 98ec21a018
			
		
	
	
	98ec21a018
	
	
	
		
			
			Pull scheduler updates from Thomas Gleixner:
 "This series of scheduler updates depends on sched/core and timers/core
  branches, which are already in your tree:
   - Scheduler balancing overhaul to plug a hard to trigger race which
     causes an oops in the balancer (Peter Zijlstra)
   - Lockdep updates which are related to the balancing updates (Peter
     Zijlstra)"
* 'sched-hrtimers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched,lockdep: Employ lock pinning
  lockdep: Implement lock pinning
  lockdep: Simplify lock_release()
  sched: Streamline the task migration locking a little
  sched: Move code around
  sched,dl: Fix sched class hopping CBS hole
  sched, dl: Convert switched_{from, to}_dl() / prio_changed_dl() to balance callbacks
  sched,dl: Remove return value from pull_dl_task()
  sched, rt: Convert switched_{from, to}_rt() / prio_changed_rt() to balance callbacks
  sched,rt: Remove return value from pull_rt_task()
  sched: Allow balance callbacks for check_class_changed()
  sched: Use replace normalize_task() with __sched_setscheduler()
  sched: Replace post_schedule with a balance callback list
		
	
			
		
			
				
	
	
		
			8490 lines
		
	
	
	
		
			221 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			8490 lines
		
	
	
	
		
			221 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 | |
|  *
 | |
|  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 | |
|  *
 | |
|  *  Interactivity improvements by Mike Galbraith
 | |
|  *  (C) 2007 Mike Galbraith <efault@gmx.de>
 | |
|  *
 | |
|  *  Various enhancements by Dmitry Adamushko.
 | |
|  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 | |
|  *
 | |
|  *  Group scheduling enhancements by Srivatsa Vaddagiri
 | |
|  *  Copyright IBM Corporation, 2007
 | |
|  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 | |
|  *
 | |
|  *  Scaled math optimizations by Thomas Gleixner
 | |
|  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
 | |
|  *
 | |
|  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 | |
|  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/latencytop.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/cpuidle.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/task_work.h>
 | |
| 
 | |
| #include <trace/events/sched.h>
 | |
| 
 | |
| #include "sched.h"
 | |
| 
 | |
| /*
 | |
|  * Targeted preemption latency for CPU-bound tasks:
 | |
|  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
 | |
|  *
 | |
|  * NOTE: this latency value is not the same as the concept of
 | |
|  * 'timeslice length' - timeslices in CFS are of variable length
 | |
|  * and have no persistent notion like in traditional, time-slice
 | |
|  * based scheduling concepts.
 | |
|  *
 | |
|  * (to see the precise effective timeslice length of your workload,
 | |
|  *  run vmstat and monitor the context-switches (cs) field)
 | |
|  */
 | |
| unsigned int sysctl_sched_latency = 6000000ULL;
 | |
| unsigned int normalized_sysctl_sched_latency = 6000000ULL;
 | |
| 
 | |
| /*
 | |
|  * The initial- and re-scaling of tunables is configurable
 | |
|  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 | |
|  *
 | |
|  * Options are:
 | |
|  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 | |
|  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 | |
|  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 | |
|  */
 | |
| enum sched_tunable_scaling sysctl_sched_tunable_scaling
 | |
| 	= SCHED_TUNABLESCALING_LOG;
 | |
| 
 | |
| /*
 | |
|  * Minimal preemption granularity for CPU-bound tasks:
 | |
|  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
 | |
|  */
 | |
| unsigned int sysctl_sched_min_granularity = 750000ULL;
 | |
| unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
 | |
| 
 | |
| /*
 | |
|  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 | |
|  */
 | |
| static unsigned int sched_nr_latency = 8;
 | |
| 
 | |
| /*
 | |
|  * After fork, child runs first. If set to 0 (default) then
 | |
|  * parent will (try to) run first.
 | |
|  */
 | |
| unsigned int sysctl_sched_child_runs_first __read_mostly;
 | |
| 
 | |
| /*
 | |
|  * SCHED_OTHER wake-up granularity.
 | |
|  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
 | |
|  *
 | |
|  * This option delays the preemption effects of decoupled workloads
 | |
|  * and reduces their over-scheduling. Synchronous workloads will still
 | |
|  * have immediate wakeup/sleep latencies.
 | |
|  */
 | |
| unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
 | |
| unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
 | |
| 
 | |
| const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
 | |
| 
 | |
| /*
 | |
|  * The exponential sliding  window over which load is averaged for shares
 | |
|  * distribution.
 | |
|  * (default: 10msec)
 | |
|  */
 | |
| unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
 | |
| 
 | |
| #ifdef CONFIG_CFS_BANDWIDTH
 | |
| /*
 | |
|  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 | |
|  * each time a cfs_rq requests quota.
 | |
|  *
 | |
|  * Note: in the case that the slice exceeds the runtime remaining (either due
 | |
|  * to consumption or the quota being specified to be smaller than the slice)
 | |
|  * we will always only issue the remaining available time.
 | |
|  *
 | |
|  * default: 5 msec, units: microseconds
 | |
|   */
 | |
| unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
 | |
| #endif
 | |
| 
 | |
| static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 | |
| {
 | |
| 	lw->weight += inc;
 | |
| 	lw->inv_weight = 0;
 | |
| }
 | |
| 
 | |
| static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 | |
| {
 | |
| 	lw->weight -= dec;
 | |
| 	lw->inv_weight = 0;
 | |
| }
 | |
| 
 | |
| static inline void update_load_set(struct load_weight *lw, unsigned long w)
 | |
| {
 | |
| 	lw->weight = w;
 | |
| 	lw->inv_weight = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increase the granularity value when there are more CPUs,
 | |
|  * because with more CPUs the 'effective latency' as visible
 | |
|  * to users decreases. But the relationship is not linear,
 | |
|  * so pick a second-best guess by going with the log2 of the
 | |
|  * number of CPUs.
 | |
|  *
 | |
|  * This idea comes from the SD scheduler of Con Kolivas:
 | |
|  */
 | |
| static unsigned int get_update_sysctl_factor(void)
 | |
| {
 | |
| 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
 | |
| 	unsigned int factor;
 | |
| 
 | |
| 	switch (sysctl_sched_tunable_scaling) {
 | |
| 	case SCHED_TUNABLESCALING_NONE:
 | |
| 		factor = 1;
 | |
| 		break;
 | |
| 	case SCHED_TUNABLESCALING_LINEAR:
 | |
| 		factor = cpus;
 | |
| 		break;
 | |
| 	case SCHED_TUNABLESCALING_LOG:
 | |
| 	default:
 | |
| 		factor = 1 + ilog2(cpus);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return factor;
 | |
| }
 | |
| 
 | |
| static void update_sysctl(void)
 | |
| {
 | |
| 	unsigned int factor = get_update_sysctl_factor();
 | |
| 
 | |
| #define SET_SYSCTL(name) \
 | |
| 	(sysctl_##name = (factor) * normalized_sysctl_##name)
 | |
| 	SET_SYSCTL(sched_min_granularity);
 | |
| 	SET_SYSCTL(sched_latency);
 | |
| 	SET_SYSCTL(sched_wakeup_granularity);
 | |
| #undef SET_SYSCTL
 | |
| }
 | |
| 
 | |
| void sched_init_granularity(void)
 | |
| {
 | |
| 	update_sysctl();
 | |
| }
 | |
| 
 | |
| #define WMULT_CONST	(~0U)
 | |
| #define WMULT_SHIFT	32
 | |
| 
 | |
| static void __update_inv_weight(struct load_weight *lw)
 | |
| {
 | |
| 	unsigned long w;
 | |
| 
 | |
| 	if (likely(lw->inv_weight))
 | |
| 		return;
 | |
| 
 | |
| 	w = scale_load_down(lw->weight);
 | |
| 
 | |
| 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 | |
| 		lw->inv_weight = 1;
 | |
| 	else if (unlikely(!w))
 | |
| 		lw->inv_weight = WMULT_CONST;
 | |
| 	else
 | |
| 		lw->inv_weight = WMULT_CONST / w;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * delta_exec * weight / lw.weight
 | |
|  *   OR
 | |
|  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 | |
|  *
 | |
|  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 | |
|  * we're guaranteed shift stays positive because inv_weight is guaranteed to
 | |
|  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 | |
|  *
 | |
|  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 | |
|  * weight/lw.weight <= 1, and therefore our shift will also be positive.
 | |
|  */
 | |
| static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
 | |
| {
 | |
| 	u64 fact = scale_load_down(weight);
 | |
| 	int shift = WMULT_SHIFT;
 | |
| 
 | |
| 	__update_inv_weight(lw);
 | |
| 
 | |
| 	if (unlikely(fact >> 32)) {
 | |
| 		while (fact >> 32) {
 | |
| 			fact >>= 1;
 | |
| 			shift--;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* hint to use a 32x32->64 mul */
 | |
| 	fact = (u64)(u32)fact * lw->inv_weight;
 | |
| 
 | |
| 	while (fact >> 32) {
 | |
| 		fact >>= 1;
 | |
| 		shift--;
 | |
| 	}
 | |
| 
 | |
| 	return mul_u64_u32_shr(delta_exec, fact, shift);
 | |
| }
 | |
| 
 | |
| 
 | |
| const struct sched_class fair_sched_class;
 | |
| 
 | |
| /**************************************************************
 | |
|  * CFS operations on generic schedulable entities:
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 
 | |
| /* cpu runqueue to which this cfs_rq is attached */
 | |
| static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return cfs_rq->rq;
 | |
| }
 | |
| 
 | |
| /* An entity is a task if it doesn't "own" a runqueue */
 | |
| #define entity_is_task(se)	(!se->my_q)
 | |
| 
 | |
| static inline struct task_struct *task_of(struct sched_entity *se)
 | |
| {
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 	WARN_ON_ONCE(!entity_is_task(se));
 | |
| #endif
 | |
| 	return container_of(se, struct task_struct, se);
 | |
| }
 | |
| 
 | |
| /* Walk up scheduling entities hierarchy */
 | |
| #define for_each_sched_entity(se) \
 | |
| 		for (; se; se = se->parent)
 | |
| 
 | |
| static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 | |
| {
 | |
| 	return p->se.cfs_rq;
 | |
| }
 | |
| 
 | |
| /* runqueue on which this entity is (to be) queued */
 | |
| static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 | |
| {
 | |
| 	return se->cfs_rq;
 | |
| }
 | |
| 
 | |
| /* runqueue "owned" by this group */
 | |
| static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 | |
| {
 | |
| 	return grp->my_q;
 | |
| }
 | |
| 
 | |
| static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
 | |
| 				       int force_update);
 | |
| 
 | |
| static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	if (!cfs_rq->on_list) {
 | |
| 		/*
 | |
| 		 * Ensure we either appear before our parent (if already
 | |
| 		 * enqueued) or force our parent to appear after us when it is
 | |
| 		 * enqueued.  The fact that we always enqueue bottom-up
 | |
| 		 * reduces this to two cases.
 | |
| 		 */
 | |
| 		if (cfs_rq->tg->parent &&
 | |
| 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
 | |
| 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
 | |
| 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
 | |
| 		} else {
 | |
| 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 | |
| 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
 | |
| 		}
 | |
| 
 | |
| 		cfs_rq->on_list = 1;
 | |
| 		/* We should have no load, but we need to update last_decay. */
 | |
| 		update_cfs_rq_blocked_load(cfs_rq, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	if (cfs_rq->on_list) {
 | |
| 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 | |
| 		cfs_rq->on_list = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Iterate thr' all leaf cfs_rq's on a runqueue */
 | |
| #define for_each_leaf_cfs_rq(rq, cfs_rq) \
 | |
| 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 | |
| 
 | |
| /* Do the two (enqueued) entities belong to the same group ? */
 | |
| static inline struct cfs_rq *
 | |
| is_same_group(struct sched_entity *se, struct sched_entity *pse)
 | |
| {
 | |
| 	if (se->cfs_rq == pse->cfs_rq)
 | |
| 		return se->cfs_rq;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline struct sched_entity *parent_entity(struct sched_entity *se)
 | |
| {
 | |
| 	return se->parent;
 | |
| }
 | |
| 
 | |
| static void
 | |
| find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 | |
| {
 | |
| 	int se_depth, pse_depth;
 | |
| 
 | |
| 	/*
 | |
| 	 * preemption test can be made between sibling entities who are in the
 | |
| 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 | |
| 	 * both tasks until we find their ancestors who are siblings of common
 | |
| 	 * parent.
 | |
| 	 */
 | |
| 
 | |
| 	/* First walk up until both entities are at same depth */
 | |
| 	se_depth = (*se)->depth;
 | |
| 	pse_depth = (*pse)->depth;
 | |
| 
 | |
| 	while (se_depth > pse_depth) {
 | |
| 		se_depth--;
 | |
| 		*se = parent_entity(*se);
 | |
| 	}
 | |
| 
 | |
| 	while (pse_depth > se_depth) {
 | |
| 		pse_depth--;
 | |
| 		*pse = parent_entity(*pse);
 | |
| 	}
 | |
| 
 | |
| 	while (!is_same_group(*se, *pse)) {
 | |
| 		*se = parent_entity(*se);
 | |
| 		*pse = parent_entity(*pse);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else	/* !CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| static inline struct task_struct *task_of(struct sched_entity *se)
 | |
| {
 | |
| 	return container_of(se, struct task_struct, se);
 | |
| }
 | |
| 
 | |
| static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return container_of(cfs_rq, struct rq, cfs);
 | |
| }
 | |
| 
 | |
| #define entity_is_task(se)	1
 | |
| 
 | |
| #define for_each_sched_entity(se) \
 | |
| 		for (; se; se = NULL)
 | |
| 
 | |
| static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 | |
| {
 | |
| 	return &task_rq(p)->cfs;
 | |
| }
 | |
| 
 | |
| static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 | |
| {
 | |
| 	struct task_struct *p = task_of(se);
 | |
| 	struct rq *rq = task_rq(p);
 | |
| 
 | |
| 	return &rq->cfs;
 | |
| }
 | |
| 
 | |
| /* runqueue "owned" by this group */
 | |
| static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| #define for_each_leaf_cfs_rq(rq, cfs_rq) \
 | |
| 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 | |
| 
 | |
| static inline struct sched_entity *parent_entity(struct sched_entity *se)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| static __always_inline
 | |
| void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
 | |
| 
 | |
| /**************************************************************
 | |
|  * Scheduling class tree data structure manipulation methods:
 | |
|  */
 | |
| 
 | |
| static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
 | |
| {
 | |
| 	s64 delta = (s64)(vruntime - max_vruntime);
 | |
| 	if (delta > 0)
 | |
| 		max_vruntime = vruntime;
 | |
| 
 | |
| 	return max_vruntime;
 | |
| }
 | |
| 
 | |
| static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 | |
| {
 | |
| 	s64 delta = (s64)(vruntime - min_vruntime);
 | |
| 	if (delta < 0)
 | |
| 		min_vruntime = vruntime;
 | |
| 
 | |
| 	return min_vruntime;
 | |
| }
 | |
| 
 | |
| static inline int entity_before(struct sched_entity *a,
 | |
| 				struct sched_entity *b)
 | |
| {
 | |
| 	return (s64)(a->vruntime - b->vruntime) < 0;
 | |
| }
 | |
| 
 | |
| static void update_min_vruntime(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	u64 vruntime = cfs_rq->min_vruntime;
 | |
| 
 | |
| 	if (cfs_rq->curr)
 | |
| 		vruntime = cfs_rq->curr->vruntime;
 | |
| 
 | |
| 	if (cfs_rq->rb_leftmost) {
 | |
| 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
 | |
| 						   struct sched_entity,
 | |
| 						   run_node);
 | |
| 
 | |
| 		if (!cfs_rq->curr)
 | |
| 			vruntime = se->vruntime;
 | |
| 		else
 | |
| 			vruntime = min_vruntime(vruntime, se->vruntime);
 | |
| 	}
 | |
| 
 | |
| 	/* ensure we never gain time by being placed backwards. */
 | |
| 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 | |
| #ifndef CONFIG_64BIT
 | |
| 	smp_wmb();
 | |
| 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enqueue an entity into the rb-tree:
 | |
|  */
 | |
| static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct sched_entity *entry;
 | |
| 	int leftmost = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the right place in the rbtree:
 | |
| 	 */
 | |
| 	while (*link) {
 | |
| 		parent = *link;
 | |
| 		entry = rb_entry(parent, struct sched_entity, run_node);
 | |
| 		/*
 | |
| 		 * We dont care about collisions. Nodes with
 | |
| 		 * the same key stay together.
 | |
| 		 */
 | |
| 		if (entity_before(se, entry)) {
 | |
| 			link = &parent->rb_left;
 | |
| 		} else {
 | |
| 			link = &parent->rb_right;
 | |
| 			leftmost = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Maintain a cache of leftmost tree entries (it is frequently
 | |
| 	 * used):
 | |
| 	 */
 | |
| 	if (leftmost)
 | |
| 		cfs_rq->rb_leftmost = &se->run_node;
 | |
| 
 | |
| 	rb_link_node(&se->run_node, parent, link);
 | |
| 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 | |
| }
 | |
| 
 | |
| static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	if (cfs_rq->rb_leftmost == &se->run_node) {
 | |
| 		struct rb_node *next_node;
 | |
| 
 | |
| 		next_node = rb_next(&se->run_node);
 | |
| 		cfs_rq->rb_leftmost = next_node;
 | |
| 	}
 | |
| 
 | |
| 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 | |
| }
 | |
| 
 | |
| struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rb_node *left = cfs_rq->rb_leftmost;
 | |
| 
 | |
| 	if (!left)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return rb_entry(left, struct sched_entity, run_node);
 | |
| }
 | |
| 
 | |
| static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 | |
| {
 | |
| 	struct rb_node *next = rb_next(&se->run_node);
 | |
| 
 | |
| 	if (!next)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return rb_entry(next, struct sched_entity, run_node);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 | |
| 
 | |
| 	if (!last)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return rb_entry(last, struct sched_entity, run_node);
 | |
| }
 | |
| 
 | |
| /**************************************************************
 | |
|  * Scheduling class statistics methods:
 | |
|  */
 | |
| 
 | |
| int sched_proc_update_handler(struct ctl_table *table, int write,
 | |
| 		void __user *buffer, size_t *lenp,
 | |
| 		loff_t *ppos)
 | |
| {
 | |
| 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 | |
| 	unsigned int factor = get_update_sysctl_factor();
 | |
| 
 | |
| 	if (ret || !write)
 | |
| 		return ret;
 | |
| 
 | |
| 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 | |
| 					sysctl_sched_min_granularity);
 | |
| 
 | |
| #define WRT_SYSCTL(name) \
 | |
| 	(normalized_sysctl_##name = sysctl_##name / (factor))
 | |
| 	WRT_SYSCTL(sched_min_granularity);
 | |
| 	WRT_SYSCTL(sched_latency);
 | |
| 	WRT_SYSCTL(sched_wakeup_granularity);
 | |
| #undef WRT_SYSCTL
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * delta /= w
 | |
|  */
 | |
| static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
 | |
| {
 | |
| 	if (unlikely(se->load.weight != NICE_0_LOAD))
 | |
| 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The idea is to set a period in which each task runs once.
 | |
|  *
 | |
|  * When there are too many tasks (sched_nr_latency) we have to stretch
 | |
|  * this period because otherwise the slices get too small.
 | |
|  *
 | |
|  * p = (nr <= nl) ? l : l*nr/nl
 | |
|  */
 | |
| static u64 __sched_period(unsigned long nr_running)
 | |
| {
 | |
| 	u64 period = sysctl_sched_latency;
 | |
| 	unsigned long nr_latency = sched_nr_latency;
 | |
| 
 | |
| 	if (unlikely(nr_running > nr_latency)) {
 | |
| 		period = sysctl_sched_min_granularity;
 | |
| 		period *= nr_running;
 | |
| 	}
 | |
| 
 | |
| 	return period;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We calculate the wall-time slice from the period by taking a part
 | |
|  * proportional to the weight.
 | |
|  *
 | |
|  * s = p*P[w/rw]
 | |
|  */
 | |
| static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct load_weight *load;
 | |
| 		struct load_weight lw;
 | |
| 
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		load = &cfs_rq->load;
 | |
| 
 | |
| 		if (unlikely(!se->on_rq)) {
 | |
| 			lw = cfs_rq->load;
 | |
| 
 | |
| 			update_load_add(&lw, se->load.weight);
 | |
| 			load = &lw;
 | |
| 		}
 | |
| 		slice = __calc_delta(slice, se->load.weight, load);
 | |
| 	}
 | |
| 	return slice;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We calculate the vruntime slice of a to-be-inserted task.
 | |
|  *
 | |
|  * vs = s/w
 | |
|  */
 | |
| static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static int select_idle_sibling(struct task_struct *p, int cpu);
 | |
| static unsigned long task_h_load(struct task_struct *p);
 | |
| 
 | |
| static inline void __update_task_entity_contrib(struct sched_entity *se);
 | |
| static inline void __update_task_entity_utilization(struct sched_entity *se);
 | |
| 
 | |
| /* Give new task start runnable values to heavy its load in infant time */
 | |
| void init_task_runnable_average(struct task_struct *p)
 | |
| {
 | |
| 	u32 slice;
 | |
| 
 | |
| 	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
 | |
| 	p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
 | |
| 	p->se.avg.avg_period = slice;
 | |
| 	__update_task_entity_contrib(&p->se);
 | |
| 	__update_task_entity_utilization(&p->se);
 | |
| }
 | |
| #else
 | |
| void init_task_runnable_average(struct task_struct *p)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Update the current task's runtime statistics.
 | |
|  */
 | |
| static void update_curr(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct sched_entity *curr = cfs_rq->curr;
 | |
| 	u64 now = rq_clock_task(rq_of(cfs_rq));
 | |
| 	u64 delta_exec;
 | |
| 
 | |
| 	if (unlikely(!curr))
 | |
| 		return;
 | |
| 
 | |
| 	delta_exec = now - curr->exec_start;
 | |
| 	if (unlikely((s64)delta_exec <= 0))
 | |
| 		return;
 | |
| 
 | |
| 	curr->exec_start = now;
 | |
| 
 | |
| 	schedstat_set(curr->statistics.exec_max,
 | |
| 		      max(delta_exec, curr->statistics.exec_max));
 | |
| 
 | |
| 	curr->sum_exec_runtime += delta_exec;
 | |
| 	schedstat_add(cfs_rq, exec_clock, delta_exec);
 | |
| 
 | |
| 	curr->vruntime += calc_delta_fair(delta_exec, curr);
 | |
| 	update_min_vruntime(cfs_rq);
 | |
| 
 | |
| 	if (entity_is_task(curr)) {
 | |
| 		struct task_struct *curtask = task_of(curr);
 | |
| 
 | |
| 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 | |
| 		cpuacct_charge(curtask, delta_exec);
 | |
| 		account_group_exec_runtime(curtask, delta_exec);
 | |
| 	}
 | |
| 
 | |
| 	account_cfs_rq_runtime(cfs_rq, delta_exec);
 | |
| }
 | |
| 
 | |
| static void update_curr_fair(struct rq *rq)
 | |
| {
 | |
| 	update_curr(cfs_rq_of(&rq->curr->se));
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Task is being enqueued - update stats:
 | |
|  */
 | |
| static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	/*
 | |
| 	 * Are we enqueueing a waiting task? (for current tasks
 | |
| 	 * a dequeue/enqueue event is a NOP)
 | |
| 	 */
 | |
| 	if (se != cfs_rq->curr)
 | |
| 		update_stats_wait_start(cfs_rq, se);
 | |
| }
 | |
| 
 | |
| static void
 | |
| update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
 | |
| 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
 | |
| 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
 | |
| 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
 | |
| 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	if (entity_is_task(se)) {
 | |
| 		trace_sched_stat_wait(task_of(se),
 | |
| 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
 | |
| 	}
 | |
| #endif
 | |
| 	schedstat_set(se->statistics.wait_start, 0);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	/*
 | |
| 	 * Mark the end of the wait period if dequeueing a
 | |
| 	 * waiting task:
 | |
| 	 */
 | |
| 	if (se != cfs_rq->curr)
 | |
| 		update_stats_wait_end(cfs_rq, se);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We are picking a new current task - update its stats:
 | |
|  */
 | |
| static inline void
 | |
| update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	/*
 | |
| 	 * We are starting a new run period:
 | |
| 	 */
 | |
| 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
 | |
| }
 | |
| 
 | |
| /**************************************************
 | |
|  * Scheduling class queueing methods:
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| /*
 | |
|  * Approximate time to scan a full NUMA task in ms. The task scan period is
 | |
|  * calculated based on the tasks virtual memory size and
 | |
|  * numa_balancing_scan_size.
 | |
|  */
 | |
| unsigned int sysctl_numa_balancing_scan_period_min = 1000;
 | |
| unsigned int sysctl_numa_balancing_scan_period_max = 60000;
 | |
| 
 | |
| /* Portion of address space to scan in MB */
 | |
| unsigned int sysctl_numa_balancing_scan_size = 256;
 | |
| 
 | |
| /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
 | |
| unsigned int sysctl_numa_balancing_scan_delay = 1000;
 | |
| 
 | |
| static unsigned int task_nr_scan_windows(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long rss = 0;
 | |
| 	unsigned long nr_scan_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculations based on RSS as non-present and empty pages are skipped
 | |
| 	 * by the PTE scanner and NUMA hinting faults should be trapped based
 | |
| 	 * on resident pages
 | |
| 	 */
 | |
| 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
 | |
| 	rss = get_mm_rss(p->mm);
 | |
| 	if (!rss)
 | |
| 		rss = nr_scan_pages;
 | |
| 
 | |
| 	rss = round_up(rss, nr_scan_pages);
 | |
| 	return rss / nr_scan_pages;
 | |
| }
 | |
| 
 | |
| /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
 | |
| #define MAX_SCAN_WINDOW 2560
 | |
| 
 | |
| static unsigned int task_scan_min(struct task_struct *p)
 | |
| {
 | |
| 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
 | |
| 	unsigned int scan, floor;
 | |
| 	unsigned int windows = 1;
 | |
| 
 | |
| 	if (scan_size < MAX_SCAN_WINDOW)
 | |
| 		windows = MAX_SCAN_WINDOW / scan_size;
 | |
| 	floor = 1000 / windows;
 | |
| 
 | |
| 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
 | |
| 	return max_t(unsigned int, floor, scan);
 | |
| }
 | |
| 
 | |
| static unsigned int task_scan_max(struct task_struct *p)
 | |
| {
 | |
| 	unsigned int smin = task_scan_min(p);
 | |
| 	unsigned int smax;
 | |
| 
 | |
| 	/* Watch for min being lower than max due to floor calculations */
 | |
| 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
 | |
| 	return max(smin, smax);
 | |
| }
 | |
| 
 | |
| static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
 | |
| 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
 | |
| }
 | |
| 
 | |
| static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
 | |
| 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
 | |
| }
 | |
| 
 | |
| struct numa_group {
 | |
| 	atomic_t refcount;
 | |
| 
 | |
| 	spinlock_t lock; /* nr_tasks, tasks */
 | |
| 	int nr_tasks;
 | |
| 	pid_t gid;
 | |
| 
 | |
| 	struct rcu_head rcu;
 | |
| 	nodemask_t active_nodes;
 | |
| 	unsigned long total_faults;
 | |
| 	/*
 | |
| 	 * Faults_cpu is used to decide whether memory should move
 | |
| 	 * towards the CPU. As a consequence, these stats are weighted
 | |
| 	 * more by CPU use than by memory faults.
 | |
| 	 */
 | |
| 	unsigned long *faults_cpu;
 | |
| 	unsigned long faults[0];
 | |
| };
 | |
| 
 | |
| /* Shared or private faults. */
 | |
| #define NR_NUMA_HINT_FAULT_TYPES 2
 | |
| 
 | |
| /* Memory and CPU locality */
 | |
| #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
 | |
| 
 | |
| /* Averaged statistics, and temporary buffers. */
 | |
| #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
 | |
| 
 | |
| pid_t task_numa_group_id(struct task_struct *p)
 | |
| {
 | |
| 	return p->numa_group ? p->numa_group->gid : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The averaged statistics, shared & private, memory & cpu,
 | |
|  * occupy the first half of the array. The second half of the
 | |
|  * array is for current counters, which are averaged into the
 | |
|  * first set by task_numa_placement.
 | |
|  */
 | |
| static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
 | |
| {
 | |
| 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
 | |
| }
 | |
| 
 | |
| static inline unsigned long task_faults(struct task_struct *p, int nid)
 | |
| {
 | |
| 	if (!p->numa_faults)
 | |
| 		return 0;
 | |
| 
 | |
| 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
 | |
| 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
 | |
| }
 | |
| 
 | |
| static inline unsigned long group_faults(struct task_struct *p, int nid)
 | |
| {
 | |
| 	if (!p->numa_group)
 | |
| 		return 0;
 | |
| 
 | |
| 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
 | |
| 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
 | |
| }
 | |
| 
 | |
| static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
 | |
| {
 | |
| 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
 | |
| 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
 | |
| }
 | |
| 
 | |
| /* Handle placement on systems where not all nodes are directly connected. */
 | |
| static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
 | |
| 					int maxdist, bool task)
 | |
| {
 | |
| 	unsigned long score = 0;
 | |
| 	int node;
 | |
| 
 | |
| 	/*
 | |
| 	 * All nodes are directly connected, and the same distance
 | |
| 	 * from each other. No need for fancy placement algorithms.
 | |
| 	 */
 | |
| 	if (sched_numa_topology_type == NUMA_DIRECT)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This code is called for each node, introducing N^2 complexity,
 | |
| 	 * which should be ok given the number of nodes rarely exceeds 8.
 | |
| 	 */
 | |
| 	for_each_online_node(node) {
 | |
| 		unsigned long faults;
 | |
| 		int dist = node_distance(nid, node);
 | |
| 
 | |
| 		/*
 | |
| 		 * The furthest away nodes in the system are not interesting
 | |
| 		 * for placement; nid was already counted.
 | |
| 		 */
 | |
| 		if (dist == sched_max_numa_distance || node == nid)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * On systems with a backplane NUMA topology, compare groups
 | |
| 		 * of nodes, and move tasks towards the group with the most
 | |
| 		 * memory accesses. When comparing two nodes at distance
 | |
| 		 * "hoplimit", only nodes closer by than "hoplimit" are part
 | |
| 		 * of each group. Skip other nodes.
 | |
| 		 */
 | |
| 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
 | |
| 					dist > maxdist)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Add up the faults from nearby nodes. */
 | |
| 		if (task)
 | |
| 			faults = task_faults(p, node);
 | |
| 		else
 | |
| 			faults = group_faults(p, node);
 | |
| 
 | |
| 		/*
 | |
| 		 * On systems with a glueless mesh NUMA topology, there are
 | |
| 		 * no fixed "groups of nodes". Instead, nodes that are not
 | |
| 		 * directly connected bounce traffic through intermediate
 | |
| 		 * nodes; a numa_group can occupy any set of nodes.
 | |
| 		 * The further away a node is, the less the faults count.
 | |
| 		 * This seems to result in good task placement.
 | |
| 		 */
 | |
| 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
 | |
| 			faults *= (sched_max_numa_distance - dist);
 | |
| 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
 | |
| 		}
 | |
| 
 | |
| 		score += faults;
 | |
| 	}
 | |
| 
 | |
| 	return score;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These return the fraction of accesses done by a particular task, or
 | |
|  * task group, on a particular numa node.  The group weight is given a
 | |
|  * larger multiplier, in order to group tasks together that are almost
 | |
|  * evenly spread out between numa nodes.
 | |
|  */
 | |
| static inline unsigned long task_weight(struct task_struct *p, int nid,
 | |
| 					int dist)
 | |
| {
 | |
| 	unsigned long faults, total_faults;
 | |
| 
 | |
| 	if (!p->numa_faults)
 | |
| 		return 0;
 | |
| 
 | |
| 	total_faults = p->total_numa_faults;
 | |
| 
 | |
| 	if (!total_faults)
 | |
| 		return 0;
 | |
| 
 | |
| 	faults = task_faults(p, nid);
 | |
| 	faults += score_nearby_nodes(p, nid, dist, true);
 | |
| 
 | |
| 	return 1000 * faults / total_faults;
 | |
| }
 | |
| 
 | |
| static inline unsigned long group_weight(struct task_struct *p, int nid,
 | |
| 					 int dist)
 | |
| {
 | |
| 	unsigned long faults, total_faults;
 | |
| 
 | |
| 	if (!p->numa_group)
 | |
| 		return 0;
 | |
| 
 | |
| 	total_faults = p->numa_group->total_faults;
 | |
| 
 | |
| 	if (!total_faults)
 | |
| 		return 0;
 | |
| 
 | |
| 	faults = group_faults(p, nid);
 | |
| 	faults += score_nearby_nodes(p, nid, dist, false);
 | |
| 
 | |
| 	return 1000 * faults / total_faults;
 | |
| }
 | |
| 
 | |
| bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
 | |
| 				int src_nid, int dst_cpu)
 | |
| {
 | |
| 	struct numa_group *ng = p->numa_group;
 | |
| 	int dst_nid = cpu_to_node(dst_cpu);
 | |
| 	int last_cpupid, this_cpupid;
 | |
| 
 | |
| 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
 | |
| 
 | |
| 	/*
 | |
| 	 * Multi-stage node selection is used in conjunction with a periodic
 | |
| 	 * migration fault to build a temporal task<->page relation. By using
 | |
| 	 * a two-stage filter we remove short/unlikely relations.
 | |
| 	 *
 | |
| 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
 | |
| 	 * a task's usage of a particular page (n_p) per total usage of this
 | |
| 	 * page (n_t) (in a given time-span) to a probability.
 | |
| 	 *
 | |
| 	 * Our periodic faults will sample this probability and getting the
 | |
| 	 * same result twice in a row, given these samples are fully
 | |
| 	 * independent, is then given by P(n)^2, provided our sample period
 | |
| 	 * is sufficiently short compared to the usage pattern.
 | |
| 	 *
 | |
| 	 * This quadric squishes small probabilities, making it less likely we
 | |
| 	 * act on an unlikely task<->page relation.
 | |
| 	 */
 | |
| 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
 | |
| 	if (!cpupid_pid_unset(last_cpupid) &&
 | |
| 				cpupid_to_nid(last_cpupid) != dst_nid)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Always allow migrate on private faults */
 | |
| 	if (cpupid_match_pid(p, last_cpupid))
 | |
| 		return true;
 | |
| 
 | |
| 	/* A shared fault, but p->numa_group has not been set up yet. */
 | |
| 	if (!ng)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not migrate if the destination is not a node that
 | |
| 	 * is actively used by this numa group.
 | |
| 	 */
 | |
| 	if (!node_isset(dst_nid, ng->active_nodes))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Source is a node that is not actively used by this
 | |
| 	 * numa group, while the destination is. Migrate.
 | |
| 	 */
 | |
| 	if (!node_isset(src_nid, ng->active_nodes))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Both source and destination are nodes in active
 | |
| 	 * use by this numa group. Maximize memory bandwidth
 | |
| 	 * by migrating from more heavily used groups, to less
 | |
| 	 * heavily used ones, spreading the load around.
 | |
| 	 * Use a 1/4 hysteresis to avoid spurious page movement.
 | |
| 	 */
 | |
| 	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
 | |
| }
 | |
| 
 | |
| static unsigned long weighted_cpuload(const int cpu);
 | |
| static unsigned long source_load(int cpu, int type);
 | |
| static unsigned long target_load(int cpu, int type);
 | |
| static unsigned long capacity_of(int cpu);
 | |
| static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
 | |
| 
 | |
| /* Cached statistics for all CPUs within a node */
 | |
| struct numa_stats {
 | |
| 	unsigned long nr_running;
 | |
| 	unsigned long load;
 | |
| 
 | |
| 	/* Total compute capacity of CPUs on a node */
 | |
| 	unsigned long compute_capacity;
 | |
| 
 | |
| 	/* Approximate capacity in terms of runnable tasks on a node */
 | |
| 	unsigned long task_capacity;
 | |
| 	int has_free_capacity;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * XXX borrowed from update_sg_lb_stats
 | |
|  */
 | |
| static void update_numa_stats(struct numa_stats *ns, int nid)
 | |
| {
 | |
| 	int smt, cpu, cpus = 0;
 | |
| 	unsigned long capacity;
 | |
| 
 | |
| 	memset(ns, 0, sizeof(*ns));
 | |
| 	for_each_cpu(cpu, cpumask_of_node(nid)) {
 | |
| 		struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 		ns->nr_running += rq->nr_running;
 | |
| 		ns->load += weighted_cpuload(cpu);
 | |
| 		ns->compute_capacity += capacity_of(cpu);
 | |
| 
 | |
| 		cpus++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we raced with hotplug and there are no CPUs left in our mask
 | |
| 	 * the @ns structure is NULL'ed and task_numa_compare() will
 | |
| 	 * not find this node attractive.
 | |
| 	 *
 | |
| 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
 | |
| 	 * imbalance and bail there.
 | |
| 	 */
 | |
| 	if (!cpus)
 | |
| 		return;
 | |
| 
 | |
| 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
 | |
| 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
 | |
| 	capacity = cpus / smt; /* cores */
 | |
| 
 | |
| 	ns->task_capacity = min_t(unsigned, capacity,
 | |
| 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
 | |
| 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
 | |
| }
 | |
| 
 | |
| struct task_numa_env {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	int src_cpu, src_nid;
 | |
| 	int dst_cpu, dst_nid;
 | |
| 
 | |
| 	struct numa_stats src_stats, dst_stats;
 | |
| 
 | |
| 	int imbalance_pct;
 | |
| 	int dist;
 | |
| 
 | |
| 	struct task_struct *best_task;
 | |
| 	long best_imp;
 | |
| 	int best_cpu;
 | |
| };
 | |
| 
 | |
| static void task_numa_assign(struct task_numa_env *env,
 | |
| 			     struct task_struct *p, long imp)
 | |
| {
 | |
| 	if (env->best_task)
 | |
| 		put_task_struct(env->best_task);
 | |
| 	if (p)
 | |
| 		get_task_struct(p);
 | |
| 
 | |
| 	env->best_task = p;
 | |
| 	env->best_imp = imp;
 | |
| 	env->best_cpu = env->dst_cpu;
 | |
| }
 | |
| 
 | |
| static bool load_too_imbalanced(long src_load, long dst_load,
 | |
| 				struct task_numa_env *env)
 | |
| {
 | |
| 	long imb, old_imb;
 | |
| 	long orig_src_load, orig_dst_load;
 | |
| 	long src_capacity, dst_capacity;
 | |
| 
 | |
| 	/*
 | |
| 	 * The load is corrected for the CPU capacity available on each node.
 | |
| 	 *
 | |
| 	 * src_load        dst_load
 | |
| 	 * ------------ vs ---------
 | |
| 	 * src_capacity    dst_capacity
 | |
| 	 */
 | |
| 	src_capacity = env->src_stats.compute_capacity;
 | |
| 	dst_capacity = env->dst_stats.compute_capacity;
 | |
| 
 | |
| 	/* We care about the slope of the imbalance, not the direction. */
 | |
| 	if (dst_load < src_load)
 | |
| 		swap(dst_load, src_load);
 | |
| 
 | |
| 	/* Is the difference below the threshold? */
 | |
| 	imb = dst_load * src_capacity * 100 -
 | |
| 	      src_load * dst_capacity * env->imbalance_pct;
 | |
| 	if (imb <= 0)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * The imbalance is above the allowed threshold.
 | |
| 	 * Compare it with the old imbalance.
 | |
| 	 */
 | |
| 	orig_src_load = env->src_stats.load;
 | |
| 	orig_dst_load = env->dst_stats.load;
 | |
| 
 | |
| 	if (orig_dst_load < orig_src_load)
 | |
| 		swap(orig_dst_load, orig_src_load);
 | |
| 
 | |
| 	old_imb = orig_dst_load * src_capacity * 100 -
 | |
| 		  orig_src_load * dst_capacity * env->imbalance_pct;
 | |
| 
 | |
| 	/* Would this change make things worse? */
 | |
| 	return (imb > old_imb);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This checks if the overall compute and NUMA accesses of the system would
 | |
|  * be improved if the source tasks was migrated to the target dst_cpu taking
 | |
|  * into account that it might be best if task running on the dst_cpu should
 | |
|  * be exchanged with the source task
 | |
|  */
 | |
| static void task_numa_compare(struct task_numa_env *env,
 | |
| 			      long taskimp, long groupimp)
 | |
| {
 | |
| 	struct rq *src_rq = cpu_rq(env->src_cpu);
 | |
| 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
 | |
| 	struct task_struct *cur;
 | |
| 	long src_load, dst_load;
 | |
| 	long load;
 | |
| 	long imp = env->p->numa_group ? groupimp : taskimp;
 | |
| 	long moveimp = imp;
 | |
| 	int dist = env->dist;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	raw_spin_lock_irq(&dst_rq->lock);
 | |
| 	cur = dst_rq->curr;
 | |
| 	/*
 | |
| 	 * No need to move the exiting task, and this ensures that ->curr
 | |
| 	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
 | |
| 	 * is safe under RCU read lock.
 | |
| 	 * Note that rcu_read_lock() itself can't protect from the final
 | |
| 	 * put_task_struct() after the last schedule().
 | |
| 	 */
 | |
| 	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
 | |
| 		cur = NULL;
 | |
| 	raw_spin_unlock_irq(&dst_rq->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Because we have preemption enabled we can get migrated around and
 | |
| 	 * end try selecting ourselves (current == env->p) as a swap candidate.
 | |
| 	 */
 | |
| 	if (cur == env->p)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * "imp" is the fault differential for the source task between the
 | |
| 	 * source and destination node. Calculate the total differential for
 | |
| 	 * the source task and potential destination task. The more negative
 | |
| 	 * the value is, the more rmeote accesses that would be expected to
 | |
| 	 * be incurred if the tasks were swapped.
 | |
| 	 */
 | |
| 	if (cur) {
 | |
| 		/* Skip this swap candidate if cannot move to the source cpu */
 | |
| 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
 | |
| 			goto unlock;
 | |
| 
 | |
| 		/*
 | |
| 		 * If dst and source tasks are in the same NUMA group, or not
 | |
| 		 * in any group then look only at task weights.
 | |
| 		 */
 | |
| 		if (cur->numa_group == env->p->numa_group) {
 | |
| 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
 | |
| 			      task_weight(cur, env->dst_nid, dist);
 | |
| 			/*
 | |
| 			 * Add some hysteresis to prevent swapping the
 | |
| 			 * tasks within a group over tiny differences.
 | |
| 			 */
 | |
| 			if (cur->numa_group)
 | |
| 				imp -= imp/16;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Compare the group weights. If a task is all by
 | |
| 			 * itself (not part of a group), use the task weight
 | |
| 			 * instead.
 | |
| 			 */
 | |
| 			if (cur->numa_group)
 | |
| 				imp += group_weight(cur, env->src_nid, dist) -
 | |
| 				       group_weight(cur, env->dst_nid, dist);
 | |
| 			else
 | |
| 				imp += task_weight(cur, env->src_nid, dist) -
 | |
| 				       task_weight(cur, env->dst_nid, dist);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (imp <= env->best_imp && moveimp <= env->best_imp)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (!cur) {
 | |
| 		/* Is there capacity at our destination? */
 | |
| 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
 | |
| 		    !env->dst_stats.has_free_capacity)
 | |
| 			goto unlock;
 | |
| 
 | |
| 		goto balance;
 | |
| 	}
 | |
| 
 | |
| 	/* Balance doesn't matter much if we're running a task per cpu */
 | |
| 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
 | |
| 			dst_rq->nr_running == 1)
 | |
| 		goto assign;
 | |
| 
 | |
| 	/*
 | |
| 	 * In the overloaded case, try and keep the load balanced.
 | |
| 	 */
 | |
| balance:
 | |
| 	load = task_h_load(env->p);
 | |
| 	dst_load = env->dst_stats.load + load;
 | |
| 	src_load = env->src_stats.load - load;
 | |
| 
 | |
| 	if (moveimp > imp && moveimp > env->best_imp) {
 | |
| 		/*
 | |
| 		 * If the improvement from just moving env->p direction is
 | |
| 		 * better than swapping tasks around, check if a move is
 | |
| 		 * possible. Store a slightly smaller score than moveimp,
 | |
| 		 * so an actually idle CPU will win.
 | |
| 		 */
 | |
| 		if (!load_too_imbalanced(src_load, dst_load, env)) {
 | |
| 			imp = moveimp - 1;
 | |
| 			cur = NULL;
 | |
| 			goto assign;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (imp <= env->best_imp)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (cur) {
 | |
| 		load = task_h_load(cur);
 | |
| 		dst_load -= load;
 | |
| 		src_load += load;
 | |
| 	}
 | |
| 
 | |
| 	if (load_too_imbalanced(src_load, dst_load, env))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * One idle CPU per node is evaluated for a task numa move.
 | |
| 	 * Call select_idle_sibling to maybe find a better one.
 | |
| 	 */
 | |
| 	if (!cur)
 | |
| 		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
 | |
| 
 | |
| assign:
 | |
| 	task_numa_assign(env, cur, imp);
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void task_numa_find_cpu(struct task_numa_env *env,
 | |
| 				long taskimp, long groupimp)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
 | |
| 		/* Skip this CPU if the source task cannot migrate */
 | |
| 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
 | |
| 			continue;
 | |
| 
 | |
| 		env->dst_cpu = cpu;
 | |
| 		task_numa_compare(env, taskimp, groupimp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Only move tasks to a NUMA node less busy than the current node. */
 | |
| static bool numa_has_capacity(struct task_numa_env *env)
 | |
| {
 | |
| 	struct numa_stats *src = &env->src_stats;
 | |
| 	struct numa_stats *dst = &env->dst_stats;
 | |
| 
 | |
| 	if (src->has_free_capacity && !dst->has_free_capacity)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only consider a task move if the source has a higher load
 | |
| 	 * than the destination, corrected for CPU capacity on each node.
 | |
| 	 *
 | |
| 	 *      src->load                dst->load
 | |
| 	 * --------------------- vs ---------------------
 | |
| 	 * src->compute_capacity    dst->compute_capacity
 | |
| 	 */
 | |
| 	if (src->load * dst->compute_capacity >
 | |
| 	    dst->load * src->compute_capacity)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int task_numa_migrate(struct task_struct *p)
 | |
| {
 | |
| 	struct task_numa_env env = {
 | |
| 		.p = p,
 | |
| 
 | |
| 		.src_cpu = task_cpu(p),
 | |
| 		.src_nid = task_node(p),
 | |
| 
 | |
| 		.imbalance_pct = 112,
 | |
| 
 | |
| 		.best_task = NULL,
 | |
| 		.best_imp = 0,
 | |
| 		.best_cpu = -1
 | |
| 	};
 | |
| 	struct sched_domain *sd;
 | |
| 	unsigned long taskweight, groupweight;
 | |
| 	int nid, ret, dist;
 | |
| 	long taskimp, groupimp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
 | |
| 	 * imbalance and would be the first to start moving tasks about.
 | |
| 	 *
 | |
| 	 * And we want to avoid any moving of tasks about, as that would create
 | |
| 	 * random movement of tasks -- counter the numa conditions we're trying
 | |
| 	 * to satisfy here.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
 | |
| 	if (sd)
 | |
| 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * Cpusets can break the scheduler domain tree into smaller
 | |
| 	 * balance domains, some of which do not cross NUMA boundaries.
 | |
| 	 * Tasks that are "trapped" in such domains cannot be migrated
 | |
| 	 * elsewhere, so there is no point in (re)trying.
 | |
| 	 */
 | |
| 	if (unlikely(!sd)) {
 | |
| 		p->numa_preferred_nid = task_node(p);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	env.dst_nid = p->numa_preferred_nid;
 | |
| 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
 | |
| 	taskweight = task_weight(p, env.src_nid, dist);
 | |
| 	groupweight = group_weight(p, env.src_nid, dist);
 | |
| 	update_numa_stats(&env.src_stats, env.src_nid);
 | |
| 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
 | |
| 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
 | |
| 	update_numa_stats(&env.dst_stats, env.dst_nid);
 | |
| 
 | |
| 	/* Try to find a spot on the preferred nid. */
 | |
| 	if (numa_has_capacity(&env))
 | |
| 		task_numa_find_cpu(&env, taskimp, groupimp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Look at other nodes in these cases:
 | |
| 	 * - there is no space available on the preferred_nid
 | |
| 	 * - the task is part of a numa_group that is interleaved across
 | |
| 	 *   multiple NUMA nodes; in order to better consolidate the group,
 | |
| 	 *   we need to check other locations.
 | |
| 	 */
 | |
| 	if (env.best_cpu == -1 || (p->numa_group &&
 | |
| 			nodes_weight(p->numa_group->active_nodes) > 1)) {
 | |
| 		for_each_online_node(nid) {
 | |
| 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
 | |
| 				continue;
 | |
| 
 | |
| 			dist = node_distance(env.src_nid, env.dst_nid);
 | |
| 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
 | |
| 						dist != env.dist) {
 | |
| 				taskweight = task_weight(p, env.src_nid, dist);
 | |
| 				groupweight = group_weight(p, env.src_nid, dist);
 | |
| 			}
 | |
| 
 | |
| 			/* Only consider nodes where both task and groups benefit */
 | |
| 			taskimp = task_weight(p, nid, dist) - taskweight;
 | |
| 			groupimp = group_weight(p, nid, dist) - groupweight;
 | |
| 			if (taskimp < 0 && groupimp < 0)
 | |
| 				continue;
 | |
| 
 | |
| 			env.dist = dist;
 | |
| 			env.dst_nid = nid;
 | |
| 			update_numa_stats(&env.dst_stats, env.dst_nid);
 | |
| 			if (numa_has_capacity(&env))
 | |
| 				task_numa_find_cpu(&env, taskimp, groupimp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the task is part of a workload that spans multiple NUMA nodes,
 | |
| 	 * and is migrating into one of the workload's active nodes, remember
 | |
| 	 * this node as the task's preferred numa node, so the workload can
 | |
| 	 * settle down.
 | |
| 	 * A task that migrated to a second choice node will be better off
 | |
| 	 * trying for a better one later. Do not set the preferred node here.
 | |
| 	 */
 | |
| 	if (p->numa_group) {
 | |
| 		if (env.best_cpu == -1)
 | |
| 			nid = env.src_nid;
 | |
| 		else
 | |
| 			nid = env.dst_nid;
 | |
| 
 | |
| 		if (node_isset(nid, p->numa_group->active_nodes))
 | |
| 			sched_setnuma(p, env.dst_nid);
 | |
| 	}
 | |
| 
 | |
| 	/* No better CPU than the current one was found. */
 | |
| 	if (env.best_cpu == -1)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset the scan period if the task is being rescheduled on an
 | |
| 	 * alternative node to recheck if the tasks is now properly placed.
 | |
| 	 */
 | |
| 	p->numa_scan_period = task_scan_min(p);
 | |
| 
 | |
| 	if (env.best_task == NULL) {
 | |
| 		ret = migrate_task_to(p, env.best_cpu);
 | |
| 		if (ret != 0)
 | |
| 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = migrate_swap(p, env.best_task);
 | |
| 	if (ret != 0)
 | |
| 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
 | |
| 	put_task_struct(env.best_task);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Attempt to migrate a task to a CPU on the preferred node. */
 | |
| static void numa_migrate_preferred(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long interval = HZ;
 | |
| 
 | |
| 	/* This task has no NUMA fault statistics yet */
 | |
| 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
 | |
| 		return;
 | |
| 
 | |
| 	/* Periodically retry migrating the task to the preferred node */
 | |
| 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
 | |
| 	p->numa_migrate_retry = jiffies + interval;
 | |
| 
 | |
| 	/* Success if task is already running on preferred CPU */
 | |
| 	if (task_node(p) == p->numa_preferred_nid)
 | |
| 		return;
 | |
| 
 | |
| 	/* Otherwise, try migrate to a CPU on the preferred node */
 | |
| 	task_numa_migrate(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the nodes on which the workload is actively running. We do this by
 | |
|  * tracking the nodes from which NUMA hinting faults are triggered. This can
 | |
|  * be different from the set of nodes where the workload's memory is currently
 | |
|  * located.
 | |
|  *
 | |
|  * The bitmask is used to make smarter decisions on when to do NUMA page
 | |
|  * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 | |
|  * are added when they cause over 6/16 of the maximum number of faults, but
 | |
|  * only removed when they drop below 3/16.
 | |
|  */
 | |
| static void update_numa_active_node_mask(struct numa_group *numa_group)
 | |
| {
 | |
| 	unsigned long faults, max_faults = 0;
 | |
| 	int nid;
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		faults = group_faults_cpu(numa_group, nid);
 | |
| 		if (faults > max_faults)
 | |
| 			max_faults = faults;
 | |
| 	}
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		faults = group_faults_cpu(numa_group, nid);
 | |
| 		if (!node_isset(nid, numa_group->active_nodes)) {
 | |
| 			if (faults > max_faults * 6 / 16)
 | |
| 				node_set(nid, numa_group->active_nodes);
 | |
| 		} else if (faults < max_faults * 3 / 16)
 | |
| 			node_clear(nid, numa_group->active_nodes);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 | |
|  * increments. The more local the fault statistics are, the higher the scan
 | |
|  * period will be for the next scan window. If local/(local+remote) ratio is
 | |
|  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 | |
|  * the scan period will decrease. Aim for 70% local accesses.
 | |
|  */
 | |
| #define NUMA_PERIOD_SLOTS 10
 | |
| #define NUMA_PERIOD_THRESHOLD 7
 | |
| 
 | |
| /*
 | |
|  * Increase the scan period (slow down scanning) if the majority of
 | |
|  * our memory is already on our local node, or if the majority of
 | |
|  * the page accesses are shared with other processes.
 | |
|  * Otherwise, decrease the scan period.
 | |
|  */
 | |
| static void update_task_scan_period(struct task_struct *p,
 | |
| 			unsigned long shared, unsigned long private)
 | |
| {
 | |
| 	unsigned int period_slot;
 | |
| 	int ratio;
 | |
| 	int diff;
 | |
| 
 | |
| 	unsigned long remote = p->numa_faults_locality[0];
 | |
| 	unsigned long local = p->numa_faults_locality[1];
 | |
| 
 | |
| 	/*
 | |
| 	 * If there were no record hinting faults then either the task is
 | |
| 	 * completely idle or all activity is areas that are not of interest
 | |
| 	 * to automatic numa balancing. Related to that, if there were failed
 | |
| 	 * migration then it implies we are migrating too quickly or the local
 | |
| 	 * node is overloaded. In either case, scan slower
 | |
| 	 */
 | |
| 	if (local + shared == 0 || p->numa_faults_locality[2]) {
 | |
| 		p->numa_scan_period = min(p->numa_scan_period_max,
 | |
| 			p->numa_scan_period << 1);
 | |
| 
 | |
| 		p->mm->numa_next_scan = jiffies +
 | |
| 			msecs_to_jiffies(p->numa_scan_period);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Prepare to scale scan period relative to the current period.
 | |
| 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
 | |
| 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
 | |
| 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
 | |
| 	 */
 | |
| 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
 | |
| 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
 | |
| 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
 | |
| 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
 | |
| 		if (!slot)
 | |
| 			slot = 1;
 | |
| 		diff = slot * period_slot;
 | |
| 	} else {
 | |
| 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
 | |
| 
 | |
| 		/*
 | |
| 		 * Scale scan rate increases based on sharing. There is an
 | |
| 		 * inverse relationship between the degree of sharing and
 | |
| 		 * the adjustment made to the scanning period. Broadly
 | |
| 		 * speaking the intent is that there is little point
 | |
| 		 * scanning faster if shared accesses dominate as it may
 | |
| 		 * simply bounce migrations uselessly
 | |
| 		 */
 | |
| 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
 | |
| 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
 | |
| 	}
 | |
| 
 | |
| 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
 | |
| 			task_scan_min(p), task_scan_max(p));
 | |
| 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the fraction of time the task has been running since the last
 | |
|  * NUMA placement cycle. The scheduler keeps similar statistics, but
 | |
|  * decays those on a 32ms period, which is orders of magnitude off
 | |
|  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 | |
|  * stats only if the task is so new there are no NUMA statistics yet.
 | |
|  */
 | |
| static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
 | |
| {
 | |
| 	u64 runtime, delta, now;
 | |
| 	/* Use the start of this time slice to avoid calculations. */
 | |
| 	now = p->se.exec_start;
 | |
| 	runtime = p->se.sum_exec_runtime;
 | |
| 
 | |
| 	if (p->last_task_numa_placement) {
 | |
| 		delta = runtime - p->last_sum_exec_runtime;
 | |
| 		*period = now - p->last_task_numa_placement;
 | |
| 	} else {
 | |
| 		delta = p->se.avg.runnable_avg_sum;
 | |
| 		*period = p->se.avg.avg_period;
 | |
| 	}
 | |
| 
 | |
| 	p->last_sum_exec_runtime = runtime;
 | |
| 	p->last_task_numa_placement = now;
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine the preferred nid for a task in a numa_group. This needs to
 | |
|  * be done in a way that produces consistent results with group_weight,
 | |
|  * otherwise workloads might not converge.
 | |
|  */
 | |
| static int preferred_group_nid(struct task_struct *p, int nid)
 | |
| {
 | |
| 	nodemask_t nodes;
 | |
| 	int dist;
 | |
| 
 | |
| 	/* Direct connections between all NUMA nodes. */
 | |
| 	if (sched_numa_topology_type == NUMA_DIRECT)
 | |
| 		return nid;
 | |
| 
 | |
| 	/*
 | |
| 	 * On a system with glueless mesh NUMA topology, group_weight
 | |
| 	 * scores nodes according to the number of NUMA hinting faults on
 | |
| 	 * both the node itself, and on nearby nodes.
 | |
| 	 */
 | |
| 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
 | |
| 		unsigned long score, max_score = 0;
 | |
| 		int node, max_node = nid;
 | |
| 
 | |
| 		dist = sched_max_numa_distance;
 | |
| 
 | |
| 		for_each_online_node(node) {
 | |
| 			score = group_weight(p, node, dist);
 | |
| 			if (score > max_score) {
 | |
| 				max_score = score;
 | |
| 				max_node = node;
 | |
| 			}
 | |
| 		}
 | |
| 		return max_node;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Finding the preferred nid in a system with NUMA backplane
 | |
| 	 * interconnect topology is more involved. The goal is to locate
 | |
| 	 * tasks from numa_groups near each other in the system, and
 | |
| 	 * untangle workloads from different sides of the system. This requires
 | |
| 	 * searching down the hierarchy of node groups, recursively searching
 | |
| 	 * inside the highest scoring group of nodes. The nodemask tricks
 | |
| 	 * keep the complexity of the search down.
 | |
| 	 */
 | |
| 	nodes = node_online_map;
 | |
| 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
 | |
| 		unsigned long max_faults = 0;
 | |
| 		nodemask_t max_group = NODE_MASK_NONE;
 | |
| 		int a, b;
 | |
| 
 | |
| 		/* Are there nodes at this distance from each other? */
 | |
| 		if (!find_numa_distance(dist))
 | |
| 			continue;
 | |
| 
 | |
| 		for_each_node_mask(a, nodes) {
 | |
| 			unsigned long faults = 0;
 | |
| 			nodemask_t this_group;
 | |
| 			nodes_clear(this_group);
 | |
| 
 | |
| 			/* Sum group's NUMA faults; includes a==b case. */
 | |
| 			for_each_node_mask(b, nodes) {
 | |
| 				if (node_distance(a, b) < dist) {
 | |
| 					faults += group_faults(p, b);
 | |
| 					node_set(b, this_group);
 | |
| 					node_clear(b, nodes);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* Remember the top group. */
 | |
| 			if (faults > max_faults) {
 | |
| 				max_faults = faults;
 | |
| 				max_group = this_group;
 | |
| 				/*
 | |
| 				 * subtle: at the smallest distance there is
 | |
| 				 * just one node left in each "group", the
 | |
| 				 * winner is the preferred nid.
 | |
| 				 */
 | |
| 				nid = a;
 | |
| 			}
 | |
| 		}
 | |
| 		/* Next round, evaluate the nodes within max_group. */
 | |
| 		if (!max_faults)
 | |
| 			break;
 | |
| 		nodes = max_group;
 | |
| 	}
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| static void task_numa_placement(struct task_struct *p)
 | |
| {
 | |
| 	int seq, nid, max_nid = -1, max_group_nid = -1;
 | |
| 	unsigned long max_faults = 0, max_group_faults = 0;
 | |
| 	unsigned long fault_types[2] = { 0, 0 };
 | |
| 	unsigned long total_faults;
 | |
| 	u64 runtime, period;
 | |
| 	spinlock_t *group_lock = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * The p->mm->numa_scan_seq field gets updated without
 | |
| 	 * exclusive access. Use READ_ONCE() here to ensure
 | |
| 	 * that the field is read in a single access:
 | |
| 	 */
 | |
| 	seq = READ_ONCE(p->mm->numa_scan_seq);
 | |
| 	if (p->numa_scan_seq == seq)
 | |
| 		return;
 | |
| 	p->numa_scan_seq = seq;
 | |
| 	p->numa_scan_period_max = task_scan_max(p);
 | |
| 
 | |
| 	total_faults = p->numa_faults_locality[0] +
 | |
| 		       p->numa_faults_locality[1];
 | |
| 	runtime = numa_get_avg_runtime(p, &period);
 | |
| 
 | |
| 	/* If the task is part of a group prevent parallel updates to group stats */
 | |
| 	if (p->numa_group) {
 | |
| 		group_lock = &p->numa_group->lock;
 | |
| 		spin_lock_irq(group_lock);
 | |
| 	}
 | |
| 
 | |
| 	/* Find the node with the highest number of faults */
 | |
| 	for_each_online_node(nid) {
 | |
| 		/* Keep track of the offsets in numa_faults array */
 | |
| 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
 | |
| 		unsigned long faults = 0, group_faults = 0;
 | |
| 		int priv;
 | |
| 
 | |
| 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
 | |
| 			long diff, f_diff, f_weight;
 | |
| 
 | |
| 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
 | |
| 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
 | |
| 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
 | |
| 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
 | |
| 
 | |
| 			/* Decay existing window, copy faults since last scan */
 | |
| 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
 | |
| 			fault_types[priv] += p->numa_faults[membuf_idx];
 | |
| 			p->numa_faults[membuf_idx] = 0;
 | |
| 
 | |
| 			/*
 | |
| 			 * Normalize the faults_from, so all tasks in a group
 | |
| 			 * count according to CPU use, instead of by the raw
 | |
| 			 * number of faults. Tasks with little runtime have
 | |
| 			 * little over-all impact on throughput, and thus their
 | |
| 			 * faults are less important.
 | |
| 			 */
 | |
| 			f_weight = div64_u64(runtime << 16, period + 1);
 | |
| 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
 | |
| 				   (total_faults + 1);
 | |
| 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
 | |
| 			p->numa_faults[cpubuf_idx] = 0;
 | |
| 
 | |
| 			p->numa_faults[mem_idx] += diff;
 | |
| 			p->numa_faults[cpu_idx] += f_diff;
 | |
| 			faults += p->numa_faults[mem_idx];
 | |
| 			p->total_numa_faults += diff;
 | |
| 			if (p->numa_group) {
 | |
| 				/*
 | |
| 				 * safe because we can only change our own group
 | |
| 				 *
 | |
| 				 * mem_idx represents the offset for a given
 | |
| 				 * nid and priv in a specific region because it
 | |
| 				 * is at the beginning of the numa_faults array.
 | |
| 				 */
 | |
| 				p->numa_group->faults[mem_idx] += diff;
 | |
| 				p->numa_group->faults_cpu[mem_idx] += f_diff;
 | |
| 				p->numa_group->total_faults += diff;
 | |
| 				group_faults += p->numa_group->faults[mem_idx];
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (faults > max_faults) {
 | |
| 			max_faults = faults;
 | |
| 			max_nid = nid;
 | |
| 		}
 | |
| 
 | |
| 		if (group_faults > max_group_faults) {
 | |
| 			max_group_faults = group_faults;
 | |
| 			max_group_nid = nid;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	update_task_scan_period(p, fault_types[0], fault_types[1]);
 | |
| 
 | |
| 	if (p->numa_group) {
 | |
| 		update_numa_active_node_mask(p->numa_group);
 | |
| 		spin_unlock_irq(group_lock);
 | |
| 		max_nid = preferred_group_nid(p, max_group_nid);
 | |
| 	}
 | |
| 
 | |
| 	if (max_faults) {
 | |
| 		/* Set the new preferred node */
 | |
| 		if (max_nid != p->numa_preferred_nid)
 | |
| 			sched_setnuma(p, max_nid);
 | |
| 
 | |
| 		if (task_node(p) != p->numa_preferred_nid)
 | |
| 			numa_migrate_preferred(p);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int get_numa_group(struct numa_group *grp)
 | |
| {
 | |
| 	return atomic_inc_not_zero(&grp->refcount);
 | |
| }
 | |
| 
 | |
| static inline void put_numa_group(struct numa_group *grp)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&grp->refcount))
 | |
| 		kfree_rcu(grp, rcu);
 | |
| }
 | |
| 
 | |
| static void task_numa_group(struct task_struct *p, int cpupid, int flags,
 | |
| 			int *priv)
 | |
| {
 | |
| 	struct numa_group *grp, *my_grp;
 | |
| 	struct task_struct *tsk;
 | |
| 	bool join = false;
 | |
| 	int cpu = cpupid_to_cpu(cpupid);
 | |
| 	int i;
 | |
| 
 | |
| 	if (unlikely(!p->numa_group)) {
 | |
| 		unsigned int size = sizeof(struct numa_group) +
 | |
| 				    4*nr_node_ids*sizeof(unsigned long);
 | |
| 
 | |
| 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
 | |
| 		if (!grp)
 | |
| 			return;
 | |
| 
 | |
| 		atomic_set(&grp->refcount, 1);
 | |
| 		spin_lock_init(&grp->lock);
 | |
| 		grp->gid = p->pid;
 | |
| 		/* Second half of the array tracks nids where faults happen */
 | |
| 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
 | |
| 						nr_node_ids;
 | |
| 
 | |
| 		node_set(task_node(current), grp->active_nodes);
 | |
| 
 | |
| 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
 | |
| 			grp->faults[i] = p->numa_faults[i];
 | |
| 
 | |
| 		grp->total_faults = p->total_numa_faults;
 | |
| 
 | |
| 		grp->nr_tasks++;
 | |
| 		rcu_assign_pointer(p->numa_group, grp);
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
 | |
| 
 | |
| 	if (!cpupid_match_pid(tsk, cpupid))
 | |
| 		goto no_join;
 | |
| 
 | |
| 	grp = rcu_dereference(tsk->numa_group);
 | |
| 	if (!grp)
 | |
| 		goto no_join;
 | |
| 
 | |
| 	my_grp = p->numa_group;
 | |
| 	if (grp == my_grp)
 | |
| 		goto no_join;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only join the other group if its bigger; if we're the bigger group,
 | |
| 	 * the other task will join us.
 | |
| 	 */
 | |
| 	if (my_grp->nr_tasks > grp->nr_tasks)
 | |
| 		goto no_join;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tie-break on the grp address.
 | |
| 	 */
 | |
| 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
 | |
| 		goto no_join;
 | |
| 
 | |
| 	/* Always join threads in the same process. */
 | |
| 	if (tsk->mm == current->mm)
 | |
| 		join = true;
 | |
| 
 | |
| 	/* Simple filter to avoid false positives due to PID collisions */
 | |
| 	if (flags & TNF_SHARED)
 | |
| 		join = true;
 | |
| 
 | |
| 	/* Update priv based on whether false sharing was detected */
 | |
| 	*priv = !join;
 | |
| 
 | |
| 	if (join && !get_numa_group(grp))
 | |
| 		goto no_join;
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (!join)
 | |
| 		return;
 | |
| 
 | |
| 	BUG_ON(irqs_disabled());
 | |
| 	double_lock_irq(&my_grp->lock, &grp->lock);
 | |
| 
 | |
| 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
 | |
| 		my_grp->faults[i] -= p->numa_faults[i];
 | |
| 		grp->faults[i] += p->numa_faults[i];
 | |
| 	}
 | |
| 	my_grp->total_faults -= p->total_numa_faults;
 | |
| 	grp->total_faults += p->total_numa_faults;
 | |
| 
 | |
| 	my_grp->nr_tasks--;
 | |
| 	grp->nr_tasks++;
 | |
| 
 | |
| 	spin_unlock(&my_grp->lock);
 | |
| 	spin_unlock_irq(&grp->lock);
 | |
| 
 | |
| 	rcu_assign_pointer(p->numa_group, grp);
 | |
| 
 | |
| 	put_numa_group(my_grp);
 | |
| 	return;
 | |
| 
 | |
| no_join:
 | |
| 	rcu_read_unlock();
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| void task_numa_free(struct task_struct *p)
 | |
| {
 | |
| 	struct numa_group *grp = p->numa_group;
 | |
| 	void *numa_faults = p->numa_faults;
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	if (grp) {
 | |
| 		spin_lock_irqsave(&grp->lock, flags);
 | |
| 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
 | |
| 			grp->faults[i] -= p->numa_faults[i];
 | |
| 		grp->total_faults -= p->total_numa_faults;
 | |
| 
 | |
| 		grp->nr_tasks--;
 | |
| 		spin_unlock_irqrestore(&grp->lock, flags);
 | |
| 		RCU_INIT_POINTER(p->numa_group, NULL);
 | |
| 		put_numa_group(grp);
 | |
| 	}
 | |
| 
 | |
| 	p->numa_faults = NULL;
 | |
| 	kfree(numa_faults);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Got a PROT_NONE fault for a page on @node.
 | |
|  */
 | |
| void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
 | |
| {
 | |
| 	struct task_struct *p = current;
 | |
| 	bool migrated = flags & TNF_MIGRATED;
 | |
| 	int cpu_node = task_node(current);
 | |
| 	int local = !!(flags & TNF_FAULT_LOCAL);
 | |
| 	int priv;
 | |
| 
 | |
| 	if (!numabalancing_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	/* for example, ksmd faulting in a user's mm */
 | |
| 	if (!p->mm)
 | |
| 		return;
 | |
| 
 | |
| 	/* Allocate buffer to track faults on a per-node basis */
 | |
| 	if (unlikely(!p->numa_faults)) {
 | |
| 		int size = sizeof(*p->numa_faults) *
 | |
| 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
 | |
| 
 | |
| 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
 | |
| 		if (!p->numa_faults)
 | |
| 			return;
 | |
| 
 | |
| 		p->total_numa_faults = 0;
 | |
| 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * First accesses are treated as private, otherwise consider accesses
 | |
| 	 * to be private if the accessing pid has not changed
 | |
| 	 */
 | |
| 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
 | |
| 		priv = 1;
 | |
| 	} else {
 | |
| 		priv = cpupid_match_pid(p, last_cpupid);
 | |
| 		if (!priv && !(flags & TNF_NO_GROUP))
 | |
| 			task_numa_group(p, last_cpupid, flags, &priv);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If a workload spans multiple NUMA nodes, a shared fault that
 | |
| 	 * occurs wholly within the set of nodes that the workload is
 | |
| 	 * actively using should be counted as local. This allows the
 | |
| 	 * scan rate to slow down when a workload has settled down.
 | |
| 	 */
 | |
| 	if (!priv && !local && p->numa_group &&
 | |
| 			node_isset(cpu_node, p->numa_group->active_nodes) &&
 | |
| 			node_isset(mem_node, p->numa_group->active_nodes))
 | |
| 		local = 1;
 | |
| 
 | |
| 	task_numa_placement(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Retry task to preferred node migration periodically, in case it
 | |
| 	 * case it previously failed, or the scheduler moved us.
 | |
| 	 */
 | |
| 	if (time_after(jiffies, p->numa_migrate_retry))
 | |
| 		numa_migrate_preferred(p);
 | |
| 
 | |
| 	if (migrated)
 | |
| 		p->numa_pages_migrated += pages;
 | |
| 	if (flags & TNF_MIGRATE_FAIL)
 | |
| 		p->numa_faults_locality[2] += pages;
 | |
| 
 | |
| 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
 | |
| 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
 | |
| 	p->numa_faults_locality[local] += pages;
 | |
| }
 | |
| 
 | |
| static void reset_ptenuma_scan(struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * We only did a read acquisition of the mmap sem, so
 | |
| 	 * p->mm->numa_scan_seq is written to without exclusive access
 | |
| 	 * and the update is not guaranteed to be atomic. That's not
 | |
| 	 * much of an issue though, since this is just used for
 | |
| 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
 | |
| 	 * expensive, to avoid any form of compiler optimizations:
 | |
| 	 */
 | |
| 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
 | |
| 	p->mm->numa_scan_offset = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The expensive part of numa migration is done from task_work context.
 | |
|  * Triggered from task_tick_numa().
 | |
|  */
 | |
| void task_numa_work(struct callback_head *work)
 | |
| {
 | |
| 	unsigned long migrate, next_scan, now = jiffies;
 | |
| 	struct task_struct *p = current;
 | |
| 	struct mm_struct *mm = p->mm;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	unsigned long start, end;
 | |
| 	unsigned long nr_pte_updates = 0;
 | |
| 	long pages;
 | |
| 
 | |
| 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
 | |
| 
 | |
| 	work->next = work; /* protect against double add */
 | |
| 	/*
 | |
| 	 * Who cares about NUMA placement when they're dying.
 | |
| 	 *
 | |
| 	 * NOTE: make sure not to dereference p->mm before this check,
 | |
| 	 * exit_task_work() happens _after_ exit_mm() so we could be called
 | |
| 	 * without p->mm even though we still had it when we enqueued this
 | |
| 	 * work.
 | |
| 	 */
 | |
| 	if (p->flags & PF_EXITING)
 | |
| 		return;
 | |
| 
 | |
| 	if (!mm->numa_next_scan) {
 | |
| 		mm->numa_next_scan = now +
 | |
| 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Enforce maximal scan/migration frequency..
 | |
| 	 */
 | |
| 	migrate = mm->numa_next_scan;
 | |
| 	if (time_before(now, migrate))
 | |
| 		return;
 | |
| 
 | |
| 	if (p->numa_scan_period == 0) {
 | |
| 		p->numa_scan_period_max = task_scan_max(p);
 | |
| 		p->numa_scan_period = task_scan_min(p);
 | |
| 	}
 | |
| 
 | |
| 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
 | |
| 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Delay this task enough that another task of this mm will likely win
 | |
| 	 * the next time around.
 | |
| 	 */
 | |
| 	p->node_stamp += 2 * TICK_NSEC;
 | |
| 
 | |
| 	start = mm->numa_scan_offset;
 | |
| 	pages = sysctl_numa_balancing_scan_size;
 | |
| 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
 | |
| 	if (!pages)
 | |
| 		return;
 | |
| 
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 	vma = find_vma(mm, start);
 | |
| 	if (!vma) {
 | |
| 		reset_ptenuma_scan(p);
 | |
| 		start = 0;
 | |
| 		vma = mm->mmap;
 | |
| 	}
 | |
| 	for (; vma; vma = vma->vm_next) {
 | |
| 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
 | |
| 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Shared library pages mapped by multiple processes are not
 | |
| 		 * migrated as it is expected they are cache replicated. Avoid
 | |
| 		 * hinting faults in read-only file-backed mappings or the vdso
 | |
| 		 * as migrating the pages will be of marginal benefit.
 | |
| 		 */
 | |
| 		if (!vma->vm_mm ||
 | |
| 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip inaccessible VMAs to avoid any confusion between
 | |
| 		 * PROT_NONE and NUMA hinting ptes
 | |
| 		 */
 | |
| 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
 | |
| 			continue;
 | |
| 
 | |
| 		do {
 | |
| 			start = max(start, vma->vm_start);
 | |
| 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
 | |
| 			end = min(end, vma->vm_end);
 | |
| 			nr_pte_updates += change_prot_numa(vma, start, end);
 | |
| 
 | |
| 			/*
 | |
| 			 * Scan sysctl_numa_balancing_scan_size but ensure that
 | |
| 			 * at least one PTE is updated so that unused virtual
 | |
| 			 * address space is quickly skipped.
 | |
| 			 */
 | |
| 			if (nr_pte_updates)
 | |
| 				pages -= (end - start) >> PAGE_SHIFT;
 | |
| 
 | |
| 			start = end;
 | |
| 			if (pages <= 0)
 | |
| 				goto out;
 | |
| 
 | |
| 			cond_resched();
 | |
| 		} while (end != vma->vm_end);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * It is possible to reach the end of the VMA list but the last few
 | |
| 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
 | |
| 	 * would find the !migratable VMA on the next scan but not reset the
 | |
| 	 * scanner to the start so check it now.
 | |
| 	 */
 | |
| 	if (vma)
 | |
| 		mm->numa_scan_offset = start;
 | |
| 	else
 | |
| 		reset_ptenuma_scan(p);
 | |
| 	up_read(&mm->mmap_sem);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Drive the periodic memory faults..
 | |
|  */
 | |
| void task_tick_numa(struct rq *rq, struct task_struct *curr)
 | |
| {
 | |
| 	struct callback_head *work = &curr->numa_work;
 | |
| 	u64 period, now;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't care about NUMA placement if we don't have memory.
 | |
| 	 */
 | |
| 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Using runtime rather than walltime has the dual advantage that
 | |
| 	 * we (mostly) drive the selection from busy threads and that the
 | |
| 	 * task needs to have done some actual work before we bother with
 | |
| 	 * NUMA placement.
 | |
| 	 */
 | |
| 	now = curr->se.sum_exec_runtime;
 | |
| 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
 | |
| 
 | |
| 	if (now - curr->node_stamp > period) {
 | |
| 		if (!curr->node_stamp)
 | |
| 			curr->numa_scan_period = task_scan_min(curr);
 | |
| 		curr->node_stamp += period;
 | |
| 
 | |
| 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
 | |
| 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
 | |
| 			task_work_add(curr, work, true);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static void task_tick_numa(struct rq *rq, struct task_struct *curr)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| static void
 | |
| account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	update_load_add(&cfs_rq->load, se->load.weight);
 | |
| 	if (!parent_entity(se))
 | |
| 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (entity_is_task(se)) {
 | |
| 		struct rq *rq = rq_of(cfs_rq);
 | |
| 
 | |
| 		account_numa_enqueue(rq, task_of(se));
 | |
| 		list_add(&se->group_node, &rq->cfs_tasks);
 | |
| 	}
 | |
| #endif
 | |
| 	cfs_rq->nr_running++;
 | |
| }
 | |
| 
 | |
| static void
 | |
| account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	update_load_sub(&cfs_rq->load, se->load.weight);
 | |
| 	if (!parent_entity(se))
 | |
| 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
 | |
| 	if (entity_is_task(se)) {
 | |
| 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
 | |
| 		list_del_init(&se->group_node);
 | |
| 	}
 | |
| 	cfs_rq->nr_running--;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| # ifdef CONFIG_SMP
 | |
| static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	long tg_weight;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use this CPU's actual weight instead of the last load_contribution
 | |
| 	 * to gain a more accurate current total weight. See
 | |
| 	 * update_cfs_rq_load_contribution().
 | |
| 	 */
 | |
| 	tg_weight = atomic_long_read(&tg->load_avg);
 | |
| 	tg_weight -= cfs_rq->tg_load_contrib;
 | |
| 	tg_weight += cfs_rq->load.weight;
 | |
| 
 | |
| 	return tg_weight;
 | |
| }
 | |
| 
 | |
| static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
 | |
| {
 | |
| 	long tg_weight, load, shares;
 | |
| 
 | |
| 	tg_weight = calc_tg_weight(tg, cfs_rq);
 | |
| 	load = cfs_rq->load.weight;
 | |
| 
 | |
| 	shares = (tg->shares * load);
 | |
| 	if (tg_weight)
 | |
| 		shares /= tg_weight;
 | |
| 
 | |
| 	if (shares < MIN_SHARES)
 | |
| 		shares = MIN_SHARES;
 | |
| 	if (shares > tg->shares)
 | |
| 		shares = tg->shares;
 | |
| 
 | |
| 	return shares;
 | |
| }
 | |
| # else /* CONFIG_SMP */
 | |
| static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
 | |
| {
 | |
| 	return tg->shares;
 | |
| }
 | |
| # endif /* CONFIG_SMP */
 | |
| static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
 | |
| 			    unsigned long weight)
 | |
| {
 | |
| 	if (se->on_rq) {
 | |
| 		/* commit outstanding execution time */
 | |
| 		if (cfs_rq->curr == se)
 | |
| 			update_curr(cfs_rq);
 | |
| 		account_entity_dequeue(cfs_rq, se);
 | |
| 	}
 | |
| 
 | |
| 	update_load_set(&se->load, weight);
 | |
| 
 | |
| 	if (se->on_rq)
 | |
| 		account_entity_enqueue(cfs_rq, se);
 | |
| }
 | |
| 
 | |
| static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
 | |
| 
 | |
| static void update_cfs_shares(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct task_group *tg;
 | |
| 	struct sched_entity *se;
 | |
| 	long shares;
 | |
| 
 | |
| 	tg = cfs_rq->tg;
 | |
| 	se = tg->se[cpu_of(rq_of(cfs_rq))];
 | |
| 	if (!se || throttled_hierarchy(cfs_rq))
 | |
| 		return;
 | |
| #ifndef CONFIG_SMP
 | |
| 	if (likely(se->load.weight == tg->shares))
 | |
| 		return;
 | |
| #endif
 | |
| 	shares = calc_cfs_shares(cfs_rq, tg);
 | |
| 
 | |
| 	reweight_entity(cfs_rq_of(se), se, shares);
 | |
| }
 | |
| #else /* CONFIG_FAIR_GROUP_SCHED */
 | |
| static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /*
 | |
|  * We choose a half-life close to 1 scheduling period.
 | |
|  * Note: The tables below are dependent on this value.
 | |
|  */
 | |
| #define LOAD_AVG_PERIOD 32
 | |
| #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
 | |
| #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
 | |
| 
 | |
| /* Precomputed fixed inverse multiplies for multiplication by y^n */
 | |
| static const u32 runnable_avg_yN_inv[] = {
 | |
| 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
 | |
| 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
 | |
| 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
 | |
| 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
 | |
| 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
 | |
| 	0x85aac367, 0x82cd8698,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 | |
|  * over-estimates when re-combining.
 | |
|  */
 | |
| static const u32 runnable_avg_yN_sum[] = {
 | |
| 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
 | |
| 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
 | |
| 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Approximate:
 | |
|  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 | |
|  */
 | |
| static __always_inline u64 decay_load(u64 val, u64 n)
 | |
| {
 | |
| 	unsigned int local_n;
 | |
| 
 | |
| 	if (!n)
 | |
| 		return val;
 | |
| 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* after bounds checking we can collapse to 32-bit */
 | |
| 	local_n = n;
 | |
| 
 | |
| 	/*
 | |
| 	 * As y^PERIOD = 1/2, we can combine
 | |
| 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
 | |
| 	 * With a look-up table which covers y^n (n<PERIOD)
 | |
| 	 *
 | |
| 	 * To achieve constant time decay_load.
 | |
| 	 */
 | |
| 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
 | |
| 		val >>= local_n / LOAD_AVG_PERIOD;
 | |
| 		local_n %= LOAD_AVG_PERIOD;
 | |
| 	}
 | |
| 
 | |
| 	val *= runnable_avg_yN_inv[local_n];
 | |
| 	/* We don't use SRR here since we always want to round down. */
 | |
| 	return val >> 32;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For updates fully spanning n periods, the contribution to runnable
 | |
|  * average will be: \Sum 1024*y^n
 | |
|  *
 | |
|  * We can compute this reasonably efficiently by combining:
 | |
|  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 | |
|  */
 | |
| static u32 __compute_runnable_contrib(u64 n)
 | |
| {
 | |
| 	u32 contrib = 0;
 | |
| 
 | |
| 	if (likely(n <= LOAD_AVG_PERIOD))
 | |
| 		return runnable_avg_yN_sum[n];
 | |
| 	else if (unlikely(n >= LOAD_AVG_MAX_N))
 | |
| 		return LOAD_AVG_MAX;
 | |
| 
 | |
| 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
 | |
| 	do {
 | |
| 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
 | |
| 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
 | |
| 
 | |
| 		n -= LOAD_AVG_PERIOD;
 | |
| 	} while (n > LOAD_AVG_PERIOD);
 | |
| 
 | |
| 	contrib = decay_load(contrib, n);
 | |
| 	return contrib + runnable_avg_yN_sum[n];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We can represent the historical contribution to runnable average as the
 | |
|  * coefficients of a geometric series.  To do this we sub-divide our runnable
 | |
|  * history into segments of approximately 1ms (1024us); label the segment that
 | |
|  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 | |
|  *
 | |
|  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 | |
|  *      p0            p1           p2
 | |
|  *     (now)       (~1ms ago)  (~2ms ago)
 | |
|  *
 | |
|  * Let u_i denote the fraction of p_i that the entity was runnable.
 | |
|  *
 | |
|  * We then designate the fractions u_i as our co-efficients, yielding the
 | |
|  * following representation of historical load:
 | |
|  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 | |
|  *
 | |
|  * We choose y based on the with of a reasonably scheduling period, fixing:
 | |
|  *   y^32 = 0.5
 | |
|  *
 | |
|  * This means that the contribution to load ~32ms ago (u_32) will be weighted
 | |
|  * approximately half as much as the contribution to load within the last ms
 | |
|  * (u_0).
 | |
|  *
 | |
|  * When a period "rolls over" and we have new u_0`, multiplying the previous
 | |
|  * sum again by y is sufficient to update:
 | |
|  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 | |
|  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 | |
|  */
 | |
| static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
 | |
| 							struct sched_avg *sa,
 | |
| 							int runnable,
 | |
| 							int running)
 | |
| {
 | |
| 	u64 delta, periods;
 | |
| 	u32 runnable_contrib;
 | |
| 	int delta_w, decayed = 0;
 | |
| 	unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
 | |
| 
 | |
| 	delta = now - sa->last_runnable_update;
 | |
| 	/*
 | |
| 	 * This should only happen when time goes backwards, which it
 | |
| 	 * unfortunately does during sched clock init when we swap over to TSC.
 | |
| 	 */
 | |
| 	if ((s64)delta < 0) {
 | |
| 		sa->last_runnable_update = now;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Use 1024ns as the unit of measurement since it's a reasonable
 | |
| 	 * approximation of 1us and fast to compute.
 | |
| 	 */
 | |
| 	delta >>= 10;
 | |
| 	if (!delta)
 | |
| 		return 0;
 | |
| 	sa->last_runnable_update = now;
 | |
| 
 | |
| 	/* delta_w is the amount already accumulated against our next period */
 | |
| 	delta_w = sa->avg_period % 1024;
 | |
| 	if (delta + delta_w >= 1024) {
 | |
| 		/* period roll-over */
 | |
| 		decayed = 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Now that we know we're crossing a period boundary, figure
 | |
| 		 * out how much from delta we need to complete the current
 | |
| 		 * period and accrue it.
 | |
| 		 */
 | |
| 		delta_w = 1024 - delta_w;
 | |
| 		if (runnable)
 | |
| 			sa->runnable_avg_sum += delta_w;
 | |
| 		if (running)
 | |
| 			sa->running_avg_sum += delta_w * scale_freq
 | |
| 				>> SCHED_CAPACITY_SHIFT;
 | |
| 		sa->avg_period += delta_w;
 | |
| 
 | |
| 		delta -= delta_w;
 | |
| 
 | |
| 		/* Figure out how many additional periods this update spans */
 | |
| 		periods = delta / 1024;
 | |
| 		delta %= 1024;
 | |
| 
 | |
| 		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
 | |
| 						  periods + 1);
 | |
| 		sa->running_avg_sum = decay_load(sa->running_avg_sum,
 | |
| 						  periods + 1);
 | |
| 		sa->avg_period = decay_load(sa->avg_period,
 | |
| 						     periods + 1);
 | |
| 
 | |
| 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
 | |
| 		runnable_contrib = __compute_runnable_contrib(periods);
 | |
| 		if (runnable)
 | |
| 			sa->runnable_avg_sum += runnable_contrib;
 | |
| 		if (running)
 | |
| 			sa->running_avg_sum += runnable_contrib * scale_freq
 | |
| 				>> SCHED_CAPACITY_SHIFT;
 | |
| 		sa->avg_period += runnable_contrib;
 | |
| 	}
 | |
| 
 | |
| 	/* Remainder of delta accrued against u_0` */
 | |
| 	if (runnable)
 | |
| 		sa->runnable_avg_sum += delta;
 | |
| 	if (running)
 | |
| 		sa->running_avg_sum += delta * scale_freq
 | |
| 			>> SCHED_CAPACITY_SHIFT;
 | |
| 	sa->avg_period += delta;
 | |
| 
 | |
| 	return decayed;
 | |
| }
 | |
| 
 | |
| /* Synchronize an entity's decay with its parenting cfs_rq.*/
 | |
| static inline u64 __synchronize_entity_decay(struct sched_entity *se)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 	u64 decays = atomic64_read(&cfs_rq->decay_counter);
 | |
| 
 | |
| 	decays -= se->avg.decay_count;
 | |
| 	se->avg.decay_count = 0;
 | |
| 	if (!decays)
 | |
| 		return 0;
 | |
| 
 | |
| 	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
 | |
| 	se->avg.utilization_avg_contrib =
 | |
| 		decay_load(se->avg.utilization_avg_contrib, decays);
 | |
| 
 | |
| 	return decays;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
 | |
| 						 int force_update)
 | |
| {
 | |
| 	struct task_group *tg = cfs_rq->tg;
 | |
| 	long tg_contrib;
 | |
| 
 | |
| 	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
 | |
| 	tg_contrib -= cfs_rq->tg_load_contrib;
 | |
| 
 | |
| 	if (!tg_contrib)
 | |
| 		return;
 | |
| 
 | |
| 	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
 | |
| 		atomic_long_add(tg_contrib, &tg->load_avg);
 | |
| 		cfs_rq->tg_load_contrib += tg_contrib;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Aggregate cfs_rq runnable averages into an equivalent task_group
 | |
|  * representation for computing load contributions.
 | |
|  */
 | |
| static inline void __update_tg_runnable_avg(struct sched_avg *sa,
 | |
| 						  struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct task_group *tg = cfs_rq->tg;
 | |
| 	long contrib;
 | |
| 
 | |
| 	/* The fraction of a cpu used by this cfs_rq */
 | |
| 	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
 | |
| 			  sa->avg_period + 1);
 | |
| 	contrib -= cfs_rq->tg_runnable_contrib;
 | |
| 
 | |
| 	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
 | |
| 		atomic_add(contrib, &tg->runnable_avg);
 | |
| 		cfs_rq->tg_runnable_contrib += contrib;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void __update_group_entity_contrib(struct sched_entity *se)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
 | |
| 	struct task_group *tg = cfs_rq->tg;
 | |
| 	int runnable_avg;
 | |
| 
 | |
| 	u64 contrib;
 | |
| 
 | |
| 	contrib = cfs_rq->tg_load_contrib * tg->shares;
 | |
| 	se->avg.load_avg_contrib = div_u64(contrib,
 | |
| 				     atomic_long_read(&tg->load_avg) + 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * For group entities we need to compute a correction term in the case
 | |
| 	 * that they are consuming <1 cpu so that we would contribute the same
 | |
| 	 * load as a task of equal weight.
 | |
| 	 *
 | |
| 	 * Explicitly co-ordinating this measurement would be expensive, but
 | |
| 	 * fortunately the sum of each cpus contribution forms a usable
 | |
| 	 * lower-bound on the true value.
 | |
| 	 *
 | |
| 	 * Consider the aggregate of 2 contributions.  Either they are disjoint
 | |
| 	 * (and the sum represents true value) or they are disjoint and we are
 | |
| 	 * understating by the aggregate of their overlap.
 | |
| 	 *
 | |
| 	 * Extending this to N cpus, for a given overlap, the maximum amount we
 | |
| 	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
 | |
| 	 * cpus that overlap for this interval and w_i is the interval width.
 | |
| 	 *
 | |
| 	 * On a small machine; the first term is well-bounded which bounds the
 | |
| 	 * total error since w_i is a subset of the period.  Whereas on a
 | |
| 	 * larger machine, while this first term can be larger, if w_i is the
 | |
| 	 * of consequential size guaranteed to see n_i*w_i quickly converge to
 | |
| 	 * our upper bound of 1-cpu.
 | |
| 	 */
 | |
| 	runnable_avg = atomic_read(&tg->runnable_avg);
 | |
| 	if (runnable_avg < NICE_0_LOAD) {
 | |
| 		se->avg.load_avg_contrib *= runnable_avg;
 | |
| 		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
 | |
| {
 | |
| 	__update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
 | |
| 			runnable, runnable);
 | |
| 	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
 | |
| }
 | |
| #else /* CONFIG_FAIR_GROUP_SCHED */
 | |
| static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
 | |
| 						 int force_update) {}
 | |
| static inline void __update_tg_runnable_avg(struct sched_avg *sa,
 | |
| 						  struct cfs_rq *cfs_rq) {}
 | |
| static inline void __update_group_entity_contrib(struct sched_entity *se) {}
 | |
| static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| static inline void __update_task_entity_contrib(struct sched_entity *se)
 | |
| {
 | |
| 	u32 contrib;
 | |
| 
 | |
| 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
 | |
| 	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
 | |
| 	contrib /= (se->avg.avg_period + 1);
 | |
| 	se->avg.load_avg_contrib = scale_load(contrib);
 | |
| }
 | |
| 
 | |
| /* Compute the current contribution to load_avg by se, return any delta */
 | |
| static long __update_entity_load_avg_contrib(struct sched_entity *se)
 | |
| {
 | |
| 	long old_contrib = se->avg.load_avg_contrib;
 | |
| 
 | |
| 	if (entity_is_task(se)) {
 | |
| 		__update_task_entity_contrib(se);
 | |
| 	} else {
 | |
| 		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
 | |
| 		__update_group_entity_contrib(se);
 | |
| 	}
 | |
| 
 | |
| 	return se->avg.load_avg_contrib - old_contrib;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void __update_task_entity_utilization(struct sched_entity *se)
 | |
| {
 | |
| 	u32 contrib;
 | |
| 
 | |
| 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
 | |
| 	contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
 | |
| 	contrib /= (se->avg.avg_period + 1);
 | |
| 	se->avg.utilization_avg_contrib = scale_load(contrib);
 | |
| }
 | |
| 
 | |
| static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
 | |
| {
 | |
| 	long old_contrib = se->avg.utilization_avg_contrib;
 | |
| 
 | |
| 	if (entity_is_task(se))
 | |
| 		__update_task_entity_utilization(se);
 | |
| 	else
 | |
| 		se->avg.utilization_avg_contrib =
 | |
| 					group_cfs_rq(se)->utilization_load_avg;
 | |
| 
 | |
| 	return se->avg.utilization_avg_contrib - old_contrib;
 | |
| }
 | |
| 
 | |
| static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
 | |
| 						 long load_contrib)
 | |
| {
 | |
| 	if (likely(load_contrib < cfs_rq->blocked_load_avg))
 | |
| 		cfs_rq->blocked_load_avg -= load_contrib;
 | |
| 	else
 | |
| 		cfs_rq->blocked_load_avg = 0;
 | |
| }
 | |
| 
 | |
| static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
 | |
| 
 | |
| /* Update a sched_entity's runnable average */
 | |
| static inline void update_entity_load_avg(struct sched_entity *se,
 | |
| 					  int update_cfs_rq)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 	long contrib_delta, utilization_delta;
 | |
| 	int cpu = cpu_of(rq_of(cfs_rq));
 | |
| 	u64 now;
 | |
| 
 | |
| 	/*
 | |
| 	 * For a group entity we need to use their owned cfs_rq_clock_task() in
 | |
| 	 * case they are the parent of a throttled hierarchy.
 | |
| 	 */
 | |
| 	if (entity_is_task(se))
 | |
| 		now = cfs_rq_clock_task(cfs_rq);
 | |
| 	else
 | |
| 		now = cfs_rq_clock_task(group_cfs_rq(se));
 | |
| 
 | |
| 	if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
 | |
| 					cfs_rq->curr == se))
 | |
| 		return;
 | |
| 
 | |
| 	contrib_delta = __update_entity_load_avg_contrib(se);
 | |
| 	utilization_delta = __update_entity_utilization_avg_contrib(se);
 | |
| 
 | |
| 	if (!update_cfs_rq)
 | |
| 		return;
 | |
| 
 | |
| 	if (se->on_rq) {
 | |
| 		cfs_rq->runnable_load_avg += contrib_delta;
 | |
| 		cfs_rq->utilization_load_avg += utilization_delta;
 | |
| 	} else {
 | |
| 		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decay the load contributed by all blocked children and account this so that
 | |
|  * their contribution may appropriately discounted when they wake up.
 | |
|  */
 | |
| static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
 | |
| {
 | |
| 	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
 | |
| 	u64 decays;
 | |
| 
 | |
| 	decays = now - cfs_rq->last_decay;
 | |
| 	if (!decays && !force_update)
 | |
| 		return;
 | |
| 
 | |
| 	if (atomic_long_read(&cfs_rq->removed_load)) {
 | |
| 		unsigned long removed_load;
 | |
| 		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
 | |
| 		subtract_blocked_load_contrib(cfs_rq, removed_load);
 | |
| 	}
 | |
| 
 | |
| 	if (decays) {
 | |
| 		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
 | |
| 						      decays);
 | |
| 		atomic64_add(decays, &cfs_rq->decay_counter);
 | |
| 		cfs_rq->last_decay = now;
 | |
| 	}
 | |
| 
 | |
| 	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
 | |
| }
 | |
| 
 | |
| /* Add the load generated by se into cfs_rq's child load-average */
 | |
| static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
 | |
| 						  struct sched_entity *se,
 | |
| 						  int wakeup)
 | |
| {
 | |
| 	/*
 | |
| 	 * We track migrations using entity decay_count <= 0, on a wake-up
 | |
| 	 * migration we use a negative decay count to track the remote decays
 | |
| 	 * accumulated while sleeping.
 | |
| 	 *
 | |
| 	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
 | |
| 	 * are seen by enqueue_entity_load_avg() as a migration with an already
 | |
| 	 * constructed load_avg_contrib.
 | |
| 	 */
 | |
| 	if (unlikely(se->avg.decay_count <= 0)) {
 | |
| 		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
 | |
| 		if (se->avg.decay_count) {
 | |
| 			/*
 | |
| 			 * In a wake-up migration we have to approximate the
 | |
| 			 * time sleeping.  This is because we can't synchronize
 | |
| 			 * clock_task between the two cpus, and it is not
 | |
| 			 * guaranteed to be read-safe.  Instead, we can
 | |
| 			 * approximate this using our carried decays, which are
 | |
| 			 * explicitly atomically readable.
 | |
| 			 */
 | |
| 			se->avg.last_runnable_update -= (-se->avg.decay_count)
 | |
| 							<< 20;
 | |
| 			update_entity_load_avg(se, 0);
 | |
| 			/* Indicate that we're now synchronized and on-rq */
 | |
| 			se->avg.decay_count = 0;
 | |
| 		}
 | |
| 		wakeup = 0;
 | |
| 	} else {
 | |
| 		__synchronize_entity_decay(se);
 | |
| 	}
 | |
| 
 | |
| 	/* migrated tasks did not contribute to our blocked load */
 | |
| 	if (wakeup) {
 | |
| 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
 | |
| 		update_entity_load_avg(se, 0);
 | |
| 	}
 | |
| 
 | |
| 	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
 | |
| 	cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
 | |
| 	/* we force update consideration on load-balancer moves */
 | |
| 	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove se's load from this cfs_rq child load-average, if the entity is
 | |
|  * transitioning to a blocked state we track its projected decay using
 | |
|  * blocked_load_avg.
 | |
|  */
 | |
| static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
 | |
| 						  struct sched_entity *se,
 | |
| 						  int sleep)
 | |
| {
 | |
| 	update_entity_load_avg(se, 1);
 | |
| 	/* we force update consideration on load-balancer moves */
 | |
| 	update_cfs_rq_blocked_load(cfs_rq, !sleep);
 | |
| 
 | |
| 	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
 | |
| 	cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
 | |
| 	if (sleep) {
 | |
| 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
 | |
| 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
 | |
| 	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the rq's load with the elapsed running time before entering
 | |
|  * idle. if the last scheduled task is not a CFS task, idle_enter will
 | |
|  * be the only way to update the runnable statistic.
 | |
|  */
 | |
| void idle_enter_fair(struct rq *this_rq)
 | |
| {
 | |
| 	update_rq_runnable_avg(this_rq, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the rq's load with the elapsed idle time before a task is
 | |
|  * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 | |
|  * be the only way to update the runnable statistic.
 | |
|  */
 | |
| void idle_exit_fair(struct rq *this_rq)
 | |
| {
 | |
| 	update_rq_runnable_avg(this_rq, 0);
 | |
| }
 | |
| 
 | |
| static int idle_balance(struct rq *this_rq);
 | |
| 
 | |
| #else /* CONFIG_SMP */
 | |
| 
 | |
| static inline void update_entity_load_avg(struct sched_entity *se,
 | |
| 					  int update_cfs_rq) {}
 | |
| static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
 | |
| static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
 | |
| 					   struct sched_entity *se,
 | |
| 					   int wakeup) {}
 | |
| static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
 | |
| 					   struct sched_entity *se,
 | |
| 					   int sleep) {}
 | |
| static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
 | |
| 					      int force_update) {}
 | |
| 
 | |
| static inline int idle_balance(struct rq *rq)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	struct task_struct *tsk = NULL;
 | |
| 
 | |
| 	if (entity_is_task(se))
 | |
| 		tsk = task_of(se);
 | |
| 
 | |
| 	if (se->statistics.sleep_start) {
 | |
| 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
 | |
| 
 | |
| 		if ((s64)delta < 0)
 | |
| 			delta = 0;
 | |
| 
 | |
| 		if (unlikely(delta > se->statistics.sleep_max))
 | |
| 			se->statistics.sleep_max = delta;
 | |
| 
 | |
| 		se->statistics.sleep_start = 0;
 | |
| 		se->statistics.sum_sleep_runtime += delta;
 | |
| 
 | |
| 		if (tsk) {
 | |
| 			account_scheduler_latency(tsk, delta >> 10, 1);
 | |
| 			trace_sched_stat_sleep(tsk, delta);
 | |
| 		}
 | |
| 	}
 | |
| 	if (se->statistics.block_start) {
 | |
| 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
 | |
| 
 | |
| 		if ((s64)delta < 0)
 | |
| 			delta = 0;
 | |
| 
 | |
| 		if (unlikely(delta > se->statistics.block_max))
 | |
| 			se->statistics.block_max = delta;
 | |
| 
 | |
| 		se->statistics.block_start = 0;
 | |
| 		se->statistics.sum_sleep_runtime += delta;
 | |
| 
 | |
| 		if (tsk) {
 | |
| 			if (tsk->in_iowait) {
 | |
| 				se->statistics.iowait_sum += delta;
 | |
| 				se->statistics.iowait_count++;
 | |
| 				trace_sched_stat_iowait(tsk, delta);
 | |
| 			}
 | |
| 
 | |
| 			trace_sched_stat_blocked(tsk, delta);
 | |
| 
 | |
| 			/*
 | |
| 			 * Blocking time is in units of nanosecs, so shift by
 | |
| 			 * 20 to get a milliseconds-range estimation of the
 | |
| 			 * amount of time that the task spent sleeping:
 | |
| 			 */
 | |
| 			if (unlikely(prof_on == SLEEP_PROFILING)) {
 | |
| 				profile_hits(SLEEP_PROFILING,
 | |
| 						(void *)get_wchan(tsk),
 | |
| 						delta >> 20);
 | |
| 			}
 | |
| 			account_scheduler_latency(tsk, delta >> 10, 0);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 	s64 d = se->vruntime - cfs_rq->min_vruntime;
 | |
| 
 | |
| 	if (d < 0)
 | |
| 		d = -d;
 | |
| 
 | |
| 	if (d > 3*sysctl_sched_latency)
 | |
| 		schedstat_inc(cfs_rq, nr_spread_over);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void
 | |
| place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
 | |
| {
 | |
| 	u64 vruntime = cfs_rq->min_vruntime;
 | |
| 
 | |
| 	/*
 | |
| 	 * The 'current' period is already promised to the current tasks,
 | |
| 	 * however the extra weight of the new task will slow them down a
 | |
| 	 * little, place the new task so that it fits in the slot that
 | |
| 	 * stays open at the end.
 | |
| 	 */
 | |
| 	if (initial && sched_feat(START_DEBIT))
 | |
| 		vruntime += sched_vslice(cfs_rq, se);
 | |
| 
 | |
| 	/* sleeps up to a single latency don't count. */
 | |
| 	if (!initial) {
 | |
| 		unsigned long thresh = sysctl_sched_latency;
 | |
| 
 | |
| 		/*
 | |
| 		 * Halve their sleep time's effect, to allow
 | |
| 		 * for a gentler effect of sleepers:
 | |
| 		 */
 | |
| 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
 | |
| 			thresh >>= 1;
 | |
| 
 | |
| 		vruntime -= thresh;
 | |
| 	}
 | |
| 
 | |
| 	/* ensure we never gain time by being placed backwards. */
 | |
| 	se->vruntime = max_vruntime(se->vruntime, vruntime);
 | |
| }
 | |
| 
 | |
| static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
 | |
| 
 | |
| static void
 | |
| enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * Update the normalized vruntime before updating min_vruntime
 | |
| 	 * through calling update_curr().
 | |
| 	 */
 | |
| 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
 | |
| 		se->vruntime += cfs_rq->min_vruntime;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update run-time statistics of the 'current'.
 | |
| 	 */
 | |
| 	update_curr(cfs_rq);
 | |
| 	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
 | |
| 	account_entity_enqueue(cfs_rq, se);
 | |
| 	update_cfs_shares(cfs_rq);
 | |
| 
 | |
| 	if (flags & ENQUEUE_WAKEUP) {
 | |
| 		place_entity(cfs_rq, se, 0);
 | |
| 		enqueue_sleeper(cfs_rq, se);
 | |
| 	}
 | |
| 
 | |
| 	update_stats_enqueue(cfs_rq, se);
 | |
| 	check_spread(cfs_rq, se);
 | |
| 	if (se != cfs_rq->curr)
 | |
| 		__enqueue_entity(cfs_rq, se);
 | |
| 	se->on_rq = 1;
 | |
| 
 | |
| 	if (cfs_rq->nr_running == 1) {
 | |
| 		list_add_leaf_cfs_rq(cfs_rq);
 | |
| 		check_enqueue_throttle(cfs_rq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __clear_buddies_last(struct sched_entity *se)
 | |
| {
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 		if (cfs_rq->last != se)
 | |
| 			break;
 | |
| 
 | |
| 		cfs_rq->last = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __clear_buddies_next(struct sched_entity *se)
 | |
| {
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 		if (cfs_rq->next != se)
 | |
| 			break;
 | |
| 
 | |
| 		cfs_rq->next = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __clear_buddies_skip(struct sched_entity *se)
 | |
| {
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 		if (cfs_rq->skip != se)
 | |
| 			break;
 | |
| 
 | |
| 		cfs_rq->skip = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	if (cfs_rq->last == se)
 | |
| 		__clear_buddies_last(se);
 | |
| 
 | |
| 	if (cfs_rq->next == se)
 | |
| 		__clear_buddies_next(se);
 | |
| 
 | |
| 	if (cfs_rq->skip == se)
 | |
| 		__clear_buddies_skip(se);
 | |
| }
 | |
| 
 | |
| static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
 | |
| 
 | |
| static void
 | |
| dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * Update run-time statistics of the 'current'.
 | |
| 	 */
 | |
| 	update_curr(cfs_rq);
 | |
| 	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
 | |
| 
 | |
| 	update_stats_dequeue(cfs_rq, se);
 | |
| 	if (flags & DEQUEUE_SLEEP) {
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 		if (entity_is_task(se)) {
 | |
| 			struct task_struct *tsk = task_of(se);
 | |
| 
 | |
| 			if (tsk->state & TASK_INTERRUPTIBLE)
 | |
| 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
 | |
| 			if (tsk->state & TASK_UNINTERRUPTIBLE)
 | |
| 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	clear_buddies(cfs_rq, se);
 | |
| 
 | |
| 	if (se != cfs_rq->curr)
 | |
| 		__dequeue_entity(cfs_rq, se);
 | |
| 	se->on_rq = 0;
 | |
| 	account_entity_dequeue(cfs_rq, se);
 | |
| 
 | |
| 	/*
 | |
| 	 * Normalize the entity after updating the min_vruntime because the
 | |
| 	 * update can refer to the ->curr item and we need to reflect this
 | |
| 	 * movement in our normalized position.
 | |
| 	 */
 | |
| 	if (!(flags & DEQUEUE_SLEEP))
 | |
| 		se->vruntime -= cfs_rq->min_vruntime;
 | |
| 
 | |
| 	/* return excess runtime on last dequeue */
 | |
| 	return_cfs_rq_runtime(cfs_rq);
 | |
| 
 | |
| 	update_min_vruntime(cfs_rq);
 | |
| 	update_cfs_shares(cfs_rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Preempt the current task with a newly woken task if needed:
 | |
|  */
 | |
| static void
 | |
| check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
 | |
| {
 | |
| 	unsigned long ideal_runtime, delta_exec;
 | |
| 	struct sched_entity *se;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	ideal_runtime = sched_slice(cfs_rq, curr);
 | |
| 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
 | |
| 	if (delta_exec > ideal_runtime) {
 | |
| 		resched_curr(rq_of(cfs_rq));
 | |
| 		/*
 | |
| 		 * The current task ran long enough, ensure it doesn't get
 | |
| 		 * re-elected due to buddy favours.
 | |
| 		 */
 | |
| 		clear_buddies(cfs_rq, curr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that a task that missed wakeup preemption by a
 | |
| 	 * narrow margin doesn't have to wait for a full slice.
 | |
| 	 * This also mitigates buddy induced latencies under load.
 | |
| 	 */
 | |
| 	if (delta_exec < sysctl_sched_min_granularity)
 | |
| 		return;
 | |
| 
 | |
| 	se = __pick_first_entity(cfs_rq);
 | |
| 	delta = curr->vruntime - se->vruntime;
 | |
| 
 | |
| 	if (delta < 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (delta > ideal_runtime)
 | |
| 		resched_curr(rq_of(cfs_rq));
 | |
| }
 | |
| 
 | |
| static void
 | |
| set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	/* 'current' is not kept within the tree. */
 | |
| 	if (se->on_rq) {
 | |
| 		/*
 | |
| 		 * Any task has to be enqueued before it get to execute on
 | |
| 		 * a CPU. So account for the time it spent waiting on the
 | |
| 		 * runqueue.
 | |
| 		 */
 | |
| 		update_stats_wait_end(cfs_rq, se);
 | |
| 		__dequeue_entity(cfs_rq, se);
 | |
| 		update_entity_load_avg(se, 1);
 | |
| 	}
 | |
| 
 | |
| 	update_stats_curr_start(cfs_rq, se);
 | |
| 	cfs_rq->curr = se;
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	/*
 | |
| 	 * Track our maximum slice length, if the CPU's load is at
 | |
| 	 * least twice that of our own weight (i.e. dont track it
 | |
| 	 * when there are only lesser-weight tasks around):
 | |
| 	 */
 | |
| 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
 | |
| 		se->statistics.slice_max = max(se->statistics.slice_max,
 | |
| 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
 | |
| 	}
 | |
| #endif
 | |
| 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
 | |
| }
 | |
| 
 | |
| static int
 | |
| wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
 | |
| 
 | |
| /*
 | |
|  * Pick the next process, keeping these things in mind, in this order:
 | |
|  * 1) keep things fair between processes/task groups
 | |
|  * 2) pick the "next" process, since someone really wants that to run
 | |
|  * 3) pick the "last" process, for cache locality
 | |
|  * 4) do not run the "skip" process, if something else is available
 | |
|  */
 | |
| static struct sched_entity *
 | |
| pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
 | |
| {
 | |
| 	struct sched_entity *left = __pick_first_entity(cfs_rq);
 | |
| 	struct sched_entity *se;
 | |
| 
 | |
| 	/*
 | |
| 	 * If curr is set we have to see if its left of the leftmost entity
 | |
| 	 * still in the tree, provided there was anything in the tree at all.
 | |
| 	 */
 | |
| 	if (!left || (curr && entity_before(curr, left)))
 | |
| 		left = curr;
 | |
| 
 | |
| 	se = left; /* ideally we run the leftmost entity */
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid running the skip buddy, if running something else can
 | |
| 	 * be done without getting too unfair.
 | |
| 	 */
 | |
| 	if (cfs_rq->skip == se) {
 | |
| 		struct sched_entity *second;
 | |
| 
 | |
| 		if (se == curr) {
 | |
| 			second = __pick_first_entity(cfs_rq);
 | |
| 		} else {
 | |
| 			second = __pick_next_entity(se);
 | |
| 			if (!second || (curr && entity_before(curr, second)))
 | |
| 				second = curr;
 | |
| 		}
 | |
| 
 | |
| 		if (second && wakeup_preempt_entity(second, left) < 1)
 | |
| 			se = second;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Prefer last buddy, try to return the CPU to a preempted task.
 | |
| 	 */
 | |
| 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
 | |
| 		se = cfs_rq->last;
 | |
| 
 | |
| 	/*
 | |
| 	 * Someone really wants this to run. If it's not unfair, run it.
 | |
| 	 */
 | |
| 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
 | |
| 		se = cfs_rq->next;
 | |
| 
 | |
| 	clear_buddies(cfs_rq, se);
 | |
| 
 | |
| 	return se;
 | |
| }
 | |
| 
 | |
| static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
 | |
| 
 | |
| static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
 | |
| {
 | |
| 	/*
 | |
| 	 * If still on the runqueue then deactivate_task()
 | |
| 	 * was not called and update_curr() has to be done:
 | |
| 	 */
 | |
| 	if (prev->on_rq)
 | |
| 		update_curr(cfs_rq);
 | |
| 
 | |
| 	/* throttle cfs_rqs exceeding runtime */
 | |
| 	check_cfs_rq_runtime(cfs_rq);
 | |
| 
 | |
| 	check_spread(cfs_rq, prev);
 | |
| 	if (prev->on_rq) {
 | |
| 		update_stats_wait_start(cfs_rq, prev);
 | |
| 		/* Put 'current' back into the tree. */
 | |
| 		__enqueue_entity(cfs_rq, prev);
 | |
| 		/* in !on_rq case, update occurred at dequeue */
 | |
| 		update_entity_load_avg(prev, 1);
 | |
| 	}
 | |
| 	cfs_rq->curr = NULL;
 | |
| }
 | |
| 
 | |
| static void
 | |
| entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
 | |
| {
 | |
| 	/*
 | |
| 	 * Update run-time statistics of the 'current'.
 | |
| 	 */
 | |
| 	update_curr(cfs_rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that runnable average is periodically updated.
 | |
| 	 */
 | |
| 	update_entity_load_avg(curr, 1);
 | |
| 	update_cfs_rq_blocked_load(cfs_rq, 1);
 | |
| 	update_cfs_shares(cfs_rq);
 | |
| 
 | |
| #ifdef CONFIG_SCHED_HRTICK
 | |
| 	/*
 | |
| 	 * queued ticks are scheduled to match the slice, so don't bother
 | |
| 	 * validating it and just reschedule.
 | |
| 	 */
 | |
| 	if (queued) {
 | |
| 		resched_curr(rq_of(cfs_rq));
 | |
| 		return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * don't let the period tick interfere with the hrtick preemption
 | |
| 	 */
 | |
| 	if (!sched_feat(DOUBLE_TICK) &&
 | |
| 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
 | |
| 		return;
 | |
| #endif
 | |
| 
 | |
| 	if (cfs_rq->nr_running > 1)
 | |
| 		check_preempt_tick(cfs_rq, curr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**************************************************
 | |
|  * CFS bandwidth control machinery
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_CFS_BANDWIDTH
 | |
| 
 | |
| #ifdef HAVE_JUMP_LABEL
 | |
| static struct static_key __cfs_bandwidth_used;
 | |
| 
 | |
| static inline bool cfs_bandwidth_used(void)
 | |
| {
 | |
| 	return static_key_false(&__cfs_bandwidth_used);
 | |
| }
 | |
| 
 | |
| void cfs_bandwidth_usage_inc(void)
 | |
| {
 | |
| 	static_key_slow_inc(&__cfs_bandwidth_used);
 | |
| }
 | |
| 
 | |
| void cfs_bandwidth_usage_dec(void)
 | |
| {
 | |
| 	static_key_slow_dec(&__cfs_bandwidth_used);
 | |
| }
 | |
| #else /* HAVE_JUMP_LABEL */
 | |
| static bool cfs_bandwidth_used(void)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void cfs_bandwidth_usage_inc(void) {}
 | |
| void cfs_bandwidth_usage_dec(void) {}
 | |
| #endif /* HAVE_JUMP_LABEL */
 | |
| 
 | |
| /*
 | |
|  * default period for cfs group bandwidth.
 | |
|  * default: 0.1s, units: nanoseconds
 | |
|  */
 | |
| static inline u64 default_cfs_period(void)
 | |
| {
 | |
| 	return 100000000ULL;
 | |
| }
 | |
| 
 | |
| static inline u64 sched_cfs_bandwidth_slice(void)
 | |
| {
 | |
| 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Replenish runtime according to assigned quota and update expiration time.
 | |
|  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 | |
|  * additional synchronization around rq->lock.
 | |
|  *
 | |
|  * requires cfs_b->lock
 | |
|  */
 | |
| void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
 | |
| {
 | |
| 	u64 now;
 | |
| 
 | |
| 	if (cfs_b->quota == RUNTIME_INF)
 | |
| 		return;
 | |
| 
 | |
| 	now = sched_clock_cpu(smp_processor_id());
 | |
| 	cfs_b->runtime = cfs_b->quota;
 | |
| 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
 | |
| }
 | |
| 
 | |
| static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
 | |
| {
 | |
| 	return &tg->cfs_bandwidth;
 | |
| }
 | |
| 
 | |
| /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
 | |
| static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	if (unlikely(cfs_rq->throttle_count))
 | |
| 		return cfs_rq->throttled_clock_task;
 | |
| 
 | |
| 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
 | |
| }
 | |
| 
 | |
| /* returns 0 on failure to allocate runtime */
 | |
| static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct task_group *tg = cfs_rq->tg;
 | |
| 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
 | |
| 	u64 amount = 0, min_amount, expires;
 | |
| 
 | |
| 	/* note: this is a positive sum as runtime_remaining <= 0 */
 | |
| 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
 | |
| 
 | |
| 	raw_spin_lock(&cfs_b->lock);
 | |
| 	if (cfs_b->quota == RUNTIME_INF)
 | |
| 		amount = min_amount;
 | |
| 	else {
 | |
| 		start_cfs_bandwidth(cfs_b);
 | |
| 
 | |
| 		if (cfs_b->runtime > 0) {
 | |
| 			amount = min(cfs_b->runtime, min_amount);
 | |
| 			cfs_b->runtime -= amount;
 | |
| 			cfs_b->idle = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	expires = cfs_b->runtime_expires;
 | |
| 	raw_spin_unlock(&cfs_b->lock);
 | |
| 
 | |
| 	cfs_rq->runtime_remaining += amount;
 | |
| 	/*
 | |
| 	 * we may have advanced our local expiration to account for allowed
 | |
| 	 * spread between our sched_clock and the one on which runtime was
 | |
| 	 * issued.
 | |
| 	 */
 | |
| 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
 | |
| 		cfs_rq->runtime_expires = expires;
 | |
| 
 | |
| 	return cfs_rq->runtime_remaining > 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: This depends on the synchronization provided by sched_clock and the
 | |
|  * fact that rq->clock snapshots this value.
 | |
|  */
 | |
| static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 | |
| 
 | |
| 	/* if the deadline is ahead of our clock, nothing to do */
 | |
| 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
 | |
| 		return;
 | |
| 
 | |
| 	if (cfs_rq->runtime_remaining < 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the local deadline has passed we have to consider the
 | |
| 	 * possibility that our sched_clock is 'fast' and the global deadline
 | |
| 	 * has not truly expired.
 | |
| 	 *
 | |
| 	 * Fortunately we can check determine whether this the case by checking
 | |
| 	 * whether the global deadline has advanced. It is valid to compare
 | |
| 	 * cfs_b->runtime_expires without any locks since we only care about
 | |
| 	 * exact equality, so a partial write will still work.
 | |
| 	 */
 | |
| 
 | |
| 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
 | |
| 		/* extend local deadline, drift is bounded above by 2 ticks */
 | |
| 		cfs_rq->runtime_expires += TICK_NSEC;
 | |
| 	} else {
 | |
| 		/* global deadline is ahead, expiration has passed */
 | |
| 		cfs_rq->runtime_remaining = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
 | |
| {
 | |
| 	/* dock delta_exec before expiring quota (as it could span periods) */
 | |
| 	cfs_rq->runtime_remaining -= delta_exec;
 | |
| 	expire_cfs_rq_runtime(cfs_rq);
 | |
| 
 | |
| 	if (likely(cfs_rq->runtime_remaining > 0))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * if we're unable to extend our runtime we resched so that the active
 | |
| 	 * hierarchy can be throttled
 | |
| 	 */
 | |
| 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
 | |
| 		resched_curr(rq_of(cfs_rq));
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
 | |
| {
 | |
| 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
 | |
| }
 | |
| 
 | |
| static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return cfs_bandwidth_used() && cfs_rq->throttled;
 | |
| }
 | |
| 
 | |
| /* check whether cfs_rq, or any parent, is throttled */
 | |
| static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensure that neither of the group entities corresponding to src_cpu or
 | |
|  * dest_cpu are members of a throttled hierarchy when performing group
 | |
|  * load-balance operations.
 | |
|  */
 | |
| static inline int throttled_lb_pair(struct task_group *tg,
 | |
| 				    int src_cpu, int dest_cpu)
 | |
| {
 | |
| 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
 | |
| 
 | |
| 	src_cfs_rq = tg->cfs_rq[src_cpu];
 | |
| 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
 | |
| 
 | |
| 	return throttled_hierarchy(src_cfs_rq) ||
 | |
| 	       throttled_hierarchy(dest_cfs_rq);
 | |
| }
 | |
| 
 | |
| /* updated child weight may affect parent so we have to do this bottom up */
 | |
| static int tg_unthrottle_up(struct task_group *tg, void *data)
 | |
| {
 | |
| 	struct rq *rq = data;
 | |
| 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
 | |
| 
 | |
| 	cfs_rq->throttle_count--;
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (!cfs_rq->throttle_count) {
 | |
| 		/* adjust cfs_rq_clock_task() */
 | |
| 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
 | |
| 					     cfs_rq->throttled_clock_task;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int tg_throttle_down(struct task_group *tg, void *data)
 | |
| {
 | |
| 	struct rq *rq = data;
 | |
| 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
 | |
| 
 | |
| 	/* group is entering throttled state, stop time */
 | |
| 	if (!cfs_rq->throttle_count)
 | |
| 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
 | |
| 	cfs_rq->throttle_count++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rq *rq = rq_of(cfs_rq);
 | |
| 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 | |
| 	struct sched_entity *se;
 | |
| 	long task_delta, dequeue = 1;
 | |
| 	bool empty;
 | |
| 
 | |
| 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
 | |
| 
 | |
| 	/* freeze hierarchy runnable averages while throttled */
 | |
| 	rcu_read_lock();
 | |
| 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	task_delta = cfs_rq->h_nr_running;
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
 | |
| 		/* throttled entity or throttle-on-deactivate */
 | |
| 		if (!se->on_rq)
 | |
| 			break;
 | |
| 
 | |
| 		if (dequeue)
 | |
| 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
 | |
| 		qcfs_rq->h_nr_running -= task_delta;
 | |
| 
 | |
| 		if (qcfs_rq->load.weight)
 | |
| 			dequeue = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!se)
 | |
| 		sub_nr_running(rq, task_delta);
 | |
| 
 | |
| 	cfs_rq->throttled = 1;
 | |
| 	cfs_rq->throttled_clock = rq_clock(rq);
 | |
| 	raw_spin_lock(&cfs_b->lock);
 | |
| 	empty = list_empty(&cfs_rq->throttled_list);
 | |
| 
 | |
| 	/*
 | |
| 	 * Add to the _head_ of the list, so that an already-started
 | |
| 	 * distribute_cfs_runtime will not see us
 | |
| 	 */
 | |
| 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're the first throttled task, make sure the bandwidth
 | |
| 	 * timer is running.
 | |
| 	 */
 | |
| 	if (empty)
 | |
| 		start_cfs_bandwidth(cfs_b);
 | |
| 
 | |
| 	raw_spin_unlock(&cfs_b->lock);
 | |
| }
 | |
| 
 | |
| void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rq *rq = rq_of(cfs_rq);
 | |
| 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 | |
| 	struct sched_entity *se;
 | |
| 	int enqueue = 1;
 | |
| 	long task_delta;
 | |
| 
 | |
| 	se = cfs_rq->tg->se[cpu_of(rq)];
 | |
| 
 | |
| 	cfs_rq->throttled = 0;
 | |
| 
 | |
| 	update_rq_clock(rq);
 | |
| 
 | |
| 	raw_spin_lock(&cfs_b->lock);
 | |
| 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
 | |
| 	list_del_rcu(&cfs_rq->throttled_list);
 | |
| 	raw_spin_unlock(&cfs_b->lock);
 | |
| 
 | |
| 	/* update hierarchical throttle state */
 | |
| 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
 | |
| 
 | |
| 	if (!cfs_rq->load.weight)
 | |
| 		return;
 | |
| 
 | |
| 	task_delta = cfs_rq->h_nr_running;
 | |
| 	for_each_sched_entity(se) {
 | |
| 		if (se->on_rq)
 | |
| 			enqueue = 0;
 | |
| 
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		if (enqueue)
 | |
| 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
 | |
| 		cfs_rq->h_nr_running += task_delta;
 | |
| 
 | |
| 		if (cfs_rq_throttled(cfs_rq))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (!se)
 | |
| 		add_nr_running(rq, task_delta);
 | |
| 
 | |
| 	/* determine whether we need to wake up potentially idle cpu */
 | |
| 	if (rq->curr == rq->idle && rq->cfs.nr_running)
 | |
| 		resched_curr(rq);
 | |
| }
 | |
| 
 | |
| static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
 | |
| 		u64 remaining, u64 expires)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	u64 runtime;
 | |
| 	u64 starting_runtime = remaining;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
 | |
| 				throttled_list) {
 | |
| 		struct rq *rq = rq_of(cfs_rq);
 | |
| 
 | |
| 		raw_spin_lock(&rq->lock);
 | |
| 		if (!cfs_rq_throttled(cfs_rq))
 | |
| 			goto next;
 | |
| 
 | |
| 		runtime = -cfs_rq->runtime_remaining + 1;
 | |
| 		if (runtime > remaining)
 | |
| 			runtime = remaining;
 | |
| 		remaining -= runtime;
 | |
| 
 | |
| 		cfs_rq->runtime_remaining += runtime;
 | |
| 		cfs_rq->runtime_expires = expires;
 | |
| 
 | |
| 		/* we check whether we're throttled above */
 | |
| 		if (cfs_rq->runtime_remaining > 0)
 | |
| 			unthrottle_cfs_rq(cfs_rq);
 | |
| 
 | |
| next:
 | |
| 		raw_spin_unlock(&rq->lock);
 | |
| 
 | |
| 		if (!remaining)
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return starting_runtime - remaining;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Responsible for refilling a task_group's bandwidth and unthrottling its
 | |
|  * cfs_rqs as appropriate. If there has been no activity within the last
 | |
|  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 | |
|  * used to track this state.
 | |
|  */
 | |
| static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
 | |
| {
 | |
| 	u64 runtime, runtime_expires;
 | |
| 	int throttled;
 | |
| 
 | |
| 	/* no need to continue the timer with no bandwidth constraint */
 | |
| 	if (cfs_b->quota == RUNTIME_INF)
 | |
| 		goto out_deactivate;
 | |
| 
 | |
| 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
 | |
| 	cfs_b->nr_periods += overrun;
 | |
| 
 | |
| 	/*
 | |
| 	 * idle depends on !throttled (for the case of a large deficit), and if
 | |
| 	 * we're going inactive then everything else can be deferred
 | |
| 	 */
 | |
| 	if (cfs_b->idle && !throttled)
 | |
| 		goto out_deactivate;
 | |
| 
 | |
| 	__refill_cfs_bandwidth_runtime(cfs_b);
 | |
| 
 | |
| 	if (!throttled) {
 | |
| 		/* mark as potentially idle for the upcoming period */
 | |
| 		cfs_b->idle = 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* account preceding periods in which throttling occurred */
 | |
| 	cfs_b->nr_throttled += overrun;
 | |
| 
 | |
| 	runtime_expires = cfs_b->runtime_expires;
 | |
| 
 | |
| 	/*
 | |
| 	 * This check is repeated as we are holding onto the new bandwidth while
 | |
| 	 * we unthrottle. This can potentially race with an unthrottled group
 | |
| 	 * trying to acquire new bandwidth from the global pool. This can result
 | |
| 	 * in us over-using our runtime if it is all used during this loop, but
 | |
| 	 * only by limited amounts in that extreme case.
 | |
| 	 */
 | |
| 	while (throttled && cfs_b->runtime > 0) {
 | |
| 		runtime = cfs_b->runtime;
 | |
| 		raw_spin_unlock(&cfs_b->lock);
 | |
| 		/* we can't nest cfs_b->lock while distributing bandwidth */
 | |
| 		runtime = distribute_cfs_runtime(cfs_b, runtime,
 | |
| 						 runtime_expires);
 | |
| 		raw_spin_lock(&cfs_b->lock);
 | |
| 
 | |
| 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
 | |
| 
 | |
| 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * While we are ensured activity in the period following an
 | |
| 	 * unthrottle, this also covers the case in which the new bandwidth is
 | |
| 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
 | |
| 	 * timer to remain active while there are any throttled entities.)
 | |
| 	 */
 | |
| 	cfs_b->idle = 0;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_deactivate:
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* a cfs_rq won't donate quota below this amount */
 | |
| static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
 | |
| /* minimum remaining period time to redistribute slack quota */
 | |
| static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
 | |
| /* how long we wait to gather additional slack before distributing */
 | |
| static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
 | |
| 
 | |
| /*
 | |
|  * Are we near the end of the current quota period?
 | |
|  *
 | |
|  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 | |
|  * hrtimer base being cleared by hrtimer_start. In the case of
 | |
|  * migrate_hrtimers, base is never cleared, so we are fine.
 | |
|  */
 | |
| static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
 | |
| {
 | |
| 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
 | |
| 	u64 remaining;
 | |
| 
 | |
| 	/* if the call-back is running a quota refresh is already occurring */
 | |
| 	if (hrtimer_callback_running(refresh_timer))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* is a quota refresh about to occur? */
 | |
| 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
 | |
| 	if (remaining < min_expire)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
 | |
| {
 | |
| 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
 | |
| 
 | |
| 	/* if there's a quota refresh soon don't bother with slack */
 | |
| 	if (runtime_refresh_within(cfs_b, min_left))
 | |
| 		return;
 | |
| 
 | |
| 	hrtimer_start(&cfs_b->slack_timer,
 | |
| 			ns_to_ktime(cfs_bandwidth_slack_period),
 | |
| 			HRTIMER_MODE_REL);
 | |
| }
 | |
| 
 | |
| /* we know any runtime found here is valid as update_curr() precedes return */
 | |
| static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
 | |
| 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
 | |
| 
 | |
| 	if (slack_runtime <= 0)
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock(&cfs_b->lock);
 | |
| 	if (cfs_b->quota != RUNTIME_INF &&
 | |
| 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
 | |
| 		cfs_b->runtime += slack_runtime;
 | |
| 
 | |
| 		/* we are under rq->lock, defer unthrottling using a timer */
 | |
| 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
 | |
| 		    !list_empty(&cfs_b->throttled_cfs_rq))
 | |
| 			start_cfs_slack_bandwidth(cfs_b);
 | |
| 	}
 | |
| 	raw_spin_unlock(&cfs_b->lock);
 | |
| 
 | |
| 	/* even if it's not valid for return we don't want to try again */
 | |
| 	cfs_rq->runtime_remaining -= slack_runtime;
 | |
| }
 | |
| 
 | |
| static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	if (!cfs_bandwidth_used())
 | |
| 		return;
 | |
| 
 | |
| 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
 | |
| 		return;
 | |
| 
 | |
| 	__return_cfs_rq_runtime(cfs_rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is done with a timer (instead of inline with bandwidth return) since
 | |
|  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 | |
|  */
 | |
| static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
 | |
| {
 | |
| 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
 | |
| 	u64 expires;
 | |
| 
 | |
| 	/* confirm we're still not at a refresh boundary */
 | |
| 	raw_spin_lock(&cfs_b->lock);
 | |
| 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
 | |
| 		raw_spin_unlock(&cfs_b->lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
 | |
| 		runtime = cfs_b->runtime;
 | |
| 
 | |
| 	expires = cfs_b->runtime_expires;
 | |
| 	raw_spin_unlock(&cfs_b->lock);
 | |
| 
 | |
| 	if (!runtime)
 | |
| 		return;
 | |
| 
 | |
| 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
 | |
| 
 | |
| 	raw_spin_lock(&cfs_b->lock);
 | |
| 	if (expires == cfs_b->runtime_expires)
 | |
| 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
 | |
| 	raw_spin_unlock(&cfs_b->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When a group wakes up we want to make sure that its quota is not already
 | |
|  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 | |
|  * runtime as update_curr() throttling can not not trigger until it's on-rq.
 | |
|  */
 | |
| static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	if (!cfs_bandwidth_used())
 | |
| 		return;
 | |
| 
 | |
| 	/* an active group must be handled by the update_curr()->put() path */
 | |
| 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
 | |
| 		return;
 | |
| 
 | |
| 	/* ensure the group is not already throttled */
 | |
| 	if (cfs_rq_throttled(cfs_rq))
 | |
| 		return;
 | |
| 
 | |
| 	/* update runtime allocation */
 | |
| 	account_cfs_rq_runtime(cfs_rq, 0);
 | |
| 	if (cfs_rq->runtime_remaining <= 0)
 | |
| 		throttle_cfs_rq(cfs_rq);
 | |
| }
 | |
| 
 | |
| /* conditionally throttle active cfs_rq's from put_prev_entity() */
 | |
| static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	if (!cfs_bandwidth_used())
 | |
| 		return false;
 | |
| 
 | |
| 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * it's possible for a throttled entity to be forced into a running
 | |
| 	 * state (e.g. set_curr_task), in this case we're finished.
 | |
| 	 */
 | |
| 	if (cfs_rq_throttled(cfs_rq))
 | |
| 		return true;
 | |
| 
 | |
| 	throttle_cfs_rq(cfs_rq);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
 | |
| {
 | |
| 	struct cfs_bandwidth *cfs_b =
 | |
| 		container_of(timer, struct cfs_bandwidth, slack_timer);
 | |
| 
 | |
| 	do_sched_cfs_slack_timer(cfs_b);
 | |
| 
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
 | |
| {
 | |
| 	struct cfs_bandwidth *cfs_b =
 | |
| 		container_of(timer, struct cfs_bandwidth, period_timer);
 | |
| 	int overrun;
 | |
| 	int idle = 0;
 | |
| 
 | |
| 	raw_spin_lock(&cfs_b->lock);
 | |
| 	for (;;) {
 | |
| 		overrun = hrtimer_forward_now(timer, cfs_b->period);
 | |
| 		if (!overrun)
 | |
| 			break;
 | |
| 
 | |
| 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
 | |
| 	}
 | |
| 	if (idle)
 | |
| 		cfs_b->period_active = 0;
 | |
| 	raw_spin_unlock(&cfs_b->lock);
 | |
| 
 | |
| 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
 | |
| }
 | |
| 
 | |
| void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
 | |
| {
 | |
| 	raw_spin_lock_init(&cfs_b->lock);
 | |
| 	cfs_b->runtime = 0;
 | |
| 	cfs_b->quota = RUNTIME_INF;
 | |
| 	cfs_b->period = ns_to_ktime(default_cfs_period());
 | |
| 
 | |
| 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
 | |
| 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
 | |
| 	cfs_b->period_timer.function = sched_cfs_period_timer;
 | |
| 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 | |
| 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
 | |
| }
 | |
| 
 | |
| static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	cfs_rq->runtime_enabled = 0;
 | |
| 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
 | |
| }
 | |
| 
 | |
| void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
 | |
| {
 | |
| 	lockdep_assert_held(&cfs_b->lock);
 | |
| 
 | |
| 	if (!cfs_b->period_active) {
 | |
| 		cfs_b->period_active = 1;
 | |
| 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
 | |
| 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
 | |
| {
 | |
| 	/* init_cfs_bandwidth() was not called */
 | |
| 	if (!cfs_b->throttled_cfs_rq.next)
 | |
| 		return;
 | |
| 
 | |
| 	hrtimer_cancel(&cfs_b->period_timer);
 | |
| 	hrtimer_cancel(&cfs_b->slack_timer);
 | |
| }
 | |
| 
 | |
| static void __maybe_unused update_runtime_enabled(struct rq *rq)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 
 | |
| 	for_each_leaf_cfs_rq(rq, cfs_rq) {
 | |
| 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
 | |
| 
 | |
| 		raw_spin_lock(&cfs_b->lock);
 | |
| 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
 | |
| 		raw_spin_unlock(&cfs_b->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 
 | |
| 	for_each_leaf_cfs_rq(rq, cfs_rq) {
 | |
| 		if (!cfs_rq->runtime_enabled)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * clock_task is not advancing so we just need to make sure
 | |
| 		 * there's some valid quota amount
 | |
| 		 */
 | |
| 		cfs_rq->runtime_remaining = 1;
 | |
| 		/*
 | |
| 		 * Offline rq is schedulable till cpu is completely disabled
 | |
| 		 * in take_cpu_down(), so we prevent new cfs throttling here.
 | |
| 		 */
 | |
| 		cfs_rq->runtime_enabled = 0;
 | |
| 
 | |
| 		if (cfs_rq_throttled(cfs_rq))
 | |
| 			unthrottle_cfs_rq(cfs_rq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_CFS_BANDWIDTH */
 | |
| static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return rq_clock_task(rq_of(cfs_rq));
 | |
| }
 | |
| 
 | |
| static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
 | |
| static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
 | |
| static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
 | |
| static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
 | |
| 
 | |
| static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int throttled_lb_pair(struct task_group *tg,
 | |
| 				    int src_cpu, int dest_cpu)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
 | |
| #endif
 | |
| 
 | |
| static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
 | |
| static inline void update_runtime_enabled(struct rq *rq) {}
 | |
| static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
 | |
| 
 | |
| #endif /* CONFIG_CFS_BANDWIDTH */
 | |
| 
 | |
| /**************************************************
 | |
|  * CFS operations on tasks:
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_SCHED_HRTICK
 | |
| static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 	WARN_ON(task_rq(p) != rq);
 | |
| 
 | |
| 	if (cfs_rq->nr_running > 1) {
 | |
| 		u64 slice = sched_slice(cfs_rq, se);
 | |
| 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
 | |
| 		s64 delta = slice - ran;
 | |
| 
 | |
| 		if (delta < 0) {
 | |
| 			if (rq->curr == p)
 | |
| 				resched_curr(rq);
 | |
| 			return;
 | |
| 		}
 | |
| 		hrtick_start(rq, delta);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called from enqueue/dequeue and updates the hrtick when the
 | |
|  * current task is from our class and nr_running is low enough
 | |
|  * to matter.
 | |
|  */
 | |
| static void hrtick_update(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *curr = rq->curr;
 | |
| 
 | |
| 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
 | |
| 		return;
 | |
| 
 | |
| 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
 | |
| 		hrtick_start_fair(rq, curr);
 | |
| }
 | |
| #else /* !CONFIG_SCHED_HRTICK */
 | |
| static inline void
 | |
| hrtick_start_fair(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void hrtick_update(struct rq *rq)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The enqueue_task method is called before nr_running is
 | |
|  * increased. Here we update the fair scheduling stats and
 | |
|  * then put the task into the rbtree:
 | |
|  */
 | |
| static void
 | |
| enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		if (se->on_rq)
 | |
| 			break;
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		enqueue_entity(cfs_rq, se, flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * end evaluation on encountering a throttled cfs_rq
 | |
| 		 *
 | |
| 		 * note: in the case of encountering a throttled cfs_rq we will
 | |
| 		 * post the final h_nr_running increment below.
 | |
| 		*/
 | |
| 		if (cfs_rq_throttled(cfs_rq))
 | |
| 			break;
 | |
| 		cfs_rq->h_nr_running++;
 | |
| 
 | |
| 		flags = ENQUEUE_WAKEUP;
 | |
| 	}
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		cfs_rq->h_nr_running++;
 | |
| 
 | |
| 		if (cfs_rq_throttled(cfs_rq))
 | |
| 			break;
 | |
| 
 | |
| 		update_cfs_shares(cfs_rq);
 | |
| 		update_entity_load_avg(se, 1);
 | |
| 	}
 | |
| 
 | |
| 	if (!se) {
 | |
| 		update_rq_runnable_avg(rq, rq->nr_running);
 | |
| 		add_nr_running(rq, 1);
 | |
| 	}
 | |
| 	hrtick_update(rq);
 | |
| }
 | |
| 
 | |
| static void set_next_buddy(struct sched_entity *se);
 | |
| 
 | |
| /*
 | |
|  * The dequeue_task method is called before nr_running is
 | |
|  * decreased. We remove the task from the rbtree and
 | |
|  * update the fair scheduling stats:
 | |
|  */
 | |
| static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 	int task_sleep = flags & DEQUEUE_SLEEP;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		dequeue_entity(cfs_rq, se, flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * end evaluation on encountering a throttled cfs_rq
 | |
| 		 *
 | |
| 		 * note: in the case of encountering a throttled cfs_rq we will
 | |
| 		 * post the final h_nr_running decrement below.
 | |
| 		*/
 | |
| 		if (cfs_rq_throttled(cfs_rq))
 | |
| 			break;
 | |
| 		cfs_rq->h_nr_running--;
 | |
| 
 | |
| 		/* Don't dequeue parent if it has other entities besides us */
 | |
| 		if (cfs_rq->load.weight) {
 | |
| 			/*
 | |
| 			 * Bias pick_next to pick a task from this cfs_rq, as
 | |
| 			 * p is sleeping when it is within its sched_slice.
 | |
| 			 */
 | |
| 			if (task_sleep && parent_entity(se))
 | |
| 				set_next_buddy(parent_entity(se));
 | |
| 
 | |
| 			/* avoid re-evaluating load for this entity */
 | |
| 			se = parent_entity(se);
 | |
| 			break;
 | |
| 		}
 | |
| 		flags |= DEQUEUE_SLEEP;
 | |
| 	}
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		cfs_rq->h_nr_running--;
 | |
| 
 | |
| 		if (cfs_rq_throttled(cfs_rq))
 | |
| 			break;
 | |
| 
 | |
| 		update_cfs_shares(cfs_rq);
 | |
| 		update_entity_load_avg(se, 1);
 | |
| 	}
 | |
| 
 | |
| 	if (!se) {
 | |
| 		sub_nr_running(rq, 1);
 | |
| 		update_rq_runnable_avg(rq, 1);
 | |
| 	}
 | |
| 	hrtick_update(rq);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| /*
 | |
|  * per rq 'load' arrray crap; XXX kill this.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The exact cpuload at various idx values, calculated at every tick would be
 | |
|  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 | |
|  *
 | |
|  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 | |
|  * on nth tick when cpu may be busy, then we have:
 | |
|  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 | |
|  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 | |
|  *
 | |
|  * decay_load_missed() below does efficient calculation of
 | |
|  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 | |
|  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 | |
|  *
 | |
|  * The calculation is approximated on a 128 point scale.
 | |
|  * degrade_zero_ticks is the number of ticks after which load at any
 | |
|  * particular idx is approximated to be zero.
 | |
|  * degrade_factor is a precomputed table, a row for each load idx.
 | |
|  * Each column corresponds to degradation factor for a power of two ticks,
 | |
|  * based on 128 point scale.
 | |
|  * Example:
 | |
|  * row 2, col 3 (=12) says that the degradation at load idx 2 after
 | |
|  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 | |
|  *
 | |
|  * With this power of 2 load factors, we can degrade the load n times
 | |
|  * by looking at 1 bits in n and doing as many mult/shift instead of
 | |
|  * n mult/shifts needed by the exact degradation.
 | |
|  */
 | |
| #define DEGRADE_SHIFT		7
 | |
| static const unsigned char
 | |
| 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
 | |
| static const unsigned char
 | |
| 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
 | |
| 					{0, 0, 0, 0, 0, 0, 0, 0},
 | |
| 					{64, 32, 8, 0, 0, 0, 0, 0},
 | |
| 					{96, 72, 40, 12, 1, 0, 0},
 | |
| 					{112, 98, 75, 43, 15, 1, 0},
 | |
| 					{120, 112, 98, 76, 45, 16, 2} };
 | |
| 
 | |
| /*
 | |
|  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 | |
|  * would be when CPU is idle and so we just decay the old load without
 | |
|  * adding any new load.
 | |
|  */
 | |
| static unsigned long
 | |
| decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
 | |
| {
 | |
| 	int j = 0;
 | |
| 
 | |
| 	if (!missed_updates)
 | |
| 		return load;
 | |
| 
 | |
| 	if (missed_updates >= degrade_zero_ticks[idx])
 | |
| 		return 0;
 | |
| 
 | |
| 	if (idx == 1)
 | |
| 		return load >> missed_updates;
 | |
| 
 | |
| 	while (missed_updates) {
 | |
| 		if (missed_updates % 2)
 | |
| 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
 | |
| 
 | |
| 		missed_updates >>= 1;
 | |
| 		j++;
 | |
| 	}
 | |
| 	return load;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update rq->cpu_load[] statistics. This function is usually called every
 | |
|  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 | |
|  * every tick. We fix it up based on jiffies.
 | |
|  */
 | |
| static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
 | |
| 			      unsigned long pending_updates)
 | |
| {
 | |
| 	int i, scale;
 | |
| 
 | |
| 	this_rq->nr_load_updates++;
 | |
| 
 | |
| 	/* Update our load: */
 | |
| 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
 | |
| 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
 | |
| 		unsigned long old_load, new_load;
 | |
| 
 | |
| 		/* scale is effectively 1 << i now, and >> i divides by scale */
 | |
| 
 | |
| 		old_load = this_rq->cpu_load[i];
 | |
| 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
 | |
| 		new_load = this_load;
 | |
| 		/*
 | |
| 		 * Round up the averaging division if load is increasing. This
 | |
| 		 * prevents us from getting stuck on 9 if the load is 10, for
 | |
| 		 * example.
 | |
| 		 */
 | |
| 		if (new_load > old_load)
 | |
| 			new_load += scale - 1;
 | |
| 
 | |
| 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
 | |
| 	}
 | |
| 
 | |
| 	sched_avg_update(this_rq);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| /*
 | |
|  * There is no sane way to deal with nohz on smp when using jiffies because the
 | |
|  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 | |
|  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 | |
|  *
 | |
|  * Therefore we cannot use the delta approach from the regular tick since that
 | |
|  * would seriously skew the load calculation. However we'll make do for those
 | |
|  * updates happening while idle (nohz_idle_balance) or coming out of idle
 | |
|  * (tick_nohz_idle_exit).
 | |
|  *
 | |
|  * This means we might still be one tick off for nohz periods.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Called from nohz_idle_balance() to update the load ratings before doing the
 | |
|  * idle balance.
 | |
|  */
 | |
| static void update_idle_cpu_load(struct rq *this_rq)
 | |
| {
 | |
| 	unsigned long curr_jiffies = READ_ONCE(jiffies);
 | |
| 	unsigned long load = this_rq->cfs.runnable_load_avg;
 | |
| 	unsigned long pending_updates;
 | |
| 
 | |
| 	/*
 | |
| 	 * bail if there's load or we're actually up-to-date.
 | |
| 	 */
 | |
| 	if (load || curr_jiffies == this_rq->last_load_update_tick)
 | |
| 		return;
 | |
| 
 | |
| 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
 | |
| 	this_rq->last_load_update_tick = curr_jiffies;
 | |
| 
 | |
| 	__update_cpu_load(this_rq, load, pending_updates);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 | |
|  */
 | |
| void update_cpu_load_nohz(void)
 | |
| {
 | |
| 	struct rq *this_rq = this_rq();
 | |
| 	unsigned long curr_jiffies = READ_ONCE(jiffies);
 | |
| 	unsigned long pending_updates;
 | |
| 
 | |
| 	if (curr_jiffies == this_rq->last_load_update_tick)
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock(&this_rq->lock);
 | |
| 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
 | |
| 	if (pending_updates) {
 | |
| 		this_rq->last_load_update_tick = curr_jiffies;
 | |
| 		/*
 | |
| 		 * We were idle, this means load 0, the current load might be
 | |
| 		 * !0 due to remote wakeups and the sort.
 | |
| 		 */
 | |
| 		__update_cpu_load(this_rq, 0, pending_updates);
 | |
| 	}
 | |
| 	raw_spin_unlock(&this_rq->lock);
 | |
| }
 | |
| #endif /* CONFIG_NO_HZ */
 | |
| 
 | |
| /*
 | |
|  * Called from scheduler_tick()
 | |
|  */
 | |
| void update_cpu_load_active(struct rq *this_rq)
 | |
| {
 | |
| 	unsigned long load = this_rq->cfs.runnable_load_avg;
 | |
| 	/*
 | |
| 	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
 | |
| 	 */
 | |
| 	this_rq->last_load_update_tick = jiffies;
 | |
| 	__update_cpu_load(this_rq, load, 1);
 | |
| }
 | |
| 
 | |
| /* Used instead of source_load when we know the type == 0 */
 | |
| static unsigned long weighted_cpuload(const int cpu)
 | |
| {
 | |
| 	return cpu_rq(cpu)->cfs.runnable_load_avg;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a low guess at the load of a migration-source cpu weighted
 | |
|  * according to the scheduling class and "nice" value.
 | |
|  *
 | |
|  * We want to under-estimate the load of migration sources, to
 | |
|  * balance conservatively.
 | |
|  */
 | |
| static unsigned long source_load(int cpu, int type)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	unsigned long total = weighted_cpuload(cpu);
 | |
| 
 | |
| 	if (type == 0 || !sched_feat(LB_BIAS))
 | |
| 		return total;
 | |
| 
 | |
| 	return min(rq->cpu_load[type-1], total);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a high guess at the load of a migration-target cpu weighted
 | |
|  * according to the scheduling class and "nice" value.
 | |
|  */
 | |
| static unsigned long target_load(int cpu, int type)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	unsigned long total = weighted_cpuload(cpu);
 | |
| 
 | |
| 	if (type == 0 || !sched_feat(LB_BIAS))
 | |
| 		return total;
 | |
| 
 | |
| 	return max(rq->cpu_load[type-1], total);
 | |
| }
 | |
| 
 | |
| static unsigned long capacity_of(int cpu)
 | |
| {
 | |
| 	return cpu_rq(cpu)->cpu_capacity;
 | |
| }
 | |
| 
 | |
| static unsigned long capacity_orig_of(int cpu)
 | |
| {
 | |
| 	return cpu_rq(cpu)->cpu_capacity_orig;
 | |
| }
 | |
| 
 | |
| static unsigned long cpu_avg_load_per_task(int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
 | |
| 	unsigned long load_avg = rq->cfs.runnable_load_avg;
 | |
| 
 | |
| 	if (nr_running)
 | |
| 		return load_avg / nr_running;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void record_wakee(struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * Rough decay (wiping) for cost saving, don't worry
 | |
| 	 * about the boundary, really active task won't care
 | |
| 	 * about the loss.
 | |
| 	 */
 | |
| 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
 | |
| 		current->wakee_flips >>= 1;
 | |
| 		current->wakee_flip_decay_ts = jiffies;
 | |
| 	}
 | |
| 
 | |
| 	if (current->last_wakee != p) {
 | |
| 		current->last_wakee = p;
 | |
| 		current->wakee_flips++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void task_waking_fair(struct task_struct *p)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 	u64 min_vruntime;
 | |
| 
 | |
| #ifndef CONFIG_64BIT
 | |
| 	u64 min_vruntime_copy;
 | |
| 
 | |
| 	do {
 | |
| 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
 | |
| 		smp_rmb();
 | |
| 		min_vruntime = cfs_rq->min_vruntime;
 | |
| 	} while (min_vruntime != min_vruntime_copy);
 | |
| #else
 | |
| 	min_vruntime = cfs_rq->min_vruntime;
 | |
| #endif
 | |
| 
 | |
| 	se->vruntime -= min_vruntime;
 | |
| 	record_wakee(p);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| /*
 | |
|  * effective_load() calculates the load change as seen from the root_task_group
 | |
|  *
 | |
|  * Adding load to a group doesn't make a group heavier, but can cause movement
 | |
|  * of group shares between cpus. Assuming the shares were perfectly aligned one
 | |
|  * can calculate the shift in shares.
 | |
|  *
 | |
|  * Calculate the effective load difference if @wl is added (subtracted) to @tg
 | |
|  * on this @cpu and results in a total addition (subtraction) of @wg to the
 | |
|  * total group weight.
 | |
|  *
 | |
|  * Given a runqueue weight distribution (rw_i) we can compute a shares
 | |
|  * distribution (s_i) using:
 | |
|  *
 | |
|  *   s_i = rw_i / \Sum rw_j						(1)
 | |
|  *
 | |
|  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 | |
|  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 | |
|  * shares distribution (s_i):
 | |
|  *
 | |
|  *   rw_i = {   2,   4,   1,   0 }
 | |
|  *   s_i  = { 2/7, 4/7, 1/7,   0 }
 | |
|  *
 | |
|  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 | |
|  * task used to run on and the CPU the waker is running on), we need to
 | |
|  * compute the effect of waking a task on either CPU and, in case of a sync
 | |
|  * wakeup, compute the effect of the current task going to sleep.
 | |
|  *
 | |
|  * So for a change of @wl to the local @cpu with an overall group weight change
 | |
|  * of @wl we can compute the new shares distribution (s'_i) using:
 | |
|  *
 | |
|  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 | |
|  *
 | |
|  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 | |
|  * differences in waking a task to CPU 0. The additional task changes the
 | |
|  * weight and shares distributions like:
 | |
|  *
 | |
|  *   rw'_i = {   3,   4,   1,   0 }
 | |
|  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 | |
|  *
 | |
|  * We can then compute the difference in effective weight by using:
 | |
|  *
 | |
|  *   dw_i = S * (s'_i - s_i)						(3)
 | |
|  *
 | |
|  * Where 'S' is the group weight as seen by its parent.
 | |
|  *
 | |
|  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 | |
|  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 | |
|  * 4/7) times the weight of the group.
 | |
|  */
 | |
| static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
 | |
| {
 | |
| 	struct sched_entity *se = tg->se[cpu];
 | |
| 
 | |
| 	if (!tg->parent)	/* the trivial, non-cgroup case */
 | |
| 		return wl;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		long w, W;
 | |
| 
 | |
| 		tg = se->my_q->tg;
 | |
| 
 | |
| 		/*
 | |
| 		 * W = @wg + \Sum rw_j
 | |
| 		 */
 | |
| 		W = wg + calc_tg_weight(tg, se->my_q);
 | |
| 
 | |
| 		/*
 | |
| 		 * w = rw_i + @wl
 | |
| 		 */
 | |
| 		w = se->my_q->load.weight + wl;
 | |
| 
 | |
| 		/*
 | |
| 		 * wl = S * s'_i; see (2)
 | |
| 		 */
 | |
| 		if (W > 0 && w < W)
 | |
| 			wl = (w * (long)tg->shares) / W;
 | |
| 		else
 | |
| 			wl = tg->shares;
 | |
| 
 | |
| 		/*
 | |
| 		 * Per the above, wl is the new se->load.weight value; since
 | |
| 		 * those are clipped to [MIN_SHARES, ...) do so now. See
 | |
| 		 * calc_cfs_shares().
 | |
| 		 */
 | |
| 		if (wl < MIN_SHARES)
 | |
| 			wl = MIN_SHARES;
 | |
| 
 | |
| 		/*
 | |
| 		 * wl = dw_i = S * (s'_i - s_i); see (3)
 | |
| 		 */
 | |
| 		wl -= se->load.weight;
 | |
| 
 | |
| 		/*
 | |
| 		 * Recursively apply this logic to all parent groups to compute
 | |
| 		 * the final effective load change on the root group. Since
 | |
| 		 * only the @tg group gets extra weight, all parent groups can
 | |
| 		 * only redistribute existing shares. @wl is the shift in shares
 | |
| 		 * resulting from this level per the above.
 | |
| 		 */
 | |
| 		wg = 0;
 | |
| 	}
 | |
| 
 | |
| 	return wl;
 | |
| }
 | |
| #else
 | |
| 
 | |
| static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
 | |
| {
 | |
| 	return wl;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static int wake_wide(struct task_struct *p)
 | |
| {
 | |
| 	int factor = this_cpu_read(sd_llc_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Yeah, it's the switching-frequency, could means many wakee or
 | |
| 	 * rapidly switch, use factor here will just help to automatically
 | |
| 	 * adjust the loose-degree, so bigger node will lead to more pull.
 | |
| 	 */
 | |
| 	if (p->wakee_flips > factor) {
 | |
| 		/*
 | |
| 		 * wakee is somewhat hot, it needs certain amount of cpu
 | |
| 		 * resource, so if waker is far more hot, prefer to leave
 | |
| 		 * it alone.
 | |
| 		 */
 | |
| 		if (current->wakee_flips > (factor * p->wakee_flips))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
 | |
| {
 | |
| 	s64 this_load, load;
 | |
| 	s64 this_eff_load, prev_eff_load;
 | |
| 	int idx, this_cpu, prev_cpu;
 | |
| 	struct task_group *tg;
 | |
| 	unsigned long weight;
 | |
| 	int balanced;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we wake multiple tasks be careful to not bounce
 | |
| 	 * ourselves around too much.
 | |
| 	 */
 | |
| 	if (wake_wide(p))
 | |
| 		return 0;
 | |
| 
 | |
| 	idx	  = sd->wake_idx;
 | |
| 	this_cpu  = smp_processor_id();
 | |
| 	prev_cpu  = task_cpu(p);
 | |
| 	load	  = source_load(prev_cpu, idx);
 | |
| 	this_load = target_load(this_cpu, idx);
 | |
| 
 | |
| 	/*
 | |
| 	 * If sync wakeup then subtract the (maximum possible)
 | |
| 	 * effect of the currently running task from the load
 | |
| 	 * of the current CPU:
 | |
| 	 */
 | |
| 	if (sync) {
 | |
| 		tg = task_group(current);
 | |
| 		weight = current->se.load.weight;
 | |
| 
 | |
| 		this_load += effective_load(tg, this_cpu, -weight, -weight);
 | |
| 		load += effective_load(tg, prev_cpu, 0, -weight);
 | |
| 	}
 | |
| 
 | |
| 	tg = task_group(p);
 | |
| 	weight = p->se.load.weight;
 | |
| 
 | |
| 	/*
 | |
| 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
 | |
| 	 * due to the sync cause above having dropped this_load to 0, we'll
 | |
| 	 * always have an imbalance, but there's really nothing you can do
 | |
| 	 * about that, so that's good too.
 | |
| 	 *
 | |
| 	 * Otherwise check if either cpus are near enough in load to allow this
 | |
| 	 * task to be woken on this_cpu.
 | |
| 	 */
 | |
| 	this_eff_load = 100;
 | |
| 	this_eff_load *= capacity_of(prev_cpu);
 | |
| 
 | |
| 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
 | |
| 	prev_eff_load *= capacity_of(this_cpu);
 | |
| 
 | |
| 	if (this_load > 0) {
 | |
| 		this_eff_load *= this_load +
 | |
| 			effective_load(tg, this_cpu, weight, weight);
 | |
| 
 | |
| 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
 | |
| 	}
 | |
| 
 | |
| 	balanced = this_eff_load <= prev_eff_load;
 | |
| 
 | |
| 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
 | |
| 
 | |
| 	if (!balanced)
 | |
| 		return 0;
 | |
| 
 | |
| 	schedstat_inc(sd, ttwu_move_affine);
 | |
| 	schedstat_inc(p, se.statistics.nr_wakeups_affine);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_idlest_group finds and returns the least busy CPU group within the
 | |
|  * domain.
 | |
|  */
 | |
| static struct sched_group *
 | |
| find_idlest_group(struct sched_domain *sd, struct task_struct *p,
 | |
| 		  int this_cpu, int sd_flag)
 | |
| {
 | |
| 	struct sched_group *idlest = NULL, *group = sd->groups;
 | |
| 	unsigned long min_load = ULONG_MAX, this_load = 0;
 | |
| 	int load_idx = sd->forkexec_idx;
 | |
| 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
 | |
| 
 | |
| 	if (sd_flag & SD_BALANCE_WAKE)
 | |
| 		load_idx = sd->wake_idx;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned long load, avg_load;
 | |
| 		int local_group;
 | |
| 		int i;
 | |
| 
 | |
| 		/* Skip over this group if it has no CPUs allowed */
 | |
| 		if (!cpumask_intersects(sched_group_cpus(group),
 | |
| 					tsk_cpus_allowed(p)))
 | |
| 			continue;
 | |
| 
 | |
| 		local_group = cpumask_test_cpu(this_cpu,
 | |
| 					       sched_group_cpus(group));
 | |
| 
 | |
| 		/* Tally up the load of all CPUs in the group */
 | |
| 		avg_load = 0;
 | |
| 
 | |
| 		for_each_cpu(i, sched_group_cpus(group)) {
 | |
| 			/* Bias balancing toward cpus of our domain */
 | |
| 			if (local_group)
 | |
| 				load = source_load(i, load_idx);
 | |
| 			else
 | |
| 				load = target_load(i, load_idx);
 | |
| 
 | |
| 			avg_load += load;
 | |
| 		}
 | |
| 
 | |
| 		/* Adjust by relative CPU capacity of the group */
 | |
| 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
 | |
| 
 | |
| 		if (local_group) {
 | |
| 			this_load = avg_load;
 | |
| 		} else if (avg_load < min_load) {
 | |
| 			min_load = avg_load;
 | |
| 			idlest = group;
 | |
| 		}
 | |
| 	} while (group = group->next, group != sd->groups);
 | |
| 
 | |
| 	if (!idlest || 100*this_load < imbalance*min_load)
 | |
| 		return NULL;
 | |
| 	return idlest;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_idlest_cpu - find the idlest cpu among the cpus in group.
 | |
|  */
 | |
| static int
 | |
| find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
 | |
| {
 | |
| 	unsigned long load, min_load = ULONG_MAX;
 | |
| 	unsigned int min_exit_latency = UINT_MAX;
 | |
| 	u64 latest_idle_timestamp = 0;
 | |
| 	int least_loaded_cpu = this_cpu;
 | |
| 	int shallowest_idle_cpu = -1;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Traverse only the allowed CPUs */
 | |
| 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
 | |
| 		if (idle_cpu(i)) {
 | |
| 			struct rq *rq = cpu_rq(i);
 | |
| 			struct cpuidle_state *idle = idle_get_state(rq);
 | |
| 			if (idle && idle->exit_latency < min_exit_latency) {
 | |
| 				/*
 | |
| 				 * We give priority to a CPU whose idle state
 | |
| 				 * has the smallest exit latency irrespective
 | |
| 				 * of any idle timestamp.
 | |
| 				 */
 | |
| 				min_exit_latency = idle->exit_latency;
 | |
| 				latest_idle_timestamp = rq->idle_stamp;
 | |
| 				shallowest_idle_cpu = i;
 | |
| 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
 | |
| 				   rq->idle_stamp > latest_idle_timestamp) {
 | |
| 				/*
 | |
| 				 * If equal or no active idle state, then
 | |
| 				 * the most recently idled CPU might have
 | |
| 				 * a warmer cache.
 | |
| 				 */
 | |
| 				latest_idle_timestamp = rq->idle_stamp;
 | |
| 				shallowest_idle_cpu = i;
 | |
| 			}
 | |
| 		} else if (shallowest_idle_cpu == -1) {
 | |
| 			load = weighted_cpuload(i);
 | |
| 			if (load < min_load || (load == min_load && i == this_cpu)) {
 | |
| 				min_load = load;
 | |
| 				least_loaded_cpu = i;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try and locate an idle CPU in the sched_domain.
 | |
|  */
 | |
| static int select_idle_sibling(struct task_struct *p, int target)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 	struct sched_group *sg;
 | |
| 	int i = task_cpu(p);
 | |
| 
 | |
| 	if (idle_cpu(target))
 | |
| 		return target;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the prevous cpu is cache affine and idle, don't be stupid.
 | |
| 	 */
 | |
| 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
 | |
| 		return i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Otherwise, iterate the domains and find an elegible idle cpu.
 | |
| 	 */
 | |
| 	sd = rcu_dereference(per_cpu(sd_llc, target));
 | |
| 	for_each_lower_domain(sd) {
 | |
| 		sg = sd->groups;
 | |
| 		do {
 | |
| 			if (!cpumask_intersects(sched_group_cpus(sg),
 | |
| 						tsk_cpus_allowed(p)))
 | |
| 				goto next;
 | |
| 
 | |
| 			for_each_cpu(i, sched_group_cpus(sg)) {
 | |
| 				if (i == target || !idle_cpu(i))
 | |
| 					goto next;
 | |
| 			}
 | |
| 
 | |
| 			target = cpumask_first_and(sched_group_cpus(sg),
 | |
| 					tsk_cpus_allowed(p));
 | |
| 			goto done;
 | |
| next:
 | |
| 			sg = sg->next;
 | |
| 		} while (sg != sd->groups);
 | |
| 	}
 | |
| done:
 | |
| 	return target;
 | |
| }
 | |
| /*
 | |
|  * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
 | |
|  * tasks. The unit of the return value must be the one of capacity so we can
 | |
|  * compare the usage with the capacity of the CPU that is available for CFS
 | |
|  * task (ie cpu_capacity).
 | |
|  * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
 | |
|  * CPU. It represents the amount of utilization of a CPU in the range
 | |
|  * [0..SCHED_LOAD_SCALE].  The usage of a CPU can't be higher than the full
 | |
|  * capacity of the CPU because it's about the running time on this CPU.
 | |
|  * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
 | |
|  * because of unfortunate rounding in avg_period and running_load_avg or just
 | |
|  * after migrating tasks until the average stabilizes with the new running
 | |
|  * time. So we need to check that the usage stays into the range
 | |
|  * [0..cpu_capacity_orig] and cap if necessary.
 | |
|  * Without capping the usage, a group could be seen as overloaded (CPU0 usage
 | |
|  * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
 | |
|  */
 | |
| static int get_cpu_usage(int cpu)
 | |
| {
 | |
| 	unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
 | |
| 	unsigned long capacity = capacity_orig_of(cpu);
 | |
| 
 | |
| 	if (usage >= SCHED_LOAD_SCALE)
 | |
| 		return capacity;
 | |
| 
 | |
| 	return (usage * capacity) >> SCHED_LOAD_SHIFT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * select_task_rq_fair: Select target runqueue for the waking task in domains
 | |
|  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 | |
|  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
 | |
|  *
 | |
|  * Balances load by selecting the idlest cpu in the idlest group, or under
 | |
|  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
 | |
|  *
 | |
|  * Returns the target cpu number.
 | |
|  *
 | |
|  * preempt must be disabled.
 | |
|  */
 | |
| static int
 | |
| select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
 | |
| {
 | |
| 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
 | |
| 	int cpu = smp_processor_id();
 | |
| 	int new_cpu = cpu;
 | |
| 	int want_affine = 0;
 | |
| 	int sync = wake_flags & WF_SYNC;
 | |
| 
 | |
| 	if (sd_flag & SD_BALANCE_WAKE)
 | |
| 		want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_domain(cpu, tmp) {
 | |
| 		if (!(tmp->flags & SD_LOAD_BALANCE))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * If both cpu and prev_cpu are part of this domain,
 | |
| 		 * cpu is a valid SD_WAKE_AFFINE target.
 | |
| 		 */
 | |
| 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
 | |
| 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
 | |
| 			affine_sd = tmp;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (tmp->flags & sd_flag)
 | |
| 			sd = tmp;
 | |
| 	}
 | |
| 
 | |
| 	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
 | |
| 		prev_cpu = cpu;
 | |
| 
 | |
| 	if (sd_flag & SD_BALANCE_WAKE) {
 | |
| 		new_cpu = select_idle_sibling(p, prev_cpu);
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	while (sd) {
 | |
| 		struct sched_group *group;
 | |
| 		int weight;
 | |
| 
 | |
| 		if (!(sd->flags & sd_flag)) {
 | |
| 			sd = sd->child;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		group = find_idlest_group(sd, p, cpu, sd_flag);
 | |
| 		if (!group) {
 | |
| 			sd = sd->child;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		new_cpu = find_idlest_cpu(group, p, cpu);
 | |
| 		if (new_cpu == -1 || new_cpu == cpu) {
 | |
| 			/* Now try balancing at a lower domain level of cpu */
 | |
| 			sd = sd->child;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Now try balancing at a lower domain level of new_cpu */
 | |
| 		cpu = new_cpu;
 | |
| 		weight = sd->span_weight;
 | |
| 		sd = NULL;
 | |
| 		for_each_domain(cpu, tmp) {
 | |
| 			if (weight <= tmp->span_weight)
 | |
| 				break;
 | |
| 			if (tmp->flags & sd_flag)
 | |
| 				sd = tmp;
 | |
| 		}
 | |
| 		/* while loop will break here if sd == NULL */
 | |
| 	}
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return new_cpu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 | |
|  * cfs_rq_of(p) references at time of call are still valid and identify the
 | |
|  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 | |
|  * other assumptions, including the state of rq->lock, should be made.
 | |
|  */
 | |
| static void
 | |
| migrate_task_rq_fair(struct task_struct *p, int next_cpu)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 	/*
 | |
| 	 * Load tracking: accumulate removed load so that it can be processed
 | |
| 	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
 | |
| 	 * to blocked load iff they have a positive decay-count.  It can never
 | |
| 	 * be negative here since on-rq tasks have decay-count == 0.
 | |
| 	 */
 | |
| 	if (se->avg.decay_count) {
 | |
| 		se->avg.decay_count = -__synchronize_entity_decay(se);
 | |
| 		atomic_long_add(se->avg.load_avg_contrib,
 | |
| 						&cfs_rq->removed_load);
 | |
| 	}
 | |
| 
 | |
| 	/* We have migrated, no longer consider this task hot */
 | |
| 	se->exec_start = 0;
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static unsigned long
 | |
| wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
 | |
| {
 | |
| 	unsigned long gran = sysctl_sched_wakeup_granularity;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since its curr running now, convert the gran from real-time
 | |
| 	 * to virtual-time in his units.
 | |
| 	 *
 | |
| 	 * By using 'se' instead of 'curr' we penalize light tasks, so
 | |
| 	 * they get preempted easier. That is, if 'se' < 'curr' then
 | |
| 	 * the resulting gran will be larger, therefore penalizing the
 | |
| 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
 | |
| 	 * be smaller, again penalizing the lighter task.
 | |
| 	 *
 | |
| 	 * This is especially important for buddies when the leftmost
 | |
| 	 * task is higher priority than the buddy.
 | |
| 	 */
 | |
| 	return calc_delta_fair(gran, se);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Should 'se' preempt 'curr'.
 | |
|  *
 | |
|  *             |s1
 | |
|  *        |s2
 | |
|  *   |s3
 | |
|  *         g
 | |
|  *      |<--->|c
 | |
|  *
 | |
|  *  w(c, s1) = -1
 | |
|  *  w(c, s2) =  0
 | |
|  *  w(c, s3) =  1
 | |
|  *
 | |
|  */
 | |
| static int
 | |
| wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
 | |
| {
 | |
| 	s64 gran, vdiff = curr->vruntime - se->vruntime;
 | |
| 
 | |
| 	if (vdiff <= 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	gran = wakeup_gran(curr, se);
 | |
| 	if (vdiff > gran)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void set_last_buddy(struct sched_entity *se)
 | |
| {
 | |
| 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
 | |
| 		return;
 | |
| 
 | |
| 	for_each_sched_entity(se)
 | |
| 		cfs_rq_of(se)->last = se;
 | |
| }
 | |
| 
 | |
| static void set_next_buddy(struct sched_entity *se)
 | |
| {
 | |
| 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
 | |
| 		return;
 | |
| 
 | |
| 	for_each_sched_entity(se)
 | |
| 		cfs_rq_of(se)->next = se;
 | |
| }
 | |
| 
 | |
| static void set_skip_buddy(struct sched_entity *se)
 | |
| {
 | |
| 	for_each_sched_entity(se)
 | |
| 		cfs_rq_of(se)->skip = se;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Preempt the current task with a newly woken task if needed:
 | |
|  */
 | |
| static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
 | |
| {
 | |
| 	struct task_struct *curr = rq->curr;
 | |
| 	struct sched_entity *se = &curr->se, *pse = &p->se;
 | |
| 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
 | |
| 	int scale = cfs_rq->nr_running >= sched_nr_latency;
 | |
| 	int next_buddy_marked = 0;
 | |
| 
 | |
| 	if (unlikely(se == pse))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is possible from callers such as attach_tasks(), in which we
 | |
| 	 * unconditionally check_prempt_curr() after an enqueue (which may have
 | |
| 	 * lead to a throttle).  This both saves work and prevents false
 | |
| 	 * next-buddy nomination below.
 | |
| 	 */
 | |
| 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
 | |
| 		return;
 | |
| 
 | |
| 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
 | |
| 		set_next_buddy(pse);
 | |
| 		next_buddy_marked = 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We can come here with TIF_NEED_RESCHED already set from new task
 | |
| 	 * wake up path.
 | |
| 	 *
 | |
| 	 * Note: this also catches the edge-case of curr being in a throttled
 | |
| 	 * group (e.g. via set_curr_task), since update_curr() (in the
 | |
| 	 * enqueue of curr) will have resulted in resched being set.  This
 | |
| 	 * prevents us from potentially nominating it as a false LAST_BUDDY
 | |
| 	 * below.
 | |
| 	 */
 | |
| 	if (test_tsk_need_resched(curr))
 | |
| 		return;
 | |
| 
 | |
| 	/* Idle tasks are by definition preempted by non-idle tasks. */
 | |
| 	if (unlikely(curr->policy == SCHED_IDLE) &&
 | |
| 	    likely(p->policy != SCHED_IDLE))
 | |
| 		goto preempt;
 | |
| 
 | |
| 	/*
 | |
| 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
 | |
| 	 * is driven by the tick):
 | |
| 	 */
 | |
| 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
 | |
| 		return;
 | |
| 
 | |
| 	find_matching_se(&se, &pse);
 | |
| 	update_curr(cfs_rq_of(se));
 | |
| 	BUG_ON(!pse);
 | |
| 	if (wakeup_preempt_entity(se, pse) == 1) {
 | |
| 		/*
 | |
| 		 * Bias pick_next to pick the sched entity that is
 | |
| 		 * triggering this preemption.
 | |
| 		 */
 | |
| 		if (!next_buddy_marked)
 | |
| 			set_next_buddy(pse);
 | |
| 		goto preempt;
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| preempt:
 | |
| 	resched_curr(rq);
 | |
| 	/*
 | |
| 	 * Only set the backward buddy when the current task is still
 | |
| 	 * on the rq. This can happen when a wakeup gets interleaved
 | |
| 	 * with schedule on the ->pre_schedule() or idle_balance()
 | |
| 	 * point, either of which can * drop the rq lock.
 | |
| 	 *
 | |
| 	 * Also, during early boot the idle thread is in the fair class,
 | |
| 	 * for obvious reasons its a bad idea to schedule back to it.
 | |
| 	 */
 | |
| 	if (unlikely(!se->on_rq || curr == rq->idle))
 | |
| 		return;
 | |
| 
 | |
| 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
 | |
| 		set_last_buddy(se);
 | |
| }
 | |
| 
 | |
| static struct task_struct *
 | |
| pick_next_task_fair(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = &rq->cfs;
 | |
| 	struct sched_entity *se;
 | |
| 	struct task_struct *p;
 | |
| 	int new_tasks;
 | |
| 
 | |
| again:
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	if (!cfs_rq->nr_running)
 | |
| 		goto idle;
 | |
| 
 | |
| 	if (prev->sched_class != &fair_sched_class)
 | |
| 		goto simple;
 | |
| 
 | |
| 	/*
 | |
| 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
 | |
| 	 * likely that a next task is from the same cgroup as the current.
 | |
| 	 *
 | |
| 	 * Therefore attempt to avoid putting and setting the entire cgroup
 | |
| 	 * hierarchy, only change the part that actually changes.
 | |
| 	 */
 | |
| 
 | |
| 	do {
 | |
| 		struct sched_entity *curr = cfs_rq->curr;
 | |
| 
 | |
| 		/*
 | |
| 		 * Since we got here without doing put_prev_entity() we also
 | |
| 		 * have to consider cfs_rq->curr. If it is still a runnable
 | |
| 		 * entity, update_curr() will update its vruntime, otherwise
 | |
| 		 * forget we've ever seen it.
 | |
| 		 */
 | |
| 		if (curr) {
 | |
| 			if (curr->on_rq)
 | |
| 				update_curr(cfs_rq);
 | |
| 			else
 | |
| 				curr = NULL;
 | |
| 
 | |
| 			/*
 | |
| 			 * This call to check_cfs_rq_runtime() will do the
 | |
| 			 * throttle and dequeue its entity in the parent(s).
 | |
| 			 * Therefore the 'simple' nr_running test will indeed
 | |
| 			 * be correct.
 | |
| 			 */
 | |
| 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
 | |
| 				goto simple;
 | |
| 		}
 | |
| 
 | |
| 		se = pick_next_entity(cfs_rq, curr);
 | |
| 		cfs_rq = group_cfs_rq(se);
 | |
| 	} while (cfs_rq);
 | |
| 
 | |
| 	p = task_of(se);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we haven't yet done put_prev_entity and if the selected task
 | |
| 	 * is a different task than we started out with, try and touch the
 | |
| 	 * least amount of cfs_rqs.
 | |
| 	 */
 | |
| 	if (prev != p) {
 | |
| 		struct sched_entity *pse = &prev->se;
 | |
| 
 | |
| 		while (!(cfs_rq = is_same_group(se, pse))) {
 | |
| 			int se_depth = se->depth;
 | |
| 			int pse_depth = pse->depth;
 | |
| 
 | |
| 			if (se_depth <= pse_depth) {
 | |
| 				put_prev_entity(cfs_rq_of(pse), pse);
 | |
| 				pse = parent_entity(pse);
 | |
| 			}
 | |
| 			if (se_depth >= pse_depth) {
 | |
| 				set_next_entity(cfs_rq_of(se), se);
 | |
| 				se = parent_entity(se);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		put_prev_entity(cfs_rq, pse);
 | |
| 		set_next_entity(cfs_rq, se);
 | |
| 	}
 | |
| 
 | |
| 	if (hrtick_enabled(rq))
 | |
| 		hrtick_start_fair(rq, p);
 | |
| 
 | |
| 	return p;
 | |
| simple:
 | |
| 	cfs_rq = &rq->cfs;
 | |
| #endif
 | |
| 
 | |
| 	if (!cfs_rq->nr_running)
 | |
| 		goto idle;
 | |
| 
 | |
| 	put_prev_task(rq, prev);
 | |
| 
 | |
| 	do {
 | |
| 		se = pick_next_entity(cfs_rq, NULL);
 | |
| 		set_next_entity(cfs_rq, se);
 | |
| 		cfs_rq = group_cfs_rq(se);
 | |
| 	} while (cfs_rq);
 | |
| 
 | |
| 	p = task_of(se);
 | |
| 
 | |
| 	if (hrtick_enabled(rq))
 | |
| 		hrtick_start_fair(rq, p);
 | |
| 
 | |
| 	return p;
 | |
| 
 | |
| idle:
 | |
| 	/*
 | |
| 	 * This is OK, because current is on_cpu, which avoids it being picked
 | |
| 	 * for load-balance and preemption/IRQs are still disabled avoiding
 | |
| 	 * further scheduler activity on it and we're being very careful to
 | |
| 	 * re-start the picking loop.
 | |
| 	 */
 | |
| 	lockdep_unpin_lock(&rq->lock);
 | |
| 	new_tasks = idle_balance(rq);
 | |
| 	lockdep_pin_lock(&rq->lock);
 | |
| 	/*
 | |
| 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
 | |
| 	 * possible for any higher priority task to appear. In that case we
 | |
| 	 * must re-start the pick_next_entity() loop.
 | |
| 	 */
 | |
| 	if (new_tasks < 0)
 | |
| 		return RETRY_TASK;
 | |
| 
 | |
| 	if (new_tasks > 0)
 | |
| 		goto again;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account for a descheduled task:
 | |
|  */
 | |
| static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	struct sched_entity *se = &prev->se;
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		put_prev_entity(cfs_rq, se);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sched_yield() is very simple
 | |
|  *
 | |
|  * The magic of dealing with the ->skip buddy is in pick_next_entity.
 | |
|  */
 | |
| static void yield_task_fair(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *curr = rq->curr;
 | |
| 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
 | |
| 	struct sched_entity *se = &curr->se;
 | |
| 
 | |
| 	/*
 | |
| 	 * Are we the only task in the tree?
 | |
| 	 */
 | |
| 	if (unlikely(rq->nr_running == 1))
 | |
| 		return;
 | |
| 
 | |
| 	clear_buddies(cfs_rq, se);
 | |
| 
 | |
| 	if (curr->policy != SCHED_BATCH) {
 | |
| 		update_rq_clock(rq);
 | |
| 		/*
 | |
| 		 * Update run-time statistics of the 'current'.
 | |
| 		 */
 | |
| 		update_curr(cfs_rq);
 | |
| 		/*
 | |
| 		 * Tell update_rq_clock() that we've just updated,
 | |
| 		 * so we don't do microscopic update in schedule()
 | |
| 		 * and double the fastpath cost.
 | |
| 		 */
 | |
| 		rq_clock_skip_update(rq, true);
 | |
| 	}
 | |
| 
 | |
| 	set_skip_buddy(se);
 | |
| }
 | |
| 
 | |
| static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 
 | |
| 	/* throttled hierarchies are not runnable */
 | |
| 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Tell the scheduler that we'd really like pse to run next. */
 | |
| 	set_next_buddy(se);
 | |
| 
 | |
| 	yield_task_fair(rq);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /**************************************************
 | |
|  * Fair scheduling class load-balancing methods.
 | |
|  *
 | |
|  * BASICS
 | |
|  *
 | |
|  * The purpose of load-balancing is to achieve the same basic fairness the
 | |
|  * per-cpu scheduler provides, namely provide a proportional amount of compute
 | |
|  * time to each task. This is expressed in the following equation:
 | |
|  *
 | |
|  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 | |
|  *
 | |
|  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 | |
|  * W_i,0 is defined as:
 | |
|  *
 | |
|  *   W_i,0 = \Sum_j w_i,j                                             (2)
 | |
|  *
 | |
|  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 | |
|  * is derived from the nice value as per prio_to_weight[].
 | |
|  *
 | |
|  * The weight average is an exponential decay average of the instantaneous
 | |
|  * weight:
 | |
|  *
 | |
|  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 | |
|  *
 | |
|  * C_i is the compute capacity of cpu i, typically it is the
 | |
|  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 | |
|  * can also include other factors [XXX].
 | |
|  *
 | |
|  * To achieve this balance we define a measure of imbalance which follows
 | |
|  * directly from (1):
 | |
|  *
 | |
|  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
 | |
|  *
 | |
|  * We them move tasks around to minimize the imbalance. In the continuous
 | |
|  * function space it is obvious this converges, in the discrete case we get
 | |
|  * a few fun cases generally called infeasible weight scenarios.
 | |
|  *
 | |
|  * [XXX expand on:
 | |
|  *     - infeasible weights;
 | |
|  *     - local vs global optima in the discrete case. ]
 | |
|  *
 | |
|  *
 | |
|  * SCHED DOMAINS
 | |
|  *
 | |
|  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 | |
|  * for all i,j solution, we create a tree of cpus that follows the hardware
 | |
|  * topology where each level pairs two lower groups (or better). This results
 | |
|  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 | |
|  * tree to only the first of the previous level and we decrease the frequency
 | |
|  * of load-balance at each level inv. proportional to the number of cpus in
 | |
|  * the groups.
 | |
|  *
 | |
|  * This yields:
 | |
|  *
 | |
|  *     log_2 n     1     n
 | |
|  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 | |
|  *     i = 0      2^i   2^i
 | |
|  *                               `- size of each group
 | |
|  *         |         |     `- number of cpus doing load-balance
 | |
|  *         |         `- freq
 | |
|  *         `- sum over all levels
 | |
|  *
 | |
|  * Coupled with a limit on how many tasks we can migrate every balance pass,
 | |
|  * this makes (5) the runtime complexity of the balancer.
 | |
|  *
 | |
|  * An important property here is that each CPU is still (indirectly) connected
 | |
|  * to every other cpu in at most O(log n) steps:
 | |
|  *
 | |
|  * The adjacency matrix of the resulting graph is given by:
 | |
|  *
 | |
|  *             log_2 n     
 | |
|  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 | |
|  *             k = 0
 | |
|  *
 | |
|  * And you'll find that:
 | |
|  *
 | |
|  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 | |
|  *
 | |
|  * Showing there's indeed a path between every cpu in at most O(log n) steps.
 | |
|  * The task movement gives a factor of O(m), giving a convergence complexity
 | |
|  * of:
 | |
|  *
 | |
|  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 | |
|  *
 | |
|  *
 | |
|  * WORK CONSERVING
 | |
|  *
 | |
|  * In order to avoid CPUs going idle while there's still work to do, new idle
 | |
|  * balancing is more aggressive and has the newly idle cpu iterate up the domain
 | |
|  * tree itself instead of relying on other CPUs to bring it work.
 | |
|  *
 | |
|  * This adds some complexity to both (5) and (8) but it reduces the total idle
 | |
|  * time.
 | |
|  *
 | |
|  * [XXX more?]
 | |
|  *
 | |
|  *
 | |
|  * CGROUPS
 | |
|  *
 | |
|  * Cgroups make a horror show out of (2), instead of a simple sum we get:
 | |
|  *
 | |
|  *                                s_k,i
 | |
|  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 | |
|  *                                 S_k
 | |
|  *
 | |
|  * Where
 | |
|  *
 | |
|  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 | |
|  *
 | |
|  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 | |
|  *
 | |
|  * The big problem is S_k, its a global sum needed to compute a local (W_i)
 | |
|  * property.
 | |
|  *
 | |
|  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 | |
|  *      rewrite all of this once again.]
 | |
|  */ 
 | |
| 
 | |
| static unsigned long __read_mostly max_load_balance_interval = HZ/10;
 | |
| 
 | |
| enum fbq_type { regular, remote, all };
 | |
| 
 | |
| #define LBF_ALL_PINNED	0x01
 | |
| #define LBF_NEED_BREAK	0x02
 | |
| #define LBF_DST_PINNED  0x04
 | |
| #define LBF_SOME_PINNED	0x08
 | |
| 
 | |
| struct lb_env {
 | |
| 	struct sched_domain	*sd;
 | |
| 
 | |
| 	struct rq		*src_rq;
 | |
| 	int			src_cpu;
 | |
| 
 | |
| 	int			dst_cpu;
 | |
| 	struct rq		*dst_rq;
 | |
| 
 | |
| 	struct cpumask		*dst_grpmask;
 | |
| 	int			new_dst_cpu;
 | |
| 	enum cpu_idle_type	idle;
 | |
| 	long			imbalance;
 | |
| 	/* The set of CPUs under consideration for load-balancing */
 | |
| 	struct cpumask		*cpus;
 | |
| 
 | |
| 	unsigned int		flags;
 | |
| 
 | |
| 	unsigned int		loop;
 | |
| 	unsigned int		loop_break;
 | |
| 	unsigned int		loop_max;
 | |
| 
 | |
| 	enum fbq_type		fbq_type;
 | |
| 	struct list_head	tasks;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Is this task likely cache-hot:
 | |
|  */
 | |
| static int task_hot(struct task_struct *p, struct lb_env *env)
 | |
| {
 | |
| 	s64 delta;
 | |
| 
 | |
| 	lockdep_assert_held(&env->src_rq->lock);
 | |
| 
 | |
| 	if (p->sched_class != &fair_sched_class)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(p->policy == SCHED_IDLE))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Buddy candidates are cache hot:
 | |
| 	 */
 | |
| 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
 | |
| 			(&p->se == cfs_rq_of(&p->se)->next ||
 | |
| 			 &p->se == cfs_rq_of(&p->se)->last))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (sysctl_sched_migration_cost == -1)
 | |
| 		return 1;
 | |
| 	if (sysctl_sched_migration_cost == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
 | |
| 
 | |
| 	return delta < (s64)sysctl_sched_migration_cost;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| /*
 | |
|  * Returns true if the destination node is the preferred node.
 | |
|  * Needs to match fbq_classify_rq(): if there is a runnable task
 | |
|  * that is not on its preferred node, we should identify it.
 | |
|  */
 | |
| static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
 | |
| {
 | |
| 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
 | |
| 	unsigned long src_faults, dst_faults;
 | |
| 	int src_nid, dst_nid;
 | |
| 
 | |
| 	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
 | |
| 	    !(env->sd->flags & SD_NUMA)) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	src_nid = cpu_to_node(env->src_cpu);
 | |
| 	dst_nid = cpu_to_node(env->dst_cpu);
 | |
| 
 | |
| 	if (src_nid == dst_nid)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Encourage migration to the preferred node. */
 | |
| 	if (dst_nid == p->numa_preferred_nid)
 | |
| 		return true;
 | |
| 
 | |
| 	/* Migrating away from the preferred node is bad. */
 | |
| 	if (src_nid == p->numa_preferred_nid)
 | |
| 		return false;
 | |
| 
 | |
| 	if (numa_group) {
 | |
| 		src_faults = group_faults(p, src_nid);
 | |
| 		dst_faults = group_faults(p, dst_nid);
 | |
| 	} else {
 | |
| 		src_faults = task_faults(p, src_nid);
 | |
| 		dst_faults = task_faults(p, dst_nid);
 | |
| 	}
 | |
| 
 | |
| 	return dst_faults > src_faults;
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
 | |
| {
 | |
| 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
 | |
| 	unsigned long src_faults, dst_faults;
 | |
| 	int src_nid, dst_nid;
 | |
| 
 | |
| 	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
 | |
| 		return false;
 | |
| 
 | |
| 	src_nid = cpu_to_node(env->src_cpu);
 | |
| 	dst_nid = cpu_to_node(env->dst_cpu);
 | |
| 
 | |
| 	if (src_nid == dst_nid)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Migrating away from the preferred node is bad. */
 | |
| 	if (src_nid == p->numa_preferred_nid)
 | |
| 		return true;
 | |
| 
 | |
| 	/* Encourage migration to the preferred node. */
 | |
| 	if (dst_nid == p->numa_preferred_nid)
 | |
| 		return false;
 | |
| 
 | |
| 	if (numa_group) {
 | |
| 		src_faults = group_faults(p, src_nid);
 | |
| 		dst_faults = group_faults(p, dst_nid);
 | |
| 	} else {
 | |
| 		src_faults = task_faults(p, src_nid);
 | |
| 		dst_faults = task_faults(p, dst_nid);
 | |
| 	}
 | |
| 
 | |
| 	return dst_faults < src_faults;
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline bool migrate_improves_locality(struct task_struct *p,
 | |
| 					     struct lb_env *env)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool migrate_degrades_locality(struct task_struct *p,
 | |
| 					     struct lb_env *env)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 | |
|  */
 | |
| static
 | |
| int can_migrate_task(struct task_struct *p, struct lb_env *env)
 | |
| {
 | |
| 	int tsk_cache_hot = 0;
 | |
| 
 | |
| 	lockdep_assert_held(&env->src_rq->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We do not migrate tasks that are:
 | |
| 	 * 1) throttled_lb_pair, or
 | |
| 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
 | |
| 	 * 3) running (obviously), or
 | |
| 	 * 4) are cache-hot on their current CPU.
 | |
| 	 */
 | |
| 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
 | |
| 		int cpu;
 | |
| 
 | |
| 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
 | |
| 
 | |
| 		env->flags |= LBF_SOME_PINNED;
 | |
| 
 | |
| 		/*
 | |
| 		 * Remember if this task can be migrated to any other cpu in
 | |
| 		 * our sched_group. We may want to revisit it if we couldn't
 | |
| 		 * meet load balance goals by pulling other tasks on src_cpu.
 | |
| 		 *
 | |
| 		 * Also avoid computing new_dst_cpu if we have already computed
 | |
| 		 * one in current iteration.
 | |
| 		 */
 | |
| 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
 | |
| 			return 0;
 | |
| 
 | |
| 		/* Prevent to re-select dst_cpu via env's cpus */
 | |
| 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
 | |
| 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
 | |
| 				env->flags |= LBF_DST_PINNED;
 | |
| 				env->new_dst_cpu = cpu;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Record that we found atleast one task that could run on dst_cpu */
 | |
| 	env->flags &= ~LBF_ALL_PINNED;
 | |
| 
 | |
| 	if (task_running(env->src_rq, p)) {
 | |
| 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Aggressive migration if:
 | |
| 	 * 1) destination numa is preferred
 | |
| 	 * 2) task is cache cold, or
 | |
| 	 * 3) too many balance attempts have failed.
 | |
| 	 */
 | |
| 	tsk_cache_hot = task_hot(p, env);
 | |
| 	if (!tsk_cache_hot)
 | |
| 		tsk_cache_hot = migrate_degrades_locality(p, env);
 | |
| 
 | |
| 	if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
 | |
| 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
 | |
| 		if (tsk_cache_hot) {
 | |
| 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
 | |
| 			schedstat_inc(p, se.statistics.nr_forced_migrations);
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * detach_task() -- detach the task for the migration specified in env
 | |
|  */
 | |
| static void detach_task(struct task_struct *p, struct lb_env *env)
 | |
| {
 | |
| 	lockdep_assert_held(&env->src_rq->lock);
 | |
| 
 | |
| 	deactivate_task(env->src_rq, p, 0);
 | |
| 	p->on_rq = TASK_ON_RQ_MIGRATING;
 | |
| 	set_task_cpu(p, env->dst_cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
 | |
|  * part of active balancing operations within "domain".
 | |
|  *
 | |
|  * Returns a task if successful and NULL otherwise.
 | |
|  */
 | |
| static struct task_struct *detach_one_task(struct lb_env *env)
 | |
| {
 | |
| 	struct task_struct *p, *n;
 | |
| 
 | |
| 	lockdep_assert_held(&env->src_rq->lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
 | |
| 		if (!can_migrate_task(p, env))
 | |
| 			continue;
 | |
| 
 | |
| 		detach_task(p, env);
 | |
| 
 | |
| 		/*
 | |
| 		 * Right now, this is only the second place where
 | |
| 		 * lb_gained[env->idle] is updated (other is detach_tasks)
 | |
| 		 * so we can safely collect stats here rather than
 | |
| 		 * inside detach_tasks().
 | |
| 		 */
 | |
| 		schedstat_inc(env->sd, lb_gained[env->idle]);
 | |
| 		return p;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static const unsigned int sched_nr_migrate_break = 32;
 | |
| 
 | |
| /*
 | |
|  * detach_tasks() -- tries to detach up to imbalance weighted load from
 | |
|  * busiest_rq, as part of a balancing operation within domain "sd".
 | |
|  *
 | |
|  * Returns number of detached tasks if successful and 0 otherwise.
 | |
|  */
 | |
| static int detach_tasks(struct lb_env *env)
 | |
| {
 | |
| 	struct list_head *tasks = &env->src_rq->cfs_tasks;
 | |
| 	struct task_struct *p;
 | |
| 	unsigned long load;
 | |
| 	int detached = 0;
 | |
| 
 | |
| 	lockdep_assert_held(&env->src_rq->lock);
 | |
| 
 | |
| 	if (env->imbalance <= 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	while (!list_empty(tasks)) {
 | |
| 		p = list_first_entry(tasks, struct task_struct, se.group_node);
 | |
| 
 | |
| 		env->loop++;
 | |
| 		/* We've more or less seen every task there is, call it quits */
 | |
| 		if (env->loop > env->loop_max)
 | |
| 			break;
 | |
| 
 | |
| 		/* take a breather every nr_migrate tasks */
 | |
| 		if (env->loop > env->loop_break) {
 | |
| 			env->loop_break += sched_nr_migrate_break;
 | |
| 			env->flags |= LBF_NEED_BREAK;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (!can_migrate_task(p, env))
 | |
| 			goto next;
 | |
| 
 | |
| 		load = task_h_load(p);
 | |
| 
 | |
| 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
 | |
| 			goto next;
 | |
| 
 | |
| 		if ((load / 2) > env->imbalance)
 | |
| 			goto next;
 | |
| 
 | |
| 		detach_task(p, env);
 | |
| 		list_add(&p->se.group_node, &env->tasks);
 | |
| 
 | |
| 		detached++;
 | |
| 		env->imbalance -= load;
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT
 | |
| 		/*
 | |
| 		 * NEWIDLE balancing is a source of latency, so preemptible
 | |
| 		 * kernels will stop after the first task is detached to minimize
 | |
| 		 * the critical section.
 | |
| 		 */
 | |
| 		if (env->idle == CPU_NEWLY_IDLE)
 | |
| 			break;
 | |
| #endif
 | |
| 
 | |
| 		/*
 | |
| 		 * We only want to steal up to the prescribed amount of
 | |
| 		 * weighted load.
 | |
| 		 */
 | |
| 		if (env->imbalance <= 0)
 | |
| 			break;
 | |
| 
 | |
| 		continue;
 | |
| next:
 | |
| 		list_move_tail(&p->se.group_node, tasks);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Right now, this is one of only two places we collect this stat
 | |
| 	 * so we can safely collect detach_one_task() stats here rather
 | |
| 	 * than inside detach_one_task().
 | |
| 	 */
 | |
| 	schedstat_add(env->sd, lb_gained[env->idle], detached);
 | |
| 
 | |
| 	return detached;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * attach_task() -- attach the task detached by detach_task() to its new rq.
 | |
|  */
 | |
| static void attach_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	lockdep_assert_held(&rq->lock);
 | |
| 
 | |
| 	BUG_ON(task_rq(p) != rq);
 | |
| 	p->on_rq = TASK_ON_RQ_QUEUED;
 | |
| 	activate_task(rq, p, 0);
 | |
| 	check_preempt_curr(rq, p, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * attach_one_task() -- attaches the task returned from detach_one_task() to
 | |
|  * its new rq.
 | |
|  */
 | |
| static void attach_one_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	raw_spin_lock(&rq->lock);
 | |
| 	attach_task(rq, p);
 | |
| 	raw_spin_unlock(&rq->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 | |
|  * new rq.
 | |
|  */
 | |
| static void attach_tasks(struct lb_env *env)
 | |
| {
 | |
| 	struct list_head *tasks = &env->tasks;
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	raw_spin_lock(&env->dst_rq->lock);
 | |
| 
 | |
| 	while (!list_empty(tasks)) {
 | |
| 		p = list_first_entry(tasks, struct task_struct, se.group_node);
 | |
| 		list_del_init(&p->se.group_node);
 | |
| 
 | |
| 		attach_task(env->dst_rq, p);
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock(&env->dst_rq->lock);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| /*
 | |
|  * update tg->load_weight by folding this cpu's load_avg
 | |
|  */
 | |
| static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
 | |
| {
 | |
| 	struct sched_entity *se = tg->se[cpu];
 | |
| 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
 | |
| 
 | |
| 	/* throttled entities do not contribute to load */
 | |
| 	if (throttled_hierarchy(cfs_rq))
 | |
| 		return;
 | |
| 
 | |
| 	update_cfs_rq_blocked_load(cfs_rq, 1);
 | |
| 
 | |
| 	if (se) {
 | |
| 		update_entity_load_avg(se, 1);
 | |
| 		/*
 | |
| 		 * We pivot on our runnable average having decayed to zero for
 | |
| 		 * list removal.  This generally implies that all our children
 | |
| 		 * have also been removed (modulo rounding error or bandwidth
 | |
| 		 * control); however, such cases are rare and we can fix these
 | |
| 		 * at enqueue.
 | |
| 		 *
 | |
| 		 * TODO: fix up out-of-order children on enqueue.
 | |
| 		 */
 | |
| 		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
 | |
| 			list_del_leaf_cfs_rq(cfs_rq);
 | |
| 	} else {
 | |
| 		struct rq *rq = rq_of(cfs_rq);
 | |
| 		update_rq_runnable_avg(rq, rq->nr_running);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void update_blocked_averages(int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rq->lock, flags);
 | |
| 	update_rq_clock(rq);
 | |
| 	/*
 | |
| 	 * Iterates the task_group tree in a bottom up fashion, see
 | |
| 	 * list_add_leaf_cfs_rq() for details.
 | |
| 	 */
 | |
| 	for_each_leaf_cfs_rq(rq, cfs_rq) {
 | |
| 		/*
 | |
| 		 * Note: We may want to consider periodically releasing
 | |
| 		 * rq->lock about these updates so that creating many task
 | |
| 		 * groups does not result in continually extending hold time.
 | |
| 		 */
 | |
| 		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&rq->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
 | |
|  * This needs to be done in a top-down fashion because the load of a child
 | |
|  * group is a fraction of its parents load.
 | |
|  */
 | |
| static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rq *rq = rq_of(cfs_rq);
 | |
| 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
 | |
| 	unsigned long now = jiffies;
 | |
| 	unsigned long load;
 | |
| 
 | |
| 	if (cfs_rq->last_h_load_update == now)
 | |
| 		return;
 | |
| 
 | |
| 	cfs_rq->h_load_next = NULL;
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		cfs_rq->h_load_next = se;
 | |
| 		if (cfs_rq->last_h_load_update == now)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (!se) {
 | |
| 		cfs_rq->h_load = cfs_rq->runnable_load_avg;
 | |
| 		cfs_rq->last_h_load_update = now;
 | |
| 	}
 | |
| 
 | |
| 	while ((se = cfs_rq->h_load_next) != NULL) {
 | |
| 		load = cfs_rq->h_load;
 | |
| 		load = div64_ul(load * se->avg.load_avg_contrib,
 | |
| 				cfs_rq->runnable_load_avg + 1);
 | |
| 		cfs_rq = group_cfs_rq(se);
 | |
| 		cfs_rq->h_load = load;
 | |
| 		cfs_rq->last_h_load_update = now;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long task_h_load(struct task_struct *p)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
 | |
| 
 | |
| 	update_cfs_rq_h_load(cfs_rq);
 | |
| 	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
 | |
| 			cfs_rq->runnable_load_avg + 1);
 | |
| }
 | |
| #else
 | |
| static inline void update_blocked_averages(int cpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| static unsigned long task_h_load(struct task_struct *p)
 | |
| {
 | |
| 	return p->se.avg.load_avg_contrib;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /********** Helpers for find_busiest_group ************************/
 | |
| 
 | |
| enum group_type {
 | |
| 	group_other = 0,
 | |
| 	group_imbalanced,
 | |
| 	group_overloaded,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * sg_lb_stats - stats of a sched_group required for load_balancing
 | |
|  */
 | |
| struct sg_lb_stats {
 | |
| 	unsigned long avg_load; /*Avg load across the CPUs of the group */
 | |
| 	unsigned long group_load; /* Total load over the CPUs of the group */
 | |
| 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
 | |
| 	unsigned long load_per_task;
 | |
| 	unsigned long group_capacity;
 | |
| 	unsigned long group_usage; /* Total usage of the group */
 | |
| 	unsigned int sum_nr_running; /* Nr tasks running in the group */
 | |
| 	unsigned int idle_cpus;
 | |
| 	unsigned int group_weight;
 | |
| 	enum group_type group_type;
 | |
| 	int group_no_capacity;
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| 	unsigned int nr_numa_running;
 | |
| 	unsigned int nr_preferred_running;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * sd_lb_stats - Structure to store the statistics of a sched_domain
 | |
|  *		 during load balancing.
 | |
|  */
 | |
| struct sd_lb_stats {
 | |
| 	struct sched_group *busiest;	/* Busiest group in this sd */
 | |
| 	struct sched_group *local;	/* Local group in this sd */
 | |
| 	unsigned long total_load;	/* Total load of all groups in sd */
 | |
| 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
 | |
| 	unsigned long avg_load;	/* Average load across all groups in sd */
 | |
| 
 | |
| 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
 | |
| 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
 | |
| };
 | |
| 
 | |
| static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
 | |
| {
 | |
| 	/*
 | |
| 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
 | |
| 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
 | |
| 	 * We must however clear busiest_stat::avg_load because
 | |
| 	 * update_sd_pick_busiest() reads this before assignment.
 | |
| 	 */
 | |
| 	*sds = (struct sd_lb_stats){
 | |
| 		.busiest = NULL,
 | |
| 		.local = NULL,
 | |
| 		.total_load = 0UL,
 | |
| 		.total_capacity = 0UL,
 | |
| 		.busiest_stat = {
 | |
| 			.avg_load = 0UL,
 | |
| 			.sum_nr_running = 0,
 | |
| 			.group_type = group_other,
 | |
| 		},
 | |
| 	};
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_sd_load_idx - Obtain the load index for a given sched domain.
 | |
|  * @sd: The sched_domain whose load_idx is to be obtained.
 | |
|  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
 | |
|  *
 | |
|  * Return: The load index.
 | |
|  */
 | |
| static inline int get_sd_load_idx(struct sched_domain *sd,
 | |
| 					enum cpu_idle_type idle)
 | |
| {
 | |
| 	int load_idx;
 | |
| 
 | |
| 	switch (idle) {
 | |
| 	case CPU_NOT_IDLE:
 | |
| 		load_idx = sd->busy_idx;
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_NEWLY_IDLE:
 | |
| 		load_idx = sd->newidle_idx;
 | |
| 		break;
 | |
| 	default:
 | |
| 		load_idx = sd->idle_idx;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return load_idx;
 | |
| }
 | |
| 
 | |
| static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
 | |
| 		return sd->smt_gain / sd->span_weight;
 | |
| 
 | |
| 	return SCHED_CAPACITY_SCALE;
 | |
| }
 | |
| 
 | |
| unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	return default_scale_cpu_capacity(sd, cpu);
 | |
| }
 | |
| 
 | |
| static unsigned long scale_rt_capacity(int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	u64 total, used, age_stamp, avg;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we're reading these variables without serialization make sure
 | |
| 	 * we read them once before doing sanity checks on them.
 | |
| 	 */
 | |
| 	age_stamp = READ_ONCE(rq->age_stamp);
 | |
| 	avg = READ_ONCE(rq->rt_avg);
 | |
| 	delta = __rq_clock_broken(rq) - age_stamp;
 | |
| 
 | |
| 	if (unlikely(delta < 0))
 | |
| 		delta = 0;
 | |
| 
 | |
| 	total = sched_avg_period() + delta;
 | |
| 
 | |
| 	used = div_u64(avg, total);
 | |
| 
 | |
| 	if (likely(used < SCHED_CAPACITY_SCALE))
 | |
| 		return SCHED_CAPACITY_SCALE - used;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void update_cpu_capacity(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	unsigned long capacity = SCHED_CAPACITY_SCALE;
 | |
| 	struct sched_group *sdg = sd->groups;
 | |
| 
 | |
| 	if (sched_feat(ARCH_CAPACITY))
 | |
| 		capacity *= arch_scale_cpu_capacity(sd, cpu);
 | |
| 	else
 | |
| 		capacity *= default_scale_cpu_capacity(sd, cpu);
 | |
| 
 | |
| 	capacity >>= SCHED_CAPACITY_SHIFT;
 | |
| 
 | |
| 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
 | |
| 
 | |
| 	capacity *= scale_rt_capacity(cpu);
 | |
| 	capacity >>= SCHED_CAPACITY_SHIFT;
 | |
| 
 | |
| 	if (!capacity)
 | |
| 		capacity = 1;
 | |
| 
 | |
| 	cpu_rq(cpu)->cpu_capacity = capacity;
 | |
| 	sdg->sgc->capacity = capacity;
 | |
| }
 | |
| 
 | |
| void update_group_capacity(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	struct sched_domain *child = sd->child;
 | |
| 	struct sched_group *group, *sdg = sd->groups;
 | |
| 	unsigned long capacity;
 | |
| 	unsigned long interval;
 | |
| 
 | |
| 	interval = msecs_to_jiffies(sd->balance_interval);
 | |
| 	interval = clamp(interval, 1UL, max_load_balance_interval);
 | |
| 	sdg->sgc->next_update = jiffies + interval;
 | |
| 
 | |
| 	if (!child) {
 | |
| 		update_cpu_capacity(sd, cpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	capacity = 0;
 | |
| 
 | |
| 	if (child->flags & SD_OVERLAP) {
 | |
| 		/*
 | |
| 		 * SD_OVERLAP domains cannot assume that child groups
 | |
| 		 * span the current group.
 | |
| 		 */
 | |
| 
 | |
| 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
 | |
| 			struct sched_group_capacity *sgc;
 | |
| 			struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 			/*
 | |
| 			 * build_sched_domains() -> init_sched_groups_capacity()
 | |
| 			 * gets here before we've attached the domains to the
 | |
| 			 * runqueues.
 | |
| 			 *
 | |
| 			 * Use capacity_of(), which is set irrespective of domains
 | |
| 			 * in update_cpu_capacity().
 | |
| 			 *
 | |
| 			 * This avoids capacity from being 0 and
 | |
| 			 * causing divide-by-zero issues on boot.
 | |
| 			 */
 | |
| 			if (unlikely(!rq->sd)) {
 | |
| 				capacity += capacity_of(cpu);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			sgc = rq->sd->groups->sgc;
 | |
| 			capacity += sgc->capacity;
 | |
| 		}
 | |
| 	} else  {
 | |
| 		/*
 | |
| 		 * !SD_OVERLAP domains can assume that child groups
 | |
| 		 * span the current group.
 | |
| 		 */ 
 | |
| 
 | |
| 		group = child->groups;
 | |
| 		do {
 | |
| 			capacity += group->sgc->capacity;
 | |
| 			group = group->next;
 | |
| 		} while (group != child->groups);
 | |
| 	}
 | |
| 
 | |
| 	sdg->sgc->capacity = capacity;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether the capacity of the rq has been noticeably reduced by side
 | |
|  * activity. The imbalance_pct is used for the threshold.
 | |
|  * Return true is the capacity is reduced
 | |
|  */
 | |
| static inline int
 | |
| check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
 | |
| {
 | |
| 	return ((rq->cpu_capacity * sd->imbalance_pct) <
 | |
| 				(rq->cpu_capacity_orig * 100));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Group imbalance indicates (and tries to solve) the problem where balancing
 | |
|  * groups is inadequate due to tsk_cpus_allowed() constraints.
 | |
|  *
 | |
|  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 | |
|  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 | |
|  * Something like:
 | |
|  *
 | |
|  * 	{ 0 1 2 3 } { 4 5 6 7 }
 | |
|  * 	        *     * * *
 | |
|  *
 | |
|  * If we were to balance group-wise we'd place two tasks in the first group and
 | |
|  * two tasks in the second group. Clearly this is undesired as it will overload
 | |
|  * cpu 3 and leave one of the cpus in the second group unused.
 | |
|  *
 | |
|  * The current solution to this issue is detecting the skew in the first group
 | |
|  * by noticing the lower domain failed to reach balance and had difficulty
 | |
|  * moving tasks due to affinity constraints.
 | |
|  *
 | |
|  * When this is so detected; this group becomes a candidate for busiest; see
 | |
|  * update_sd_pick_busiest(). And calculate_imbalance() and
 | |
|  * find_busiest_group() avoid some of the usual balance conditions to allow it
 | |
|  * to create an effective group imbalance.
 | |
|  *
 | |
|  * This is a somewhat tricky proposition since the next run might not find the
 | |
|  * group imbalance and decide the groups need to be balanced again. A most
 | |
|  * subtle and fragile situation.
 | |
|  */
 | |
| 
 | |
| static inline int sg_imbalanced(struct sched_group *group)
 | |
| {
 | |
| 	return group->sgc->imbalance;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * group_has_capacity returns true if the group has spare capacity that could
 | |
|  * be used by some tasks.
 | |
|  * We consider that a group has spare capacity if the  * number of task is
 | |
|  * smaller than the number of CPUs or if the usage is lower than the available
 | |
|  * capacity for CFS tasks.
 | |
|  * For the latter, we use a threshold to stabilize the state, to take into
 | |
|  * account the variance of the tasks' load and to return true if the available
 | |
|  * capacity in meaningful for the load balancer.
 | |
|  * As an example, an available capacity of 1% can appear but it doesn't make
 | |
|  * any benefit for the load balance.
 | |
|  */
 | |
| static inline bool
 | |
| group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
 | |
| {
 | |
| 	if (sgs->sum_nr_running < sgs->group_weight)
 | |
| 		return true;
 | |
| 
 | |
| 	if ((sgs->group_capacity * 100) >
 | |
| 			(sgs->group_usage * env->sd->imbalance_pct))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  group_is_overloaded returns true if the group has more tasks than it can
 | |
|  *  handle.
 | |
|  *  group_is_overloaded is not equals to !group_has_capacity because a group
 | |
|  *  with the exact right number of tasks, has no more spare capacity but is not
 | |
|  *  overloaded so both group_has_capacity and group_is_overloaded return
 | |
|  *  false.
 | |
|  */
 | |
| static inline bool
 | |
| group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
 | |
| {
 | |
| 	if (sgs->sum_nr_running <= sgs->group_weight)
 | |
| 		return false;
 | |
| 
 | |
| 	if ((sgs->group_capacity * 100) <
 | |
| 			(sgs->group_usage * env->sd->imbalance_pct))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static enum group_type group_classify(struct lb_env *env,
 | |
| 		struct sched_group *group,
 | |
| 		struct sg_lb_stats *sgs)
 | |
| {
 | |
| 	if (sgs->group_no_capacity)
 | |
| 		return group_overloaded;
 | |
| 
 | |
| 	if (sg_imbalanced(group))
 | |
| 		return group_imbalanced;
 | |
| 
 | |
| 	return group_other;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 | |
|  * @env: The load balancing environment.
 | |
|  * @group: sched_group whose statistics are to be updated.
 | |
|  * @load_idx: Load index of sched_domain of this_cpu for load calc.
 | |
|  * @local_group: Does group contain this_cpu.
 | |
|  * @sgs: variable to hold the statistics for this group.
 | |
|  * @overload: Indicate more than one runnable task for any CPU.
 | |
|  */
 | |
| static inline void update_sg_lb_stats(struct lb_env *env,
 | |
| 			struct sched_group *group, int load_idx,
 | |
| 			int local_group, struct sg_lb_stats *sgs,
 | |
| 			bool *overload)
 | |
| {
 | |
| 	unsigned long load;
 | |
| 	int i;
 | |
| 
 | |
| 	memset(sgs, 0, sizeof(*sgs));
 | |
| 
 | |
| 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
 | |
| 		struct rq *rq = cpu_rq(i);
 | |
| 
 | |
| 		/* Bias balancing toward cpus of our domain */
 | |
| 		if (local_group)
 | |
| 			load = target_load(i, load_idx);
 | |
| 		else
 | |
| 			load = source_load(i, load_idx);
 | |
| 
 | |
| 		sgs->group_load += load;
 | |
| 		sgs->group_usage += get_cpu_usage(i);
 | |
| 		sgs->sum_nr_running += rq->cfs.h_nr_running;
 | |
| 
 | |
| 		if (rq->nr_running > 1)
 | |
| 			*overload = true;
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| 		sgs->nr_numa_running += rq->nr_numa_running;
 | |
| 		sgs->nr_preferred_running += rq->nr_preferred_running;
 | |
| #endif
 | |
| 		sgs->sum_weighted_load += weighted_cpuload(i);
 | |
| 		if (idle_cpu(i))
 | |
| 			sgs->idle_cpus++;
 | |
| 	}
 | |
| 
 | |
| 	/* Adjust by relative CPU capacity of the group */
 | |
| 	sgs->group_capacity = group->sgc->capacity;
 | |
| 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
 | |
| 
 | |
| 	if (sgs->sum_nr_running)
 | |
| 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
 | |
| 
 | |
| 	sgs->group_weight = group->group_weight;
 | |
| 
 | |
| 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
 | |
| 	sgs->group_type = group_classify(env, group, sgs);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_sd_pick_busiest - return 1 on busiest group
 | |
|  * @env: The load balancing environment.
 | |
|  * @sds: sched_domain statistics
 | |
|  * @sg: sched_group candidate to be checked for being the busiest
 | |
|  * @sgs: sched_group statistics
 | |
|  *
 | |
|  * Determine if @sg is a busier group than the previously selected
 | |
|  * busiest group.
 | |
|  *
 | |
|  * Return: %true if @sg is a busier group than the previously selected
 | |
|  * busiest group. %false otherwise.
 | |
|  */
 | |
| static bool update_sd_pick_busiest(struct lb_env *env,
 | |
| 				   struct sd_lb_stats *sds,
 | |
| 				   struct sched_group *sg,
 | |
| 				   struct sg_lb_stats *sgs)
 | |
| {
 | |
| 	struct sg_lb_stats *busiest = &sds->busiest_stat;
 | |
| 
 | |
| 	if (sgs->group_type > busiest->group_type)
 | |
| 		return true;
 | |
| 
 | |
| 	if (sgs->group_type < busiest->group_type)
 | |
| 		return false;
 | |
| 
 | |
| 	if (sgs->avg_load <= busiest->avg_load)
 | |
| 		return false;
 | |
| 
 | |
| 	/* This is the busiest node in its class. */
 | |
| 	if (!(env->sd->flags & SD_ASYM_PACKING))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * ASYM_PACKING needs to move all the work to the lowest
 | |
| 	 * numbered CPUs in the group, therefore mark all groups
 | |
| 	 * higher than ourself as busy.
 | |
| 	 */
 | |
| 	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
 | |
| 		if (!sds->busiest)
 | |
| 			return true;
 | |
| 
 | |
| 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
 | |
| {
 | |
| 	if (sgs->sum_nr_running > sgs->nr_numa_running)
 | |
| 		return regular;
 | |
| 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
 | |
| 		return remote;
 | |
| 	return all;
 | |
| }
 | |
| 
 | |
| static inline enum fbq_type fbq_classify_rq(struct rq *rq)
 | |
| {
 | |
| 	if (rq->nr_running > rq->nr_numa_running)
 | |
| 		return regular;
 | |
| 	if (rq->nr_running > rq->nr_preferred_running)
 | |
| 		return remote;
 | |
| 	return all;
 | |
| }
 | |
| #else
 | |
| static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
 | |
| {
 | |
| 	return all;
 | |
| }
 | |
| 
 | |
| static inline enum fbq_type fbq_classify_rq(struct rq *rq)
 | |
| {
 | |
| 	return regular;
 | |
| }
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| /**
 | |
|  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
 | |
|  * @env: The load balancing environment.
 | |
|  * @sds: variable to hold the statistics for this sched_domain.
 | |
|  */
 | |
| static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
 | |
| {
 | |
| 	struct sched_domain *child = env->sd->child;
 | |
| 	struct sched_group *sg = env->sd->groups;
 | |
| 	struct sg_lb_stats tmp_sgs;
 | |
| 	int load_idx, prefer_sibling = 0;
 | |
| 	bool overload = false;
 | |
| 
 | |
| 	if (child && child->flags & SD_PREFER_SIBLING)
 | |
| 		prefer_sibling = 1;
 | |
| 
 | |
| 	load_idx = get_sd_load_idx(env->sd, env->idle);
 | |
| 
 | |
| 	do {
 | |
| 		struct sg_lb_stats *sgs = &tmp_sgs;
 | |
| 		int local_group;
 | |
| 
 | |
| 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
 | |
| 		if (local_group) {
 | |
| 			sds->local = sg;
 | |
| 			sgs = &sds->local_stat;
 | |
| 
 | |
| 			if (env->idle != CPU_NEWLY_IDLE ||
 | |
| 			    time_after_eq(jiffies, sg->sgc->next_update))
 | |
| 				update_group_capacity(env->sd, env->dst_cpu);
 | |
| 		}
 | |
| 
 | |
| 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
 | |
| 						&overload);
 | |
| 
 | |
| 		if (local_group)
 | |
| 			goto next_group;
 | |
| 
 | |
| 		/*
 | |
| 		 * In case the child domain prefers tasks go to siblings
 | |
| 		 * first, lower the sg capacity so that we'll try
 | |
| 		 * and move all the excess tasks away. We lower the capacity
 | |
| 		 * of a group only if the local group has the capacity to fit
 | |
| 		 * these excess tasks. The extra check prevents the case where
 | |
| 		 * you always pull from the heaviest group when it is already
 | |
| 		 * under-utilized (possible with a large weight task outweighs
 | |
| 		 * the tasks on the system).
 | |
| 		 */
 | |
| 		if (prefer_sibling && sds->local &&
 | |
| 		    group_has_capacity(env, &sds->local_stat) &&
 | |
| 		    (sgs->sum_nr_running > 1)) {
 | |
| 			sgs->group_no_capacity = 1;
 | |
| 			sgs->group_type = group_overloaded;
 | |
| 		}
 | |
| 
 | |
| 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
 | |
| 			sds->busiest = sg;
 | |
| 			sds->busiest_stat = *sgs;
 | |
| 		}
 | |
| 
 | |
| next_group:
 | |
| 		/* Now, start updating sd_lb_stats */
 | |
| 		sds->total_load += sgs->group_load;
 | |
| 		sds->total_capacity += sgs->group_capacity;
 | |
| 
 | |
| 		sg = sg->next;
 | |
| 	} while (sg != env->sd->groups);
 | |
| 
 | |
| 	if (env->sd->flags & SD_NUMA)
 | |
| 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
 | |
| 
 | |
| 	if (!env->sd->parent) {
 | |
| 		/* update overload indicator if we are at root domain */
 | |
| 		if (env->dst_rq->rd->overload != overload)
 | |
| 			env->dst_rq->rd->overload = overload;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * check_asym_packing - Check to see if the group is packed into the
 | |
|  *			sched doman.
 | |
|  *
 | |
|  * This is primarily intended to used at the sibling level.  Some
 | |
|  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 | |
|  * case of POWER7, it can move to lower SMT modes only when higher
 | |
|  * threads are idle.  When in lower SMT modes, the threads will
 | |
|  * perform better since they share less core resources.  Hence when we
 | |
|  * have idle threads, we want them to be the higher ones.
 | |
|  *
 | |
|  * This packing function is run on idle threads.  It checks to see if
 | |
|  * the busiest CPU in this domain (core in the P7 case) has a higher
 | |
|  * CPU number than the packing function is being run on.  Here we are
 | |
|  * assuming lower CPU number will be equivalent to lower a SMT thread
 | |
|  * number.
 | |
|  *
 | |
|  * Return: 1 when packing is required and a task should be moved to
 | |
|  * this CPU.  The amount of the imbalance is returned in *imbalance.
 | |
|  *
 | |
|  * @env: The load balancing environment.
 | |
|  * @sds: Statistics of the sched_domain which is to be packed
 | |
|  */
 | |
| static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
 | |
| {
 | |
| 	int busiest_cpu;
 | |
| 
 | |
| 	if (!(env->sd->flags & SD_ASYM_PACKING))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!sds->busiest)
 | |
| 		return 0;
 | |
| 
 | |
| 	busiest_cpu = group_first_cpu(sds->busiest);
 | |
| 	if (env->dst_cpu > busiest_cpu)
 | |
| 		return 0;
 | |
| 
 | |
| 	env->imbalance = DIV_ROUND_CLOSEST(
 | |
| 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
 | |
| 		SCHED_CAPACITY_SCALE);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fix_small_imbalance - Calculate the minor imbalance that exists
 | |
|  *			amongst the groups of a sched_domain, during
 | |
|  *			load balancing.
 | |
|  * @env: The load balancing environment.
 | |
|  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 | |
|  */
 | |
| static inline
 | |
| void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
 | |
| {
 | |
| 	unsigned long tmp, capa_now = 0, capa_move = 0;
 | |
| 	unsigned int imbn = 2;
 | |
| 	unsigned long scaled_busy_load_per_task;
 | |
| 	struct sg_lb_stats *local, *busiest;
 | |
| 
 | |
| 	local = &sds->local_stat;
 | |
| 	busiest = &sds->busiest_stat;
 | |
| 
 | |
| 	if (!local->sum_nr_running)
 | |
| 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
 | |
| 	else if (busiest->load_per_task > local->load_per_task)
 | |
| 		imbn = 1;
 | |
| 
 | |
| 	scaled_busy_load_per_task =
 | |
| 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
 | |
| 		busiest->group_capacity;
 | |
| 
 | |
| 	if (busiest->avg_load + scaled_busy_load_per_task >=
 | |
| 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
 | |
| 		env->imbalance = busiest->load_per_task;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, we don't have enough imbalance to justify moving tasks,
 | |
| 	 * however we may be able to increase total CPU capacity used by
 | |
| 	 * moving them.
 | |
| 	 */
 | |
| 
 | |
| 	capa_now += busiest->group_capacity *
 | |
| 			min(busiest->load_per_task, busiest->avg_load);
 | |
| 	capa_now += local->group_capacity *
 | |
| 			min(local->load_per_task, local->avg_load);
 | |
| 	capa_now /= SCHED_CAPACITY_SCALE;
 | |
| 
 | |
| 	/* Amount of load we'd subtract */
 | |
| 	if (busiest->avg_load > scaled_busy_load_per_task) {
 | |
| 		capa_move += busiest->group_capacity *
 | |
| 			    min(busiest->load_per_task,
 | |
| 				busiest->avg_load - scaled_busy_load_per_task);
 | |
| 	}
 | |
| 
 | |
| 	/* Amount of load we'd add */
 | |
| 	if (busiest->avg_load * busiest->group_capacity <
 | |
| 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
 | |
| 		tmp = (busiest->avg_load * busiest->group_capacity) /
 | |
| 		      local->group_capacity;
 | |
| 	} else {
 | |
| 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
 | |
| 		      local->group_capacity;
 | |
| 	}
 | |
| 	capa_move += local->group_capacity *
 | |
| 		    min(local->load_per_task, local->avg_load + tmp);
 | |
| 	capa_move /= SCHED_CAPACITY_SCALE;
 | |
| 
 | |
| 	/* Move if we gain throughput */
 | |
| 	if (capa_move > capa_now)
 | |
| 		env->imbalance = busiest->load_per_task;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * calculate_imbalance - Calculate the amount of imbalance present within the
 | |
|  *			 groups of a given sched_domain during load balance.
 | |
|  * @env: load balance environment
 | |
|  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 | |
|  */
 | |
| static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
 | |
| {
 | |
| 	unsigned long max_pull, load_above_capacity = ~0UL;
 | |
| 	struct sg_lb_stats *local, *busiest;
 | |
| 
 | |
| 	local = &sds->local_stat;
 | |
| 	busiest = &sds->busiest_stat;
 | |
| 
 | |
| 	if (busiest->group_type == group_imbalanced) {
 | |
| 		/*
 | |
| 		 * In the group_imb case we cannot rely on group-wide averages
 | |
| 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
 | |
| 		 */
 | |
| 		busiest->load_per_task =
 | |
| 			min(busiest->load_per_task, sds->avg_load);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In the presence of smp nice balancing, certain scenarios can have
 | |
| 	 * max load less than avg load(as we skip the groups at or below
 | |
| 	 * its cpu_capacity, while calculating max_load..)
 | |
| 	 */
 | |
| 	if (busiest->avg_load <= sds->avg_load ||
 | |
| 	    local->avg_load >= sds->avg_load) {
 | |
| 		env->imbalance = 0;
 | |
| 		return fix_small_imbalance(env, sds);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there aren't any idle cpus, avoid creating some.
 | |
| 	 */
 | |
| 	if (busiest->group_type == group_overloaded &&
 | |
| 	    local->group_type   == group_overloaded) {
 | |
| 		load_above_capacity = busiest->sum_nr_running *
 | |
| 					SCHED_LOAD_SCALE;
 | |
| 		if (load_above_capacity > busiest->group_capacity)
 | |
| 			load_above_capacity -= busiest->group_capacity;
 | |
| 		else
 | |
| 			load_above_capacity = ~0UL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We're trying to get all the cpus to the average_load, so we don't
 | |
| 	 * want to push ourselves above the average load, nor do we wish to
 | |
| 	 * reduce the max loaded cpu below the average load. At the same time,
 | |
| 	 * we also don't want to reduce the group load below the group capacity
 | |
| 	 * (so that we can implement power-savings policies etc). Thus we look
 | |
| 	 * for the minimum possible imbalance.
 | |
| 	 */
 | |
| 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
 | |
| 
 | |
| 	/* How much load to actually move to equalise the imbalance */
 | |
| 	env->imbalance = min(
 | |
| 		max_pull * busiest->group_capacity,
 | |
| 		(sds->avg_load - local->avg_load) * local->group_capacity
 | |
| 	) / SCHED_CAPACITY_SCALE;
 | |
| 
 | |
| 	/*
 | |
| 	 * if *imbalance is less than the average load per runnable task
 | |
| 	 * there is no guarantee that any tasks will be moved so we'll have
 | |
| 	 * a think about bumping its value to force at least one task to be
 | |
| 	 * moved
 | |
| 	 */
 | |
| 	if (env->imbalance < busiest->load_per_task)
 | |
| 		return fix_small_imbalance(env, sds);
 | |
| }
 | |
| 
 | |
| /******* find_busiest_group() helpers end here *********************/
 | |
| 
 | |
| /**
 | |
|  * find_busiest_group - Returns the busiest group within the sched_domain
 | |
|  * if there is an imbalance. If there isn't an imbalance, and
 | |
|  * the user has opted for power-savings, it returns a group whose
 | |
|  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 | |
|  * such a group exists.
 | |
|  *
 | |
|  * Also calculates the amount of weighted load which should be moved
 | |
|  * to restore balance.
 | |
|  *
 | |
|  * @env: The load balancing environment.
 | |
|  *
 | |
|  * Return:	- The busiest group if imbalance exists.
 | |
|  *		- If no imbalance and user has opted for power-savings balance,
 | |
|  *		   return the least loaded group whose CPUs can be
 | |
|  *		   put to idle by rebalancing its tasks onto our group.
 | |
|  */
 | |
| static struct sched_group *find_busiest_group(struct lb_env *env)
 | |
| {
 | |
| 	struct sg_lb_stats *local, *busiest;
 | |
| 	struct sd_lb_stats sds;
 | |
| 
 | |
| 	init_sd_lb_stats(&sds);
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the various statistics relavent for load balancing at
 | |
| 	 * this level.
 | |
| 	 */
 | |
| 	update_sd_lb_stats(env, &sds);
 | |
| 	local = &sds.local_stat;
 | |
| 	busiest = &sds.busiest_stat;
 | |
| 
 | |
| 	/* ASYM feature bypasses nice load balance check */
 | |
| 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
 | |
| 	    check_asym_packing(env, &sds))
 | |
| 		return sds.busiest;
 | |
| 
 | |
| 	/* There is no busy sibling group to pull tasks from */
 | |
| 	if (!sds.busiest || busiest->sum_nr_running == 0)
 | |
| 		goto out_balanced;
 | |
| 
 | |
| 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
 | |
| 						/ sds.total_capacity;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the busiest group is imbalanced the below checks don't
 | |
| 	 * work because they assume all things are equal, which typically
 | |
| 	 * isn't true due to cpus_allowed constraints and the like.
 | |
| 	 */
 | |
| 	if (busiest->group_type == group_imbalanced)
 | |
| 		goto force_balance;
 | |
| 
 | |
| 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
 | |
| 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
 | |
| 	    busiest->group_no_capacity)
 | |
| 		goto force_balance;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the local group is busier than the selected busiest group
 | |
| 	 * don't try and pull any tasks.
 | |
| 	 */
 | |
| 	if (local->avg_load >= busiest->avg_load)
 | |
| 		goto out_balanced;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't pull any tasks if this group is already above the domain
 | |
| 	 * average load.
 | |
| 	 */
 | |
| 	if (local->avg_load >= sds.avg_load)
 | |
| 		goto out_balanced;
 | |
| 
 | |
| 	if (env->idle == CPU_IDLE) {
 | |
| 		/*
 | |
| 		 * This cpu is idle. If the busiest group is not overloaded
 | |
| 		 * and there is no imbalance between this and busiest group
 | |
| 		 * wrt idle cpus, it is balanced. The imbalance becomes
 | |
| 		 * significant if the diff is greater than 1 otherwise we
 | |
| 		 * might end up to just move the imbalance on another group
 | |
| 		 */
 | |
| 		if ((busiest->group_type != group_overloaded) &&
 | |
| 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
 | |
| 			goto out_balanced;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
 | |
| 		 * imbalance_pct to be conservative.
 | |
| 		 */
 | |
| 		if (100 * busiest->avg_load <=
 | |
| 				env->sd->imbalance_pct * local->avg_load)
 | |
| 			goto out_balanced;
 | |
| 	}
 | |
| 
 | |
| force_balance:
 | |
| 	/* Looks like there is an imbalance. Compute it */
 | |
| 	calculate_imbalance(env, &sds);
 | |
| 	return sds.busiest;
 | |
| 
 | |
| out_balanced:
 | |
| 	env->imbalance = 0;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_busiest_queue - find the busiest runqueue among the cpus in group.
 | |
|  */
 | |
| static struct rq *find_busiest_queue(struct lb_env *env,
 | |
| 				     struct sched_group *group)
 | |
| {
 | |
| 	struct rq *busiest = NULL, *rq;
 | |
| 	unsigned long busiest_load = 0, busiest_capacity = 1;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
 | |
| 		unsigned long capacity, wl;
 | |
| 		enum fbq_type rt;
 | |
| 
 | |
| 		rq = cpu_rq(i);
 | |
| 		rt = fbq_classify_rq(rq);
 | |
| 
 | |
| 		/*
 | |
| 		 * We classify groups/runqueues into three groups:
 | |
| 		 *  - regular: there are !numa tasks
 | |
| 		 *  - remote:  there are numa tasks that run on the 'wrong' node
 | |
| 		 *  - all:     there is no distinction
 | |
| 		 *
 | |
| 		 * In order to avoid migrating ideally placed numa tasks,
 | |
| 		 * ignore those when there's better options.
 | |
| 		 *
 | |
| 		 * If we ignore the actual busiest queue to migrate another
 | |
| 		 * task, the next balance pass can still reduce the busiest
 | |
| 		 * queue by moving tasks around inside the node.
 | |
| 		 *
 | |
| 		 * If we cannot move enough load due to this classification
 | |
| 		 * the next pass will adjust the group classification and
 | |
| 		 * allow migration of more tasks.
 | |
| 		 *
 | |
| 		 * Both cases only affect the total convergence complexity.
 | |
| 		 */
 | |
| 		if (rt > env->fbq_type)
 | |
| 			continue;
 | |
| 
 | |
| 		capacity = capacity_of(i);
 | |
| 
 | |
| 		wl = weighted_cpuload(i);
 | |
| 
 | |
| 		/*
 | |
| 		 * When comparing with imbalance, use weighted_cpuload()
 | |
| 		 * which is not scaled with the cpu capacity.
 | |
| 		 */
 | |
| 
 | |
| 		if (rq->nr_running == 1 && wl > env->imbalance &&
 | |
| 		    !check_cpu_capacity(rq, env->sd))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * For the load comparisons with the other cpu's, consider
 | |
| 		 * the weighted_cpuload() scaled with the cpu capacity, so
 | |
| 		 * that the load can be moved away from the cpu that is
 | |
| 		 * potentially running at a lower capacity.
 | |
| 		 *
 | |
| 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
 | |
| 		 * multiplication to rid ourselves of the division works out
 | |
| 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
 | |
| 		 * our previous maximum.
 | |
| 		 */
 | |
| 		if (wl * busiest_capacity > busiest_load * capacity) {
 | |
| 			busiest_load = wl;
 | |
| 			busiest_capacity = capacity;
 | |
| 			busiest = rq;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return busiest;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 | |
|  * so long as it is large enough.
 | |
|  */
 | |
| #define MAX_PINNED_INTERVAL	512
 | |
| 
 | |
| /* Working cpumask for load_balance and load_balance_newidle. */
 | |
| DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
 | |
| 
 | |
| static int need_active_balance(struct lb_env *env)
 | |
| {
 | |
| 	struct sched_domain *sd = env->sd;
 | |
| 
 | |
| 	if (env->idle == CPU_NEWLY_IDLE) {
 | |
| 
 | |
| 		/*
 | |
| 		 * ASYM_PACKING needs to force migrate tasks from busy but
 | |
| 		 * higher numbered CPUs in order to pack all tasks in the
 | |
| 		 * lowest numbered CPUs.
 | |
| 		 */
 | |
| 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
 | |
| 	 * It's worth migrating the task if the src_cpu's capacity is reduced
 | |
| 	 * because of other sched_class or IRQs if more capacity stays
 | |
| 	 * available on dst_cpu.
 | |
| 	 */
 | |
| 	if ((env->idle != CPU_NOT_IDLE) &&
 | |
| 	    (env->src_rq->cfs.h_nr_running == 1)) {
 | |
| 		if ((check_cpu_capacity(env->src_rq, sd)) &&
 | |
| 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
 | |
| }
 | |
| 
 | |
| static int active_load_balance_cpu_stop(void *data);
 | |
| 
 | |
| static int should_we_balance(struct lb_env *env)
 | |
| {
 | |
| 	struct sched_group *sg = env->sd->groups;
 | |
| 	struct cpumask *sg_cpus, *sg_mask;
 | |
| 	int cpu, balance_cpu = -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * In the newly idle case, we will allow all the cpu's
 | |
| 	 * to do the newly idle load balance.
 | |
| 	 */
 | |
| 	if (env->idle == CPU_NEWLY_IDLE)
 | |
| 		return 1;
 | |
| 
 | |
| 	sg_cpus = sched_group_cpus(sg);
 | |
| 	sg_mask = sched_group_mask(sg);
 | |
| 	/* Try to find first idle cpu */
 | |
| 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
 | |
| 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
 | |
| 			continue;
 | |
| 
 | |
| 		balance_cpu = cpu;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (balance_cpu == -1)
 | |
| 		balance_cpu = group_balance_cpu(sg);
 | |
| 
 | |
| 	/*
 | |
| 	 * First idle cpu or the first cpu(busiest) in this sched group
 | |
| 	 * is eligible for doing load balancing at this and above domains.
 | |
| 	 */
 | |
| 	return balance_cpu == env->dst_cpu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check this_cpu to ensure it is balanced within domain. Attempt to move
 | |
|  * tasks if there is an imbalance.
 | |
|  */
 | |
| static int load_balance(int this_cpu, struct rq *this_rq,
 | |
| 			struct sched_domain *sd, enum cpu_idle_type idle,
 | |
| 			int *continue_balancing)
 | |
| {
 | |
| 	int ld_moved, cur_ld_moved, active_balance = 0;
 | |
| 	struct sched_domain *sd_parent = sd->parent;
 | |
| 	struct sched_group *group;
 | |
| 	struct rq *busiest;
 | |
| 	unsigned long flags;
 | |
| 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
 | |
| 
 | |
| 	struct lb_env env = {
 | |
| 		.sd		= sd,
 | |
| 		.dst_cpu	= this_cpu,
 | |
| 		.dst_rq		= this_rq,
 | |
| 		.dst_grpmask    = sched_group_cpus(sd->groups),
 | |
| 		.idle		= idle,
 | |
| 		.loop_break	= sched_nr_migrate_break,
 | |
| 		.cpus		= cpus,
 | |
| 		.fbq_type	= all,
 | |
| 		.tasks		= LIST_HEAD_INIT(env.tasks),
 | |
| 	};
 | |
| 
 | |
| 	/*
 | |
| 	 * For NEWLY_IDLE load_balancing, we don't need to consider
 | |
| 	 * other cpus in our group
 | |
| 	 */
 | |
| 	if (idle == CPU_NEWLY_IDLE)
 | |
| 		env.dst_grpmask = NULL;
 | |
| 
 | |
| 	cpumask_copy(cpus, cpu_active_mask);
 | |
| 
 | |
| 	schedstat_inc(sd, lb_count[idle]);
 | |
| 
 | |
| redo:
 | |
| 	if (!should_we_balance(&env)) {
 | |
| 		*continue_balancing = 0;
 | |
| 		goto out_balanced;
 | |
| 	}
 | |
| 
 | |
| 	group = find_busiest_group(&env);
 | |
| 	if (!group) {
 | |
| 		schedstat_inc(sd, lb_nobusyg[idle]);
 | |
| 		goto out_balanced;
 | |
| 	}
 | |
| 
 | |
| 	busiest = find_busiest_queue(&env, group);
 | |
| 	if (!busiest) {
 | |
| 		schedstat_inc(sd, lb_nobusyq[idle]);
 | |
| 		goto out_balanced;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(busiest == env.dst_rq);
 | |
| 
 | |
| 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
 | |
| 
 | |
| 	env.src_cpu = busiest->cpu;
 | |
| 	env.src_rq = busiest;
 | |
| 
 | |
| 	ld_moved = 0;
 | |
| 	if (busiest->nr_running > 1) {
 | |
| 		/*
 | |
| 		 * Attempt to move tasks. If find_busiest_group has found
 | |
| 		 * an imbalance but busiest->nr_running <= 1, the group is
 | |
| 		 * still unbalanced. ld_moved simply stays zero, so it is
 | |
| 		 * correctly treated as an imbalance.
 | |
| 		 */
 | |
| 		env.flags |= LBF_ALL_PINNED;
 | |
| 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
 | |
| 
 | |
| more_balance:
 | |
| 		raw_spin_lock_irqsave(&busiest->lock, flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * cur_ld_moved - load moved in current iteration
 | |
| 		 * ld_moved     - cumulative load moved across iterations
 | |
| 		 */
 | |
| 		cur_ld_moved = detach_tasks(&env);
 | |
| 
 | |
| 		/*
 | |
| 		 * We've detached some tasks from busiest_rq. Every
 | |
| 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
 | |
| 		 * unlock busiest->lock, and we are able to be sure
 | |
| 		 * that nobody can manipulate the tasks in parallel.
 | |
| 		 * See task_rq_lock() family for the details.
 | |
| 		 */
 | |
| 
 | |
| 		raw_spin_unlock(&busiest->lock);
 | |
| 
 | |
| 		if (cur_ld_moved) {
 | |
| 			attach_tasks(&env);
 | |
| 			ld_moved += cur_ld_moved;
 | |
| 		}
 | |
| 
 | |
| 		local_irq_restore(flags);
 | |
| 
 | |
| 		if (env.flags & LBF_NEED_BREAK) {
 | |
| 			env.flags &= ~LBF_NEED_BREAK;
 | |
| 			goto more_balance;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
 | |
| 		 * us and move them to an alternate dst_cpu in our sched_group
 | |
| 		 * where they can run. The upper limit on how many times we
 | |
| 		 * iterate on same src_cpu is dependent on number of cpus in our
 | |
| 		 * sched_group.
 | |
| 		 *
 | |
| 		 * This changes load balance semantics a bit on who can move
 | |
| 		 * load to a given_cpu. In addition to the given_cpu itself
 | |
| 		 * (or a ilb_cpu acting on its behalf where given_cpu is
 | |
| 		 * nohz-idle), we now have balance_cpu in a position to move
 | |
| 		 * load to given_cpu. In rare situations, this may cause
 | |
| 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
 | |
| 		 * _independently_ and at _same_ time to move some load to
 | |
| 		 * given_cpu) causing exceess load to be moved to given_cpu.
 | |
| 		 * This however should not happen so much in practice and
 | |
| 		 * moreover subsequent load balance cycles should correct the
 | |
| 		 * excess load moved.
 | |
| 		 */
 | |
| 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
 | |
| 
 | |
| 			/* Prevent to re-select dst_cpu via env's cpus */
 | |
| 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
 | |
| 
 | |
| 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
 | |
| 			env.dst_cpu	 = env.new_dst_cpu;
 | |
| 			env.flags	&= ~LBF_DST_PINNED;
 | |
| 			env.loop	 = 0;
 | |
| 			env.loop_break	 = sched_nr_migrate_break;
 | |
| 
 | |
| 			/*
 | |
| 			 * Go back to "more_balance" rather than "redo" since we
 | |
| 			 * need to continue with same src_cpu.
 | |
| 			 */
 | |
| 			goto more_balance;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We failed to reach balance because of affinity.
 | |
| 		 */
 | |
| 		if (sd_parent) {
 | |
| 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
 | |
| 
 | |
| 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
 | |
| 				*group_imbalance = 1;
 | |
| 		}
 | |
| 
 | |
| 		/* All tasks on this runqueue were pinned by CPU affinity */
 | |
| 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
 | |
| 			cpumask_clear_cpu(cpu_of(busiest), cpus);
 | |
| 			if (!cpumask_empty(cpus)) {
 | |
| 				env.loop = 0;
 | |
| 				env.loop_break = sched_nr_migrate_break;
 | |
| 				goto redo;
 | |
| 			}
 | |
| 			goto out_all_pinned;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!ld_moved) {
 | |
| 		schedstat_inc(sd, lb_failed[idle]);
 | |
| 		/*
 | |
| 		 * Increment the failure counter only on periodic balance.
 | |
| 		 * We do not want newidle balance, which can be very
 | |
| 		 * frequent, pollute the failure counter causing
 | |
| 		 * excessive cache_hot migrations and active balances.
 | |
| 		 */
 | |
| 		if (idle != CPU_NEWLY_IDLE)
 | |
| 			sd->nr_balance_failed++;
 | |
| 
 | |
| 		if (need_active_balance(&env)) {
 | |
| 			raw_spin_lock_irqsave(&busiest->lock, flags);
 | |
| 
 | |
| 			/* don't kick the active_load_balance_cpu_stop,
 | |
| 			 * if the curr task on busiest cpu can't be
 | |
| 			 * moved to this_cpu
 | |
| 			 */
 | |
| 			if (!cpumask_test_cpu(this_cpu,
 | |
| 					tsk_cpus_allowed(busiest->curr))) {
 | |
| 				raw_spin_unlock_irqrestore(&busiest->lock,
 | |
| 							    flags);
 | |
| 				env.flags |= LBF_ALL_PINNED;
 | |
| 				goto out_one_pinned;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * ->active_balance synchronizes accesses to
 | |
| 			 * ->active_balance_work.  Once set, it's cleared
 | |
| 			 * only after active load balance is finished.
 | |
| 			 */
 | |
| 			if (!busiest->active_balance) {
 | |
| 				busiest->active_balance = 1;
 | |
| 				busiest->push_cpu = this_cpu;
 | |
| 				active_balance = 1;
 | |
| 			}
 | |
| 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
 | |
| 
 | |
| 			if (active_balance) {
 | |
| 				stop_one_cpu_nowait(cpu_of(busiest),
 | |
| 					active_load_balance_cpu_stop, busiest,
 | |
| 					&busiest->active_balance_work);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * We've kicked active balancing, reset the failure
 | |
| 			 * counter.
 | |
| 			 */
 | |
| 			sd->nr_balance_failed = sd->cache_nice_tries+1;
 | |
| 		}
 | |
| 	} else
 | |
| 		sd->nr_balance_failed = 0;
 | |
| 
 | |
| 	if (likely(!active_balance)) {
 | |
| 		/* We were unbalanced, so reset the balancing interval */
 | |
| 		sd->balance_interval = sd->min_interval;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If we've begun active balancing, start to back off. This
 | |
| 		 * case may not be covered by the all_pinned logic if there
 | |
| 		 * is only 1 task on the busy runqueue (because we don't call
 | |
| 		 * detach_tasks).
 | |
| 		 */
 | |
| 		if (sd->balance_interval < sd->max_interval)
 | |
| 			sd->balance_interval *= 2;
 | |
| 	}
 | |
| 
 | |
| 	goto out;
 | |
| 
 | |
| out_balanced:
 | |
| 	/*
 | |
| 	 * We reach balance although we may have faced some affinity
 | |
| 	 * constraints. Clear the imbalance flag if it was set.
 | |
| 	 */
 | |
| 	if (sd_parent) {
 | |
| 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
 | |
| 
 | |
| 		if (*group_imbalance)
 | |
| 			*group_imbalance = 0;
 | |
| 	}
 | |
| 
 | |
| out_all_pinned:
 | |
| 	/*
 | |
| 	 * We reach balance because all tasks are pinned at this level so
 | |
| 	 * we can't migrate them. Let the imbalance flag set so parent level
 | |
| 	 * can try to migrate them.
 | |
| 	 */
 | |
| 	schedstat_inc(sd, lb_balanced[idle]);
 | |
| 
 | |
| 	sd->nr_balance_failed = 0;
 | |
| 
 | |
| out_one_pinned:
 | |
| 	/* tune up the balancing interval */
 | |
| 	if (((env.flags & LBF_ALL_PINNED) &&
 | |
| 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
 | |
| 			(sd->balance_interval < sd->max_interval))
 | |
| 		sd->balance_interval *= 2;
 | |
| 
 | |
| 	ld_moved = 0;
 | |
| out:
 | |
| 	return ld_moved;
 | |
| }
 | |
| 
 | |
| static inline unsigned long
 | |
| get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
 | |
| {
 | |
| 	unsigned long interval = sd->balance_interval;
 | |
| 
 | |
| 	if (cpu_busy)
 | |
| 		interval *= sd->busy_factor;
 | |
| 
 | |
| 	/* scale ms to jiffies */
 | |
| 	interval = msecs_to_jiffies(interval);
 | |
| 	interval = clamp(interval, 1UL, max_load_balance_interval);
 | |
| 
 | |
| 	return interval;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
 | |
| {
 | |
| 	unsigned long interval, next;
 | |
| 
 | |
| 	interval = get_sd_balance_interval(sd, cpu_busy);
 | |
| 	next = sd->last_balance + interval;
 | |
| 
 | |
| 	if (time_after(*next_balance, next))
 | |
| 		*next_balance = next;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * idle_balance is called by schedule() if this_cpu is about to become
 | |
|  * idle. Attempts to pull tasks from other CPUs.
 | |
|  */
 | |
| static int idle_balance(struct rq *this_rq)
 | |
| {
 | |
| 	unsigned long next_balance = jiffies + HZ;
 | |
| 	int this_cpu = this_rq->cpu;
 | |
| 	struct sched_domain *sd;
 | |
| 	int pulled_task = 0;
 | |
| 	u64 curr_cost = 0;
 | |
| 
 | |
| 	idle_enter_fair(this_rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
 | |
| 	 * measure the duration of idle_balance() as idle time.
 | |
| 	 */
 | |
| 	this_rq->idle_stamp = rq_clock(this_rq);
 | |
| 
 | |
| 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
 | |
| 	    !this_rq->rd->overload) {
 | |
| 		rcu_read_lock();
 | |
| 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
 | |
| 		if (sd)
 | |
| 			update_next_balance(sd, 0, &next_balance);
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock(&this_rq->lock);
 | |
| 
 | |
| 	update_blocked_averages(this_cpu);
 | |
| 	rcu_read_lock();
 | |
| 	for_each_domain(this_cpu, sd) {
 | |
| 		int continue_balancing = 1;
 | |
| 		u64 t0, domain_cost;
 | |
| 
 | |
| 		if (!(sd->flags & SD_LOAD_BALANCE))
 | |
| 			continue;
 | |
| 
 | |
| 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
 | |
| 			update_next_balance(sd, 0, &next_balance);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (sd->flags & SD_BALANCE_NEWIDLE) {
 | |
| 			t0 = sched_clock_cpu(this_cpu);
 | |
| 
 | |
| 			pulled_task = load_balance(this_cpu, this_rq,
 | |
| 						   sd, CPU_NEWLY_IDLE,
 | |
| 						   &continue_balancing);
 | |
| 
 | |
| 			domain_cost = sched_clock_cpu(this_cpu) - t0;
 | |
| 			if (domain_cost > sd->max_newidle_lb_cost)
 | |
| 				sd->max_newidle_lb_cost = domain_cost;
 | |
| 
 | |
| 			curr_cost += domain_cost;
 | |
| 		}
 | |
| 
 | |
| 		update_next_balance(sd, 0, &next_balance);
 | |
| 
 | |
| 		/*
 | |
| 		 * Stop searching for tasks to pull if there are
 | |
| 		 * now runnable tasks on this rq.
 | |
| 		 */
 | |
| 		if (pulled_task || this_rq->nr_running > 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	raw_spin_lock(&this_rq->lock);
 | |
| 
 | |
| 	if (curr_cost > this_rq->max_idle_balance_cost)
 | |
| 		this_rq->max_idle_balance_cost = curr_cost;
 | |
| 
 | |
| 	/*
 | |
| 	 * While browsing the domains, we released the rq lock, a task could
 | |
| 	 * have been enqueued in the meantime. Since we're not going idle,
 | |
| 	 * pretend we pulled a task.
 | |
| 	 */
 | |
| 	if (this_rq->cfs.h_nr_running && !pulled_task)
 | |
| 		pulled_task = 1;
 | |
| 
 | |
| out:
 | |
| 	/* Move the next balance forward */
 | |
| 	if (time_after(this_rq->next_balance, next_balance))
 | |
| 		this_rq->next_balance = next_balance;
 | |
| 
 | |
| 	/* Is there a task of a high priority class? */
 | |
| 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
 | |
| 		pulled_task = -1;
 | |
| 
 | |
| 	if (pulled_task) {
 | |
| 		idle_exit_fair(this_rq);
 | |
| 		this_rq->idle_stamp = 0;
 | |
| 	}
 | |
| 
 | |
| 	return pulled_task;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 | |
|  * running tasks off the busiest CPU onto idle CPUs. It requires at
 | |
|  * least 1 task to be running on each physical CPU where possible, and
 | |
|  * avoids physical / logical imbalances.
 | |
|  */
 | |
| static int active_load_balance_cpu_stop(void *data)
 | |
| {
 | |
| 	struct rq *busiest_rq = data;
 | |
| 	int busiest_cpu = cpu_of(busiest_rq);
 | |
| 	int target_cpu = busiest_rq->push_cpu;
 | |
| 	struct rq *target_rq = cpu_rq(target_cpu);
 | |
| 	struct sched_domain *sd;
 | |
| 	struct task_struct *p = NULL;
 | |
| 
 | |
| 	raw_spin_lock_irq(&busiest_rq->lock);
 | |
| 
 | |
| 	/* make sure the requested cpu hasn't gone down in the meantime */
 | |
| 	if (unlikely(busiest_cpu != smp_processor_id() ||
 | |
| 		     !busiest_rq->active_balance))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/* Is there any task to move? */
 | |
| 	if (busiest_rq->nr_running <= 1)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * This condition is "impossible", if it occurs
 | |
| 	 * we need to fix it. Originally reported by
 | |
| 	 * Bjorn Helgaas on a 128-cpu setup.
 | |
| 	 */
 | |
| 	BUG_ON(busiest_rq == target_rq);
 | |
| 
 | |
| 	/* Search for an sd spanning us and the target CPU. */
 | |
| 	rcu_read_lock();
 | |
| 	for_each_domain(target_cpu, sd) {
 | |
| 		if ((sd->flags & SD_LOAD_BALANCE) &&
 | |
| 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
 | |
| 				break;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(sd)) {
 | |
| 		struct lb_env env = {
 | |
| 			.sd		= sd,
 | |
| 			.dst_cpu	= target_cpu,
 | |
| 			.dst_rq		= target_rq,
 | |
| 			.src_cpu	= busiest_rq->cpu,
 | |
| 			.src_rq		= busiest_rq,
 | |
| 			.idle		= CPU_IDLE,
 | |
| 		};
 | |
| 
 | |
| 		schedstat_inc(sd, alb_count);
 | |
| 
 | |
| 		p = detach_one_task(&env);
 | |
| 		if (p)
 | |
| 			schedstat_inc(sd, alb_pushed);
 | |
| 		else
 | |
| 			schedstat_inc(sd, alb_failed);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| out_unlock:
 | |
| 	busiest_rq->active_balance = 0;
 | |
| 	raw_spin_unlock(&busiest_rq->lock);
 | |
| 
 | |
| 	if (p)
 | |
| 		attach_one_task(target_rq, p);
 | |
| 
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int on_null_domain(struct rq *rq)
 | |
| {
 | |
| 	return unlikely(!rcu_dereference_sched(rq->sd));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| /*
 | |
|  * idle load balancing details
 | |
|  * - When one of the busy CPUs notice that there may be an idle rebalancing
 | |
|  *   needed, they will kick the idle load balancer, which then does idle
 | |
|  *   load balancing for all the idle CPUs.
 | |
|  */
 | |
| static struct {
 | |
| 	cpumask_var_t idle_cpus_mask;
 | |
| 	atomic_t nr_cpus;
 | |
| 	unsigned long next_balance;     /* in jiffy units */
 | |
| } nohz ____cacheline_aligned;
 | |
| 
 | |
| static inline int find_new_ilb(void)
 | |
| {
 | |
| 	int ilb = cpumask_first(nohz.idle_cpus_mask);
 | |
| 
 | |
| 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
 | |
| 		return ilb;
 | |
| 
 | |
| 	return nr_cpu_ids;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 | |
|  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 | |
|  * CPU (if there is one).
 | |
|  */
 | |
| static void nohz_balancer_kick(void)
 | |
| {
 | |
| 	int ilb_cpu;
 | |
| 
 | |
| 	nohz.next_balance++;
 | |
| 
 | |
| 	ilb_cpu = find_new_ilb();
 | |
| 
 | |
| 	if (ilb_cpu >= nr_cpu_ids)
 | |
| 		return;
 | |
| 
 | |
| 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Use smp_send_reschedule() instead of resched_cpu().
 | |
| 	 * This way we generate a sched IPI on the target cpu which
 | |
| 	 * is idle. And the softirq performing nohz idle load balance
 | |
| 	 * will be run before returning from the IPI.
 | |
| 	 */
 | |
| 	smp_send_reschedule(ilb_cpu);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static inline void nohz_balance_exit_idle(int cpu)
 | |
| {
 | |
| 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
 | |
| 		/*
 | |
| 		 * Completely isolated CPUs don't ever set, so we must test.
 | |
| 		 */
 | |
| 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
 | |
| 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
 | |
| 			atomic_dec(&nohz.nr_cpus);
 | |
| 		}
 | |
| 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void set_cpu_sd_state_busy(void)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
 | |
| 
 | |
| 	if (!sd || !sd->nohz_idle)
 | |
| 		goto unlock;
 | |
| 	sd->nohz_idle = 0;
 | |
| 
 | |
| 	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| void set_cpu_sd_state_idle(void)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
 | |
| 
 | |
| 	if (!sd || sd->nohz_idle)
 | |
| 		goto unlock;
 | |
| 	sd->nohz_idle = 1;
 | |
| 
 | |
| 	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine will record that the cpu is going idle with tick stopped.
 | |
|  * This info will be used in performing idle load balancing in the future.
 | |
|  */
 | |
| void nohz_balance_enter_idle(int cpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * If this cpu is going down, then nothing needs to be done.
 | |
| 	 */
 | |
| 	if (!cpu_active(cpu))
 | |
| 		return;
 | |
| 
 | |
| 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're a completely isolated CPU, we don't play.
 | |
| 	 */
 | |
| 	if (on_null_domain(cpu_rq(cpu)))
 | |
| 		return;
 | |
| 
 | |
| 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
 | |
| 	atomic_inc(&nohz.nr_cpus);
 | |
| 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
 | |
| }
 | |
| 
 | |
| static int sched_ilb_notifier(struct notifier_block *nfb,
 | |
| 					unsigned long action, void *hcpu)
 | |
| {
 | |
| 	switch (action & ~CPU_TASKS_FROZEN) {
 | |
| 	case CPU_DYING:
 | |
| 		nohz_balance_exit_idle(smp_processor_id());
 | |
| 		return NOTIFY_OK;
 | |
| 	default:
 | |
| 		return NOTIFY_DONE;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static DEFINE_SPINLOCK(balancing);
 | |
| 
 | |
| /*
 | |
|  * Scale the max load_balance interval with the number of CPUs in the system.
 | |
|  * This trades load-balance latency on larger machines for less cross talk.
 | |
|  */
 | |
| void update_max_interval(void)
 | |
| {
 | |
| 	max_load_balance_interval = HZ*num_online_cpus()/10;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It checks each scheduling domain to see if it is due to be balanced,
 | |
|  * and initiates a balancing operation if so.
 | |
|  *
 | |
|  * Balancing parameters are set up in init_sched_domains.
 | |
|  */
 | |
| static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
 | |
| {
 | |
| 	int continue_balancing = 1;
 | |
| 	int cpu = rq->cpu;
 | |
| 	unsigned long interval;
 | |
| 	struct sched_domain *sd;
 | |
| 	/* Earliest time when we have to do rebalance again */
 | |
| 	unsigned long next_balance = jiffies + 60*HZ;
 | |
| 	int update_next_balance = 0;
 | |
| 	int need_serialize, need_decay = 0;
 | |
| 	u64 max_cost = 0;
 | |
| 
 | |
| 	update_blocked_averages(cpu);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_domain(cpu, sd) {
 | |
| 		/*
 | |
| 		 * Decay the newidle max times here because this is a regular
 | |
| 		 * visit to all the domains. Decay ~1% per second.
 | |
| 		 */
 | |
| 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
 | |
| 			sd->max_newidle_lb_cost =
 | |
| 				(sd->max_newidle_lb_cost * 253) / 256;
 | |
| 			sd->next_decay_max_lb_cost = jiffies + HZ;
 | |
| 			need_decay = 1;
 | |
| 		}
 | |
| 		max_cost += sd->max_newidle_lb_cost;
 | |
| 
 | |
| 		if (!(sd->flags & SD_LOAD_BALANCE))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Stop the load balance at this level. There is another
 | |
| 		 * CPU in our sched group which is doing load balancing more
 | |
| 		 * actively.
 | |
| 		 */
 | |
| 		if (!continue_balancing) {
 | |
| 			if (need_decay)
 | |
| 				continue;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
 | |
| 
 | |
| 		need_serialize = sd->flags & SD_SERIALIZE;
 | |
| 		if (need_serialize) {
 | |
| 			if (!spin_trylock(&balancing))
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
 | |
| 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
 | |
| 				/*
 | |
| 				 * The LBF_DST_PINNED logic could have changed
 | |
| 				 * env->dst_cpu, so we can't know our idle
 | |
| 				 * state even if we migrated tasks. Update it.
 | |
| 				 */
 | |
| 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
 | |
| 			}
 | |
| 			sd->last_balance = jiffies;
 | |
| 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
 | |
| 		}
 | |
| 		if (need_serialize)
 | |
| 			spin_unlock(&balancing);
 | |
| out:
 | |
| 		if (time_after(next_balance, sd->last_balance + interval)) {
 | |
| 			next_balance = sd->last_balance + interval;
 | |
| 			update_next_balance = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	if (need_decay) {
 | |
| 		/*
 | |
| 		 * Ensure the rq-wide value also decays but keep it at a
 | |
| 		 * reasonable floor to avoid funnies with rq->avg_idle.
 | |
| 		 */
 | |
| 		rq->max_idle_balance_cost =
 | |
| 			max((u64)sysctl_sched_migration_cost, max_cost);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * next_balance will be updated only when there is a need.
 | |
| 	 * When the cpu is attached to null domain for ex, it will not be
 | |
| 	 * updated.
 | |
| 	 */
 | |
| 	if (likely(update_next_balance))
 | |
| 		rq->next_balance = next_balance;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| /*
 | |
|  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
 | |
|  * rebalancing for all the cpus for whom scheduler ticks are stopped.
 | |
|  */
 | |
| static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
 | |
| {
 | |
| 	int this_cpu = this_rq->cpu;
 | |
| 	struct rq *rq;
 | |
| 	int balance_cpu;
 | |
| 
 | |
| 	if (idle != CPU_IDLE ||
 | |
| 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
 | |
| 		goto end;
 | |
| 
 | |
| 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
 | |
| 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * If this cpu gets work to do, stop the load balancing
 | |
| 		 * work being done for other cpus. Next load
 | |
| 		 * balancing owner will pick it up.
 | |
| 		 */
 | |
| 		if (need_resched())
 | |
| 			break;
 | |
| 
 | |
| 		rq = cpu_rq(balance_cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * If time for next balance is due,
 | |
| 		 * do the balance.
 | |
| 		 */
 | |
| 		if (time_after_eq(jiffies, rq->next_balance)) {
 | |
| 			raw_spin_lock_irq(&rq->lock);
 | |
| 			update_rq_clock(rq);
 | |
| 			update_idle_cpu_load(rq);
 | |
| 			raw_spin_unlock_irq(&rq->lock);
 | |
| 			rebalance_domains(rq, CPU_IDLE);
 | |
| 		}
 | |
| 
 | |
| 		if (time_after(this_rq->next_balance, rq->next_balance))
 | |
| 			this_rq->next_balance = rq->next_balance;
 | |
| 	}
 | |
| 	nohz.next_balance = this_rq->next_balance;
 | |
| end:
 | |
| 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Current heuristic for kicking the idle load balancer in the presence
 | |
|  * of an idle cpu in the system.
 | |
|  *   - This rq has more than one task.
 | |
|  *   - This rq has at least one CFS task and the capacity of the CPU is
 | |
|  *     significantly reduced because of RT tasks or IRQs.
 | |
|  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 | |
|  *     multiple busy cpu.
 | |
|  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 | |
|  *     domain span are idle.
 | |
|  */
 | |
| static inline bool nohz_kick_needed(struct rq *rq)
 | |
| {
 | |
| 	unsigned long now = jiffies;
 | |
| 	struct sched_domain *sd;
 | |
| 	struct sched_group_capacity *sgc;
 | |
| 	int nr_busy, cpu = rq->cpu;
 | |
| 	bool kick = false;
 | |
| 
 | |
| 	if (unlikely(rq->idle_balance))
 | |
| 		return false;
 | |
| 
 | |
|        /*
 | |
| 	* We may be recently in ticked or tickless idle mode. At the first
 | |
| 	* busy tick after returning from idle, we will update the busy stats.
 | |
| 	*/
 | |
| 	set_cpu_sd_state_busy();
 | |
| 	nohz_balance_exit_idle(cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * None are in tickless mode and hence no need for NOHZ idle load
 | |
| 	 * balancing.
 | |
| 	 */
 | |
| 	if (likely(!atomic_read(&nohz.nr_cpus)))
 | |
| 		return false;
 | |
| 
 | |
| 	if (time_before(now, nohz.next_balance))
 | |
| 		return false;
 | |
| 
 | |
| 	if (rq->nr_running >= 2)
 | |
| 		return true;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
 | |
| 	if (sd) {
 | |
| 		sgc = sd->groups->sgc;
 | |
| 		nr_busy = atomic_read(&sgc->nr_busy_cpus);
 | |
| 
 | |
| 		if (nr_busy > 1) {
 | |
| 			kick = true;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	sd = rcu_dereference(rq->sd);
 | |
| 	if (sd) {
 | |
| 		if ((rq->cfs.h_nr_running >= 1) &&
 | |
| 				check_cpu_capacity(rq, sd)) {
 | |
| 			kick = true;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
 | |
| 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
 | |
| 				  sched_domain_span(sd)) < cpu)) {
 | |
| 		kick = true;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| 	return kick;
 | |
| }
 | |
| #else
 | |
| static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * run_rebalance_domains is triggered when needed from the scheduler tick.
 | |
|  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 | |
|  */
 | |
| static void run_rebalance_domains(struct softirq_action *h)
 | |
| {
 | |
| 	struct rq *this_rq = this_rq();
 | |
| 	enum cpu_idle_type idle = this_rq->idle_balance ?
 | |
| 						CPU_IDLE : CPU_NOT_IDLE;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this cpu has a pending nohz_balance_kick, then do the
 | |
| 	 * balancing on behalf of the other idle cpus whose ticks are
 | |
| 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
 | |
| 	 * give the idle cpus a chance to load balance. Else we may
 | |
| 	 * load balance only within the local sched_domain hierarchy
 | |
| 	 * and abort nohz_idle_balance altogether if we pull some load.
 | |
| 	 */
 | |
| 	nohz_idle_balance(this_rq, idle);
 | |
| 	rebalance_domains(this_rq, idle);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 | |
|  */
 | |
| void trigger_load_balance(struct rq *rq)
 | |
| {
 | |
| 	/* Don't need to rebalance while attached to NULL domain */
 | |
| 	if (unlikely(on_null_domain(rq)))
 | |
| 		return;
 | |
| 
 | |
| 	if (time_after_eq(jiffies, rq->next_balance))
 | |
| 		raise_softirq(SCHED_SOFTIRQ);
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| 	if (nohz_kick_needed(rq))
 | |
| 		nohz_balancer_kick();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void rq_online_fair(struct rq *rq)
 | |
| {
 | |
| 	update_sysctl();
 | |
| 
 | |
| 	update_runtime_enabled(rq);
 | |
| }
 | |
| 
 | |
| static void rq_offline_fair(struct rq *rq)
 | |
| {
 | |
| 	update_sysctl();
 | |
| 
 | |
| 	/* Ensure any throttled groups are reachable by pick_next_task */
 | |
| 	unthrottle_offline_cfs_rqs(rq);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * scheduler tick hitting a task of our scheduling class:
 | |
|  */
 | |
| static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	struct sched_entity *se = &curr->se;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		entity_tick(cfs_rq, se, queued);
 | |
| 	}
 | |
| 
 | |
| 	if (numabalancing_enabled)
 | |
| 		task_tick_numa(rq, curr);
 | |
| 
 | |
| 	update_rq_runnable_avg(rq, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called on fork with the child task as argument from the parent's context
 | |
|  *  - child not yet on the tasklist
 | |
|  *  - preemption disabled
 | |
|  */
 | |
| static void task_fork_fair(struct task_struct *p)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	struct sched_entity *se = &p->se, *curr;
 | |
| 	int this_cpu = smp_processor_id();
 | |
| 	struct rq *rq = this_rq();
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rq->lock, flags);
 | |
| 
 | |
| 	update_rq_clock(rq);
 | |
| 
 | |
| 	cfs_rq = task_cfs_rq(current);
 | |
| 	curr = cfs_rq->curr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Not only the cpu but also the task_group of the parent might have
 | |
| 	 * been changed after parent->se.parent,cfs_rq were copied to
 | |
| 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
 | |
| 	 * of child point to valid ones.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	__set_task_cpu(p, this_cpu);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	update_curr(cfs_rq);
 | |
| 
 | |
| 	if (curr)
 | |
| 		se->vruntime = curr->vruntime;
 | |
| 	place_entity(cfs_rq, se, 1);
 | |
| 
 | |
| 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
 | |
| 		/*
 | |
| 		 * Upon rescheduling, sched_class::put_prev_task() will place
 | |
| 		 * 'current' within the tree based on its new key value.
 | |
| 		 */
 | |
| 		swap(curr->vruntime, se->vruntime);
 | |
| 		resched_curr(rq);
 | |
| 	}
 | |
| 
 | |
| 	se->vruntime -= cfs_rq->min_vruntime;
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&rq->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Priority of the task has changed. Check to see if we preempt
 | |
|  * the current task.
 | |
|  */
 | |
| static void
 | |
| prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
 | |
| {
 | |
| 	if (!task_on_rq_queued(p))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reschedule if we are currently running on this runqueue and
 | |
| 	 * our priority decreased, or if we are not currently running on
 | |
| 	 * this runqueue and our priority is higher than the current's
 | |
| 	 */
 | |
| 	if (rq->curr == p) {
 | |
| 		if (p->prio > oldprio)
 | |
| 			resched_curr(rq);
 | |
| 	} else
 | |
| 		check_preempt_curr(rq, p, 0);
 | |
| }
 | |
| 
 | |
| static void switched_from_fair(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure the task's vruntime is normalized, so that when it's
 | |
| 	 * switched back to the fair class the enqueue_entity(.flags=0) will
 | |
| 	 * do the right thing.
 | |
| 	 *
 | |
| 	 * If it's queued, then the dequeue_entity(.flags=0) will already
 | |
| 	 * have normalized the vruntime, if it's !queued, then only when
 | |
| 	 * the task is sleeping will it still have non-normalized vruntime.
 | |
| 	 */
 | |
| 	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
 | |
| 		/*
 | |
| 		 * Fix up our vruntime so that the current sleep doesn't
 | |
| 		 * cause 'unlimited' sleep bonus.
 | |
| 		 */
 | |
| 		place_entity(cfs_rq, se, 0);
 | |
| 		se->vruntime -= cfs_rq->min_vruntime;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	* Remove our load from contribution when we leave sched_fair
 | |
| 	* and ensure we don't carry in an old decay_count if we
 | |
| 	* switch back.
 | |
| 	*/
 | |
| 	if (se->avg.decay_count) {
 | |
| 		__synchronize_entity_decay(se);
 | |
| 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We switched to the sched_fair class.
 | |
|  */
 | |
| static void switched_to_fair(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 	/*
 | |
| 	 * Since the real-depth could have been changed (only FAIR
 | |
| 	 * class maintain depth value), reset depth properly.
 | |
| 	 */
 | |
| 	se->depth = se->parent ? se->parent->depth + 1 : 0;
 | |
| #endif
 | |
| 	if (!task_on_rq_queued(p))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We were most likely switched from sched_rt, so
 | |
| 	 * kick off the schedule if running, otherwise just see
 | |
| 	 * if we can still preempt the current task.
 | |
| 	 */
 | |
| 	if (rq->curr == p)
 | |
| 		resched_curr(rq);
 | |
| 	else
 | |
| 		check_preempt_curr(rq, p, 0);
 | |
| }
 | |
| 
 | |
| /* Account for a task changing its policy or group.
 | |
|  *
 | |
|  * This routine is mostly called to set cfs_rq->curr field when a task
 | |
|  * migrates between groups/classes.
 | |
|  */
 | |
| static void set_curr_task_fair(struct rq *rq)
 | |
| {
 | |
| 	struct sched_entity *se = &rq->curr->se;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 		set_next_entity(cfs_rq, se);
 | |
| 		/* ensure bandwidth has been allocated on our new cfs_rq */
 | |
| 		account_cfs_rq_runtime(cfs_rq, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void init_cfs_rq(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	cfs_rq->tasks_timeline = RB_ROOT;
 | |
| 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
 | |
| #ifndef CONFIG_64BIT
 | |
| 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 | |
| #endif
 | |
| #ifdef CONFIG_SMP
 | |
| 	atomic64_set(&cfs_rq->decay_counter, 1);
 | |
| 	atomic_long_set(&cfs_rq->removed_load, 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| static void task_move_group_fair(struct task_struct *p, int queued)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the task was not on the rq at the time of this cgroup movement
 | |
| 	 * it must have been asleep, sleeping tasks keep their ->vruntime
 | |
| 	 * absolute on their old rq until wakeup (needed for the fair sleeper
 | |
| 	 * bonus in place_entity()).
 | |
| 	 *
 | |
| 	 * If it was on the rq, we've just 'preempted' it, which does convert
 | |
| 	 * ->vruntime to a relative base.
 | |
| 	 *
 | |
| 	 * Make sure both cases convert their relative position when migrating
 | |
| 	 * to another cgroup's rq. This does somewhat interfere with the
 | |
| 	 * fair sleeper stuff for the first placement, but who cares.
 | |
| 	 */
 | |
| 	/*
 | |
| 	 * When !queued, vruntime of the task has usually NOT been normalized.
 | |
| 	 * But there are some cases where it has already been normalized:
 | |
| 	 *
 | |
| 	 * - Moving a forked child which is waiting for being woken up by
 | |
| 	 *   wake_up_new_task().
 | |
| 	 * - Moving a task which has been woken up by try_to_wake_up() and
 | |
| 	 *   waiting for actually being woken up by sched_ttwu_pending().
 | |
| 	 *
 | |
| 	 * To prevent boost or penalty in the new cfs_rq caused by delta
 | |
| 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
 | |
| 	 */
 | |
| 	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
 | |
| 		queued = 1;
 | |
| 
 | |
| 	if (!queued)
 | |
| 		se->vruntime -= cfs_rq_of(se)->min_vruntime;
 | |
| 	set_task_rq(p, task_cpu(p));
 | |
| 	se->depth = se->parent ? se->parent->depth + 1 : 0;
 | |
| 	if (!queued) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		se->vruntime += cfs_rq->min_vruntime;
 | |
| #ifdef CONFIG_SMP
 | |
| 		/*
 | |
| 		 * migrate_task_rq_fair() will have removed our previous
 | |
| 		 * contribution, but we must synchronize for ongoing future
 | |
| 		 * decay.
 | |
| 		 */
 | |
| 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
 | |
| 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void free_fair_sched_group(struct task_group *tg)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		if (tg->cfs_rq)
 | |
| 			kfree(tg->cfs_rq[i]);
 | |
| 		if (tg->se)
 | |
| 			kfree(tg->se[i]);
 | |
| 	}
 | |
| 
 | |
| 	kfree(tg->cfs_rq);
 | |
| 	kfree(tg->se);
 | |
| }
 | |
| 
 | |
| int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	struct sched_entity *se;
 | |
| 	int i;
 | |
| 
 | |
| 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
 | |
| 	if (!tg->cfs_rq)
 | |
| 		goto err;
 | |
| 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
 | |
| 	if (!tg->se)
 | |
| 		goto err;
 | |
| 
 | |
| 	tg->shares = NICE_0_LOAD;
 | |
| 
 | |
| 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
 | |
| 				      GFP_KERNEL, cpu_to_node(i));
 | |
| 		if (!cfs_rq)
 | |
| 			goto err;
 | |
| 
 | |
| 		se = kzalloc_node(sizeof(struct sched_entity),
 | |
| 				  GFP_KERNEL, cpu_to_node(i));
 | |
| 		if (!se)
 | |
| 			goto err_free_rq;
 | |
| 
 | |
| 		init_cfs_rq(cfs_rq);
 | |
| 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| 
 | |
| err_free_rq:
 | |
| 	kfree(cfs_rq);
 | |
| err:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void unregister_fair_sched_group(struct task_group *tg, int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	* Only empty task groups can be destroyed; so we can speculatively
 | |
| 	* check on_list without danger of it being re-added.
 | |
| 	*/
 | |
| 	if (!tg->cfs_rq[cpu]->on_list)
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rq->lock, flags);
 | |
| 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
 | |
| 	raw_spin_unlock_irqrestore(&rq->lock, flags);
 | |
| }
 | |
| 
 | |
| void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 | |
| 			struct sched_entity *se, int cpu,
 | |
| 			struct sched_entity *parent)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 	cfs_rq->tg = tg;
 | |
| 	cfs_rq->rq = rq;
 | |
| 	init_cfs_rq_runtime(cfs_rq);
 | |
| 
 | |
| 	tg->cfs_rq[cpu] = cfs_rq;
 | |
| 	tg->se[cpu] = se;
 | |
| 
 | |
| 	/* se could be NULL for root_task_group */
 | |
| 	if (!se)
 | |
| 		return;
 | |
| 
 | |
| 	if (!parent) {
 | |
| 		se->cfs_rq = &rq->cfs;
 | |
| 		se->depth = 0;
 | |
| 	} else {
 | |
| 		se->cfs_rq = parent->my_q;
 | |
| 		se->depth = parent->depth + 1;
 | |
| 	}
 | |
| 
 | |
| 	se->my_q = cfs_rq;
 | |
| 	/* guarantee group entities always have weight */
 | |
| 	update_load_set(&se->load, NICE_0_LOAD);
 | |
| 	se->parent = parent;
 | |
| }
 | |
| 
 | |
| static DEFINE_MUTEX(shares_mutex);
 | |
| 
 | |
| int sched_group_set_shares(struct task_group *tg, unsigned long shares)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't change the weight of the root cgroup.
 | |
| 	 */
 | |
| 	if (!tg->se[0])
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
 | |
| 
 | |
| 	mutex_lock(&shares_mutex);
 | |
| 	if (tg->shares == shares)
 | |
| 		goto done;
 | |
| 
 | |
| 	tg->shares = shares;
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct rq *rq = cpu_rq(i);
 | |
| 		struct sched_entity *se;
 | |
| 
 | |
| 		se = tg->se[i];
 | |
| 		/* Propagate contribution to hierarchy */
 | |
| 		raw_spin_lock_irqsave(&rq->lock, flags);
 | |
| 
 | |
| 		/* Possible calls to update_curr() need rq clock */
 | |
| 		update_rq_clock(rq);
 | |
| 		for_each_sched_entity(se)
 | |
| 			update_cfs_shares(group_cfs_rq(se));
 | |
| 		raw_spin_unlock_irqrestore(&rq->lock, flags);
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	mutex_unlock(&shares_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| #else /* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| void free_fair_sched_group(struct task_group *tg) { }
 | |
| 
 | |
| int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
 | |
| 
 | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| 
 | |
| static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
 | |
| {
 | |
| 	struct sched_entity *se = &task->se;
 | |
| 	unsigned int rr_interval = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
 | |
| 	 * idle runqueue:
 | |
| 	 */
 | |
| 	if (rq->cfs.load.weight)
 | |
| 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
 | |
| 
 | |
| 	return rr_interval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * All the scheduling class methods:
 | |
|  */
 | |
| const struct sched_class fair_sched_class = {
 | |
| 	.next			= &idle_sched_class,
 | |
| 	.enqueue_task		= enqueue_task_fair,
 | |
| 	.dequeue_task		= dequeue_task_fair,
 | |
| 	.yield_task		= yield_task_fair,
 | |
| 	.yield_to_task		= yield_to_task_fair,
 | |
| 
 | |
| 	.check_preempt_curr	= check_preempt_wakeup,
 | |
| 
 | |
| 	.pick_next_task		= pick_next_task_fair,
 | |
| 	.put_prev_task		= put_prev_task_fair,
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	.select_task_rq		= select_task_rq_fair,
 | |
| 	.migrate_task_rq	= migrate_task_rq_fair,
 | |
| 
 | |
| 	.rq_online		= rq_online_fair,
 | |
| 	.rq_offline		= rq_offline_fair,
 | |
| 
 | |
| 	.task_waking		= task_waking_fair,
 | |
| #endif
 | |
| 
 | |
| 	.set_curr_task          = set_curr_task_fair,
 | |
| 	.task_tick		= task_tick_fair,
 | |
| 	.task_fork		= task_fork_fair,
 | |
| 
 | |
| 	.prio_changed		= prio_changed_fair,
 | |
| 	.switched_from		= switched_from_fair,
 | |
| 	.switched_to		= switched_to_fair,
 | |
| 
 | |
| 	.get_rr_interval	= get_rr_interval_fair,
 | |
| 
 | |
| 	.update_curr		= update_curr_fair,
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	.task_move_group	= task_move_group_fair,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| void print_cfs_stats(struct seq_file *m, int cpu)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
 | |
| 		print_cfs_rq(m, cpu, cfs_rq);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| __init void init_sched_fair_class(void)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| 	nohz.next_balance = jiffies;
 | |
| 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
 | |
| 	cpu_notifier(sched_ilb_notifier, 0);
 | |
| #endif
 | |
| #endif /* SMP */
 | |
| 
 | |
| }
 |