 02201e3f1b
			
		
	
	
	02201e3f1b
	
	
	
		
			
			Main excitement here is Peter Zijlstra's lockless rbtree optimization to
 speed module address lookup.  He found some abusers of the module lock
 doing that too.
 
 A little bit of parameter work here too; including Dan Streetman's breaking
 up the big param mutex so writing a parameter can load another module (yeah,
 really).  Unfortunately that broke the usual suspects, !CONFIG_MODULES and
 !CONFIG_SYSFS, so those fixes were appended too.
 
 Cheers,
 Rusty.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJVkgKHAAoJENkgDmzRrbjxQpwQAJVmBN6jF3SnwbQXv9vRixjH
 58V33sb1G1RW+kXxQ3/e8jLX/4VaN479CufruXQp+IJWXsN/CH0lbC3k8m7u50d7
 b1Zeqd/Yrh79rkc11b0X1698uGCSMlzz+V54Z0QOTEEX+nSu2ZZvccFS4UaHkn3z
 rqDo00lb7rxQz8U25qro2OZrG6D3ub2q20TkWUB8EO4AOHkPn8KWP2r429Axrr0K
 wlDWDTTt8/IsvPbuPf3T15RAhq1avkMXWn9nDXDjyWbpLfTn8NFnWmtesgY7Jl4t
 GjbXC5WYekX3w2ZDB9KaT/DAMQ1a7RbMXNSz4RX4VbzDl+yYeSLmIh2G9fZb1PbB
 PsIxrOgy4BquOWsJPm+zeFPSC3q9Cfu219L4AmxSjiZxC3dlosg5rIB892Mjoyv4
 qxmg6oiqtc4Jxv+Gl9lRFVOqyHZrTC5IJ+xgfv1EyP6kKMUKLlDZtxZAuQxpUyxR
 HZLq220RYnYSvkWauikq4M8fqFM8bdt6hLJnv7bVqllseROk9stCvjSiE3A9szH5
 OgtOfYV5GhOeb8pCZqJKlGDw+RoJ21jtNCgOr6DgkNKV9CX/kL/Puwv8gnA0B0eh
 dxCeB7f/gcLl7Cg3Z3gVVcGlgak6JWrLf5ITAJhBZ8Lv+AtL2DKmwEWS/iIMRmek
 tLdh/a9GiCitqS0bT7GE
 =tWPQ
 -----END PGP SIGNATURE-----
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull module updates from Rusty Russell:
 "Main excitement here is Peter Zijlstra's lockless rbtree optimization
  to speed module address lookup.  He found some abusers of the module
  lock doing that too.
  A little bit of parameter work here too; including Dan Streetman's
  breaking up the big param mutex so writing a parameter can load
  another module (yeah, really).  Unfortunately that broke the usual
  suspects, !CONFIG_MODULES and !CONFIG_SYSFS, so those fixes were
  appended too"
* tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (26 commits)
  modules: only use mod->param_lock if CONFIG_MODULES
  param: fix module param locks when !CONFIG_SYSFS.
  rcu: merge fix for Convert ACCESS_ONCE() to READ_ONCE() and WRITE_ONCE()
  module: add per-module param_lock
  module: make perm const
  params: suppress unused variable error, warn once just in case code changes.
  modules: clarify CONFIG_MODULE_COMPRESS help, suggest 'N'.
  kernel/module.c: avoid ifdefs for sig_enforce declaration
  kernel/workqueue.c: remove ifdefs over wq_power_efficient
  kernel/params.c: export param_ops_bool_enable_only
  kernel/params.c: generalize bool_enable_only
  kernel/module.c: use generic module param operaters for sig_enforce
  kernel/params: constify struct kernel_param_ops uses
  sysfs: tightened sysfs permission checks
  module: Rework module_addr_{min,max}
  module: Use __module_address() for module_address_lookup()
  module: Make the mod_tree stuff conditional on PERF_EVENTS || TRACING
  module: Optimize __module_address() using a latched RB-tree
  rbtree: Implement generic latch_tree
  seqlock: Introduce raw_read_seqcount_latch()
  ...
		
	
			
		
			
				
	
	
		
			2048 lines
		
	
	
	
		
			55 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2048 lines
		
	
	
	
		
			55 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/kernel/time/timekeeping.c
 | |
|  *
 | |
|  *  Kernel timekeeping code and accessor functions
 | |
|  *
 | |
|  *  This code was moved from linux/kernel/timer.c.
 | |
|  *  Please see that file for copyright and history logs.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/timekeeper_internal.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/syscore_ops.h>
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/stop_machine.h>
 | |
| #include <linux/pvclock_gtod.h>
 | |
| #include <linux/compiler.h>
 | |
| 
 | |
| #include "tick-internal.h"
 | |
| #include "ntp_internal.h"
 | |
| #include "timekeeping_internal.h"
 | |
| 
 | |
| #define TK_CLEAR_NTP		(1 << 0)
 | |
| #define TK_MIRROR		(1 << 1)
 | |
| #define TK_CLOCK_WAS_SET	(1 << 2)
 | |
| 
 | |
| /*
 | |
|  * The most important data for readout fits into a single 64 byte
 | |
|  * cache line.
 | |
|  */
 | |
| static struct {
 | |
| 	seqcount_t		seq;
 | |
| 	struct timekeeper	timekeeper;
 | |
| } tk_core ____cacheline_aligned;
 | |
| 
 | |
| static DEFINE_RAW_SPINLOCK(timekeeper_lock);
 | |
| static struct timekeeper shadow_timekeeper;
 | |
| 
 | |
| /**
 | |
|  * struct tk_fast - NMI safe timekeeper
 | |
|  * @seq:	Sequence counter for protecting updates. The lowest bit
 | |
|  *		is the index for the tk_read_base array
 | |
|  * @base:	tk_read_base array. Access is indexed by the lowest bit of
 | |
|  *		@seq.
 | |
|  *
 | |
|  * See @update_fast_timekeeper() below.
 | |
|  */
 | |
| struct tk_fast {
 | |
| 	seqcount_t		seq;
 | |
| 	struct tk_read_base	base[2];
 | |
| };
 | |
| 
 | |
| static struct tk_fast tk_fast_mono ____cacheline_aligned;
 | |
| static struct tk_fast tk_fast_raw  ____cacheline_aligned;
 | |
| 
 | |
| /* flag for if timekeeping is suspended */
 | |
| int __read_mostly timekeeping_suspended;
 | |
| 
 | |
| static inline void tk_normalize_xtime(struct timekeeper *tk)
 | |
| {
 | |
| 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
 | |
| 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
 | |
| 		tk->xtime_sec++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline struct timespec64 tk_xtime(struct timekeeper *tk)
 | |
| {
 | |
| 	struct timespec64 ts;
 | |
| 
 | |
| 	ts.tv_sec = tk->xtime_sec;
 | |
| 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 | |
| 	return ts;
 | |
| }
 | |
| 
 | |
| static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
 | |
| {
 | |
| 	tk->xtime_sec = ts->tv_sec;
 | |
| 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
 | |
| }
 | |
| 
 | |
| static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
 | |
| {
 | |
| 	tk->xtime_sec += ts->tv_sec;
 | |
| 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
 | |
| 	tk_normalize_xtime(tk);
 | |
| }
 | |
| 
 | |
| static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
 | |
| {
 | |
| 	struct timespec64 tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify consistency of: offset_real = -wall_to_monotonic
 | |
| 	 * before modifying anything
 | |
| 	 */
 | |
| 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
 | |
| 					-tk->wall_to_monotonic.tv_nsec);
 | |
| 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
 | |
| 	tk->wall_to_monotonic = wtm;
 | |
| 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
 | |
| 	tk->offs_real = timespec64_to_ktime(tmp);
 | |
| 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
 | |
| }
 | |
| 
 | |
| static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
 | |
| {
 | |
| 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_TIMEKEEPING
 | |
| #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
 | |
| 
 | |
| static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
 | |
| {
 | |
| 
 | |
| 	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
 | |
| 	const char *name = tk->tkr_mono.clock->name;
 | |
| 
 | |
| 	if (offset > max_cycles) {
 | |
| 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
 | |
| 				offset, name, max_cycles);
 | |
| 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
 | |
| 	} else {
 | |
| 		if (offset > (max_cycles >> 1)) {
 | |
| 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
 | |
| 					offset, name, max_cycles >> 1);
 | |
| 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (tk->underflow_seen) {
 | |
| 		if (jiffies - tk->last_warning > WARNING_FREQ) {
 | |
| 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
 | |
| 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 | |
| 			printk_deferred("         Your kernel is probably still fine.\n");
 | |
| 			tk->last_warning = jiffies;
 | |
| 		}
 | |
| 		tk->underflow_seen = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (tk->overflow_seen) {
 | |
| 		if (jiffies - tk->last_warning > WARNING_FREQ) {
 | |
| 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
 | |
| 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 | |
| 			printk_deferred("         Your kernel is probably still fine.\n");
 | |
| 			tk->last_warning = jiffies;
 | |
| 		}
 | |
| 		tk->overflow_seen = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	cycle_t now, last, mask, max, delta;
 | |
| 	unsigned int seq;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we're called holding a seqlock, the data may shift
 | |
| 	 * under us while we're doing the calculation. This can cause
 | |
| 	 * false positives, since we'd note a problem but throw the
 | |
| 	 * results away. So nest another seqlock here to atomically
 | |
| 	 * grab the points we are checking with.
 | |
| 	 */
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		now = tkr->read(tkr->clock);
 | |
| 		last = tkr->cycle_last;
 | |
| 		mask = tkr->mask;
 | |
| 		max = tkr->clock->max_cycles;
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	delta = clocksource_delta(now, last, mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to catch underflows by checking if we are seeing small
 | |
| 	 * mask-relative negative values.
 | |
| 	 */
 | |
| 	if (unlikely((~delta & mask) < (mask >> 3))) {
 | |
| 		tk->underflow_seen = 1;
 | |
| 		delta = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Cap delta value to the max_cycles values to avoid mult overflows */
 | |
| 	if (unlikely(delta > max)) {
 | |
| 		tk->overflow_seen = 1;
 | |
| 		delta = tkr->clock->max_cycles;
 | |
| 	}
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| #else
 | |
| static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
 | |
| {
 | |
| }
 | |
| static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
 | |
| {
 | |
| 	cycle_t cycle_now, delta;
 | |
| 
 | |
| 	/* read clocksource */
 | |
| 	cycle_now = tkr->read(tkr->clock);
 | |
| 
 | |
| 	/* calculate the delta since the last update_wall_time */
 | |
| 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * tk_setup_internals - Set up internals to use clocksource clock.
 | |
|  *
 | |
|  * @tk:		The target timekeeper to setup.
 | |
|  * @clock:		Pointer to clocksource.
 | |
|  *
 | |
|  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 | |
|  * pair and interval request.
 | |
|  *
 | |
|  * Unless you're the timekeeping code, you should not be using this!
 | |
|  */
 | |
| static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
 | |
| {
 | |
| 	cycle_t interval;
 | |
| 	u64 tmp, ntpinterval;
 | |
| 	struct clocksource *old_clock;
 | |
| 
 | |
| 	old_clock = tk->tkr_mono.clock;
 | |
| 	tk->tkr_mono.clock = clock;
 | |
| 	tk->tkr_mono.read = clock->read;
 | |
| 	tk->tkr_mono.mask = clock->mask;
 | |
| 	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
 | |
| 
 | |
| 	tk->tkr_raw.clock = clock;
 | |
| 	tk->tkr_raw.read = clock->read;
 | |
| 	tk->tkr_raw.mask = clock->mask;
 | |
| 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
 | |
| 
 | |
| 	/* Do the ns -> cycle conversion first, using original mult */
 | |
| 	tmp = NTP_INTERVAL_LENGTH;
 | |
| 	tmp <<= clock->shift;
 | |
| 	ntpinterval = tmp;
 | |
| 	tmp += clock->mult/2;
 | |
| 	do_div(tmp, clock->mult);
 | |
| 	if (tmp == 0)
 | |
| 		tmp = 1;
 | |
| 
 | |
| 	interval = (cycle_t) tmp;
 | |
| 	tk->cycle_interval = interval;
 | |
| 
 | |
| 	/* Go back from cycles -> shifted ns */
 | |
| 	tk->xtime_interval = (u64) interval * clock->mult;
 | |
| 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
 | |
| 	tk->raw_interval =
 | |
| 		((u64) interval * clock->mult) >> clock->shift;
 | |
| 
 | |
| 	 /* if changing clocks, convert xtime_nsec shift units */
 | |
| 	if (old_clock) {
 | |
| 		int shift_change = clock->shift - old_clock->shift;
 | |
| 		if (shift_change < 0)
 | |
| 			tk->tkr_mono.xtime_nsec >>= -shift_change;
 | |
| 		else
 | |
| 			tk->tkr_mono.xtime_nsec <<= shift_change;
 | |
| 	}
 | |
| 	tk->tkr_raw.xtime_nsec = 0;
 | |
| 
 | |
| 	tk->tkr_mono.shift = clock->shift;
 | |
| 	tk->tkr_raw.shift = clock->shift;
 | |
| 
 | |
| 	tk->ntp_error = 0;
 | |
| 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
 | |
| 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
 | |
| 
 | |
| 	/*
 | |
| 	 * The timekeeper keeps its own mult values for the currently
 | |
| 	 * active clocksource. These value will be adjusted via NTP
 | |
| 	 * to counteract clock drifting.
 | |
| 	 */
 | |
| 	tk->tkr_mono.mult = clock->mult;
 | |
| 	tk->tkr_raw.mult = clock->mult;
 | |
| 	tk->ntp_err_mult = 0;
 | |
| }
 | |
| 
 | |
| /* Timekeeper helper functions. */
 | |
| 
 | |
| #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 | |
| static u32 default_arch_gettimeoffset(void) { return 0; }
 | |
| u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
 | |
| #else
 | |
| static inline u32 arch_gettimeoffset(void) { return 0; }
 | |
| #endif
 | |
| 
 | |
| static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
 | |
| {
 | |
| 	cycle_t delta;
 | |
| 	s64 nsec;
 | |
| 
 | |
| 	delta = timekeeping_get_delta(tkr);
 | |
| 
 | |
| 	nsec = delta * tkr->mult + tkr->xtime_nsec;
 | |
| 	nsec >>= tkr->shift;
 | |
| 
 | |
| 	/* If arch requires, add in get_arch_timeoffset() */
 | |
| 	return nsec + arch_gettimeoffset();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 | |
|  * @tkr: Timekeeping readout base from which we take the update
 | |
|  *
 | |
|  * We want to use this from any context including NMI and tracing /
 | |
|  * instrumenting the timekeeping code itself.
 | |
|  *
 | |
|  * Employ the latch technique; see @raw_write_seqcount_latch.
 | |
|  *
 | |
|  * So if a NMI hits the update of base[0] then it will use base[1]
 | |
|  * which is still consistent. In the worst case this can result is a
 | |
|  * slightly wrong timestamp (a few nanoseconds). See
 | |
|  * @ktime_get_mono_fast_ns.
 | |
|  */
 | |
| static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
 | |
| {
 | |
| 	struct tk_read_base *base = tkf->base;
 | |
| 
 | |
| 	/* Force readers off to base[1] */
 | |
| 	raw_write_seqcount_latch(&tkf->seq);
 | |
| 
 | |
| 	/* Update base[0] */
 | |
| 	memcpy(base, tkr, sizeof(*base));
 | |
| 
 | |
| 	/* Force readers back to base[0] */
 | |
| 	raw_write_seqcount_latch(&tkf->seq);
 | |
| 
 | |
| 	/* Update base[1] */
 | |
| 	memcpy(base + 1, base, sizeof(*base));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 | |
|  *
 | |
|  * This timestamp is not guaranteed to be monotonic across an update.
 | |
|  * The timestamp is calculated by:
 | |
|  *
 | |
|  *	now = base_mono + clock_delta * slope
 | |
|  *
 | |
|  * So if the update lowers the slope, readers who are forced to the
 | |
|  * not yet updated second array are still using the old steeper slope.
 | |
|  *
 | |
|  * tmono
 | |
|  * ^
 | |
|  * |    o  n
 | |
|  * |   o n
 | |
|  * |  u
 | |
|  * | o
 | |
|  * |o
 | |
|  * |12345678---> reader order
 | |
|  *
 | |
|  * o = old slope
 | |
|  * u = update
 | |
|  * n = new slope
 | |
|  *
 | |
|  * So reader 6 will observe time going backwards versus reader 5.
 | |
|  *
 | |
|  * While other CPUs are likely to be able observe that, the only way
 | |
|  * for a CPU local observation is when an NMI hits in the middle of
 | |
|  * the update. Timestamps taken from that NMI context might be ahead
 | |
|  * of the following timestamps. Callers need to be aware of that and
 | |
|  * deal with it.
 | |
|  */
 | |
| static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
 | |
| {
 | |
| 	struct tk_read_base *tkr;
 | |
| 	unsigned int seq;
 | |
| 	u64 now;
 | |
| 
 | |
| 	do {
 | |
| 		seq = raw_read_seqcount_latch(&tkf->seq);
 | |
| 		tkr = tkf->base + (seq & 0x01);
 | |
| 		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
 | |
| 	} while (read_seqcount_retry(&tkf->seq, seq));
 | |
| 
 | |
| 	return now;
 | |
| }
 | |
| 
 | |
| u64 ktime_get_mono_fast_ns(void)
 | |
| {
 | |
| 	return __ktime_get_fast_ns(&tk_fast_mono);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
 | |
| 
 | |
| u64 ktime_get_raw_fast_ns(void)
 | |
| {
 | |
| 	return __ktime_get_fast_ns(&tk_fast_raw);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
 | |
| 
 | |
| /* Suspend-time cycles value for halted fast timekeeper. */
 | |
| static cycle_t cycles_at_suspend;
 | |
| 
 | |
| static cycle_t dummy_clock_read(struct clocksource *cs)
 | |
| {
 | |
| 	return cycles_at_suspend;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 | |
|  * @tk: Timekeeper to snapshot.
 | |
|  *
 | |
|  * It generally is unsafe to access the clocksource after timekeeping has been
 | |
|  * suspended, so take a snapshot of the readout base of @tk and use it as the
 | |
|  * fast timekeeper's readout base while suspended.  It will return the same
 | |
|  * number of cycles every time until timekeeping is resumed at which time the
 | |
|  * proper readout base for the fast timekeeper will be restored automatically.
 | |
|  */
 | |
| static void halt_fast_timekeeper(struct timekeeper *tk)
 | |
| {
 | |
| 	static struct tk_read_base tkr_dummy;
 | |
| 	struct tk_read_base *tkr = &tk->tkr_mono;
 | |
| 
 | |
| 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 | |
| 	cycles_at_suspend = tkr->read(tkr->clock);
 | |
| 	tkr_dummy.read = dummy_clock_read;
 | |
| 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
 | |
| 
 | |
| 	tkr = &tk->tkr_raw;
 | |
| 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 | |
| 	tkr_dummy.read = dummy_clock_read;
 | |
| 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
 | |
| 
 | |
| static inline void update_vsyscall(struct timekeeper *tk)
 | |
| {
 | |
| 	struct timespec xt, wm;
 | |
| 
 | |
| 	xt = timespec64_to_timespec(tk_xtime(tk));
 | |
| 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
 | |
| 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
 | |
| 			    tk->tkr_mono.cycle_last);
 | |
| }
 | |
| 
 | |
| static inline void old_vsyscall_fixup(struct timekeeper *tk)
 | |
| {
 | |
| 	s64 remainder;
 | |
| 
 | |
| 	/*
 | |
| 	* Store only full nanoseconds into xtime_nsec after rounding
 | |
| 	* it up and add the remainder to the error difference.
 | |
| 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
 | |
| 	* by truncating the remainder in vsyscalls. However, it causes
 | |
| 	* additional work to be done in timekeeping_adjust(). Once
 | |
| 	* the vsyscall implementations are converted to use xtime_nsec
 | |
| 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
 | |
| 	* users are removed, this can be killed.
 | |
| 	*/
 | |
| 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
 | |
| 	tk->tkr_mono.xtime_nsec -= remainder;
 | |
| 	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
 | |
| 	tk->ntp_error += remainder << tk->ntp_error_shift;
 | |
| 	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
 | |
| }
 | |
| #else
 | |
| #define old_vsyscall_fixup(tk)
 | |
| #endif
 | |
| 
 | |
| static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
 | |
| 
 | |
| static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
 | |
| {
 | |
| 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 | |
|  */
 | |
| int pvclock_gtod_register_notifier(struct notifier_block *nb)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
 | |
| 	update_pvclock_gtod(tk, true);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
 | |
| 
 | |
| /**
 | |
|  * pvclock_gtod_unregister_notifier - unregister a pvclock
 | |
|  * timedata update listener
 | |
|  */
 | |
| int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
 | |
| 
 | |
| /*
 | |
|  * tk_update_leap_state - helper to update the next_leap_ktime
 | |
|  */
 | |
| static inline void tk_update_leap_state(struct timekeeper *tk)
 | |
| {
 | |
| 	tk->next_leap_ktime = ntp_get_next_leap();
 | |
| 	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
 | |
| 		/* Convert to monotonic time */
 | |
| 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the ktime_t based scalar nsec members of the timekeeper
 | |
|  */
 | |
| static inline void tk_update_ktime_data(struct timekeeper *tk)
 | |
| {
 | |
| 	u64 seconds;
 | |
| 	u32 nsec;
 | |
| 
 | |
| 	/*
 | |
| 	 * The xtime based monotonic readout is:
 | |
| 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
 | |
| 	 * The ktime based monotonic readout is:
 | |
| 	 *	nsec = base_mono + now();
 | |
| 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
 | |
| 	 */
 | |
| 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
 | |
| 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
 | |
| 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
 | |
| 
 | |
| 	/* Update the monotonic raw base */
 | |
| 	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
 | |
| 
 | |
| 	/*
 | |
| 	 * The sum of the nanoseconds portions of xtime and
 | |
| 	 * wall_to_monotonic can be greater/equal one second. Take
 | |
| 	 * this into account before updating tk->ktime_sec.
 | |
| 	 */
 | |
| 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 | |
| 	if (nsec >= NSEC_PER_SEC)
 | |
| 		seconds++;
 | |
| 	tk->ktime_sec = seconds;
 | |
| }
 | |
| 
 | |
| /* must hold timekeeper_lock */
 | |
| static void timekeeping_update(struct timekeeper *tk, unsigned int action)
 | |
| {
 | |
| 	if (action & TK_CLEAR_NTP) {
 | |
| 		tk->ntp_error = 0;
 | |
| 		ntp_clear();
 | |
| 	}
 | |
| 
 | |
| 	tk_update_leap_state(tk);
 | |
| 	tk_update_ktime_data(tk);
 | |
| 
 | |
| 	update_vsyscall(tk);
 | |
| 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
 | |
| 
 | |
| 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
 | |
| 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
 | |
| 
 | |
| 	if (action & TK_CLOCK_WAS_SET)
 | |
| 		tk->clock_was_set_seq++;
 | |
| 	/*
 | |
| 	 * The mirroring of the data to the shadow-timekeeper needs
 | |
| 	 * to happen last here to ensure we don't over-write the
 | |
| 	 * timekeeper structure on the next update with stale data
 | |
| 	 */
 | |
| 	if (action & TK_MIRROR)
 | |
| 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
 | |
| 		       sizeof(tk_core.timekeeper));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * timekeeping_forward_now - update clock to the current time
 | |
|  *
 | |
|  * Forward the current clock to update its state since the last call to
 | |
|  * update_wall_time(). This is useful before significant clock changes,
 | |
|  * as it avoids having to deal with this time offset explicitly.
 | |
|  */
 | |
| static void timekeeping_forward_now(struct timekeeper *tk)
 | |
| {
 | |
| 	struct clocksource *clock = tk->tkr_mono.clock;
 | |
| 	cycle_t cycle_now, delta;
 | |
| 	s64 nsec;
 | |
| 
 | |
| 	cycle_now = tk->tkr_mono.read(clock);
 | |
| 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 | |
| 	tk->tkr_mono.cycle_last = cycle_now;
 | |
| 	tk->tkr_raw.cycle_last  = cycle_now;
 | |
| 
 | |
| 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
 | |
| 
 | |
| 	/* If arch requires, add in get_arch_timeoffset() */
 | |
| 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
 | |
| 
 | |
| 	tk_normalize_xtime(tk);
 | |
| 
 | |
| 	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
 | |
| 	timespec64_add_ns(&tk->raw_time, nsec);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __getnstimeofday64 - Returns the time of day in a timespec64.
 | |
|  * @ts:		pointer to the timespec to be set
 | |
|  *
 | |
|  * Updates the time of day in the timespec.
 | |
|  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
 | |
|  */
 | |
| int __getnstimeofday64(struct timespec64 *ts)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned long seq;
 | |
| 	s64 nsecs = 0;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 		ts->tv_sec = tk->xtime_sec;
 | |
| 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	ts->tv_nsec = 0;
 | |
| 	timespec64_add_ns(ts, nsecs);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not bail out early, in case there were callers still using
 | |
| 	 * the value, even in the face of the WARN_ON.
 | |
| 	 */
 | |
| 	if (unlikely(timekeeping_suspended))
 | |
| 		return -EAGAIN;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(__getnstimeofday64);
 | |
| 
 | |
| /**
 | |
|  * getnstimeofday64 - Returns the time of day in a timespec64.
 | |
|  * @ts:		pointer to the timespec64 to be set
 | |
|  *
 | |
|  * Returns the time of day in a timespec64 (WARN if suspended).
 | |
|  */
 | |
| void getnstimeofday64(struct timespec64 *ts)
 | |
| {
 | |
| 	WARN_ON(__getnstimeofday64(ts));
 | |
| }
 | |
| EXPORT_SYMBOL(getnstimeofday64);
 | |
| 
 | |
| ktime_t ktime_get(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	ktime_t base;
 | |
| 	s64 nsecs;
 | |
| 
 | |
| 	WARN_ON(timekeeping_suspended);
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		base = tk->tkr_mono.base;
 | |
| 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return ktime_add_ns(base, nsecs);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get);
 | |
| 
 | |
| u32 ktime_get_resolution_ns(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	u32 nsecs;
 | |
| 
 | |
| 	WARN_ON(timekeeping_suspended);
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return nsecs;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
 | |
| 
 | |
| static ktime_t *offsets[TK_OFFS_MAX] = {
 | |
| 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
 | |
| 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
 | |
| 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
 | |
| };
 | |
| 
 | |
| ktime_t ktime_get_with_offset(enum tk_offsets offs)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	ktime_t base, *offset = offsets[offs];
 | |
| 	s64 nsecs;
 | |
| 
 | |
| 	WARN_ON(timekeeping_suspended);
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		base = ktime_add(tk->tkr_mono.base, *offset);
 | |
| 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return ktime_add_ns(base, nsecs);
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_with_offset);
 | |
| 
 | |
| /**
 | |
|  * ktime_mono_to_any() - convert mononotic time to any other time
 | |
|  * @tmono:	time to convert.
 | |
|  * @offs:	which offset to use
 | |
|  */
 | |
| ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
 | |
| {
 | |
| 	ktime_t *offset = offsets[offs];
 | |
| 	unsigned long seq;
 | |
| 	ktime_t tconv;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		tconv = ktime_add(tmono, *offset);
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return tconv;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_mono_to_any);
 | |
| 
 | |
| /**
 | |
|  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 | |
|  */
 | |
| ktime_t ktime_get_raw(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	ktime_t base;
 | |
| 	s64 nsecs;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		base = tk->tkr_raw.base;
 | |
| 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return ktime_add_ns(base, nsecs);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_raw);
 | |
| 
 | |
| /**
 | |
|  * ktime_get_ts64 - get the monotonic clock in timespec64 format
 | |
|  * @ts:		pointer to timespec variable
 | |
|  *
 | |
|  * The function calculates the monotonic clock from the realtime
 | |
|  * clock and the wall_to_monotonic offset and stores the result
 | |
|  * in normalized timespec64 format in the variable pointed to by @ts.
 | |
|  */
 | |
| void ktime_get_ts64(struct timespec64 *ts)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	struct timespec64 tomono;
 | |
| 	s64 nsec;
 | |
| 	unsigned int seq;
 | |
| 
 | |
| 	WARN_ON(timekeeping_suspended);
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		ts->tv_sec = tk->xtime_sec;
 | |
| 		nsec = timekeeping_get_ns(&tk->tkr_mono);
 | |
| 		tomono = tk->wall_to_monotonic;
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	ts->tv_sec += tomono.tv_sec;
 | |
| 	ts->tv_nsec = 0;
 | |
| 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_ts64);
 | |
| 
 | |
| /**
 | |
|  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 | |
|  *
 | |
|  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 | |
|  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 | |
|  * works on both 32 and 64 bit systems. On 32 bit systems the readout
 | |
|  * covers ~136 years of uptime which should be enough to prevent
 | |
|  * premature wrap arounds.
 | |
|  */
 | |
| time64_t ktime_get_seconds(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 
 | |
| 	WARN_ON(timekeeping_suspended);
 | |
| 	return tk->ktime_sec;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_seconds);
 | |
| 
 | |
| /**
 | |
|  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 | |
|  *
 | |
|  * Returns the wall clock seconds since 1970. This replaces the
 | |
|  * get_seconds() interface which is not y2038 safe on 32bit systems.
 | |
|  *
 | |
|  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 | |
|  * 32bit systems the access must be protected with the sequence
 | |
|  * counter to provide "atomic" access to the 64bit tk->xtime_sec
 | |
|  * value.
 | |
|  */
 | |
| time64_t ktime_get_real_seconds(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	time64_t seconds;
 | |
| 	unsigned int seq;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_64BIT))
 | |
| 		return tk->xtime_sec;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		seconds = tk->xtime_sec;
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return seconds;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
 | |
| 
 | |
| #ifdef CONFIG_NTP_PPS
 | |
| 
 | |
| /**
 | |
|  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 | |
|  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 | |
|  * @ts_real:	pointer to the timespec to be set to the time of day
 | |
|  *
 | |
|  * This function reads both the time of day and raw monotonic time at the
 | |
|  * same time atomically and stores the resulting timestamps in timespec
 | |
|  * format.
 | |
|  */
 | |
| void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned long seq;
 | |
| 	s64 nsecs_raw, nsecs_real;
 | |
| 
 | |
| 	WARN_ON_ONCE(timekeeping_suspended);
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 		*ts_raw = timespec64_to_timespec(tk->raw_time);
 | |
| 		ts_real->tv_sec = tk->xtime_sec;
 | |
| 		ts_real->tv_nsec = 0;
 | |
| 
 | |
| 		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
 | |
| 		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	timespec_add_ns(ts_raw, nsecs_raw);
 | |
| 	timespec_add_ns(ts_real, nsecs_real);
 | |
| }
 | |
| EXPORT_SYMBOL(getnstime_raw_and_real);
 | |
| 
 | |
| #endif /* CONFIG_NTP_PPS */
 | |
| 
 | |
| /**
 | |
|  * do_gettimeofday - Returns the time of day in a timeval
 | |
|  * @tv:		pointer to the timeval to be set
 | |
|  *
 | |
|  * NOTE: Users should be converted to using getnstimeofday()
 | |
|  */
 | |
| void do_gettimeofday(struct timeval *tv)
 | |
| {
 | |
| 	struct timespec64 now;
 | |
| 
 | |
| 	getnstimeofday64(&now);
 | |
| 	tv->tv_sec = now.tv_sec;
 | |
| 	tv->tv_usec = now.tv_nsec/1000;
 | |
| }
 | |
| EXPORT_SYMBOL(do_gettimeofday);
 | |
| 
 | |
| /**
 | |
|  * do_settimeofday64 - Sets the time of day.
 | |
|  * @ts:     pointer to the timespec64 variable containing the new time
 | |
|  *
 | |
|  * Sets the time of day to the new time and update NTP and notify hrtimers
 | |
|  */
 | |
| int do_settimeofday64(const struct timespec64 *ts)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	struct timespec64 ts_delta, xt;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!timespec64_valid_strict(ts))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 	timekeeping_forward_now(tk);
 | |
| 
 | |
| 	xt = tk_xtime(tk);
 | |
| 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
 | |
| 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
 | |
| 
 | |
| 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
 | |
| 
 | |
| 	tk_set_xtime(tk, ts);
 | |
| 
 | |
| 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 | |
| 
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	/* signal hrtimers about time change */
 | |
| 	clock_was_set();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(do_settimeofday64);
 | |
| 
 | |
| /**
 | |
|  * timekeeping_inject_offset - Adds or subtracts from the current time.
 | |
|  * @tv:		pointer to the timespec variable containing the offset
 | |
|  *
 | |
|  * Adds or subtracts an offset value from the current time.
 | |
|  */
 | |
| int timekeeping_inject_offset(struct timespec *ts)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned long flags;
 | |
| 	struct timespec64 ts64, tmp;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ts64 = timespec_to_timespec64(*ts);
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 	timekeeping_forward_now(tk);
 | |
| 
 | |
| 	/* Make sure the proposed value is valid */
 | |
| 	tmp = timespec64_add(tk_xtime(tk),  ts64);
 | |
| 	if (!timespec64_valid_strict(&tmp)) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	tk_xtime_add(tk, &ts64);
 | |
| 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
 | |
| 
 | |
| error: /* even if we error out, we forwarded the time, so call update */
 | |
| 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 | |
| 
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	/* signal hrtimers about time change */
 | |
| 	clock_was_set();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(timekeeping_inject_offset);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 | |
|  *
 | |
|  */
 | |
| s32 timekeeping_get_tai_offset(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	s32 ret;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		ret = tk->tai_offset;
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __timekeeping_set_tai_offset - Lock free worker function
 | |
|  *
 | |
|  */
 | |
| static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
 | |
| {
 | |
| 	tk->tai_offset = tai_offset;
 | |
| 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 | |
|  *
 | |
|  */
 | |
| void timekeeping_set_tai_offset(s32 tai_offset)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 	__timekeeping_set_tai_offset(tk, tai_offset);
 | |
| 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 	clock_was_set();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * change_clocksource - Swaps clocksources if a new one is available
 | |
|  *
 | |
|  * Accumulates current time interval and initializes new clocksource
 | |
|  */
 | |
| static int change_clocksource(void *data)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	struct clocksource *new, *old;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	new = (struct clocksource *) data;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 	timekeeping_forward_now(tk);
 | |
| 	/*
 | |
| 	 * If the cs is in module, get a module reference. Succeeds
 | |
| 	 * for built-in code (owner == NULL) as well.
 | |
| 	 */
 | |
| 	if (try_module_get(new->owner)) {
 | |
| 		if (!new->enable || new->enable(new) == 0) {
 | |
| 			old = tk->tkr_mono.clock;
 | |
| 			tk_setup_internals(tk, new);
 | |
| 			if (old->disable)
 | |
| 				old->disable(old);
 | |
| 			module_put(old->owner);
 | |
| 		} else {
 | |
| 			module_put(new->owner);
 | |
| 		}
 | |
| 	}
 | |
| 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 | |
| 
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * timekeeping_notify - Install a new clock source
 | |
|  * @clock:		pointer to the clock source
 | |
|  *
 | |
|  * This function is called from clocksource.c after a new, better clock
 | |
|  * source has been registered. The caller holds the clocksource_mutex.
 | |
|  */
 | |
| int timekeeping_notify(struct clocksource *clock)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 
 | |
| 	if (tk->tkr_mono.clock == clock)
 | |
| 		return 0;
 | |
| 	stop_machine(change_clocksource, clock, NULL);
 | |
| 	tick_clock_notify();
 | |
| 	return tk->tkr_mono.clock == clock ? 0 : -1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 | |
|  * @ts:		pointer to the timespec64 to be set
 | |
|  *
 | |
|  * Returns the raw monotonic time (completely un-modified by ntp)
 | |
|  */
 | |
| void getrawmonotonic64(struct timespec64 *ts)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	struct timespec64 ts64;
 | |
| 	unsigned long seq;
 | |
| 	s64 nsecs;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
 | |
| 		ts64 = tk->raw_time;
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	timespec64_add_ns(&ts64, nsecs);
 | |
| 	*ts = ts64;
 | |
| }
 | |
| EXPORT_SYMBOL(getrawmonotonic64);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
 | |
|  */
 | |
| int timekeeping_valid_for_hres(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned long seq;
 | |
| 	int ret;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 | |
|  */
 | |
| u64 timekeeping_max_deferment(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned long seq;
 | |
| 	u64 ret;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 		ret = tk->tkr_mono.clock->max_idle_ns;
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * read_persistent_clock -  Return time from the persistent clock.
 | |
|  *
 | |
|  * Weak dummy function for arches that do not yet support it.
 | |
|  * Reads the time from the battery backed persistent clock.
 | |
|  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 | |
|  *
 | |
|  *  XXX - Do be sure to remove it once all arches implement it.
 | |
|  */
 | |
| void __weak read_persistent_clock(struct timespec *ts)
 | |
| {
 | |
| 	ts->tv_sec = 0;
 | |
| 	ts->tv_nsec = 0;
 | |
| }
 | |
| 
 | |
| void __weak read_persistent_clock64(struct timespec64 *ts64)
 | |
| {
 | |
| 	struct timespec ts;
 | |
| 
 | |
| 	read_persistent_clock(&ts);
 | |
| 	*ts64 = timespec_to_timespec64(ts);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * read_boot_clock64 -  Return time of the system start.
 | |
|  *
 | |
|  * Weak dummy function for arches that do not yet support it.
 | |
|  * Function to read the exact time the system has been started.
 | |
|  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
 | |
|  *
 | |
|  *  XXX - Do be sure to remove it once all arches implement it.
 | |
|  */
 | |
| void __weak read_boot_clock64(struct timespec64 *ts)
 | |
| {
 | |
| 	ts->tv_sec = 0;
 | |
| 	ts->tv_nsec = 0;
 | |
| }
 | |
| 
 | |
| /* Flag for if timekeeping_resume() has injected sleeptime */
 | |
| static bool sleeptime_injected;
 | |
| 
 | |
| /* Flag for if there is a persistent clock on this platform */
 | |
| static bool persistent_clock_exists;
 | |
| 
 | |
| /*
 | |
|  * timekeeping_init - Initializes the clocksource and common timekeeping values
 | |
|  */
 | |
| void __init timekeeping_init(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	struct clocksource *clock;
 | |
| 	unsigned long flags;
 | |
| 	struct timespec64 now, boot, tmp;
 | |
| 
 | |
| 	read_persistent_clock64(&now);
 | |
| 	if (!timespec64_valid_strict(&now)) {
 | |
| 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
 | |
| 			"         Check your CMOS/BIOS settings.\n");
 | |
| 		now.tv_sec = 0;
 | |
| 		now.tv_nsec = 0;
 | |
| 	} else if (now.tv_sec || now.tv_nsec)
 | |
| 		persistent_clock_exists = true;
 | |
| 
 | |
| 	read_boot_clock64(&boot);
 | |
| 	if (!timespec64_valid_strict(&boot)) {
 | |
| 		pr_warn("WARNING: Boot clock returned invalid value!\n"
 | |
| 			"         Check your CMOS/BIOS settings.\n");
 | |
| 		boot.tv_sec = 0;
 | |
| 		boot.tv_nsec = 0;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 	ntp_init();
 | |
| 
 | |
| 	clock = clocksource_default_clock();
 | |
| 	if (clock->enable)
 | |
| 		clock->enable(clock);
 | |
| 	tk_setup_internals(tk, clock);
 | |
| 
 | |
| 	tk_set_xtime(tk, &now);
 | |
| 	tk->raw_time.tv_sec = 0;
 | |
| 	tk->raw_time.tv_nsec = 0;
 | |
| 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
 | |
| 		boot = tk_xtime(tk);
 | |
| 
 | |
| 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
 | |
| 	tk_set_wall_to_mono(tk, tmp);
 | |
| 
 | |
| 	timekeeping_update(tk, TK_MIRROR);
 | |
| 
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| }
 | |
| 
 | |
| /* time in seconds when suspend began for persistent clock */
 | |
| static struct timespec64 timekeeping_suspend_time;
 | |
| 
 | |
| /**
 | |
|  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 | |
|  * @delta: pointer to a timespec delta value
 | |
|  *
 | |
|  * Takes a timespec offset measuring a suspend interval and properly
 | |
|  * adds the sleep offset to the timekeeping variables.
 | |
|  */
 | |
| static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
 | |
| 					   struct timespec64 *delta)
 | |
| {
 | |
| 	if (!timespec64_valid_strict(delta)) {
 | |
| 		printk_deferred(KERN_WARNING
 | |
| 				"__timekeeping_inject_sleeptime: Invalid "
 | |
| 				"sleep delta value!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	tk_xtime_add(tk, delta);
 | |
| 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
 | |
| 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
 | |
| 	tk_debug_account_sleep_time(delta);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
 | |
| /**
 | |
|  * We have three kinds of time sources to use for sleep time
 | |
|  * injection, the preference order is:
 | |
|  * 1) non-stop clocksource
 | |
|  * 2) persistent clock (ie: RTC accessible when irqs are off)
 | |
|  * 3) RTC
 | |
|  *
 | |
|  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 | |
|  * If system has neither 1) nor 2), 3) will be used finally.
 | |
|  *
 | |
|  *
 | |
|  * If timekeeping has injected sleeptime via either 1) or 2),
 | |
|  * 3) becomes needless, so in this case we don't need to call
 | |
|  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 | |
|  * means.
 | |
|  */
 | |
| bool timekeeping_rtc_skipresume(void)
 | |
| {
 | |
| 	return sleeptime_injected;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 1) can be determined whether to use or not only when doing
 | |
|  * timekeeping_resume() which is invoked after rtc_suspend(),
 | |
|  * so we can't skip rtc_suspend() surely if system has 1).
 | |
|  *
 | |
|  * But if system has 2), 2) will definitely be used, so in this
 | |
|  * case we don't need to call rtc_suspend(), and this is what
 | |
|  * timekeeping_rtc_skipsuspend() means.
 | |
|  */
 | |
| bool timekeeping_rtc_skipsuspend(void)
 | |
| {
 | |
| 	return persistent_clock_exists;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 | |
|  * @delta: pointer to a timespec64 delta value
 | |
|  *
 | |
|  * This hook is for architectures that cannot support read_persistent_clock64
 | |
|  * because their RTC/persistent clock is only accessible when irqs are enabled.
 | |
|  * and also don't have an effective nonstop clocksource.
 | |
|  *
 | |
|  * This function should only be called by rtc_resume(), and allows
 | |
|  * a suspend offset to be injected into the timekeeping values.
 | |
|  */
 | |
| void timekeeping_inject_sleeptime64(struct timespec64 *delta)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 	timekeeping_forward_now(tk);
 | |
| 
 | |
| 	__timekeeping_inject_sleeptime(tk, delta);
 | |
| 
 | |
| 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 | |
| 
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	/* signal hrtimers about time change */
 | |
| 	clock_was_set();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * timekeeping_resume - Resumes the generic timekeeping subsystem.
 | |
|  */
 | |
| void timekeeping_resume(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	struct clocksource *clock = tk->tkr_mono.clock;
 | |
| 	unsigned long flags;
 | |
| 	struct timespec64 ts_new, ts_delta;
 | |
| 	cycle_t cycle_now, cycle_delta;
 | |
| 
 | |
| 	sleeptime_injected = false;
 | |
| 	read_persistent_clock64(&ts_new);
 | |
| 
 | |
| 	clockevents_resume();
 | |
| 	clocksource_resume();
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 	/*
 | |
| 	 * After system resumes, we need to calculate the suspended time and
 | |
| 	 * compensate it for the OS time. There are 3 sources that could be
 | |
| 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
 | |
| 	 * device.
 | |
| 	 *
 | |
| 	 * One specific platform may have 1 or 2 or all of them, and the
 | |
| 	 * preference will be:
 | |
| 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
 | |
| 	 * The less preferred source will only be tried if there is no better
 | |
| 	 * usable source. The rtc part is handled separately in rtc core code.
 | |
| 	 */
 | |
| 	cycle_now = tk->tkr_mono.read(clock);
 | |
| 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
 | |
| 		cycle_now > tk->tkr_mono.cycle_last) {
 | |
| 		u64 num, max = ULLONG_MAX;
 | |
| 		u32 mult = clock->mult;
 | |
| 		u32 shift = clock->shift;
 | |
| 		s64 nsec = 0;
 | |
| 
 | |
| 		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
 | |
| 						tk->tkr_mono.mask);
 | |
| 
 | |
| 		/*
 | |
| 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
 | |
| 		 * suspended time is too long. In that case we need do the
 | |
| 		 * 64 bits math carefully
 | |
| 		 */
 | |
| 		do_div(max, mult);
 | |
| 		if (cycle_delta > max) {
 | |
| 			num = div64_u64(cycle_delta, max);
 | |
| 			nsec = (((u64) max * mult) >> shift) * num;
 | |
| 			cycle_delta -= num * max;
 | |
| 		}
 | |
| 		nsec += ((u64) cycle_delta * mult) >> shift;
 | |
| 
 | |
| 		ts_delta = ns_to_timespec64(nsec);
 | |
| 		sleeptime_injected = true;
 | |
| 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
 | |
| 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
 | |
| 		sleeptime_injected = true;
 | |
| 	}
 | |
| 
 | |
| 	if (sleeptime_injected)
 | |
| 		__timekeeping_inject_sleeptime(tk, &ts_delta);
 | |
| 
 | |
| 	/* Re-base the last cycle value */
 | |
| 	tk->tkr_mono.cycle_last = cycle_now;
 | |
| 	tk->tkr_raw.cycle_last  = cycle_now;
 | |
| 
 | |
| 	tk->ntp_error = 0;
 | |
| 	timekeeping_suspended = 0;
 | |
| 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	touch_softlockup_watchdog();
 | |
| 
 | |
| 	tick_resume();
 | |
| 	hrtimers_resume();
 | |
| }
 | |
| 
 | |
| int timekeeping_suspend(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned long flags;
 | |
| 	struct timespec64		delta, delta_delta;
 | |
| 	static struct timespec64	old_delta;
 | |
| 
 | |
| 	read_persistent_clock64(&timekeeping_suspend_time);
 | |
| 
 | |
| 	/*
 | |
| 	 * On some systems the persistent_clock can not be detected at
 | |
| 	 * timekeeping_init by its return value, so if we see a valid
 | |
| 	 * value returned, update the persistent_clock_exists flag.
 | |
| 	 */
 | |
| 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
 | |
| 		persistent_clock_exists = true;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 	timekeeping_forward_now(tk);
 | |
| 	timekeeping_suspended = 1;
 | |
| 
 | |
| 	if (persistent_clock_exists) {
 | |
| 		/*
 | |
| 		 * To avoid drift caused by repeated suspend/resumes,
 | |
| 		 * which each can add ~1 second drift error,
 | |
| 		 * try to compensate so the difference in system time
 | |
| 		 * and persistent_clock time stays close to constant.
 | |
| 		 */
 | |
| 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
 | |
| 		delta_delta = timespec64_sub(delta, old_delta);
 | |
| 		if (abs(delta_delta.tv_sec) >= 2) {
 | |
| 			/*
 | |
| 			 * if delta_delta is too large, assume time correction
 | |
| 			 * has occurred and set old_delta to the current delta.
 | |
| 			 */
 | |
| 			old_delta = delta;
 | |
| 		} else {
 | |
| 			/* Otherwise try to adjust old_system to compensate */
 | |
| 			timekeeping_suspend_time =
 | |
| 				timespec64_add(timekeeping_suspend_time, delta_delta);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	timekeeping_update(tk, TK_MIRROR);
 | |
| 	halt_fast_timekeeper(tk);
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	tick_suspend();
 | |
| 	clocksource_suspend();
 | |
| 	clockevents_suspend();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* sysfs resume/suspend bits for timekeeping */
 | |
| static struct syscore_ops timekeeping_syscore_ops = {
 | |
| 	.resume		= timekeeping_resume,
 | |
| 	.suspend	= timekeeping_suspend,
 | |
| };
 | |
| 
 | |
| static int __init timekeeping_init_ops(void)
 | |
| {
 | |
| 	register_syscore_ops(&timekeeping_syscore_ops);
 | |
| 	return 0;
 | |
| }
 | |
| device_initcall(timekeeping_init_ops);
 | |
| 
 | |
| /*
 | |
|  * Apply a multiplier adjustment to the timekeeper
 | |
|  */
 | |
| static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
 | |
| 							 s64 offset,
 | |
| 							 bool negative,
 | |
| 							 int adj_scale)
 | |
| {
 | |
| 	s64 interval = tk->cycle_interval;
 | |
| 	s32 mult_adj = 1;
 | |
| 
 | |
| 	if (negative) {
 | |
| 		mult_adj = -mult_adj;
 | |
| 		interval = -interval;
 | |
| 		offset  = -offset;
 | |
| 	}
 | |
| 	mult_adj <<= adj_scale;
 | |
| 	interval <<= adj_scale;
 | |
| 	offset <<= adj_scale;
 | |
| 
 | |
| 	/*
 | |
| 	 * So the following can be confusing.
 | |
| 	 *
 | |
| 	 * To keep things simple, lets assume mult_adj == 1 for now.
 | |
| 	 *
 | |
| 	 * When mult_adj != 1, remember that the interval and offset values
 | |
| 	 * have been appropriately scaled so the math is the same.
 | |
| 	 *
 | |
| 	 * The basic idea here is that we're increasing the multiplier
 | |
| 	 * by one, this causes the xtime_interval to be incremented by
 | |
| 	 * one cycle_interval. This is because:
 | |
| 	 *	xtime_interval = cycle_interval * mult
 | |
| 	 * So if mult is being incremented by one:
 | |
| 	 *	xtime_interval = cycle_interval * (mult + 1)
 | |
| 	 * Its the same as:
 | |
| 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
 | |
| 	 * Which can be shortened to:
 | |
| 	 *	xtime_interval += cycle_interval
 | |
| 	 *
 | |
| 	 * So offset stores the non-accumulated cycles. Thus the current
 | |
| 	 * time (in shifted nanoseconds) is:
 | |
| 	 *	now = (offset * adj) + xtime_nsec
 | |
| 	 * Now, even though we're adjusting the clock frequency, we have
 | |
| 	 * to keep time consistent. In other words, we can't jump back
 | |
| 	 * in time, and we also want to avoid jumping forward in time.
 | |
| 	 *
 | |
| 	 * So given the same offset value, we need the time to be the same
 | |
| 	 * both before and after the freq adjustment.
 | |
| 	 *	now = (offset * adj_1) + xtime_nsec_1
 | |
| 	 *	now = (offset * adj_2) + xtime_nsec_2
 | |
| 	 * So:
 | |
| 	 *	(offset * adj_1) + xtime_nsec_1 =
 | |
| 	 *		(offset * adj_2) + xtime_nsec_2
 | |
| 	 * And we know:
 | |
| 	 *	adj_2 = adj_1 + 1
 | |
| 	 * So:
 | |
| 	 *	(offset * adj_1) + xtime_nsec_1 =
 | |
| 	 *		(offset * (adj_1+1)) + xtime_nsec_2
 | |
| 	 *	(offset * adj_1) + xtime_nsec_1 =
 | |
| 	 *		(offset * adj_1) + offset + xtime_nsec_2
 | |
| 	 * Canceling the sides:
 | |
| 	 *	xtime_nsec_1 = offset + xtime_nsec_2
 | |
| 	 * Which gives us:
 | |
| 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
 | |
| 	 * Which simplfies to:
 | |
| 	 *	xtime_nsec -= offset
 | |
| 	 *
 | |
| 	 * XXX - TODO: Doc ntp_error calculation.
 | |
| 	 */
 | |
| 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
 | |
| 		/* NTP adjustment caused clocksource mult overflow */
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	tk->tkr_mono.mult += mult_adj;
 | |
| 	tk->xtime_interval += interval;
 | |
| 	tk->tkr_mono.xtime_nsec -= offset;
 | |
| 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the multiplier adjustment needed to match the frequency
 | |
|  * specified by NTP
 | |
|  */
 | |
| static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
 | |
| 							s64 offset)
 | |
| {
 | |
| 	s64 interval = tk->cycle_interval;
 | |
| 	s64 xinterval = tk->xtime_interval;
 | |
| 	s64 tick_error;
 | |
| 	bool negative;
 | |
| 	u32 adj;
 | |
| 
 | |
| 	/* Remove any current error adj from freq calculation */
 | |
| 	if (tk->ntp_err_mult)
 | |
| 		xinterval -= tk->cycle_interval;
 | |
| 
 | |
| 	tk->ntp_tick = ntp_tick_length();
 | |
| 
 | |
| 	/* Calculate current error per tick */
 | |
| 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
 | |
| 	tick_error -= (xinterval + tk->xtime_remainder);
 | |
| 
 | |
| 	/* Don't worry about correcting it if its small */
 | |
| 	if (likely((tick_error >= 0) && (tick_error <= interval)))
 | |
| 		return;
 | |
| 
 | |
| 	/* preserve the direction of correction */
 | |
| 	negative = (tick_error < 0);
 | |
| 
 | |
| 	/* Sort out the magnitude of the correction */
 | |
| 	tick_error = abs(tick_error);
 | |
| 	for (adj = 0; tick_error > interval; adj++)
 | |
| 		tick_error >>= 1;
 | |
| 
 | |
| 	/* scale the corrections */
 | |
| 	timekeeping_apply_adjustment(tk, offset, negative, adj);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adjust the timekeeper's multiplier to the correct frequency
 | |
|  * and also to reduce the accumulated error value.
 | |
|  */
 | |
| static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
 | |
| {
 | |
| 	/* Correct for the current frequency error */
 | |
| 	timekeeping_freqadjust(tk, offset);
 | |
| 
 | |
| 	/* Next make a small adjustment to fix any cumulative error */
 | |
| 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
 | |
| 		tk->ntp_err_mult = 1;
 | |
| 		timekeeping_apply_adjustment(tk, offset, 0, 0);
 | |
| 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
 | |
| 		/* Undo any existing error adjustment */
 | |
| 		timekeeping_apply_adjustment(tk, offset, 1, 0);
 | |
| 		tk->ntp_err_mult = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(tk->tkr_mono.clock->maxadj &&
 | |
| 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
 | |
| 			> tk->tkr_mono.clock->maxadj))) {
 | |
| 		printk_once(KERN_WARNING
 | |
| 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
 | |
| 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
 | |
| 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It may be possible that when we entered this function, xtime_nsec
 | |
| 	 * was very small.  Further, if we're slightly speeding the clocksource
 | |
| 	 * in the code above, its possible the required corrective factor to
 | |
| 	 * xtime_nsec could cause it to underflow.
 | |
| 	 *
 | |
| 	 * Now, since we already accumulated the second, cannot simply roll
 | |
| 	 * the accumulated second back, since the NTP subsystem has been
 | |
| 	 * notified via second_overflow. So instead we push xtime_nsec forward
 | |
| 	 * by the amount we underflowed, and add that amount into the error.
 | |
| 	 *
 | |
| 	 * We'll correct this error next time through this function, when
 | |
| 	 * xtime_nsec is not as small.
 | |
| 	 */
 | |
| 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
 | |
| 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
 | |
| 		tk->tkr_mono.xtime_nsec = 0;
 | |
| 		tk->ntp_error += neg << tk->ntp_error_shift;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 | |
|  *
 | |
|  * Helper function that accumulates a the nsecs greater then a second
 | |
|  * from the xtime_nsec field to the xtime_secs field.
 | |
|  * It also calls into the NTP code to handle leapsecond processing.
 | |
|  *
 | |
|  */
 | |
| static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
 | |
| {
 | |
| 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
 | |
| 	unsigned int clock_set = 0;
 | |
| 
 | |
| 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
 | |
| 		int leap;
 | |
| 
 | |
| 		tk->tkr_mono.xtime_nsec -= nsecps;
 | |
| 		tk->xtime_sec++;
 | |
| 
 | |
| 		/* Figure out if its a leap sec and apply if needed */
 | |
| 		leap = second_overflow(tk->xtime_sec);
 | |
| 		if (unlikely(leap)) {
 | |
| 			struct timespec64 ts;
 | |
| 
 | |
| 			tk->xtime_sec += leap;
 | |
| 
 | |
| 			ts.tv_sec = leap;
 | |
| 			ts.tv_nsec = 0;
 | |
| 			tk_set_wall_to_mono(tk,
 | |
| 				timespec64_sub(tk->wall_to_monotonic, ts));
 | |
| 
 | |
| 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
 | |
| 
 | |
| 			clock_set = TK_CLOCK_WAS_SET;
 | |
| 		}
 | |
| 	}
 | |
| 	return clock_set;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * logarithmic_accumulation - shifted accumulation of cycles
 | |
|  *
 | |
|  * This functions accumulates a shifted interval of cycles into
 | |
|  * into a shifted interval nanoseconds. Allows for O(log) accumulation
 | |
|  * loop.
 | |
|  *
 | |
|  * Returns the unconsumed cycles.
 | |
|  */
 | |
| static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
 | |
| 						u32 shift,
 | |
| 						unsigned int *clock_set)
 | |
| {
 | |
| 	cycle_t interval = tk->cycle_interval << shift;
 | |
| 	u64 raw_nsecs;
 | |
| 
 | |
| 	/* If the offset is smaller then a shifted interval, do nothing */
 | |
| 	if (offset < interval)
 | |
| 		return offset;
 | |
| 
 | |
| 	/* Accumulate one shifted interval */
 | |
| 	offset -= interval;
 | |
| 	tk->tkr_mono.cycle_last += interval;
 | |
| 	tk->tkr_raw.cycle_last  += interval;
 | |
| 
 | |
| 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
 | |
| 	*clock_set |= accumulate_nsecs_to_secs(tk);
 | |
| 
 | |
| 	/* Accumulate raw time */
 | |
| 	raw_nsecs = (u64)tk->raw_interval << shift;
 | |
| 	raw_nsecs += tk->raw_time.tv_nsec;
 | |
| 	if (raw_nsecs >= NSEC_PER_SEC) {
 | |
| 		u64 raw_secs = raw_nsecs;
 | |
| 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
 | |
| 		tk->raw_time.tv_sec += raw_secs;
 | |
| 	}
 | |
| 	tk->raw_time.tv_nsec = raw_nsecs;
 | |
| 
 | |
| 	/* Accumulate error between NTP and clock interval */
 | |
| 	tk->ntp_error += tk->ntp_tick << shift;
 | |
| 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
 | |
| 						(tk->ntp_error_shift + shift);
 | |
| 
 | |
| 	return offset;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_wall_time - Uses the current clocksource to increment the wall time
 | |
|  *
 | |
|  */
 | |
| void update_wall_time(void)
 | |
| {
 | |
| 	struct timekeeper *real_tk = &tk_core.timekeeper;
 | |
| 	struct timekeeper *tk = &shadow_timekeeper;
 | |
| 	cycle_t offset;
 | |
| 	int shift = 0, maxshift;
 | |
| 	unsigned int clock_set = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 
 | |
| 	/* Make sure we're fully resumed: */
 | |
| 	if (unlikely(timekeeping_suspended))
 | |
| 		goto out;
 | |
| 
 | |
| #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 | |
| 	offset = real_tk->cycle_interval;
 | |
| #else
 | |
| 	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
 | |
| 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 | |
| #endif
 | |
| 
 | |
| 	/* Check if there's really nothing to do */
 | |
| 	if (offset < real_tk->cycle_interval)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Do some additional sanity checking */
 | |
| 	timekeeping_check_update(real_tk, offset);
 | |
| 
 | |
| 	/*
 | |
| 	 * With NO_HZ we may have to accumulate many cycle_intervals
 | |
| 	 * (think "ticks") worth of time at once. To do this efficiently,
 | |
| 	 * we calculate the largest doubling multiple of cycle_intervals
 | |
| 	 * that is smaller than the offset.  We then accumulate that
 | |
| 	 * chunk in one go, and then try to consume the next smaller
 | |
| 	 * doubled multiple.
 | |
| 	 */
 | |
| 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
 | |
| 	shift = max(0, shift);
 | |
| 	/* Bound shift to one less than what overflows tick_length */
 | |
| 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
 | |
| 	shift = min(shift, maxshift);
 | |
| 	while (offset >= tk->cycle_interval) {
 | |
| 		offset = logarithmic_accumulation(tk, offset, shift,
 | |
| 							&clock_set);
 | |
| 		if (offset < tk->cycle_interval<<shift)
 | |
| 			shift--;
 | |
| 	}
 | |
| 
 | |
| 	/* correct the clock when NTP error is too big */
 | |
| 	timekeeping_adjust(tk, offset);
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX This can be killed once everyone converts
 | |
| 	 * to the new update_vsyscall.
 | |
| 	 */
 | |
| 	old_vsyscall_fixup(tk);
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally, make sure that after the rounding
 | |
| 	 * xtime_nsec isn't larger than NSEC_PER_SEC
 | |
| 	 */
 | |
| 	clock_set |= accumulate_nsecs_to_secs(tk);
 | |
| 
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 	/*
 | |
| 	 * Update the real timekeeper.
 | |
| 	 *
 | |
| 	 * We could avoid this memcpy by switching pointers, but that
 | |
| 	 * requires changes to all other timekeeper usage sites as
 | |
| 	 * well, i.e. move the timekeeper pointer getter into the
 | |
| 	 * spinlocked/seqcount protected sections. And we trade this
 | |
| 	 * memcpy under the tk_core.seq against one before we start
 | |
| 	 * updating.
 | |
| 	 */
 | |
| 	timekeeping_update(tk, clock_set);
 | |
| 	memcpy(real_tk, tk, sizeof(*tk));
 | |
| 	/* The memcpy must come last. Do not put anything here! */
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| out:
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 	if (clock_set)
 | |
| 		/* Have to call _delayed version, since in irq context*/
 | |
| 		clock_was_set_delayed();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * getboottime64 - Return the real time of system boot.
 | |
|  * @ts:		pointer to the timespec64 to be set
 | |
|  *
 | |
|  * Returns the wall-time of boot in a timespec64.
 | |
|  *
 | |
|  * This is based on the wall_to_monotonic offset and the total suspend
 | |
|  * time. Calls to settimeofday will affect the value returned (which
 | |
|  * basically means that however wrong your real time clock is at boot time,
 | |
|  * you get the right time here).
 | |
|  */
 | |
| void getboottime64(struct timespec64 *ts)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
 | |
| 
 | |
| 	*ts = ktime_to_timespec64(t);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(getboottime64);
 | |
| 
 | |
| unsigned long get_seconds(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 
 | |
| 	return tk->xtime_sec;
 | |
| }
 | |
| EXPORT_SYMBOL(get_seconds);
 | |
| 
 | |
| struct timespec __current_kernel_time(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 
 | |
| 	return timespec64_to_timespec(tk_xtime(tk));
 | |
| }
 | |
| 
 | |
| struct timespec current_kernel_time(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	struct timespec64 now;
 | |
| 	unsigned long seq;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 		now = tk_xtime(tk);
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return timespec64_to_timespec(now);
 | |
| }
 | |
| EXPORT_SYMBOL(current_kernel_time);
 | |
| 
 | |
| struct timespec64 get_monotonic_coarse64(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	struct timespec64 now, mono;
 | |
| 	unsigned long seq;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 		now = tk_xtime(tk);
 | |
| 		mono = tk->wall_to_monotonic;
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
 | |
| 				now.tv_nsec + mono.tv_nsec);
 | |
| 
 | |
| 	return now;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must hold jiffies_lock
 | |
|  */
 | |
| void do_timer(unsigned long ticks)
 | |
| {
 | |
| 	jiffies_64 += ticks;
 | |
| 	calc_global_load(ticks);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ktime_get_update_offsets_now - hrtimer helper
 | |
|  * @cwsseq:	pointer to check and store the clock was set sequence number
 | |
|  * @offs_real:	pointer to storage for monotonic -> realtime offset
 | |
|  * @offs_boot:	pointer to storage for monotonic -> boottime offset
 | |
|  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 | |
|  *
 | |
|  * Returns current monotonic time and updates the offsets if the
 | |
|  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 | |
|  * different.
 | |
|  *
 | |
|  * Called from hrtimer_interrupt() or retrigger_next_event()
 | |
|  */
 | |
| ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
 | |
| 				     ktime_t *offs_boot, ktime_t *offs_tai)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	ktime_t base;
 | |
| 	u64 nsecs;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 		base = tk->tkr_mono.base;
 | |
| 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 | |
| 		base = ktime_add_ns(base, nsecs);
 | |
| 
 | |
| 		if (*cwsseq != tk->clock_was_set_seq) {
 | |
| 			*cwsseq = tk->clock_was_set_seq;
 | |
| 			*offs_real = tk->offs_real;
 | |
| 			*offs_boot = tk->offs_boot;
 | |
| 			*offs_tai = tk->offs_tai;
 | |
| 		}
 | |
| 
 | |
| 		/* Handle leapsecond insertion adjustments */
 | |
| 		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
 | |
| 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return base;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 | |
|  */
 | |
| int do_adjtimex(struct timex *txc)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned long flags;
 | |
| 	struct timespec64 ts;
 | |
| 	s32 orig_tai, tai;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Validate the data before disabling interrupts */
 | |
| 	ret = ntp_validate_timex(txc);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (txc->modes & ADJ_SETOFFSET) {
 | |
| 		struct timespec delta;
 | |
| 		delta.tv_sec  = txc->time.tv_sec;
 | |
| 		delta.tv_nsec = txc->time.tv_usec;
 | |
| 		if (!(txc->modes & ADJ_NANO))
 | |
| 			delta.tv_nsec *= 1000;
 | |
| 		ret = timekeeping_inject_offset(&delta);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	getnstimeofday64(&ts);
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 	orig_tai = tai = tk->tai_offset;
 | |
| 	ret = __do_adjtimex(txc, &ts, &tai);
 | |
| 
 | |
| 	if (tai != orig_tai) {
 | |
| 		__timekeeping_set_tai_offset(tk, tai);
 | |
| 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
 | |
| 	}
 | |
| 	tk_update_leap_state(tk);
 | |
| 
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	if (tai != orig_tai)
 | |
| 		clock_was_set();
 | |
| 
 | |
| 	ntp_notify_cmos_timer();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NTP_PPS
 | |
| /**
 | |
|  * hardpps() - Accessor function to NTP __hardpps function
 | |
|  */
 | |
| void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 	__hardpps(phase_ts, raw_ts);
 | |
| 
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(hardpps);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * xtime_update() - advances the timekeeping infrastructure
 | |
|  * @ticks:	number of ticks, that have elapsed since the last call.
 | |
|  *
 | |
|  * Must be called with interrupts disabled.
 | |
|  */
 | |
| void xtime_update(unsigned long ticks)
 | |
| {
 | |
| 	write_seqlock(&jiffies_lock);
 | |
| 	do_timer(ticks);
 | |
| 	write_sequnlock(&jiffies_lock);
 | |
| 	update_wall_time();
 | |
| }
 |