = len;
 | |
| 
 | |
| 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
 | |
| 		    (skb_headlen(list_skb) == len || sg)) {
 | |
| 			BUG_ON(skb_headlen(list_skb) > len);
 | |
| 
 | |
| 			i = 0;
 | |
| 			nfrags = skb_shinfo(list_skb)->nr_frags;
 | |
| 			frag = skb_shinfo(list_skb)->frags;
 | |
| 			frag_skb = list_skb;
 | |
| 			pos += skb_headlen(list_skb);
 | |
| 
 | |
| 			while (pos < offset + len) {
 | |
| 				BUG_ON(i >= nfrags);
 | |
| 
 | |
| 				size = skb_frag_size(frag);
 | |
| 				if (pos + size > offset + len)
 | |
| 					break;
 | |
| 
 | |
| 				i++;
 | |
| 				pos += size;
 | |
| 				frag++;
 | |
| 			}
 | |
| 
 | |
| 			nskb = skb_clone(list_skb, GFP_ATOMIC);
 | |
| 			list_skb = list_skb->next;
 | |
| 
 | |
| 			if (unlikely(!nskb))
 | |
| 				goto err;
 | |
| 
 | |
| 			if (unlikely(pskb_trim(nskb, len))) {
 | |
| 				kfree_skb(nskb);
 | |
| 				goto err;
 | |
| 			}
 | |
| 
 | |
| 			hsize = skb_end_offset(nskb);
 | |
| 			if (skb_cow_head(nskb, doffset + headroom)) {
 | |
| 				kfree_skb(nskb);
 | |
| 				goto err;
 | |
| 			}
 | |
| 
 | |
| 			nskb->truesize += skb_end_offset(nskb) - hsize;
 | |
| 			skb_release_head_state(nskb);
 | |
| 			__skb_push(nskb, doffset);
 | |
| 		} else {
 | |
| 			nskb = __alloc_skb(hsize + doffset + headroom,
 | |
| 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
 | |
| 					   NUMA_NO_NODE);
 | |
| 
 | |
| 			if (unlikely(!nskb))
 | |
| 				goto err;
 | |
| 
 | |
| 			skb_reserve(nskb, headroom);
 | |
| 			__skb_put(nskb, doffset);
 | |
| 		}
 | |
| 
 | |
| 		if (segs)
 | |
| 			tail->next = nskb;
 | |
| 		else
 | |
| 			segs = nskb;
 | |
| 		tail = nskb;
 | |
| 
 | |
| 		__copy_skb_header(nskb, head_skb);
 | |
| 
 | |
| 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
 | |
| 		skb_reset_mac_len(nskb);
 | |
| 
 | |
| 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
 | |
| 						 nskb->data - tnl_hlen,
 | |
| 						 doffset + tnl_hlen);
 | |
| 
 | |
| 		if (nskb->len == len + doffset)
 | |
| 			goto perform_csum_check;
 | |
| 
 | |
| 		if (!sg && !nskb->remcsum_offload) {
 | |
| 			nskb->ip_summed = CHECKSUM_NONE;
 | |
| 			nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
 | |
| 							    skb_put(nskb, len),
 | |
| 							    len, 0);
 | |
| 			SKB_GSO_CB(nskb)->csum_start =
 | |
| 			    skb_headroom(nskb) + doffset;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		nskb_frag = skb_shinfo(nskb)->frags;
 | |
| 
 | |
| 		skb_copy_from_linear_data_offset(head_skb, offset,
 | |
| 						 skb_put(nskb, hsize), hsize);
 | |
| 
 | |
| 		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
 | |
| 			SKBTX_SHARED_FRAG;
 | |
| 
 | |
| 		while (pos < offset + len) {
 | |
| 			if (i >= nfrags) {
 | |
| 				BUG_ON(skb_headlen(list_skb));
 | |
| 
 | |
| 				i = 0;
 | |
| 				nfrags = skb_shinfo(list_skb)->nr_frags;
 | |
| 				frag = skb_shinfo(list_skb)->frags;
 | |
| 				frag_skb = list_skb;
 | |
| 
 | |
| 				BUG_ON(!nfrags);
 | |
| 
 | |
| 				list_skb = list_skb->next;
 | |
| 			}
 | |
| 
 | |
| 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
 | |
| 				     MAX_SKB_FRAGS)) {
 | |
| 				net_warn_ratelimited(
 | |
| 					"skb_segment: too many frags: %u %u\n",
 | |
| 					pos, mss);
 | |
| 				goto err;
 | |
| 			}
 | |
| 
 | |
| 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
 | |
| 				goto err;
 | |
| 
 | |
| 			*nskb_frag = *frag;
 | |
| 			__skb_frag_ref(nskb_frag);
 | |
| 			size = skb_frag_size(nskb_frag);
 | |
| 
 | |
| 			if (pos < offset) {
 | |
| 				nskb_frag->page_offset += offset - pos;
 | |
| 				skb_frag_size_sub(nskb_frag, offset - pos);
 | |
| 			}
 | |
| 
 | |
| 			skb_shinfo(nskb)->nr_frags++;
 | |
| 
 | |
| 			if (pos + size <= offset + len) {
 | |
| 				i++;
 | |
| 				frag++;
 | |
| 				pos += size;
 | |
| 			} else {
 | |
| 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
 | |
| 				goto skip_fraglist;
 | |
| 			}
 | |
| 
 | |
| 			nskb_frag++;
 | |
| 		}
 | |
| 
 | |
| skip_fraglist:
 | |
| 		nskb->data_len = len - hsize;
 | |
| 		nskb->len += nskb->data_len;
 | |
| 		nskb->truesize += nskb->data_len;
 | |
| 
 | |
| perform_csum_check:
 | |
| 		if (!csum && !nskb->remcsum_offload) {
 | |
| 			nskb->csum = skb_checksum(nskb, doffset,
 | |
| 						  nskb->len - doffset, 0);
 | |
| 			nskb->ip_summed = CHECKSUM_NONE;
 | |
| 			SKB_GSO_CB(nskb)->csum_start =
 | |
| 			    skb_headroom(nskb) + doffset;
 | |
| 		}
 | |
| 	} while ((offset += len) < head_skb->len);
 | |
| 
 | |
| 	/* Some callers want to get the end of the list.
 | |
| 	 * Put it in segs->prev to avoid walking the list.
 | |
| 	 * (see validate_xmit_skb_list() for example)
 | |
| 	 */
 | |
| 	segs->prev = tail;
 | |
| 
 | |
| 	/* Following permits correct backpressure, for protocols
 | |
| 	 * using skb_set_owner_w().
 | |
| 	 * Idea is to tranfert ownership from head_skb to last segment.
 | |
| 	 */
 | |
| 	if (head_skb->destructor == sock_wfree) {
 | |
| 		swap(tail->truesize, head_skb->truesize);
 | |
| 		swap(tail->destructor, head_skb->destructor);
 | |
| 		swap(tail->sk, head_skb->sk);
 | |
| 	}
 | |
| 	return segs;
 | |
| 
 | |
| err:
 | |
| 	kfree_skb_list(segs);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_segment);
 | |
| 
 | |
| int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
 | |
| {
 | |
| 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
 | |
| 	unsigned int offset = skb_gro_offset(skb);
 | |
| 	unsigned int headlen = skb_headlen(skb);
 | |
| 	unsigned int len = skb_gro_len(skb);
 | |
| 	struct sk_buff *lp, *p = *head;
 | |
| 	unsigned int delta_truesize;
 | |
| 
 | |
| 	if (unlikely(p->len + len >= 65536))
 | |
| 		return -E2BIG;
 | |
| 
 | |
| 	lp = NAPI_GRO_CB(p)->last;
 | |
| 	pinfo = skb_shinfo(lp);
 | |
| 
 | |
| 	if (headlen <= offset) {
 | |
| 		skb_frag_t *frag;
 | |
| 		skb_frag_t *frag2;
 | |
| 		int i = skbinfo->nr_frags;
 | |
| 		int nr_frags = pinfo->nr_frags + i;
 | |
| 
 | |
| 		if (nr_frags > MAX_SKB_FRAGS)
 | |
| 			goto merge;
 | |
| 
 | |
| 		offset -= headlen;
 | |
| 		pinfo->nr_frags = nr_frags;
 | |
| 		skbinfo->nr_frags = 0;
 | |
| 
 | |
| 		frag = pinfo->frags + nr_frags;
 | |
| 		frag2 = skbinfo->frags + i;
 | |
| 		do {
 | |
| 			*--frag = *--frag2;
 | |
| 		} while (--i);
 | |
| 
 | |
| 		frag->page_offset += offset;
 | |
| 		skb_frag_size_sub(frag, offset);
 | |
| 
 | |
| 		/* all fragments truesize : remove (head size + sk_buff) */
 | |
| 		delta_truesize = skb->truesize -
 | |
| 				 SKB_TRUESIZE(skb_end_offset(skb));
 | |
| 
 | |
| 		skb->truesize -= skb->data_len;
 | |
| 		skb->len -= skb->data_len;
 | |
| 		skb->data_len = 0;
 | |
| 
 | |
| 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
 | |
| 		goto done;
 | |
| 	} else if (skb->head_frag) {
 | |
| 		int nr_frags = pinfo->nr_frags;
 | |
| 		skb_frag_t *frag = pinfo->frags + nr_frags;
 | |
| 		struct page *page = virt_to_head_page(skb->head);
 | |
| 		unsigned int first_size = headlen - offset;
 | |
| 		unsigned int first_offset;
 | |
| 
 | |
| 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
 | |
| 			goto merge;
 | |
| 
 | |
| 		first_offset = skb->data -
 | |
| 			       (unsigned char *)page_address(page) +
 | |
| 			       offset;
 | |
| 
 | |
| 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
 | |
| 
 | |
| 		frag->page.p	  = page;
 | |
| 		frag->page_offset = first_offset;
 | |
| 		skb_frag_size_set(frag, first_size);
 | |
| 
 | |
| 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
 | |
| 		/* We dont need to clear skbinfo->nr_frags here */
 | |
| 
 | |
| 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
 | |
| 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| merge:
 | |
| 	delta_truesize = skb->truesize;
 | |
| 	if (offset > headlen) {
 | |
| 		unsigned int eat = offset - headlen;
 | |
| 
 | |
| 		skbinfo->frags[0].page_offset += eat;
 | |
| 		skb_frag_size_sub(&skbinfo->frags[0], eat);
 | |
| 		skb->data_len -= eat;
 | |
| 		skb->len -= eat;
 | |
| 		offset = headlen;
 | |
| 	}
 | |
| 
 | |
| 	__skb_pull(skb, offset);
 | |
| 
 | |
| 	if (NAPI_GRO_CB(p)->last == p)
 | |
| 		skb_shinfo(p)->frag_list = skb;
 | |
| 	else
 | |
| 		NAPI_GRO_CB(p)->last->next = skb;
 | |
| 	NAPI_GRO_CB(p)->last = skb;
 | |
| 	__skb_header_release(skb);
 | |
| 	lp = p;
 | |
| 
 | |
| done:
 | |
| 	NAPI_GRO_CB(p)->count++;
 | |
| 	p->data_len += len;
 | |
| 	p->truesize += delta_truesize;
 | |
| 	p->len += len;
 | |
| 	if (lp != p) {
 | |
| 		lp->data_len += len;
 | |
| 		lp->truesize += delta_truesize;
 | |
| 		lp->len += len;
 | |
| 	}
 | |
| 	NAPI_GRO_CB(skb)->same_flow = 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __init skb_init(void)
 | |
| {
 | |
| 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
 | |
| 					      sizeof(struct sk_buff),
 | |
| 					      0,
 | |
| 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
 | |
| 					      NULL);
 | |
| 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
 | |
| 						sizeof(struct sk_buff_fclones),
 | |
| 						0,
 | |
| 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
 | |
| 						NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
 | |
|  *	@skb: Socket buffer containing the buffers to be mapped
 | |
|  *	@sg: The scatter-gather list to map into
 | |
|  *	@offset: The offset into the buffer's contents to start mapping
 | |
|  *	@len: Length of buffer space to be mapped
 | |
|  *
 | |
|  *	Fill the specified scatter-gather list with mappings/pointers into a
 | |
|  *	region of the buffer space attached to a socket buffer.
 | |
|  */
 | |
| static int
 | |
| __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
 | |
| {
 | |
| 	int start = skb_headlen(skb);
 | |
| 	int i, copy = start - offset;
 | |
| 	struct sk_buff *frag_iter;
 | |
| 	int elt = 0;
 | |
| 
 | |
| 	if (copy > 0) {
 | |
| 		if (copy > len)
 | |
| 			copy = len;
 | |
| 		sg_set_buf(sg, skb->data + offset, copy);
 | |
| 		elt++;
 | |
| 		if ((len -= copy) == 0)
 | |
| 			return elt;
 | |
| 		offset += copy;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 | |
| 		int end;
 | |
| 
 | |
| 		WARN_ON(start > offset + len);
 | |
| 
 | |
| 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
 | |
| 		if ((copy = end - offset) > 0) {
 | |
| 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 | |
| 
 | |
| 			if (copy > len)
 | |
| 				copy = len;
 | |
| 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
 | |
| 					frag->page_offset+offset-start);
 | |
| 			elt++;
 | |
| 			if (!(len -= copy))
 | |
| 				return elt;
 | |
| 			offset += copy;
 | |
| 		}
 | |
| 		start = end;
 | |
| 	}
 | |
| 
 | |
| 	skb_walk_frags(skb, frag_iter) {
 | |
| 		int end;
 | |
| 
 | |
| 		WARN_ON(start > offset + len);
 | |
| 
 | |
| 		end = start + frag_iter->len;
 | |
| 		if ((copy = end - offset) > 0) {
 | |
| 			if (copy > len)
 | |
| 				copy = len;
 | |
| 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
 | |
| 					      copy);
 | |
| 			if ((len -= copy) == 0)
 | |
| 				return elt;
 | |
| 			offset += copy;
 | |
| 		}
 | |
| 		start = end;
 | |
| 	}
 | |
| 	BUG_ON(len);
 | |
| 	return elt;
 | |
| }
 | |
| 
 | |
| /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
 | |
|  * sglist without mark the sg which contain last skb data as the end.
 | |
|  * So the caller can mannipulate sg list as will when padding new data after
 | |
|  * the first call without calling sg_unmark_end to expend sg list.
 | |
|  *
 | |
|  * Scenario to use skb_to_sgvec_nomark:
 | |
|  * 1. sg_init_table
 | |
|  * 2. skb_to_sgvec_nomark(payload1)
 | |
|  * 3. skb_to_sgvec_nomark(payload2)
 | |
|  *
 | |
|  * This is equivalent to:
 | |
|  * 1. sg_init_table
 | |
|  * 2. skb_to_sgvec(payload1)
 | |
|  * 3. sg_unmark_end
 | |
|  * 4. skb_to_sgvec(payload2)
 | |
|  *
 | |
|  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
 | |
|  * is more preferable.
 | |
|  */
 | |
| int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
 | |
| 			int offset, int len)
 | |
| {
 | |
| 	return __skb_to_sgvec(skb, sg, offset, len);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
 | |
| 
 | |
| int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
 | |
| {
 | |
| 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
 | |
| 
 | |
| 	sg_mark_end(&sg[nsg - 1]);
 | |
| 
 | |
| 	return nsg;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_to_sgvec);
 | |
| 
 | |
| /**
 | |
|  *	skb_cow_data - Check that a socket buffer's data buffers are writable
 | |
|  *	@skb: The socket buffer to check.
 | |
|  *	@tailbits: Amount of trailing space to be added
 | |
|  *	@trailer: Returned pointer to the skb where the @tailbits space begins
 | |
|  *
 | |
|  *	Make sure that the data buffers attached to a socket buffer are
 | |
|  *	writable. If they are not, private copies are made of the data buffers
 | |
|  *	and the socket buffer is set to use these instead.
 | |
|  *
 | |
|  *	If @tailbits is given, make sure that there is space to write @tailbits
 | |
|  *	bytes of data beyond current end of socket buffer.  @trailer will be
 | |
|  *	set to point to the skb in which this space begins.
 | |
|  *
 | |
|  *	The number of scatterlist elements required to completely map the
 | |
|  *	COW'd and extended socket buffer will be returned.
 | |
|  */
 | |
| int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
 | |
| {
 | |
| 	int copyflag;
 | |
| 	int elt;
 | |
| 	struct sk_buff *skb1, **skb_p;
 | |
| 
 | |
| 	/* If skb is cloned or its head is paged, reallocate
 | |
| 	 * head pulling out all the pages (pages are considered not writable
 | |
| 	 * at the moment even if they are anonymous).
 | |
| 	 */
 | |
| 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
 | |
| 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Easy case. Most of packets will go this way. */
 | |
| 	if (!skb_has_frag_list(skb)) {
 | |
| 		/* A little of trouble, not enough of space for trailer.
 | |
| 		 * This should not happen, when stack is tuned to generate
 | |
| 		 * good frames. OK, on miss we reallocate and reserve even more
 | |
| 		 * space, 128 bytes is fair. */
 | |
| 
 | |
| 		if (skb_tailroom(skb) < tailbits &&
 | |
| 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		/* Voila! */
 | |
| 		*trailer = skb;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Misery. We are in troubles, going to mincer fragments... */
 | |
| 
 | |
| 	elt = 1;
 | |
| 	skb_p = &skb_shinfo(skb)->frag_list;
 | |
| 	copyflag = 0;
 | |
| 
 | |
| 	while ((skb1 = *skb_p) != NULL) {
 | |
| 		int ntail = 0;
 | |
| 
 | |
| 		/* The fragment is partially pulled by someone,
 | |
| 		 * this can happen on input. Copy it and everything
 | |
| 		 * after it. */
 | |
| 
 | |
| 		if (skb_shared(skb1))
 | |
| 			copyflag = 1;
 | |
| 
 | |
| 		/* If the skb is the last, worry about trailer. */
 | |
| 
 | |
| 		if (skb1->next == NULL && tailbits) {
 | |
| 			if (skb_shinfo(skb1)->nr_frags ||
 | |
| 			    skb_has_frag_list(skb1) ||
 | |
| 			    skb_tailroom(skb1) < tailbits)
 | |
| 				ntail = tailbits + 128;
 | |
| 		}
 | |
| 
 | |
| 		if (copyflag ||
 | |
| 		    skb_cloned(skb1) ||
 | |
| 		    ntail ||
 | |
| 		    skb_shinfo(skb1)->nr_frags ||
 | |
| 		    skb_has_frag_list(skb1)) {
 | |
| 			struct sk_buff *skb2;
 | |
| 
 | |
| 			/* Fuck, we are miserable poor guys... */
 | |
| 			if (ntail == 0)
 | |
| 				skb2 = skb_copy(skb1, GFP_ATOMIC);
 | |
| 			else
 | |
| 				skb2 = skb_copy_expand(skb1,
 | |
| 						       skb_headroom(skb1),
 | |
| 						       ntail,
 | |
| 						       GFP_ATOMIC);
 | |
| 			if (unlikely(skb2 == NULL))
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			if (skb1->sk)
 | |
| 				skb_set_owner_w(skb2, skb1->sk);
 | |
| 
 | |
| 			/* Looking around. Are we still alive?
 | |
| 			 * OK, link new skb, drop old one */
 | |
| 
 | |
| 			skb2->next = skb1->next;
 | |
| 			*skb_p = skb2;
 | |
| 			kfree_skb(skb1);
 | |
| 			skb1 = skb2;
 | |
| 		}
 | |
| 		elt++;
 | |
| 		*trailer = skb1;
 | |
| 		skb_p = &skb1->next;
 | |
| 	}
 | |
| 
 | |
| 	return elt;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_cow_data);
 | |
| 
 | |
| static void sock_rmem_free(struct sk_buff *skb)
 | |
| {
 | |
| 	struct sock *sk = skb->sk;
 | |
| 
 | |
| 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
 | |
|  */
 | |
| int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
 | |
| 	    (unsigned int)sk->sk_rcvbuf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	skb_orphan(skb);
 | |
| 	skb->sk = sk;
 | |
| 	skb->destructor = sock_rmem_free;
 | |
| 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
 | |
| 
 | |
| 	/* before exiting rcu section, make sure dst is refcounted */
 | |
| 	skb_dst_force(skb);
 | |
| 
 | |
| 	skb_queue_tail(&sk->sk_error_queue, skb);
 | |
| 	if (!sock_flag(sk, SOCK_DEAD))
 | |
| 		sk->sk_data_ready(sk);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(sock_queue_err_skb);
 | |
| 
 | |
| struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
 | |
| {
 | |
| 	struct sk_buff_head *q = &sk->sk_error_queue;
 | |
| 	struct sk_buff *skb, *skb_next;
 | |
| 	unsigned long flags;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	skb = __skb_dequeue(q);
 | |
| 	if (skb && (skb_next = skb_peek(q)))
 | |
| 		err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| 
 | |
| 	sk->sk_err = err;
 | |
| 	if (err)
 | |
| 		sk->sk_error_report(sk);
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| EXPORT_SYMBOL(sock_dequeue_err_skb);
 | |
| 
 | |
| /**
 | |
|  * skb_clone_sk - create clone of skb, and take reference to socket
 | |
|  * @skb: the skb to clone
 | |
|  *
 | |
|  * This function creates a clone of a buffer that holds a reference on
 | |
|  * sk_refcnt.  Buffers created via this function are meant to be
 | |
|  * returned using sock_queue_err_skb, or free via kfree_skb.
 | |
|  *
 | |
|  * When passing buffers allocated with this function to sock_queue_err_skb
 | |
|  * it is necessary to wrap the call with sock_hold/sock_put in order to
 | |
|  * prevent the socket from being released prior to being enqueued on
 | |
|  * the sk_error_queue.
 | |
|  */
 | |
| struct sk_buff *skb_clone_sk(struct sk_buff *skb)
 | |
| {
 | |
| 	struct sock *sk = skb->sk;
 | |
| 	struct sk_buff *clone;
 | |
| 
 | |
| 	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
 | |
| 		return NULL;
 | |
| 
 | |
| 	clone = skb_clone(skb, GFP_ATOMIC);
 | |
| 	if (!clone) {
 | |
| 		sock_put(sk);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	clone->sk = sk;
 | |
| 	clone->destructor = sock_efree;
 | |
| 
 | |
| 	return clone;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_clone_sk);
 | |
| 
 | |
| static void __skb_complete_tx_timestamp(struct sk_buff *skb,
 | |
| 					struct sock *sk,
 | |
| 					int tstype)
 | |
| {
 | |
| 	struct sock_exterr_skb *serr;
 | |
| 	int err;
 | |
| 
 | |
| 	serr = SKB_EXT_ERR(skb);
 | |
| 	memset(serr, 0, sizeof(*serr));
 | |
| 	serr->ee.ee_errno = ENOMSG;
 | |
| 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
 | |
| 	serr->ee.ee_info = tstype;
 | |
| 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
 | |
| 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
 | |
| 		if (sk->sk_protocol == IPPROTO_TCP)
 | |
| 			serr->ee.ee_data -= sk->sk_tskey;
 | |
| 	}
 | |
| 
 | |
| 	err = sock_queue_err_skb(sk, skb);
 | |
| 
 | |
| 	if (err)
 | |
| 		kfree_skb(skb);
 | |
| }
 | |
| 
 | |
| static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	if (likely(sysctl_tstamp_allow_data || tsonly))
 | |
| 		return true;
 | |
| 
 | |
| 	read_lock_bh(&sk->sk_callback_lock);
 | |
| 	ret = sk->sk_socket && sk->sk_socket->file &&
 | |
| 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
 | |
| 	read_unlock_bh(&sk->sk_callback_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void skb_complete_tx_timestamp(struct sk_buff *skb,
 | |
| 			       struct skb_shared_hwtstamps *hwtstamps)
 | |
| {
 | |
| 	struct sock *sk = skb->sk;
 | |
| 
 | |
| 	if (!skb_may_tx_timestamp(sk, false))
 | |
| 		return;
 | |
| 
 | |
| 	/* take a reference to prevent skb_orphan() from freeing the socket */
 | |
| 	sock_hold(sk);
 | |
| 
 | |
| 	*skb_hwtstamps(skb) = *hwtstamps;
 | |
| 	__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
 | |
| 
 | |
| 	sock_put(sk);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
 | |
| 
 | |
| void __skb_tstamp_tx(struct sk_buff *orig_skb,
 | |
| 		     struct skb_shared_hwtstamps *hwtstamps,
 | |
| 		     struct sock *sk, int tstype)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	bool tsonly;
 | |
| 
 | |
| 	if (!sk)
 | |
| 		return;
 | |
| 
 | |
| 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
 | |
| 	if (!skb_may_tx_timestamp(sk, tsonly))
 | |
| 		return;
 | |
| 
 | |
| 	if (tsonly)
 | |
| 		skb = alloc_skb(0, GFP_ATOMIC);
 | |
| 	else
 | |
| 		skb = skb_clone(orig_skb, GFP_ATOMIC);
 | |
| 	if (!skb)
 | |
| 		return;
 | |
| 
 | |
| 	if (tsonly) {
 | |
| 		skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
 | |
| 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
 | |
| 	}
 | |
| 
 | |
| 	if (hwtstamps)
 | |
| 		*skb_hwtstamps(skb) = *hwtstamps;
 | |
| 	else
 | |
| 		skb->tstamp = ktime_get_real();
 | |
| 
 | |
| 	__skb_complete_tx_timestamp(skb, sk, tstype);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
 | |
| 
 | |
| void skb_tstamp_tx(struct sk_buff *orig_skb,
 | |
| 		   struct skb_shared_hwtstamps *hwtstamps)
 | |
| {
 | |
| 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
 | |
| 			       SCM_TSTAMP_SND);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_tstamp_tx);
 | |
| 
 | |
| void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
 | |
| {
 | |
| 	struct sock *sk = skb->sk;
 | |
| 	struct sock_exterr_skb *serr;
 | |
| 	int err;
 | |
| 
 | |
| 	skb->wifi_acked_valid = 1;
 | |
| 	skb->wifi_acked = acked;
 | |
| 
 | |
| 	serr = SKB_EXT_ERR(skb);
 | |
| 	memset(serr, 0, sizeof(*serr));
 | |
| 	serr->ee.ee_errno = ENOMSG;
 | |
| 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
 | |
| 
 | |
| 	/* take a reference to prevent skb_orphan() from freeing the socket */
 | |
| 	sock_hold(sk);
 | |
| 
 | |
| 	err = sock_queue_err_skb(sk, skb);
 | |
| 	if (err)
 | |
| 		kfree_skb(skb);
 | |
| 
 | |
| 	sock_put(sk);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
 | |
| 
 | |
| /**
 | |
|  * skb_partial_csum_set - set up and verify partial csum values for packet
 | |
|  * @skb: the skb to set
 | |
|  * @start: the number of bytes after skb->data to start checksumming.
 | |
|  * @off: the offset from start to place the checksum.
 | |
|  *
 | |
|  * For untrusted partially-checksummed packets, we need to make sure the values
 | |
|  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
 | |
|  *
 | |
|  * This function checks and sets those values and skb->ip_summed: if this
 | |
|  * returns false you should drop the packet.
 | |
|  */
 | |
| bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
 | |
| {
 | |
| 	if (unlikely(start > skb_headlen(skb)) ||
 | |
| 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
 | |
| 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
 | |
| 				     start, off, skb_headlen(skb));
 | |
| 		return false;
 | |
| 	}
 | |
| 	skb->ip_summed = CHECKSUM_PARTIAL;
 | |
| 	skb->csum_start = skb_headroom(skb) + start;
 | |
| 	skb->csum_offset = off;
 | |
| 	skb_set_transport_header(skb, start);
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_partial_csum_set);
 | |
| 
 | |
| static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
 | |
| 			       unsigned int max)
 | |
| {
 | |
| 	if (skb_headlen(skb) >= len)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If we need to pullup then pullup to the max, so we
 | |
| 	 * won't need to do it again.
 | |
| 	 */
 | |
| 	if (max > skb->len)
 | |
| 		max = skb->len;
 | |
| 
 | |
| 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (skb_headlen(skb) < len)
 | |
| 		return -EPROTO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define MAX_TCP_HDR_LEN (15 * 4)
 | |
| 
 | |
| static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
 | |
| 				      typeof(IPPROTO_IP) proto,
 | |
| 				      unsigned int off)
 | |
| {
 | |
| 	switch (proto) {
 | |
| 		int err;
 | |
| 
 | |
| 	case IPPROTO_TCP:
 | |
| 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
 | |
| 					  off + MAX_TCP_HDR_LEN);
 | |
| 		if (!err && !skb_partial_csum_set(skb, off,
 | |
| 						  offsetof(struct tcphdr,
 | |
| 							   check)))
 | |
| 			err = -EPROTO;
 | |
| 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
 | |
| 
 | |
| 	case IPPROTO_UDP:
 | |
| 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
 | |
| 					  off + sizeof(struct udphdr));
 | |
| 		if (!err && !skb_partial_csum_set(skb, off,
 | |
| 						  offsetof(struct udphdr,
 | |
| 							   check)))
 | |
| 			err = -EPROTO;
 | |
| 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
 | |
| 	}
 | |
| 
 | |
| 	return ERR_PTR(-EPROTO);
 | |
| }
 | |
| 
 | |
| /* This value should be large enough to cover a tagged ethernet header plus
 | |
|  * maximally sized IP and TCP or UDP headers.
 | |
|  */
 | |
| #define MAX_IP_HDR_LEN 128
 | |
| 
 | |
| static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
 | |
| {
 | |
| 	unsigned int off;
 | |
| 	bool fragment;
 | |
| 	__sum16 *csum;
 | |
| 	int err;
 | |
| 
 | |
| 	fragment = false;
 | |
| 
 | |
| 	err = skb_maybe_pull_tail(skb,
 | |
| 				  sizeof(struct iphdr),
 | |
| 				  MAX_IP_HDR_LEN);
 | |
| 	if (err < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
 | |
| 		fragment = true;
 | |
| 
 | |
| 	off = ip_hdrlen(skb);
 | |
| 
 | |
| 	err = -EPROTO;
 | |
| 
 | |
| 	if (fragment)
 | |
| 		goto out;
 | |
| 
 | |
| 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
 | |
| 	if (IS_ERR(csum))
 | |
| 		return PTR_ERR(csum);
 | |
| 
 | |
| 	if (recalculate)
 | |
| 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 | |
| 					   ip_hdr(skb)->daddr,
 | |
| 					   skb->len - off,
 | |
| 					   ip_hdr(skb)->protocol, 0);
 | |
| 	err = 0;
 | |
| 
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* This value should be large enough to cover a tagged ethernet header plus
 | |
|  * an IPv6 header, all options, and a maximal TCP or UDP header.
 | |
|  */
 | |
| #define MAX_IPV6_HDR_LEN 256
 | |
| 
 | |
| #define OPT_HDR(type, skb, off) \
 | |
| 	(type *)(skb_network_header(skb) + (off))
 | |
| 
 | |
| static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
 | |
| {
 | |
| 	int err;
 | |
| 	u8 nexthdr;
 | |
| 	unsigned int off;
 | |
| 	unsigned int len;
 | |
| 	bool fragment;
 | |
| 	bool done;
 | |
| 	__sum16 *csum;
 | |
| 
 | |
| 	fragment = false;
 | |
| 	done = false;
 | |
| 
 | |
| 	off = sizeof(struct ipv6hdr);
 | |
| 
 | |
| 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
 | |
| 	if (err < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	nexthdr = ipv6_hdr(skb)->nexthdr;
 | |
| 
 | |
| 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
 | |
| 	while (off <= len && !done) {
 | |
| 		switch (nexthdr) {
 | |
| 		case IPPROTO_DSTOPTS:
 | |
| 		case IPPROTO_HOPOPTS:
 | |
| 		case IPPROTO_ROUTING: {
 | |
| 			struct ipv6_opt_hdr *hp;
 | |
| 
 | |
| 			err = skb_maybe_pull_tail(skb,
 | |
| 						  off +
 | |
| 						  sizeof(struct ipv6_opt_hdr),
 | |
| 						  MAX_IPV6_HDR_LEN);
 | |
| 			if (err < 0)
 | |
| 				goto out;
 | |
| 
 | |
| 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
 | |
| 			nexthdr = hp->nexthdr;
 | |
| 			off += ipv6_optlen(hp);
 | |
| 			break;
 | |
| 		}
 | |
| 		case IPPROTO_AH: {
 | |
| 			struct ip_auth_hdr *hp;
 | |
| 
 | |
| 			err = skb_maybe_pull_tail(skb,
 | |
| 						  off +
 | |
| 						  sizeof(struct ip_auth_hdr),
 | |
| 						  MAX_IPV6_HDR_LEN);
 | |
| 			if (err < 0)
 | |
| 				goto out;
 | |
| 
 | |
| 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
 | |
| 			nexthdr = hp->nexthdr;
 | |
| 			off += ipv6_authlen(hp);
 | |
| 			break;
 | |
| 		}
 | |
| 		case IPPROTO_FRAGMENT: {
 | |
| 			struct frag_hdr *hp;
 | |
| 
 | |
| 			err = skb_maybe_pull_tail(skb,
 | |
| 						  off +
 | |
| 						  sizeof(struct frag_hdr),
 | |
| 						  MAX_IPV6_HDR_LEN);
 | |
| 			if (err < 0)
 | |
| 				goto out;
 | |
| 
 | |
| 			hp = OPT_HDR(struct frag_hdr, skb, off);
 | |
| 
 | |
| 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
 | |
| 				fragment = true;
 | |
| 
 | |
| 			nexthdr = hp->nexthdr;
 | |
| 			off += sizeof(struct frag_hdr);
 | |
| 			break;
 | |
| 		}
 | |
| 		default:
 | |
| 			done = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	err = -EPROTO;
 | |
| 
 | |
| 	if (!done || fragment)
 | |
| 		goto out;
 | |
| 
 | |
| 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
 | |
| 	if (IS_ERR(csum))
 | |
| 		return PTR_ERR(csum);
 | |
| 
 | |
| 	if (recalculate)
 | |
| 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
 | |
| 					 &ipv6_hdr(skb)->daddr,
 | |
| 					 skb->len - off, nexthdr, 0);
 | |
| 	err = 0;
 | |
| 
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * skb_checksum_setup - set up partial checksum offset
 | |
|  * @skb: the skb to set up
 | |
|  * @recalculate: if true the pseudo-header checksum will be recalculated
 | |
|  */
 | |
| int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	switch (skb->protocol) {
 | |
| 	case htons(ETH_P_IP):
 | |
| 		err = skb_checksum_setup_ipv4(skb, recalculate);
 | |
| 		break;
 | |
| 
 | |
| 	case htons(ETH_P_IPV6):
 | |
| 		err = skb_checksum_setup_ipv6(skb, recalculate);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		err = -EPROTO;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_checksum_setup);
 | |
| 
 | |
| /**
 | |
|  * skb_checksum_maybe_trim - maybe trims the given skb
 | |
|  * @skb: the skb to check
 | |
|  * @transport_len: the data length beyond the network header
 | |
|  *
 | |
|  * Checks whether the given skb has data beyond the given transport length.
 | |
|  * If so, returns a cloned skb trimmed to this transport length.
 | |
|  * Otherwise returns the provided skb. Returns NULL in error cases
 | |
|  * (e.g. transport_len exceeds skb length or out-of-memory).
 | |
|  *
 | |
|  * Caller needs to set the skb transport header and release the returned skb.
 | |
|  * Provided skb is consumed.
 | |
|  */
 | |
| static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
 | |
| 					       unsigned int transport_len)
 | |
| {
 | |
| 	struct sk_buff *skb_chk;
 | |
| 	unsigned int len = skb_transport_offset(skb) + transport_len;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (skb->len < len) {
 | |
| 		kfree_skb(skb);
 | |
| 		return NULL;
 | |
| 	} else if (skb->len == len) {
 | |
| 		return skb;
 | |
| 	}
 | |
| 
 | |
| 	skb_chk = skb_clone(skb, GFP_ATOMIC);
 | |
| 	kfree_skb(skb);
 | |
| 
 | |
| 	if (!skb_chk)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ret = pskb_trim_rcsum(skb_chk, len);
 | |
| 	if (ret) {
 | |
| 		kfree_skb(skb_chk);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return skb_chk;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * skb_checksum_trimmed - validate checksum of an skb
 | |
|  * @skb: the skb to check
 | |
|  * @transport_len: the data length beyond the network header
 | |
|  * @skb_chkf: checksum function to use
 | |
|  *
 | |
|  * Applies the given checksum function skb_chkf to the provided skb.
 | |
|  * Returns a checked and maybe trimmed skb. Returns NULL on error.
 | |
|  *
 | |
|  * If the skb has data beyond the given transport length, then a
 | |
|  * trimmed & cloned skb is checked and returned.
 | |
|  *
 | |
|  * Caller needs to set the skb transport header and release the returned skb.
 | |
|  * Provided skb is consumed.
 | |
|  */
 | |
| struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
 | |
| 				     unsigned int transport_len,
 | |
| 				     __sum16(*skb_chkf)(struct sk_buff *skb))
 | |
| {
 | |
| 	struct sk_buff *skb_chk;
 | |
| 	unsigned int offset = skb_transport_offset(skb);
 | |
| 	__sum16 ret;
 | |
| 
 | |
| 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
 | |
| 	if (!skb_chk)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!pskb_may_pull(skb_chk, offset)) {
 | |
| 		kfree_skb(skb_chk);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	__skb_pull(skb_chk, offset);
 | |
| 	ret = skb_chkf(skb_chk);
 | |
| 	__skb_push(skb_chk, offset);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		kfree_skb(skb_chk);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return skb_chk;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_checksum_trimmed);
 | |
| 
 | |
| void __skb_warn_lro_forwarding(const struct sk_buff *skb)
 | |
| {
 | |
| 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
 | |
| 			     skb->dev->name);
 | |
| }
 | |
| EXPORT_SYMBOL(__skb_warn_lro_forwarding);
 | |
| 
 | |
| void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
 | |
| {
 | |
| 	if (head_stolen) {
 | |
| 		skb_release_head_state(skb);
 | |
| 		kmem_cache_free(skbuff_head_cache, skb);
 | |
| 	} else {
 | |
| 		__kfree_skb(skb);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(kfree_skb_partial);
 | |
| 
 | |
| /**
 | |
|  * skb_try_coalesce - try to merge skb to prior one
 | |
|  * @to: prior buffer
 | |
|  * @from: buffer to add
 | |
|  * @fragstolen: pointer to boolean
 | |
|  * @delta_truesize: how much more was allocated than was requested
 | |
|  */
 | |
| bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
 | |
| 		      bool *fragstolen, int *delta_truesize)
 | |
| {
 | |
| 	int i, delta, len = from->len;
 | |
| 
 | |
| 	*fragstolen = false;
 | |
| 
 | |
| 	if (skb_cloned(to))
 | |
| 		return false;
 | |
| 
 | |
| 	if (len <= skb_tailroom(to)) {
 | |
| 		if (len)
 | |
| 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
 | |
| 		*delta_truesize = 0;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
 | |
| 		return false;
 | |
| 
 | |
| 	if (skb_headlen(from) != 0) {
 | |
| 		struct page *page;
 | |
| 		unsigned int offset;
 | |
| 
 | |
| 		if (skb_shinfo(to)->nr_frags +
 | |
| 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
 | |
| 			return false;
 | |
| 
 | |
| 		if (skb_head_is_locked(from))
 | |
| 			return false;
 | |
| 
 | |
| 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
 | |
| 
 | |
| 		page = virt_to_head_page(from->head);
 | |
| 		offset = from->data - (unsigned char *)page_address(page);
 | |
| 
 | |
| 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
 | |
| 				   page, offset, skb_headlen(from));
 | |
| 		*fragstolen = true;
 | |
| 	} else {
 | |
| 		if (skb_shinfo(to)->nr_frags +
 | |
| 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
 | |
| 			return false;
 | |
| 
 | |
| 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON_ONCE(delta < len);
 | |
| 
 | |
| 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
 | |
| 	       skb_shinfo(from)->frags,
 | |
| 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
 | |
| 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
 | |
| 
 | |
| 	if (!skb_cloned(from))
 | |
| 		skb_shinfo(from)->nr_frags = 0;
 | |
| 
 | |
| 	/* if the skb is not cloned this does nothing
 | |
| 	 * since we set nr_frags to 0.
 | |
| 	 */
 | |
| 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
 | |
| 		skb_frag_ref(from, i);
 | |
| 
 | |
| 	to->truesize += delta;
 | |
| 	to->len += len;
 | |
| 	to->data_len += len;
 | |
| 
 | |
| 	*delta_truesize = delta;
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_try_coalesce);
 | |
| 
 | |
| /**
 | |
|  * skb_scrub_packet - scrub an skb
 | |
|  *
 | |
|  * @skb: buffer to clean
 | |
|  * @xnet: packet is crossing netns
 | |
|  *
 | |
|  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
 | |
|  * into/from a tunnel. Some information have to be cleared during these
 | |
|  * operations.
 | |
|  * skb_scrub_packet can also be used to clean a skb before injecting it in
 | |
|  * another namespace (@xnet == true). We have to clear all information in the
 | |
|  * skb that could impact namespace isolation.
 | |
|  */
 | |
| void skb_scrub_packet(struct sk_buff *skb, bool xnet)
 | |
| {
 | |
| 	skb->tstamp.tv64 = 0;
 | |
| 	skb->pkt_type = PACKET_HOST;
 | |
| 	skb->skb_iif = 0;
 | |
| 	skb->ignore_df = 0;
 | |
| 	skb_dst_drop(skb);
 | |
| 	skb_sender_cpu_clear(skb);
 | |
| 	secpath_reset(skb);
 | |
| 	nf_reset(skb);
 | |
| 	nf_reset_trace(skb);
 | |
| 
 | |
| 	if (!xnet)
 | |
| 		return;
 | |
| 
 | |
| 	skb_orphan(skb);
 | |
| 	skb->mark = 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_scrub_packet);
 | |
| 
 | |
| /**
 | |
|  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
 | |
|  *
 | |
|  * @skb: GSO skb
 | |
|  *
 | |
|  * skb_gso_transport_seglen is used to determine the real size of the
 | |
|  * individual segments, including Layer4 headers (TCP/UDP).
 | |
|  *
 | |
|  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
 | |
|  */
 | |
| unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
 | |
| {
 | |
| 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
 | |
| 	unsigned int thlen = 0;
 | |
| 
 | |
| 	if (skb->encapsulation) {
 | |
| 		thlen = skb_inner_transport_header(skb) -
 | |
| 			skb_transport_header(skb);
 | |
| 
 | |
| 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
 | |
| 			thlen += inner_tcp_hdrlen(skb);
 | |
| 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
 | |
| 		thlen = tcp_hdrlen(skb);
 | |
| 	}
 | |
| 	/* UFO sets gso_size to the size of the fragmentation
 | |
| 	 * payload, i.e. the size of the L4 (UDP) header is already
 | |
| 	 * accounted for.
 | |
| 	 */
 | |
| 	return thlen + shinfo->gso_size;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
 | |
| 
 | |
| static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
 | |
| {
 | |
| 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
 | |
| 		kfree_skb(skb);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN);
 | |
| 	skb->mac_header += VLAN_HLEN;
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
 | |
| {
 | |
| 	struct vlan_hdr *vhdr;
 | |
| 	u16 vlan_tci;
 | |
| 
 | |
| 	if (unlikely(skb_vlan_tag_present(skb))) {
 | |
| 		/* vlan_tci is already set-up so leave this for another time */
 | |
| 		return skb;
 | |
| 	}
 | |
| 
 | |
| 	skb = skb_share_check(skb, GFP_ATOMIC);
 | |
| 	if (unlikely(!skb))
 | |
| 		goto err_free;
 | |
| 
 | |
| 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
 | |
| 		goto err_free;
 | |
| 
 | |
| 	vhdr = (struct vlan_hdr *)skb->data;
 | |
| 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
 | |
| 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
 | |
| 
 | |
| 	skb_pull_rcsum(skb, VLAN_HLEN);
 | |
| 	vlan_set_encap_proto(skb, vhdr);
 | |
| 
 | |
| 	skb = skb_reorder_vlan_header(skb);
 | |
| 	if (unlikely(!skb))
 | |
| 		goto err_free;
 | |
| 
 | |
| 	skb_reset_network_header(skb);
 | |
| 	skb_reset_transport_header(skb);
 | |
| 	skb_reset_mac_len(skb);
 | |
| 
 | |
| 	return skb;
 | |
| 
 | |
| err_free:
 | |
| 	kfree_skb(skb);
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_vlan_untag);
 | |
| 
 | |
| int skb_ensure_writable(struct sk_buff *skb, int write_len)
 | |
| {
 | |
| 	if (!pskb_may_pull(skb, write_len))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
 | |
| 		return 0;
 | |
| 
 | |
| 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
 | |
| }
 | |
| EXPORT_SYMBOL(skb_ensure_writable);
 | |
| 
 | |
| /* remove VLAN header from packet and update csum accordingly. */
 | |
| static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
 | |
| {
 | |
| 	struct vlan_hdr *vhdr;
 | |
| 	unsigned int offset = skb->data - skb_mac_header(skb);
 | |
| 	int err;
 | |
| 
 | |
| 	__skb_push(skb, offset);
 | |
| 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
 | |
| 	if (unlikely(err))
 | |
| 		goto pull;
 | |
| 
 | |
| 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
 | |
| 
 | |
| 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
 | |
| 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
 | |
| 
 | |
| 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
 | |
| 	__skb_pull(skb, VLAN_HLEN);
 | |
| 
 | |
| 	vlan_set_encap_proto(skb, vhdr);
 | |
| 	skb->mac_header += VLAN_HLEN;
 | |
| 
 | |
| 	if (skb_network_offset(skb) < ETH_HLEN)
 | |
| 		skb_set_network_header(skb, ETH_HLEN);
 | |
| 
 | |
| 	skb_reset_mac_len(skb);
 | |
| pull:
 | |
| 	__skb_pull(skb, offset);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int skb_vlan_pop(struct sk_buff *skb)
 | |
| {
 | |
| 	u16 vlan_tci;
 | |
| 	__be16 vlan_proto;
 | |
| 	int err;
 | |
| 
 | |
| 	if (likely(skb_vlan_tag_present(skb))) {
 | |
| 		skb->vlan_tci = 0;
 | |
| 	} else {
 | |
| 		if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
 | |
| 			      skb->protocol != htons(ETH_P_8021AD)) ||
 | |
| 			     skb->len < VLAN_ETH_HLEN))
 | |
| 			return 0;
 | |
| 
 | |
| 		err = __skb_vlan_pop(skb, &vlan_tci);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 	/* move next vlan tag to hw accel tag */
 | |
| 	if (likely((skb->protocol != htons(ETH_P_8021Q) &&
 | |
| 		    skb->protocol != htons(ETH_P_8021AD)) ||
 | |
| 		   skb->len < VLAN_ETH_HLEN))
 | |
| 		return 0;
 | |
| 
 | |
| 	vlan_proto = skb->protocol;
 | |
| 	err = __skb_vlan_pop(skb, &vlan_tci);
 | |
| 	if (unlikely(err))
 | |
| 		return err;
 | |
| 
 | |
| 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_vlan_pop);
 | |
| 
 | |
| int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
 | |
| {
 | |
| 	if (skb_vlan_tag_present(skb)) {
 | |
| 		unsigned int offset = skb->data - skb_mac_header(skb);
 | |
| 		int err;
 | |
| 
 | |
| 		/* __vlan_insert_tag expect skb->data pointing to mac header.
 | |
| 		 * So change skb->data before calling it and change back to
 | |
| 		 * original position later
 | |
| 		 */
 | |
| 		__skb_push(skb, offset);
 | |
| 		err = __vlan_insert_tag(skb, skb->vlan_proto,
 | |
| 					skb_vlan_tag_get(skb));
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		skb->protocol = skb->vlan_proto;
 | |
| 		skb->mac_len += VLAN_HLEN;
 | |
| 		__skb_pull(skb, offset);
 | |
| 
 | |
| 		if (skb->ip_summed == CHECKSUM_COMPLETE)
 | |
| 			skb->csum = csum_add(skb->csum, csum_partial(skb->data
 | |
| 					+ (2 * ETH_ALEN), VLAN_HLEN, 0));
 | |
| 	}
 | |
| 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(skb_vlan_push);
 | |
| 
 | |
| /**
 | |
|  * alloc_skb_with_frags - allocate skb with page frags
 | |
|  *
 | |
|  * @header_len: size of linear part
 | |
|  * @data_len: needed length in frags
 | |
|  * @max_page_order: max page order desired.
 | |
|  * @errcode: pointer to error code if any
 | |
|  * @gfp_mask: allocation mask
 | |
|  *
 | |
|  * This can be used to allocate a paged skb, given a maximal order for frags.
 | |
|  */
 | |
| struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
 | |
| 				     unsigned long data_len,
 | |
| 				     int max_page_order,
 | |
| 				     int *errcode,
 | |
| 				     gfp_t gfp_mask)
 | |
| {
 | |
| 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
 | |
| 	unsigned long chunk;
 | |
| 	struct sk_buff *skb;
 | |
| 	struct page *page;
 | |
| 	gfp_t gfp_head;
 | |
| 	int i;
 | |
| 
 | |
| 	*errcode = -EMSGSIZE;
 | |
| 	/* Note this test could be relaxed, if we succeed to allocate
 | |
| 	 * high order pages...
 | |
| 	 */
 | |
| 	if (npages > MAX_SKB_FRAGS)
 | |
| 		return NULL;
 | |
| 
 | |
| 	gfp_head = gfp_mask;
 | |
| 	if (gfp_head & __GFP_WAIT)
 | |
| 		gfp_head |= __GFP_REPEAT;
 | |
| 
 | |
| 	*errcode = -ENOBUFS;
 | |
| 	skb = alloc_skb(header_len, gfp_head);
 | |
| 	if (!skb)
 | |
| 		return NULL;
 | |
| 
 | |
| 	skb->truesize += npages << PAGE_SHIFT;
 | |
| 
 | |
| 	for (i = 0; npages > 0; i++) {
 | |
| 		int order = max_page_order;
 | |
| 
 | |
| 		while (order) {
 | |
| 			if (npages >= 1 << order) {
 | |
| 				page = alloc_pages((gfp_mask & ~__GFP_WAIT) |
 | |
| 						   __GFP_COMP |
 | |
| 						   __GFP_NOWARN |
 | |
| 						   __GFP_NORETRY,
 | |
| 						   order);
 | |
| 				if (page)
 | |
| 					goto fill_page;
 | |
| 				/* Do not retry other high order allocations */
 | |
| 				order = 1;
 | |
| 				max_page_order = 0;
 | |
| 			}
 | |
| 			order--;
 | |
| 		}
 | |
| 		page = alloc_page(gfp_mask);
 | |
| 		if (!page)
 | |
| 			goto failure;
 | |
| fill_page:
 | |
| 		chunk = min_t(unsigned long, data_len,
 | |
| 			      PAGE_SIZE << order);
 | |
| 		skb_fill_page_desc(skb, i, page, 0, chunk);
 | |
| 		data_len -= chunk;
 | |
| 		npages -= 1 << order;
 | |
| 	}
 | |
| 	return skb;
 | |
| 
 | |
| failure:
 | |
| 	kfree_skb(skb);
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(alloc_skb_with_frags);
 | 
