 98ec21a018
			
		
	
	
	98ec21a018
	
	
	
		
			
			Pull scheduler updates from Thomas Gleixner:
 "This series of scheduler updates depends on sched/core and timers/core
  branches, which are already in your tree:
   - Scheduler balancing overhaul to plug a hard to trigger race which
     causes an oops in the balancer (Peter Zijlstra)
   - Lockdep updates which are related to the balancing updates (Peter
     Zijlstra)"
* 'sched-hrtimers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched,lockdep: Employ lock pinning
  lockdep: Implement lock pinning
  lockdep: Simplify lock_release()
  sched: Streamline the task migration locking a little
  sched: Move code around
  sched,dl: Fix sched class hopping CBS hole
  sched, dl: Convert switched_{from, to}_dl() / prio_changed_dl() to balance callbacks
  sched,dl: Remove return value from pull_dl_task()
  sched, rt: Convert switched_{from, to}_rt() / prio_changed_rt() to balance callbacks
  sched,rt: Remove return value from pull_rt_task()
  sched: Allow balance callbacks for check_class_changed()
  sched: Use replace normalize_task() with __sched_setscheduler()
  sched: Replace post_schedule with a balance callback list
		
	
			
		
			
				
	
	
		
			1759 lines
		
	
	
	
		
			45 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1759 lines
		
	
	
	
		
			45 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/sysctl.h>
 | |
| #include <linux/sched/rt.h>
 | |
| #include <linux/sched/deadline.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/stop_machine.h>
 | |
| #include <linux/irq_work.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include "cpupri.h"
 | |
| #include "cpudeadline.h"
 | |
| #include "cpuacct.h"
 | |
| 
 | |
| struct rq;
 | |
| struct cpuidle_state;
 | |
| 
 | |
| /* task_struct::on_rq states: */
 | |
| #define TASK_ON_RQ_QUEUED	1
 | |
| #define TASK_ON_RQ_MIGRATING	2
 | |
| 
 | |
| extern __read_mostly int scheduler_running;
 | |
| 
 | |
| extern unsigned long calc_load_update;
 | |
| extern atomic_long_t calc_load_tasks;
 | |
| 
 | |
| extern void calc_global_load_tick(struct rq *this_rq);
 | |
| extern long calc_load_fold_active(struct rq *this_rq);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| extern void update_cpu_load_active(struct rq *this_rq);
 | |
| #else
 | |
| static inline void update_cpu_load_active(struct rq *this_rq) { }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Helpers for converting nanosecond timing to jiffy resolution
 | |
|  */
 | |
| #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
 | |
| 
 | |
| /*
 | |
|  * Increase resolution of nice-level calculations for 64-bit architectures.
 | |
|  * The extra resolution improves shares distribution and load balancing of
 | |
|  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 | |
|  * hierarchies, especially on larger systems. This is not a user-visible change
 | |
|  * and does not change the user-interface for setting shares/weights.
 | |
|  *
 | |
|  * We increase resolution only if we have enough bits to allow this increased
 | |
|  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
 | |
|  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
 | |
|  * increased costs.
 | |
|  */
 | |
| #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
 | |
| # define SCHED_LOAD_RESOLUTION	10
 | |
| # define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
 | |
| # define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
 | |
| #else
 | |
| # define SCHED_LOAD_RESOLUTION	0
 | |
| # define scale_load(w)		(w)
 | |
| # define scale_load_down(w)	(w)
 | |
| #endif
 | |
| 
 | |
| #define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
 | |
| #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
 | |
| 
 | |
| #define NICE_0_LOAD		SCHED_LOAD_SCALE
 | |
| #define NICE_0_SHIFT		SCHED_LOAD_SHIFT
 | |
| 
 | |
| /*
 | |
|  * Single value that decides SCHED_DEADLINE internal math precision.
 | |
|  * 10 -> just above 1us
 | |
|  * 9  -> just above 0.5us
 | |
|  */
 | |
| #define DL_SCALE (10)
 | |
| 
 | |
| /*
 | |
|  * These are the 'tuning knobs' of the scheduler:
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * single value that denotes runtime == period, ie unlimited time.
 | |
|  */
 | |
| #define RUNTIME_INF	((u64)~0ULL)
 | |
| 
 | |
| static inline int fair_policy(int policy)
 | |
| {
 | |
| 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
 | |
| }
 | |
| 
 | |
| static inline int rt_policy(int policy)
 | |
| {
 | |
| 	return policy == SCHED_FIFO || policy == SCHED_RR;
 | |
| }
 | |
| 
 | |
| static inline int dl_policy(int policy)
 | |
| {
 | |
| 	return policy == SCHED_DEADLINE;
 | |
| }
 | |
| 
 | |
| static inline int task_has_rt_policy(struct task_struct *p)
 | |
| {
 | |
| 	return rt_policy(p->policy);
 | |
| }
 | |
| 
 | |
| static inline int task_has_dl_policy(struct task_struct *p)
 | |
| {
 | |
| 	return dl_policy(p->policy);
 | |
| }
 | |
| 
 | |
| static inline bool dl_time_before(u64 a, u64 b)
 | |
| {
 | |
| 	return (s64)(a - b) < 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tells if entity @a should preempt entity @b.
 | |
|  */
 | |
| static inline bool
 | |
| dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 | |
| {
 | |
| 	return dl_time_before(a->deadline, b->deadline);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the priority-queue data structure of the RT scheduling class:
 | |
|  */
 | |
| struct rt_prio_array {
 | |
| 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 | |
| 	struct list_head queue[MAX_RT_PRIO];
 | |
| };
 | |
| 
 | |
| struct rt_bandwidth {
 | |
| 	/* nests inside the rq lock: */
 | |
| 	raw_spinlock_t		rt_runtime_lock;
 | |
| 	ktime_t			rt_period;
 | |
| 	u64			rt_runtime;
 | |
| 	struct hrtimer		rt_period_timer;
 | |
| 	unsigned int		rt_period_active;
 | |
| };
 | |
| 
 | |
| void __dl_clear_params(struct task_struct *p);
 | |
| 
 | |
| /*
 | |
|  * To keep the bandwidth of -deadline tasks and groups under control
 | |
|  * we need some place where:
 | |
|  *  - store the maximum -deadline bandwidth of the system (the group);
 | |
|  *  - cache the fraction of that bandwidth that is currently allocated.
 | |
|  *
 | |
|  * This is all done in the data structure below. It is similar to the
 | |
|  * one used for RT-throttling (rt_bandwidth), with the main difference
 | |
|  * that, since here we are only interested in admission control, we
 | |
|  * do not decrease any runtime while the group "executes", neither we
 | |
|  * need a timer to replenish it.
 | |
|  *
 | |
|  * With respect to SMP, the bandwidth is given on a per-CPU basis,
 | |
|  * meaning that:
 | |
|  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 | |
|  *  - dl_total_bw array contains, in the i-eth element, the currently
 | |
|  *    allocated bandwidth on the i-eth CPU.
 | |
|  * Moreover, groups consume bandwidth on each CPU, while tasks only
 | |
|  * consume bandwidth on the CPU they're running on.
 | |
|  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 | |
|  * that will be shown the next time the proc or cgroup controls will
 | |
|  * be red. It on its turn can be changed by writing on its own
 | |
|  * control.
 | |
|  */
 | |
| struct dl_bandwidth {
 | |
| 	raw_spinlock_t dl_runtime_lock;
 | |
| 	u64 dl_runtime;
 | |
| 	u64 dl_period;
 | |
| };
 | |
| 
 | |
| static inline int dl_bandwidth_enabled(void)
 | |
| {
 | |
| 	return sysctl_sched_rt_runtime >= 0;
 | |
| }
 | |
| 
 | |
| extern struct dl_bw *dl_bw_of(int i);
 | |
| 
 | |
| struct dl_bw {
 | |
| 	raw_spinlock_t lock;
 | |
| 	u64 bw, total_bw;
 | |
| };
 | |
| 
 | |
| static inline
 | |
| void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
 | |
| {
 | |
| 	dl_b->total_bw -= tsk_bw;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
 | |
| {
 | |
| 	dl_b->total_bw += tsk_bw;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
 | |
| {
 | |
| 	return dl_b->bw != -1 &&
 | |
| 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
 | |
| }
 | |
| 
 | |
| extern struct mutex sched_domains_mutex;
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| 
 | |
| #include <linux/cgroup.h>
 | |
| 
 | |
| struct cfs_rq;
 | |
| struct rt_rq;
 | |
| 
 | |
| extern struct list_head task_groups;
 | |
| 
 | |
| struct cfs_bandwidth {
 | |
| #ifdef CONFIG_CFS_BANDWIDTH
 | |
| 	raw_spinlock_t lock;
 | |
| 	ktime_t period;
 | |
| 	u64 quota, runtime;
 | |
| 	s64 hierarchical_quota;
 | |
| 	u64 runtime_expires;
 | |
| 
 | |
| 	int idle, period_active;
 | |
| 	struct hrtimer period_timer, slack_timer;
 | |
| 	struct list_head throttled_cfs_rq;
 | |
| 
 | |
| 	/* statistics */
 | |
| 	int nr_periods, nr_throttled;
 | |
| 	u64 throttled_time;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /* task group related information */
 | |
| struct task_group {
 | |
| 	struct cgroup_subsys_state css;
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	/* schedulable entities of this group on each cpu */
 | |
| 	struct sched_entity **se;
 | |
| 	/* runqueue "owned" by this group on each cpu */
 | |
| 	struct cfs_rq **cfs_rq;
 | |
| 	unsigned long shares;
 | |
| 
 | |
| #ifdef	CONFIG_SMP
 | |
| 	atomic_long_t load_avg;
 | |
| 	atomic_t runnable_avg;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	struct sched_rt_entity **rt_se;
 | |
| 	struct rt_rq **rt_rq;
 | |
| 
 | |
| 	struct rt_bandwidth rt_bandwidth;
 | |
| #endif
 | |
| 
 | |
| 	struct rcu_head rcu;
 | |
| 	struct list_head list;
 | |
| 
 | |
| 	struct task_group *parent;
 | |
| 	struct list_head siblings;
 | |
| 	struct list_head children;
 | |
| 
 | |
| #ifdef CONFIG_SCHED_AUTOGROUP
 | |
| 	struct autogroup *autogroup;
 | |
| #endif
 | |
| 
 | |
| 	struct cfs_bandwidth cfs_bandwidth;
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 | |
| 
 | |
| /*
 | |
|  * A weight of 0 or 1 can cause arithmetics problems.
 | |
|  * A weight of a cfs_rq is the sum of weights of which entities
 | |
|  * are queued on this cfs_rq, so a weight of a entity should not be
 | |
|  * too large, so as the shares value of a task group.
 | |
|  * (The default weight is 1024 - so there's no practical
 | |
|  *  limitation from this.)
 | |
|  */
 | |
| #define MIN_SHARES	(1UL <<  1)
 | |
| #define MAX_SHARES	(1UL << 18)
 | |
| #endif
 | |
| 
 | |
| typedef int (*tg_visitor)(struct task_group *, void *);
 | |
| 
 | |
| extern int walk_tg_tree_from(struct task_group *from,
 | |
| 			     tg_visitor down, tg_visitor up, void *data);
 | |
| 
 | |
| /*
 | |
|  * Iterate the full tree, calling @down when first entering a node and @up when
 | |
|  * leaving it for the final time.
 | |
|  *
 | |
|  * Caller must hold rcu_lock or sufficient equivalent.
 | |
|  */
 | |
| static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 | |
| {
 | |
| 	return walk_tg_tree_from(&root_task_group, down, up, data);
 | |
| }
 | |
| 
 | |
| extern int tg_nop(struct task_group *tg, void *data);
 | |
| 
 | |
| extern void free_fair_sched_group(struct task_group *tg);
 | |
| extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 | |
| extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
 | |
| extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 | |
| 			struct sched_entity *se, int cpu,
 | |
| 			struct sched_entity *parent);
 | |
| extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 | |
| extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 | |
| 
 | |
| extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 | |
| extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 | |
| extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 | |
| 
 | |
| extern void free_rt_sched_group(struct task_group *tg);
 | |
| extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 | |
| extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 | |
| 		struct sched_rt_entity *rt_se, int cpu,
 | |
| 		struct sched_rt_entity *parent);
 | |
| 
 | |
| extern struct task_group *sched_create_group(struct task_group *parent);
 | |
| extern void sched_online_group(struct task_group *tg,
 | |
| 			       struct task_group *parent);
 | |
| extern void sched_destroy_group(struct task_group *tg);
 | |
| extern void sched_offline_group(struct task_group *tg);
 | |
| 
 | |
| extern void sched_move_task(struct task_struct *tsk);
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 | |
| #endif
 | |
| 
 | |
| #else /* CONFIG_CGROUP_SCHED */
 | |
| 
 | |
| struct cfs_bandwidth { };
 | |
| 
 | |
| #endif	/* CONFIG_CGROUP_SCHED */
 | |
| 
 | |
| /* CFS-related fields in a runqueue */
 | |
| struct cfs_rq {
 | |
| 	struct load_weight load;
 | |
| 	unsigned int nr_running, h_nr_running;
 | |
| 
 | |
| 	u64 exec_clock;
 | |
| 	u64 min_vruntime;
 | |
| #ifndef CONFIG_64BIT
 | |
| 	u64 min_vruntime_copy;
 | |
| #endif
 | |
| 
 | |
| 	struct rb_root tasks_timeline;
 | |
| 	struct rb_node *rb_leftmost;
 | |
| 
 | |
| 	/*
 | |
| 	 * 'curr' points to currently running entity on this cfs_rq.
 | |
| 	 * It is set to NULL otherwise (i.e when none are currently running).
 | |
| 	 */
 | |
| 	struct sched_entity *curr, *next, *last, *skip;
 | |
| 
 | |
| #ifdef	CONFIG_SCHED_DEBUG
 | |
| 	unsigned int nr_spread_over;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * CFS Load tracking
 | |
| 	 * Under CFS, load is tracked on a per-entity basis and aggregated up.
 | |
| 	 * This allows for the description of both thread and group usage (in
 | |
| 	 * the FAIR_GROUP_SCHED case).
 | |
| 	 * runnable_load_avg is the sum of the load_avg_contrib of the
 | |
| 	 * sched_entities on the rq.
 | |
| 	 * blocked_load_avg is similar to runnable_load_avg except that its
 | |
| 	 * the blocked sched_entities on the rq.
 | |
| 	 * utilization_load_avg is the sum of the average running time of the
 | |
| 	 * sched_entities on the rq.
 | |
| 	 */
 | |
| 	unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg;
 | |
| 	atomic64_t decay_counter;
 | |
| 	u64 last_decay;
 | |
| 	atomic_long_t removed_load;
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	/* Required to track per-cpu representation of a task_group */
 | |
| 	u32 tg_runnable_contrib;
 | |
| 	unsigned long tg_load_contrib;
 | |
| 
 | |
| 	/*
 | |
| 	 *   h_load = weight * f(tg)
 | |
| 	 *
 | |
| 	 * Where f(tg) is the recursive weight fraction assigned to
 | |
| 	 * this group.
 | |
| 	 */
 | |
| 	unsigned long h_load;
 | |
| 	u64 last_h_load_update;
 | |
| 	struct sched_entity *h_load_next;
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
 | |
| 
 | |
| 	/*
 | |
| 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 | |
| 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 | |
| 	 * (like users, containers etc.)
 | |
| 	 *
 | |
| 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
 | |
| 	 * list is used during load balance.
 | |
| 	 */
 | |
| 	int on_list;
 | |
| 	struct list_head leaf_cfs_rq_list;
 | |
| 	struct task_group *tg;	/* group that "owns" this runqueue */
 | |
| 
 | |
| #ifdef CONFIG_CFS_BANDWIDTH
 | |
| 	int runtime_enabled;
 | |
| 	u64 runtime_expires;
 | |
| 	s64 runtime_remaining;
 | |
| 
 | |
| 	u64 throttled_clock, throttled_clock_task;
 | |
| 	u64 throttled_clock_task_time;
 | |
| 	int throttled, throttle_count;
 | |
| 	struct list_head throttled_list;
 | |
| #endif /* CONFIG_CFS_BANDWIDTH */
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| };
 | |
| 
 | |
| static inline int rt_bandwidth_enabled(void)
 | |
| {
 | |
| 	return sysctl_sched_rt_runtime >= 0;
 | |
| }
 | |
| 
 | |
| /* RT IPI pull logic requires IRQ_WORK */
 | |
| #ifdef CONFIG_IRQ_WORK
 | |
| # define HAVE_RT_PUSH_IPI
 | |
| #endif
 | |
| 
 | |
| /* Real-Time classes' related field in a runqueue: */
 | |
| struct rt_rq {
 | |
| 	struct rt_prio_array active;
 | |
| 	unsigned int rt_nr_running;
 | |
| #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 | |
| 	struct {
 | |
| 		int curr; /* highest queued rt task prio */
 | |
| #ifdef CONFIG_SMP
 | |
| 		int next; /* next highest */
 | |
| #endif
 | |
| 	} highest_prio;
 | |
| #endif
 | |
| #ifdef CONFIG_SMP
 | |
| 	unsigned long rt_nr_migratory;
 | |
| 	unsigned long rt_nr_total;
 | |
| 	int overloaded;
 | |
| 	struct plist_head pushable_tasks;
 | |
| #ifdef HAVE_RT_PUSH_IPI
 | |
| 	int push_flags;
 | |
| 	int push_cpu;
 | |
| 	struct irq_work push_work;
 | |
| 	raw_spinlock_t push_lock;
 | |
| #endif
 | |
| #endif /* CONFIG_SMP */
 | |
| 	int rt_queued;
 | |
| 
 | |
| 	int rt_throttled;
 | |
| 	u64 rt_time;
 | |
| 	u64 rt_runtime;
 | |
| 	/* Nests inside the rq lock: */
 | |
| 	raw_spinlock_t rt_runtime_lock;
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	unsigned long rt_nr_boosted;
 | |
| 
 | |
| 	struct rq *rq;
 | |
| 	struct task_group *tg;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /* Deadline class' related fields in a runqueue */
 | |
| struct dl_rq {
 | |
| 	/* runqueue is an rbtree, ordered by deadline */
 | |
| 	struct rb_root rb_root;
 | |
| 	struct rb_node *rb_leftmost;
 | |
| 
 | |
| 	unsigned long dl_nr_running;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * Deadline values of the currently executing and the
 | |
| 	 * earliest ready task on this rq. Caching these facilitates
 | |
| 	 * the decision wether or not a ready but not running task
 | |
| 	 * should migrate somewhere else.
 | |
| 	 */
 | |
| 	struct {
 | |
| 		u64 curr;
 | |
| 		u64 next;
 | |
| 	} earliest_dl;
 | |
| 
 | |
| 	unsigned long dl_nr_migratory;
 | |
| 	int overloaded;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tasks on this rq that can be pushed away. They are kept in
 | |
| 	 * an rb-tree, ordered by tasks' deadlines, with caching
 | |
| 	 * of the leftmost (earliest deadline) element.
 | |
| 	 */
 | |
| 	struct rb_root pushable_dl_tasks_root;
 | |
| 	struct rb_node *pushable_dl_tasks_leftmost;
 | |
| #else
 | |
| 	struct dl_bw dl_bw;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| /*
 | |
|  * We add the notion of a root-domain which will be used to define per-domain
 | |
|  * variables. Each exclusive cpuset essentially defines an island domain by
 | |
|  * fully partitioning the member cpus from any other cpuset. Whenever a new
 | |
|  * exclusive cpuset is created, we also create and attach a new root-domain
 | |
|  * object.
 | |
|  *
 | |
|  */
 | |
| struct root_domain {
 | |
| 	atomic_t refcount;
 | |
| 	atomic_t rto_count;
 | |
| 	struct rcu_head rcu;
 | |
| 	cpumask_var_t span;
 | |
| 	cpumask_var_t online;
 | |
| 
 | |
| 	/* Indicate more than one runnable task for any CPU */
 | |
| 	bool overload;
 | |
| 
 | |
| 	/*
 | |
| 	 * The bit corresponding to a CPU gets set here if such CPU has more
 | |
| 	 * than one runnable -deadline task (as it is below for RT tasks).
 | |
| 	 */
 | |
| 	cpumask_var_t dlo_mask;
 | |
| 	atomic_t dlo_count;
 | |
| 	struct dl_bw dl_bw;
 | |
| 	struct cpudl cpudl;
 | |
| 
 | |
| 	/*
 | |
| 	 * The "RT overload" flag: it gets set if a CPU has more than
 | |
| 	 * one runnable RT task.
 | |
| 	 */
 | |
| 	cpumask_var_t rto_mask;
 | |
| 	struct cpupri cpupri;
 | |
| };
 | |
| 
 | |
| extern struct root_domain def_root_domain;
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * This is the main, per-CPU runqueue data structure.
 | |
|  *
 | |
|  * Locking rule: those places that want to lock multiple runqueues
 | |
|  * (such as the load balancing or the thread migration code), lock
 | |
|  * acquire operations must be ordered by ascending &runqueue.
 | |
|  */
 | |
| struct rq {
 | |
| 	/* runqueue lock: */
 | |
| 	raw_spinlock_t lock;
 | |
| 
 | |
| 	/*
 | |
| 	 * nr_running and cpu_load should be in the same cacheline because
 | |
| 	 * remote CPUs use both these fields when doing load calculation.
 | |
| 	 */
 | |
| 	unsigned int nr_running;
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| 	unsigned int nr_numa_running;
 | |
| 	unsigned int nr_preferred_running;
 | |
| #endif
 | |
| 	#define CPU_LOAD_IDX_MAX 5
 | |
| 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 | |
| 	unsigned long last_load_update_tick;
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| 	u64 nohz_stamp;
 | |
| 	unsigned long nohz_flags;
 | |
| #endif
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| 	unsigned long last_sched_tick;
 | |
| #endif
 | |
| 	/* capture load from *all* tasks on this cpu: */
 | |
| 	struct load_weight load;
 | |
| 	unsigned long nr_load_updates;
 | |
| 	u64 nr_switches;
 | |
| 
 | |
| 	struct cfs_rq cfs;
 | |
| 	struct rt_rq rt;
 | |
| 	struct dl_rq dl;
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	/* list of leaf cfs_rq on this cpu: */
 | |
| 	struct list_head leaf_cfs_rq_list;
 | |
| 
 | |
| 	struct sched_avg avg;
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| 	/*
 | |
| 	 * This is part of a global counter where only the total sum
 | |
| 	 * over all CPUs matters. A task can increase this counter on
 | |
| 	 * one CPU and if it got migrated afterwards it may decrease
 | |
| 	 * it on another CPU. Always updated under the runqueue lock:
 | |
| 	 */
 | |
| 	unsigned long nr_uninterruptible;
 | |
| 
 | |
| 	struct task_struct *curr, *idle, *stop;
 | |
| 	unsigned long next_balance;
 | |
| 	struct mm_struct *prev_mm;
 | |
| 
 | |
| 	unsigned int clock_skip_update;
 | |
| 	u64 clock;
 | |
| 	u64 clock_task;
 | |
| 
 | |
| 	atomic_t nr_iowait;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	struct root_domain *rd;
 | |
| 	struct sched_domain *sd;
 | |
| 
 | |
| 	unsigned long cpu_capacity;
 | |
| 	unsigned long cpu_capacity_orig;
 | |
| 
 | |
| 	struct callback_head *balance_callback;
 | |
| 
 | |
| 	unsigned char idle_balance;
 | |
| 	/* For active balancing */
 | |
| 	int active_balance;
 | |
| 	int push_cpu;
 | |
| 	struct cpu_stop_work active_balance_work;
 | |
| 	/* cpu of this runqueue: */
 | |
| 	int cpu;
 | |
| 	int online;
 | |
| 
 | |
| 	struct list_head cfs_tasks;
 | |
| 
 | |
| 	u64 rt_avg;
 | |
| 	u64 age_stamp;
 | |
| 	u64 idle_stamp;
 | |
| 	u64 avg_idle;
 | |
| 
 | |
| 	/* This is used to determine avg_idle's max value */
 | |
| 	u64 max_idle_balance_cost;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | |
| 	u64 prev_irq_time;
 | |
| #endif
 | |
| #ifdef CONFIG_PARAVIRT
 | |
| 	u64 prev_steal_time;
 | |
| #endif
 | |
| #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 | |
| 	u64 prev_steal_time_rq;
 | |
| #endif
 | |
| 
 | |
| 	/* calc_load related fields */
 | |
| 	unsigned long calc_load_update;
 | |
| 	long calc_load_active;
 | |
| 
 | |
| #ifdef CONFIG_SCHED_HRTICK
 | |
| #ifdef CONFIG_SMP
 | |
| 	int hrtick_csd_pending;
 | |
| 	struct call_single_data hrtick_csd;
 | |
| #endif
 | |
| 	struct hrtimer hrtick_timer;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	/* latency stats */
 | |
| 	struct sched_info rq_sched_info;
 | |
| 	unsigned long long rq_cpu_time;
 | |
| 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 | |
| 
 | |
| 	/* sys_sched_yield() stats */
 | |
| 	unsigned int yld_count;
 | |
| 
 | |
| 	/* schedule() stats */
 | |
| 	unsigned int sched_count;
 | |
| 	unsigned int sched_goidle;
 | |
| 
 | |
| 	/* try_to_wake_up() stats */
 | |
| 	unsigned int ttwu_count;
 | |
| 	unsigned int ttwu_local;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	struct llist_head wake_list;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_CPU_IDLE
 | |
| 	/* Must be inspected within a rcu lock section */
 | |
| 	struct cpuidle_state *idle_state;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static inline int cpu_of(struct rq *rq)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	return rq->cpu;
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 | |
| 
 | |
| #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
 | |
| #define this_rq()		this_cpu_ptr(&runqueues)
 | |
| #define task_rq(p)		cpu_rq(task_cpu(p))
 | |
| #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
 | |
| #define raw_rq()		raw_cpu_ptr(&runqueues)
 | |
| 
 | |
| static inline u64 __rq_clock_broken(struct rq *rq)
 | |
| {
 | |
| 	return READ_ONCE(rq->clock);
 | |
| }
 | |
| 
 | |
| static inline u64 rq_clock(struct rq *rq)
 | |
| {
 | |
| 	lockdep_assert_held(&rq->lock);
 | |
| 	return rq->clock;
 | |
| }
 | |
| 
 | |
| static inline u64 rq_clock_task(struct rq *rq)
 | |
| {
 | |
| 	lockdep_assert_held(&rq->lock);
 | |
| 	return rq->clock_task;
 | |
| }
 | |
| 
 | |
| #define RQCF_REQ_SKIP	0x01
 | |
| #define RQCF_ACT_SKIP	0x02
 | |
| 
 | |
| static inline void rq_clock_skip_update(struct rq *rq, bool skip)
 | |
| {
 | |
| 	lockdep_assert_held(&rq->lock);
 | |
| 	if (skip)
 | |
| 		rq->clock_skip_update |= RQCF_REQ_SKIP;
 | |
| 	else
 | |
| 		rq->clock_skip_update &= ~RQCF_REQ_SKIP;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| enum numa_topology_type {
 | |
| 	NUMA_DIRECT,
 | |
| 	NUMA_GLUELESS_MESH,
 | |
| 	NUMA_BACKPLANE,
 | |
| };
 | |
| extern enum numa_topology_type sched_numa_topology_type;
 | |
| extern int sched_max_numa_distance;
 | |
| extern bool find_numa_distance(int distance);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| /* The regions in numa_faults array from task_struct */
 | |
| enum numa_faults_stats {
 | |
| 	NUMA_MEM = 0,
 | |
| 	NUMA_CPU,
 | |
| 	NUMA_MEMBUF,
 | |
| 	NUMA_CPUBUF
 | |
| };
 | |
| extern void sched_setnuma(struct task_struct *p, int node);
 | |
| extern int migrate_task_to(struct task_struct *p, int cpu);
 | |
| extern int migrate_swap(struct task_struct *, struct task_struct *);
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static inline void
 | |
| queue_balance_callback(struct rq *rq,
 | |
| 		       struct callback_head *head,
 | |
| 		       void (*func)(struct rq *rq))
 | |
| {
 | |
| 	lockdep_assert_held(&rq->lock);
 | |
| 
 | |
| 	if (unlikely(head->next))
 | |
| 		return;
 | |
| 
 | |
| 	head->func = (void (*)(struct callback_head *))func;
 | |
| 	head->next = rq->balance_callback;
 | |
| 	rq->balance_callback = head;
 | |
| }
 | |
| 
 | |
| extern void sched_ttwu_pending(void);
 | |
| 
 | |
| #define rcu_dereference_check_sched_domain(p) \
 | |
| 	rcu_dereference_check((p), \
 | |
| 			      lockdep_is_held(&sched_domains_mutex))
 | |
| 
 | |
| /*
 | |
|  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 | |
|  * See detach_destroy_domains: synchronize_sched for details.
 | |
|  *
 | |
|  * The domain tree of any CPU may only be accessed from within
 | |
|  * preempt-disabled sections.
 | |
|  */
 | |
| #define for_each_domain(cpu, __sd) \
 | |
| 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
 | |
| 			__sd; __sd = __sd->parent)
 | |
| 
 | |
| #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
 | |
| 
 | |
| /**
 | |
|  * highest_flag_domain - Return highest sched_domain containing flag.
 | |
|  * @cpu:	The cpu whose highest level of sched domain is to
 | |
|  *		be returned.
 | |
|  * @flag:	The flag to check for the highest sched_domain
 | |
|  *		for the given cpu.
 | |
|  *
 | |
|  * Returns the highest sched_domain of a cpu which contains the given flag.
 | |
|  */
 | |
| static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
 | |
| {
 | |
| 	struct sched_domain *sd, *hsd = NULL;
 | |
| 
 | |
| 	for_each_domain(cpu, sd) {
 | |
| 		if (!(sd->flags & flag))
 | |
| 			break;
 | |
| 		hsd = sd;
 | |
| 	}
 | |
| 
 | |
| 	return hsd;
 | |
| }
 | |
| 
 | |
| static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 
 | |
| 	for_each_domain(cpu, sd) {
 | |
| 		if (sd->flags & flag)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return sd;
 | |
| }
 | |
| 
 | |
| DECLARE_PER_CPU(struct sched_domain *, sd_llc);
 | |
| DECLARE_PER_CPU(int, sd_llc_size);
 | |
| DECLARE_PER_CPU(int, sd_llc_id);
 | |
| DECLARE_PER_CPU(struct sched_domain *, sd_numa);
 | |
| DECLARE_PER_CPU(struct sched_domain *, sd_busy);
 | |
| DECLARE_PER_CPU(struct sched_domain *, sd_asym);
 | |
| 
 | |
| struct sched_group_capacity {
 | |
| 	atomic_t ref;
 | |
| 	/*
 | |
| 	 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
 | |
| 	 * for a single CPU.
 | |
| 	 */
 | |
| 	unsigned int capacity;
 | |
| 	unsigned long next_update;
 | |
| 	int imbalance; /* XXX unrelated to capacity but shared group state */
 | |
| 	/*
 | |
| 	 * Number of busy cpus in this group.
 | |
| 	 */
 | |
| 	atomic_t nr_busy_cpus;
 | |
| 
 | |
| 	unsigned long cpumask[0]; /* iteration mask */
 | |
| };
 | |
| 
 | |
| struct sched_group {
 | |
| 	struct sched_group *next;	/* Must be a circular list */
 | |
| 	atomic_t ref;
 | |
| 
 | |
| 	unsigned int group_weight;
 | |
| 	struct sched_group_capacity *sgc;
 | |
| 
 | |
| 	/*
 | |
| 	 * The CPUs this group covers.
 | |
| 	 *
 | |
| 	 * NOTE: this field is variable length. (Allocated dynamically
 | |
| 	 * by attaching extra space to the end of the structure,
 | |
| 	 * depending on how many CPUs the kernel has booted up with)
 | |
| 	 */
 | |
| 	unsigned long cpumask[0];
 | |
| };
 | |
| 
 | |
| static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 | |
| {
 | |
| 	return to_cpumask(sg->cpumask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cpumask masking which cpus in the group are allowed to iterate up the domain
 | |
|  * tree.
 | |
|  */
 | |
| static inline struct cpumask *sched_group_mask(struct sched_group *sg)
 | |
| {
 | |
| 	return to_cpumask(sg->sgc->cpumask);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 | |
|  * @group: The group whose first cpu is to be returned.
 | |
|  */
 | |
| static inline unsigned int group_first_cpu(struct sched_group *group)
 | |
| {
 | |
| 	return cpumask_first(sched_group_cpus(group));
 | |
| }
 | |
| 
 | |
| extern int group_balance_cpu(struct sched_group *sg);
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void sched_ttwu_pending(void) { }
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| #include "stats.h"
 | |
| #include "auto_group.h"
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| 
 | |
| /*
 | |
|  * Return the group to which this tasks belongs.
 | |
|  *
 | |
|  * We cannot use task_css() and friends because the cgroup subsystem
 | |
|  * changes that value before the cgroup_subsys::attach() method is called,
 | |
|  * therefore we cannot pin it and might observe the wrong value.
 | |
|  *
 | |
|  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 | |
|  * core changes this before calling sched_move_task().
 | |
|  *
 | |
|  * Instead we use a 'copy' which is updated from sched_move_task() while
 | |
|  * holding both task_struct::pi_lock and rq::lock.
 | |
|  */
 | |
| static inline struct task_group *task_group(struct task_struct *p)
 | |
| {
 | |
| 	return p->sched_task_group;
 | |
| }
 | |
| 
 | |
| /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 | |
| static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 | |
| {
 | |
| #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
 | |
| 	struct task_group *tg = task_group(p);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	p->se.cfs_rq = tg->cfs_rq[cpu];
 | |
| 	p->se.parent = tg->se[cpu];
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	p->rt.rt_rq  = tg->rt_rq[cpu];
 | |
| 	p->rt.parent = tg->rt_se[cpu];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_CGROUP_SCHED */
 | |
| 
 | |
| static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
 | |
| static inline struct task_group *task_group(struct task_struct *p)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_CGROUP_SCHED */
 | |
| 
 | |
| static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
 | |
| {
 | |
| 	set_task_rq(p, cpu);
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
 | |
| 	 * successfuly executed on another CPU. We must ensure that updates of
 | |
| 	 * per-task data have been completed by this moment.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	task_thread_info(p)->cpu = cpu;
 | |
| 	p->wake_cpu = cpu;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 | |
|  */
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| # include <linux/static_key.h>
 | |
| # define const_debug __read_mostly
 | |
| #else
 | |
| # define const_debug const
 | |
| #endif
 | |
| 
 | |
| extern const_debug unsigned int sysctl_sched_features;
 | |
| 
 | |
| #define SCHED_FEAT(name, enabled)	\
 | |
| 	__SCHED_FEAT_##name ,
 | |
| 
 | |
| enum {
 | |
| #include "features.h"
 | |
| 	__SCHED_FEAT_NR,
 | |
| };
 | |
| 
 | |
| #undef SCHED_FEAT
 | |
| 
 | |
| #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
 | |
| #define SCHED_FEAT(name, enabled)					\
 | |
| static __always_inline bool static_branch_##name(struct static_key *key) \
 | |
| {									\
 | |
| 	return static_key_##enabled(key);				\
 | |
| }
 | |
| 
 | |
| #include "features.h"
 | |
| 
 | |
| #undef SCHED_FEAT
 | |
| 
 | |
| extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
 | |
| #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
 | |
| #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
 | |
| #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
 | |
| #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| #define sched_feat_numa(x) sched_feat(x)
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| #define numabalancing_enabled sched_feat_numa(NUMA)
 | |
| #else
 | |
| extern bool numabalancing_enabled;
 | |
| #endif /* CONFIG_SCHED_DEBUG */
 | |
| #else
 | |
| #define sched_feat_numa(x) (0)
 | |
| #define numabalancing_enabled (0)
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| static inline u64 global_rt_period(void)
 | |
| {
 | |
| 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
 | |
| }
 | |
| 
 | |
| static inline u64 global_rt_runtime(void)
 | |
| {
 | |
| 	if (sysctl_sched_rt_runtime < 0)
 | |
| 		return RUNTIME_INF;
 | |
| 
 | |
| 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
 | |
| }
 | |
| 
 | |
| static inline int task_current(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	return rq->curr == p;
 | |
| }
 | |
| 
 | |
| static inline int task_running(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	return p->on_cpu;
 | |
| #else
 | |
| 	return task_current(rq, p);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int task_on_rq_queued(struct task_struct *p)
 | |
| {
 | |
| 	return p->on_rq == TASK_ON_RQ_QUEUED;
 | |
| }
 | |
| 
 | |
| static inline int task_on_rq_migrating(struct task_struct *p)
 | |
| {
 | |
| 	return p->on_rq == TASK_ON_RQ_MIGRATING;
 | |
| }
 | |
| 
 | |
| #ifndef prepare_arch_switch
 | |
| # define prepare_arch_switch(next)	do { } while (0)
 | |
| #endif
 | |
| #ifndef finish_arch_switch
 | |
| # define finish_arch_switch(prev)	do { } while (0)
 | |
| #endif
 | |
| #ifndef finish_arch_post_lock_switch
 | |
| # define finish_arch_post_lock_switch()	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * We can optimise this out completely for !SMP, because the
 | |
| 	 * SMP rebalancing from interrupt is the only thing that cares
 | |
| 	 * here.
 | |
| 	 */
 | |
| 	next->on_cpu = 1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
 | |
| 	 * We must ensure this doesn't happen until the switch is completely
 | |
| 	 * finished.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	prev->on_cpu = 0;
 | |
| #endif
 | |
| #ifdef CONFIG_DEBUG_SPINLOCK
 | |
| 	/* this is a valid case when another task releases the spinlock */
 | |
| 	rq->lock.owner = current;
 | |
| #endif
 | |
| 	/*
 | |
| 	 * If we are tracking spinlock dependencies then we have to
 | |
| 	 * fix up the runqueue lock - which gets 'carried over' from
 | |
| 	 * prev into current:
 | |
| 	 */
 | |
| 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
 | |
| 
 | |
| 	raw_spin_unlock_irq(&rq->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * wake flags
 | |
|  */
 | |
| #define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
 | |
| #define WF_FORK		0x02		/* child wakeup after fork */
 | |
| #define WF_MIGRATED	0x4		/* internal use, task got migrated */
 | |
| 
 | |
| /*
 | |
|  * To aid in avoiding the subversion of "niceness" due to uneven distribution
 | |
|  * of tasks with abnormal "nice" values across CPUs the contribution that
 | |
|  * each task makes to its run queue's load is weighted according to its
 | |
|  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
 | |
|  * scaled version of the new time slice allocation that they receive on time
 | |
|  * slice expiry etc.
 | |
|  */
 | |
| 
 | |
| #define WEIGHT_IDLEPRIO                3
 | |
| #define WMULT_IDLEPRIO         1431655765
 | |
| 
 | |
| /*
 | |
|  * Nice levels are multiplicative, with a gentle 10% change for every
 | |
|  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 | |
|  * nice 1, it will get ~10% less CPU time than another CPU-bound task
 | |
|  * that remained on nice 0.
 | |
|  *
 | |
|  * The "10% effect" is relative and cumulative: from _any_ nice level,
 | |
|  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 | |
|  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 | |
|  * If a task goes up by ~10% and another task goes down by ~10% then
 | |
|  * the relative distance between them is ~25%.)
 | |
|  */
 | |
| static const int prio_to_weight[40] = {
 | |
|  /* -20 */     88761,     71755,     56483,     46273,     36291,
 | |
|  /* -15 */     29154,     23254,     18705,     14949,     11916,
 | |
|  /* -10 */      9548,      7620,      6100,      4904,      3906,
 | |
|  /*  -5 */      3121,      2501,      1991,      1586,      1277,
 | |
|  /*   0 */      1024,       820,       655,       526,       423,
 | |
|  /*   5 */       335,       272,       215,       172,       137,
 | |
|  /*  10 */       110,        87,        70,        56,        45,
 | |
|  /*  15 */        36,        29,        23,        18,        15,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 | |
|  *
 | |
|  * In cases where the weight does not change often, we can use the
 | |
|  * precalculated inverse to speed up arithmetics by turning divisions
 | |
|  * into multiplications:
 | |
|  */
 | |
| static const u32 prio_to_wmult[40] = {
 | |
|  /* -20 */     48388,     59856,     76040,     92818,    118348,
 | |
|  /* -15 */    147320,    184698,    229616,    287308,    360437,
 | |
|  /* -10 */    449829,    563644,    704093,    875809,   1099582,
 | |
|  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 | |
|  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 | |
|  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 | |
|  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 | |
|  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
 | |
| };
 | |
| 
 | |
| #define ENQUEUE_WAKEUP		1
 | |
| #define ENQUEUE_HEAD		2
 | |
| #ifdef CONFIG_SMP
 | |
| #define ENQUEUE_WAKING		4	/* sched_class::task_waking was called */
 | |
| #else
 | |
| #define ENQUEUE_WAKING		0
 | |
| #endif
 | |
| #define ENQUEUE_REPLENISH	8
 | |
| 
 | |
| #define DEQUEUE_SLEEP		1
 | |
| 
 | |
| #define RETRY_TASK		((void *)-1UL)
 | |
| 
 | |
| struct sched_class {
 | |
| 	const struct sched_class *next;
 | |
| 
 | |
| 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
 | |
| 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
 | |
| 	void (*yield_task) (struct rq *rq);
 | |
| 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
 | |
| 
 | |
| 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * It is the responsibility of the pick_next_task() method that will
 | |
| 	 * return the next task to call put_prev_task() on the @prev task or
 | |
| 	 * something equivalent.
 | |
| 	 *
 | |
| 	 * May return RETRY_TASK when it finds a higher prio class has runnable
 | |
| 	 * tasks.
 | |
| 	 */
 | |
| 	struct task_struct * (*pick_next_task) (struct rq *rq,
 | |
| 						struct task_struct *prev);
 | |
| 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
 | |
| 	void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
 | |
| 
 | |
| 	void (*task_waking) (struct task_struct *task);
 | |
| 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
 | |
| 
 | |
| 	void (*set_cpus_allowed)(struct task_struct *p,
 | |
| 				 const struct cpumask *newmask);
 | |
| 
 | |
| 	void (*rq_online)(struct rq *rq);
 | |
| 	void (*rq_offline)(struct rq *rq);
 | |
| #endif
 | |
| 
 | |
| 	void (*set_curr_task) (struct rq *rq);
 | |
| 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
 | |
| 	void (*task_fork) (struct task_struct *p);
 | |
| 	void (*task_dead) (struct task_struct *p);
 | |
| 
 | |
| 	/*
 | |
| 	 * The switched_from() call is allowed to drop rq->lock, therefore we
 | |
| 	 * cannot assume the switched_from/switched_to pair is serliazed by
 | |
| 	 * rq->lock. They are however serialized by p->pi_lock.
 | |
| 	 */
 | |
| 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
 | |
| 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
 | |
| 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
 | |
| 			     int oldprio);
 | |
| 
 | |
| 	unsigned int (*get_rr_interval) (struct rq *rq,
 | |
| 					 struct task_struct *task);
 | |
| 
 | |
| 	void (*update_curr) (struct rq *rq);
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	void (*task_move_group) (struct task_struct *p, int on_rq);
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	prev->sched_class->put_prev_task(rq, prev);
 | |
| }
 | |
| 
 | |
| #define sched_class_highest (&stop_sched_class)
 | |
| #define for_each_class(class) \
 | |
|    for (class = sched_class_highest; class; class = class->next)
 | |
| 
 | |
| extern const struct sched_class stop_sched_class;
 | |
| extern const struct sched_class dl_sched_class;
 | |
| extern const struct sched_class rt_sched_class;
 | |
| extern const struct sched_class fair_sched_class;
 | |
| extern const struct sched_class idle_sched_class;
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| extern void update_group_capacity(struct sched_domain *sd, int cpu);
 | |
| 
 | |
| extern void trigger_load_balance(struct rq *rq);
 | |
| 
 | |
| extern void idle_enter_fair(struct rq *this_rq);
 | |
| extern void idle_exit_fair(struct rq *this_rq);
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void idle_enter_fair(struct rq *rq) { }
 | |
| static inline void idle_exit_fair(struct rq *rq) { }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_CPU_IDLE
 | |
| static inline void idle_set_state(struct rq *rq,
 | |
| 				  struct cpuidle_state *idle_state)
 | |
| {
 | |
| 	rq->idle_state = idle_state;
 | |
| }
 | |
| 
 | |
| static inline struct cpuidle_state *idle_get_state(struct rq *rq)
 | |
| {
 | |
| 	WARN_ON(!rcu_read_lock_held());
 | |
| 	return rq->idle_state;
 | |
| }
 | |
| #else
 | |
| static inline void idle_set_state(struct rq *rq,
 | |
| 				  struct cpuidle_state *idle_state)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline struct cpuidle_state *idle_get_state(struct rq *rq)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern void sysrq_sched_debug_show(void);
 | |
| extern void sched_init_granularity(void);
 | |
| extern void update_max_interval(void);
 | |
| 
 | |
| extern void init_sched_dl_class(void);
 | |
| extern void init_sched_rt_class(void);
 | |
| extern void init_sched_fair_class(void);
 | |
| 
 | |
| extern void resched_curr(struct rq *rq);
 | |
| extern void resched_cpu(int cpu);
 | |
| 
 | |
| extern struct rt_bandwidth def_rt_bandwidth;
 | |
| extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
 | |
| 
 | |
| extern struct dl_bandwidth def_dl_bandwidth;
 | |
| extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
 | |
| extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
 | |
| 
 | |
| unsigned long to_ratio(u64 period, u64 runtime);
 | |
| 
 | |
| extern void init_task_runnable_average(struct task_struct *p);
 | |
| 
 | |
| static inline void add_nr_running(struct rq *rq, unsigned count)
 | |
| {
 | |
| 	unsigned prev_nr = rq->nr_running;
 | |
| 
 | |
| 	rq->nr_running = prev_nr + count;
 | |
| 
 | |
| 	if (prev_nr < 2 && rq->nr_running >= 2) {
 | |
| #ifdef CONFIG_SMP
 | |
| 		if (!rq->rd->overload)
 | |
| 			rq->rd->overload = true;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| 		if (tick_nohz_full_cpu(rq->cpu)) {
 | |
| 			/*
 | |
| 			 * Tick is needed if more than one task runs on a CPU.
 | |
| 			 * Send the target an IPI to kick it out of nohz mode.
 | |
| 			 *
 | |
| 			 * We assume that IPI implies full memory barrier and the
 | |
| 			 * new value of rq->nr_running is visible on reception
 | |
| 			 * from the target.
 | |
| 			 */
 | |
| 			tick_nohz_full_kick_cpu(rq->cpu);
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void sub_nr_running(struct rq *rq, unsigned count)
 | |
| {
 | |
| 	rq->nr_running -= count;
 | |
| }
 | |
| 
 | |
| static inline void rq_last_tick_reset(struct rq *rq)
 | |
| {
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| 	rq->last_sched_tick = jiffies;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| extern void update_rq_clock(struct rq *rq);
 | |
| 
 | |
| extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
 | |
| extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
 | |
| 
 | |
| extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
 | |
| 
 | |
| extern const_debug unsigned int sysctl_sched_time_avg;
 | |
| extern const_debug unsigned int sysctl_sched_nr_migrate;
 | |
| extern const_debug unsigned int sysctl_sched_migration_cost;
 | |
| 
 | |
| static inline u64 sched_avg_period(void)
 | |
| {
 | |
| 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SCHED_HRTICK
 | |
| 
 | |
| /*
 | |
|  * Use hrtick when:
 | |
|  *  - enabled by features
 | |
|  *  - hrtimer is actually high res
 | |
|  */
 | |
| static inline int hrtick_enabled(struct rq *rq)
 | |
| {
 | |
| 	if (!sched_feat(HRTICK))
 | |
| 		return 0;
 | |
| 	if (!cpu_active(cpu_of(rq)))
 | |
| 		return 0;
 | |
| 	return hrtimer_is_hres_active(&rq->hrtick_timer);
 | |
| }
 | |
| 
 | |
| void hrtick_start(struct rq *rq, u64 delay);
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline int hrtick_enabled(struct rq *rq)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SCHED_HRTICK */
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| extern void sched_avg_update(struct rq *rq);
 | |
| 
 | |
| #ifndef arch_scale_freq_capacity
 | |
| static __always_inline
 | |
| unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	return SCHED_CAPACITY_SCALE;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
 | |
| {
 | |
| 	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
 | |
| 	sched_avg_update(rq);
 | |
| }
 | |
| #else
 | |
| static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
 | |
| static inline void sched_avg_update(struct rq *rq) { }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * __task_rq_lock - lock the rq @p resides on.
 | |
|  */
 | |
| static inline struct rq *__task_rq_lock(struct task_struct *p)
 | |
| 	__acquires(rq->lock)
 | |
| {
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	lockdep_assert_held(&p->pi_lock);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		rq = task_rq(p);
 | |
| 		raw_spin_lock(&rq->lock);
 | |
| 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 | |
| 			lockdep_pin_lock(&rq->lock);
 | |
| 			return rq;
 | |
| 		}
 | |
| 		raw_spin_unlock(&rq->lock);
 | |
| 
 | |
| 		while (unlikely(task_on_rq_migrating(p)))
 | |
| 			cpu_relax();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 | |
|  */
 | |
| static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
 | |
| 	__acquires(p->pi_lock)
 | |
| 	__acquires(rq->lock)
 | |
| {
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
 | |
| 		rq = task_rq(p);
 | |
| 		raw_spin_lock(&rq->lock);
 | |
| 		/*
 | |
| 		 *	move_queued_task()		task_rq_lock()
 | |
| 		 *
 | |
| 		 *	ACQUIRE (rq->lock)
 | |
| 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
 | |
| 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
 | |
| 		 *	[S] ->cpu = new_cpu		[L] task_rq()
 | |
| 		 *					[L] ->on_rq
 | |
| 		 *	RELEASE (rq->lock)
 | |
| 		 *
 | |
| 		 * If we observe the old cpu in task_rq_lock, the acquire of
 | |
| 		 * the old rq->lock will fully serialize against the stores.
 | |
| 		 *
 | |
| 		 * If we observe the new cpu in task_rq_lock, the acquire will
 | |
| 		 * pair with the WMB to ensure we must then also see migrating.
 | |
| 		 */
 | |
| 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 | |
| 			lockdep_pin_lock(&rq->lock);
 | |
| 			return rq;
 | |
| 		}
 | |
| 		raw_spin_unlock(&rq->lock);
 | |
| 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 | |
| 
 | |
| 		while (unlikely(task_on_rq_migrating(p)))
 | |
| 			cpu_relax();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void __task_rq_unlock(struct rq *rq)
 | |
| 	__releases(rq->lock)
 | |
| {
 | |
| 	lockdep_unpin_lock(&rq->lock);
 | |
| 	raw_spin_unlock(&rq->lock);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
 | |
| 	__releases(rq->lock)
 | |
| 	__releases(p->pi_lock)
 | |
| {
 | |
| 	lockdep_unpin_lock(&rq->lock);
 | |
| 	raw_spin_unlock(&rq->lock);
 | |
| 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| #ifdef CONFIG_PREEMPT
 | |
| 
 | |
| static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
 | |
| 
 | |
| /*
 | |
|  * fair double_lock_balance: Safely acquires both rq->locks in a fair
 | |
|  * way at the expense of forcing extra atomic operations in all
 | |
|  * invocations.  This assures that the double_lock is acquired using the
 | |
|  * same underlying policy as the spinlock_t on this architecture, which
 | |
|  * reduces latency compared to the unfair variant below.  However, it
 | |
|  * also adds more overhead and therefore may reduce throughput.
 | |
|  */
 | |
| static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
 | |
| 	__releases(this_rq->lock)
 | |
| 	__acquires(busiest->lock)
 | |
| 	__acquires(this_rq->lock)
 | |
| {
 | |
| 	raw_spin_unlock(&this_rq->lock);
 | |
| 	double_rq_lock(this_rq, busiest);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #else
 | |
| /*
 | |
|  * Unfair double_lock_balance: Optimizes throughput at the expense of
 | |
|  * latency by eliminating extra atomic operations when the locks are
 | |
|  * already in proper order on entry.  This favors lower cpu-ids and will
 | |
|  * grant the double lock to lower cpus over higher ids under contention,
 | |
|  * regardless of entry order into the function.
 | |
|  */
 | |
| static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
 | |
| 	__releases(this_rq->lock)
 | |
| 	__acquires(busiest->lock)
 | |
| 	__acquires(this_rq->lock)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
 | |
| 		if (busiest < this_rq) {
 | |
| 			raw_spin_unlock(&this_rq->lock);
 | |
| 			raw_spin_lock(&busiest->lock);
 | |
| 			raw_spin_lock_nested(&this_rq->lock,
 | |
| 					      SINGLE_DEPTH_NESTING);
 | |
| 			ret = 1;
 | |
| 		} else
 | |
| 			raw_spin_lock_nested(&busiest->lock,
 | |
| 					      SINGLE_DEPTH_NESTING);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_PREEMPT */
 | |
| 
 | |
| /*
 | |
|  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 | |
|  */
 | |
| static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
 | |
| {
 | |
| 	if (unlikely(!irqs_disabled())) {
 | |
| 		/* printk() doesn't work good under rq->lock */
 | |
| 		raw_spin_unlock(&this_rq->lock);
 | |
| 		BUG_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	return _double_lock_balance(this_rq, busiest);
 | |
| }
 | |
| 
 | |
| static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
 | |
| 	__releases(busiest->lock)
 | |
| {
 | |
| 	raw_spin_unlock(&busiest->lock);
 | |
| 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
 | |
| }
 | |
| 
 | |
| static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
 | |
| {
 | |
| 	if (l1 > l2)
 | |
| 		swap(l1, l2);
 | |
| 
 | |
| 	spin_lock(l1);
 | |
| 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
 | |
| }
 | |
| 
 | |
| static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
 | |
| {
 | |
| 	if (l1 > l2)
 | |
| 		swap(l1, l2);
 | |
| 
 | |
| 	spin_lock_irq(l1);
 | |
| 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
 | |
| }
 | |
| 
 | |
| static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
 | |
| {
 | |
| 	if (l1 > l2)
 | |
| 		swap(l1, l2);
 | |
| 
 | |
| 	raw_spin_lock(l1);
 | |
| 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * double_rq_lock - safely lock two runqueues
 | |
|  *
 | |
|  * Note this does not disable interrupts like task_rq_lock,
 | |
|  * you need to do so manually before calling.
 | |
|  */
 | |
| static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
 | |
| 	__acquires(rq1->lock)
 | |
| 	__acquires(rq2->lock)
 | |
| {
 | |
| 	BUG_ON(!irqs_disabled());
 | |
| 	if (rq1 == rq2) {
 | |
| 		raw_spin_lock(&rq1->lock);
 | |
| 		__acquire(rq2->lock);	/* Fake it out ;) */
 | |
| 	} else {
 | |
| 		if (rq1 < rq2) {
 | |
| 			raw_spin_lock(&rq1->lock);
 | |
| 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
 | |
| 		} else {
 | |
| 			raw_spin_lock(&rq2->lock);
 | |
| 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * double_rq_unlock - safely unlock two runqueues
 | |
|  *
 | |
|  * Note this does not restore interrupts like task_rq_unlock,
 | |
|  * you need to do so manually after calling.
 | |
|  */
 | |
| static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
 | |
| 	__releases(rq1->lock)
 | |
| 	__releases(rq2->lock)
 | |
| {
 | |
| 	raw_spin_unlock(&rq1->lock);
 | |
| 	if (rq1 != rq2)
 | |
| 		raw_spin_unlock(&rq2->lock);
 | |
| 	else
 | |
| 		__release(rq2->lock);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * double_rq_lock - safely lock two runqueues
 | |
|  *
 | |
|  * Note this does not disable interrupts like task_rq_lock,
 | |
|  * you need to do so manually before calling.
 | |
|  */
 | |
| static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
 | |
| 	__acquires(rq1->lock)
 | |
| 	__acquires(rq2->lock)
 | |
| {
 | |
| 	BUG_ON(!irqs_disabled());
 | |
| 	BUG_ON(rq1 != rq2);
 | |
| 	raw_spin_lock(&rq1->lock);
 | |
| 	__acquire(rq2->lock);	/* Fake it out ;) */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * double_rq_unlock - safely unlock two runqueues
 | |
|  *
 | |
|  * Note this does not restore interrupts like task_rq_unlock,
 | |
|  * you need to do so manually after calling.
 | |
|  */
 | |
| static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
 | |
| 	__releases(rq1->lock)
 | |
| 	__releases(rq2->lock)
 | |
| {
 | |
| 	BUG_ON(rq1 != rq2);
 | |
| 	raw_spin_unlock(&rq1->lock);
 | |
| 	__release(rq2->lock);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
 | |
| extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
 | |
| extern void print_cfs_stats(struct seq_file *m, int cpu);
 | |
| extern void print_rt_stats(struct seq_file *m, int cpu);
 | |
| extern void print_dl_stats(struct seq_file *m, int cpu);
 | |
| 
 | |
| extern void init_cfs_rq(struct cfs_rq *cfs_rq);
 | |
| extern void init_rt_rq(struct rt_rq *rt_rq);
 | |
| extern void init_dl_rq(struct dl_rq *dl_rq);
 | |
| 
 | |
| extern void cfs_bandwidth_usage_inc(void);
 | |
| extern void cfs_bandwidth_usage_dec(void);
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| enum rq_nohz_flag_bits {
 | |
| 	NOHZ_TICK_STOPPED,
 | |
| 	NOHZ_BALANCE_KICK,
 | |
| };
 | |
| 
 | |
| #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | |
| 
 | |
| DECLARE_PER_CPU(u64, cpu_hardirq_time);
 | |
| DECLARE_PER_CPU(u64, cpu_softirq_time);
 | |
| 
 | |
| #ifndef CONFIG_64BIT
 | |
| DECLARE_PER_CPU(seqcount_t, irq_time_seq);
 | |
| 
 | |
| static inline void irq_time_write_begin(void)
 | |
| {
 | |
| 	__this_cpu_inc(irq_time_seq.sequence);
 | |
| 	smp_wmb();
 | |
| }
 | |
| 
 | |
| static inline void irq_time_write_end(void)
 | |
| {
 | |
| 	smp_wmb();
 | |
| 	__this_cpu_inc(irq_time_seq.sequence);
 | |
| }
 | |
| 
 | |
| static inline u64 irq_time_read(int cpu)
 | |
| {
 | |
| 	u64 irq_time;
 | |
| 	unsigned seq;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
 | |
| 		irq_time = per_cpu(cpu_softirq_time, cpu) +
 | |
| 			   per_cpu(cpu_hardirq_time, cpu);
 | |
| 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
 | |
| 
 | |
| 	return irq_time;
 | |
| }
 | |
| #else /* CONFIG_64BIT */
 | |
| static inline void irq_time_write_begin(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void irq_time_write_end(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline u64 irq_time_read(int cpu)
 | |
| {
 | |
| 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
 | |
| }
 | |
| #endif /* CONFIG_64BIT */
 | |
| #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 |