 98ec21a018
			
		
	
	
	98ec21a018
	
	
	
		
			
			Pull scheduler updates from Thomas Gleixner:
 "This series of scheduler updates depends on sched/core and timers/core
  branches, which are already in your tree:
   - Scheduler balancing overhaul to plug a hard to trigger race which
     causes an oops in the balancer (Peter Zijlstra)
   - Lockdep updates which are related to the balancing updates (Peter
     Zijlstra)"
* 'sched-hrtimers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched,lockdep: Employ lock pinning
  lockdep: Implement lock pinning
  lockdep: Simplify lock_release()
  sched: Streamline the task migration locking a little
  sched: Move code around
  sched,dl: Fix sched class hopping CBS hole
  sched, dl: Convert switched_{from, to}_dl() / prio_changed_dl() to balance callbacks
  sched,dl: Remove return value from pull_dl_task()
  sched, rt: Convert switched_{from, to}_rt() / prio_changed_rt() to balance callbacks
  sched,rt: Remove return value from pull_rt_task()
  sched: Allow balance callbacks for check_class_changed()
  sched: Use replace normalize_task() with __sched_setscheduler()
  sched: Replace post_schedule with a balance callback list
		
	
			
		
			
				
	
	
		
			1881 lines
		
	
	
	
		
			48 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1881 lines
		
	
	
	
		
			48 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Deadline Scheduling Class (SCHED_DEADLINE)
 | |
|  *
 | |
|  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
 | |
|  *
 | |
|  * Tasks that periodically executes their instances for less than their
 | |
|  * runtime won't miss any of their deadlines.
 | |
|  * Tasks that are not periodic or sporadic or that tries to execute more
 | |
|  * than their reserved bandwidth will be slowed down (and may potentially
 | |
|  * miss some of their deadlines), and won't affect any other task.
 | |
|  *
 | |
|  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
 | |
|  *                    Juri Lelli <juri.lelli@gmail.com>,
 | |
|  *                    Michael Trimarchi <michael@amarulasolutions.com>,
 | |
|  *                    Fabio Checconi <fchecconi@gmail.com>
 | |
|  */
 | |
| #include "sched.h"
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| struct dl_bandwidth def_dl_bandwidth;
 | |
| 
 | |
| static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	return container_of(dl_se, struct task_struct, dl);
 | |
| }
 | |
| 
 | |
| static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
 | |
| {
 | |
| 	return container_of(dl_rq, struct rq, dl);
 | |
| }
 | |
| 
 | |
| static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct task_struct *p = dl_task_of(dl_se);
 | |
| 	struct rq *rq = task_rq(p);
 | |
| 
 | |
| 	return &rq->dl;
 | |
| }
 | |
| 
 | |
| static inline int on_dl_rq(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	return !RB_EMPTY_NODE(&dl_se->rb_node);
 | |
| }
 | |
| 
 | |
| static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
 | |
| {
 | |
| 	struct sched_dl_entity *dl_se = &p->dl;
 | |
| 
 | |
| 	return dl_rq->rb_leftmost == &dl_se->rb_node;
 | |
| }
 | |
| 
 | |
| void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
 | |
| {
 | |
| 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
 | |
| 	dl_b->dl_period = period;
 | |
| 	dl_b->dl_runtime = runtime;
 | |
| }
 | |
| 
 | |
| void init_dl_bw(struct dl_bw *dl_b)
 | |
| {
 | |
| 	raw_spin_lock_init(&dl_b->lock);
 | |
| 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
 | |
| 	if (global_rt_runtime() == RUNTIME_INF)
 | |
| 		dl_b->bw = -1;
 | |
| 	else
 | |
| 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
 | |
| 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
 | |
| 	dl_b->total_bw = 0;
 | |
| }
 | |
| 
 | |
| void init_dl_rq(struct dl_rq *dl_rq)
 | |
| {
 | |
| 	dl_rq->rb_root = RB_ROOT;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* zero means no -deadline tasks */
 | |
| 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
 | |
| 
 | |
| 	dl_rq->dl_nr_migratory = 0;
 | |
| 	dl_rq->overloaded = 0;
 | |
| 	dl_rq->pushable_dl_tasks_root = RB_ROOT;
 | |
| #else
 | |
| 	init_dl_bw(&dl_rq->dl_bw);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static inline int dl_overloaded(struct rq *rq)
 | |
| {
 | |
| 	return atomic_read(&rq->rd->dlo_count);
 | |
| }
 | |
| 
 | |
| static inline void dl_set_overload(struct rq *rq)
 | |
| {
 | |
| 	if (!rq->online)
 | |
| 		return;
 | |
| 
 | |
| 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 | |
| 	/*
 | |
| 	 * Must be visible before the overload count is
 | |
| 	 * set (as in sched_rt.c).
 | |
| 	 *
 | |
| 	 * Matched by the barrier in pull_dl_task().
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	atomic_inc(&rq->rd->dlo_count);
 | |
| }
 | |
| 
 | |
| static inline void dl_clear_overload(struct rq *rq)
 | |
| {
 | |
| 	if (!rq->online)
 | |
| 		return;
 | |
| 
 | |
| 	atomic_dec(&rq->rd->dlo_count);
 | |
| 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 | |
| }
 | |
| 
 | |
| static void update_dl_migration(struct dl_rq *dl_rq)
 | |
| {
 | |
| 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
 | |
| 		if (!dl_rq->overloaded) {
 | |
| 			dl_set_overload(rq_of_dl_rq(dl_rq));
 | |
| 			dl_rq->overloaded = 1;
 | |
| 		}
 | |
| 	} else if (dl_rq->overloaded) {
 | |
| 		dl_clear_overload(rq_of_dl_rq(dl_rq));
 | |
| 		dl_rq->overloaded = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 | |
| {
 | |
| 	struct task_struct *p = dl_task_of(dl_se);
 | |
| 
 | |
| 	if (p->nr_cpus_allowed > 1)
 | |
| 		dl_rq->dl_nr_migratory++;
 | |
| 
 | |
| 	update_dl_migration(dl_rq);
 | |
| }
 | |
| 
 | |
| static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 | |
| {
 | |
| 	struct task_struct *p = dl_task_of(dl_se);
 | |
| 
 | |
| 	if (p->nr_cpus_allowed > 1)
 | |
| 		dl_rq->dl_nr_migratory--;
 | |
| 
 | |
| 	update_dl_migration(dl_rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The list of pushable -deadline task is not a plist, like in
 | |
|  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 | |
|  */
 | |
| static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct dl_rq *dl_rq = &rq->dl;
 | |
| 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct task_struct *entry;
 | |
| 	int leftmost = 1;
 | |
| 
 | |
| 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 | |
| 
 | |
| 	while (*link) {
 | |
| 		parent = *link;
 | |
| 		entry = rb_entry(parent, struct task_struct,
 | |
| 				 pushable_dl_tasks);
 | |
| 		if (dl_entity_preempt(&p->dl, &entry->dl))
 | |
| 			link = &parent->rb_left;
 | |
| 		else {
 | |
| 			link = &parent->rb_right;
 | |
| 			leftmost = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (leftmost)
 | |
| 		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
 | |
| 
 | |
| 	rb_link_node(&p->pushable_dl_tasks, parent, link);
 | |
| 	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 | |
| }
 | |
| 
 | |
| static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct dl_rq *dl_rq = &rq->dl;
 | |
| 
 | |
| 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 | |
| 		return;
 | |
| 
 | |
| 	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
 | |
| 		struct rb_node *next_node;
 | |
| 
 | |
| 		next_node = rb_next(&p->pushable_dl_tasks);
 | |
| 		dl_rq->pushable_dl_tasks_leftmost = next_node;
 | |
| 	}
 | |
| 
 | |
| 	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 | |
| 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 | |
| }
 | |
| 
 | |
| static inline int has_pushable_dl_tasks(struct rq *rq)
 | |
| {
 | |
| 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
 | |
| }
 | |
| 
 | |
| static int push_dl_task(struct rq *rq);
 | |
| 
 | |
| static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	return dl_task(prev);
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct callback_head, dl_push_head);
 | |
| static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
 | |
| 
 | |
| static void push_dl_tasks(struct rq *);
 | |
| static void pull_dl_task(struct rq *);
 | |
| 
 | |
| static inline void queue_push_tasks(struct rq *rq)
 | |
| {
 | |
| 	if (!has_pushable_dl_tasks(rq))
 | |
| 		return;
 | |
| 
 | |
| 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 | |
| }
 | |
| 
 | |
| static inline void queue_pull_task(struct rq *rq)
 | |
| {
 | |
| 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 | |
| }
 | |
| 
 | |
| static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 | |
| 
 | |
| static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct rq *later_rq = NULL;
 | |
| 	bool fallback = false;
 | |
| 
 | |
| 	later_rq = find_lock_later_rq(p, rq);
 | |
| 
 | |
| 	if (!later_rq) {
 | |
| 		int cpu;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we cannot preempt any rq, fall back to pick any
 | |
| 		 * online cpu.
 | |
| 		 */
 | |
| 		fallback = true;
 | |
| 		cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
 | |
| 		if (cpu >= nr_cpu_ids) {
 | |
| 			/*
 | |
| 			 * Fail to find any suitable cpu.
 | |
| 			 * The task will never come back!
 | |
| 			 */
 | |
| 			BUG_ON(dl_bandwidth_enabled());
 | |
| 
 | |
| 			/*
 | |
| 			 * If admission control is disabled we
 | |
| 			 * try a little harder to let the task
 | |
| 			 * run.
 | |
| 			 */
 | |
| 			cpu = cpumask_any(cpu_active_mask);
 | |
| 		}
 | |
| 		later_rq = cpu_rq(cpu);
 | |
| 		double_lock_balance(rq, later_rq);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * By now the task is replenished and enqueued; migrate it.
 | |
| 	 */
 | |
| 	deactivate_task(rq, p, 0);
 | |
| 	set_task_cpu(p, later_rq->cpu);
 | |
| 	activate_task(later_rq, p, 0);
 | |
| 
 | |
| 	if (!fallback)
 | |
| 		resched_curr(later_rq);
 | |
| 
 | |
| 	double_unlock_balance(later_rq, rq);
 | |
| 
 | |
| 	return later_rq;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline
 | |
| void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline void pull_dl_task(struct rq *rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void queue_push_tasks(struct rq *rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void queue_pull_task(struct rq *rq)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 | |
| static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 | |
| static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
 | |
| 				  int flags);
 | |
| 
 | |
| /*
 | |
|  * We are being explicitly informed that a new instance is starting,
 | |
|  * and this means that:
 | |
|  *  - the absolute deadline of the entity has to be placed at
 | |
|  *    current time + relative deadline;
 | |
|  *  - the runtime of the entity has to be set to the maximum value.
 | |
|  *
 | |
|  * The capability of specifying such event is useful whenever a -deadline
 | |
|  * entity wants to (try to!) synchronize its behaviour with the scheduler's
 | |
|  * one, and to (try to!) reconcile itself with its own scheduling
 | |
|  * parameters.
 | |
|  */
 | |
| static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
 | |
| 				       struct sched_dl_entity *pi_se)
 | |
| {
 | |
| 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 | |
| 	struct rq *rq = rq_of_dl_rq(dl_rq);
 | |
| 
 | |
| 	WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
 | |
| 
 | |
| 	/*
 | |
| 	 * We use the regular wall clock time to set deadlines in the
 | |
| 	 * future; in fact, we must consider execution overheads (time
 | |
| 	 * spent on hardirq context, etc.).
 | |
| 	 */
 | |
| 	dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 | |
| 	dl_se->runtime = pi_se->dl_runtime;
 | |
| 	dl_se->dl_new = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 | |
|  * possibility of a entity lasting more than what it declared, and thus
 | |
|  * exhausting its runtime.
 | |
|  *
 | |
|  * Here we are interested in making runtime overrun possible, but we do
 | |
|  * not want a entity which is misbehaving to affect the scheduling of all
 | |
|  * other entities.
 | |
|  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 | |
|  * is used, in order to confine each entity within its own bandwidth.
 | |
|  *
 | |
|  * This function deals exactly with that, and ensures that when the runtime
 | |
|  * of a entity is replenished, its deadline is also postponed. That ensures
 | |
|  * the overrunning entity can't interfere with other entity in the system and
 | |
|  * can't make them miss their deadlines. Reasons why this kind of overruns
 | |
|  * could happen are, typically, a entity voluntarily trying to overcome its
 | |
|  * runtime, or it just underestimated it during sched_setattr().
 | |
|  */
 | |
| static void replenish_dl_entity(struct sched_dl_entity *dl_se,
 | |
| 				struct sched_dl_entity *pi_se)
 | |
| {
 | |
| 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 | |
| 	struct rq *rq = rq_of_dl_rq(dl_rq);
 | |
| 
 | |
| 	BUG_ON(pi_se->dl_runtime <= 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * This could be the case for a !-dl task that is boosted.
 | |
| 	 * Just go with full inherited parameters.
 | |
| 	 */
 | |
| 	if (dl_se->dl_deadline == 0) {
 | |
| 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 | |
| 		dl_se->runtime = pi_se->dl_runtime;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We keep moving the deadline away until we get some
 | |
| 	 * available runtime for the entity. This ensures correct
 | |
| 	 * handling of situations where the runtime overrun is
 | |
| 	 * arbitrary large.
 | |
| 	 */
 | |
| 	while (dl_se->runtime <= 0) {
 | |
| 		dl_se->deadline += pi_se->dl_period;
 | |
| 		dl_se->runtime += pi_se->dl_runtime;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, the deadline really should be "in
 | |
| 	 * the future" with respect to rq->clock. If it's
 | |
| 	 * not, we are, for some reason, lagging too much!
 | |
| 	 * Anyway, after having warn userspace abut that,
 | |
| 	 * we still try to keep the things running by
 | |
| 	 * resetting the deadline and the budget of the
 | |
| 	 * entity.
 | |
| 	 */
 | |
| 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 | |
| 		printk_deferred_once("sched: DL replenish lagged to much\n");
 | |
| 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 | |
| 		dl_se->runtime = pi_se->dl_runtime;
 | |
| 	}
 | |
| 
 | |
| 	if (dl_se->dl_yielded)
 | |
| 		dl_se->dl_yielded = 0;
 | |
| 	if (dl_se->dl_throttled)
 | |
| 		dl_se->dl_throttled = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Here we check if --at time t-- an entity (which is probably being
 | |
|  * [re]activated or, in general, enqueued) can use its remaining runtime
 | |
|  * and its current deadline _without_ exceeding the bandwidth it is
 | |
|  * assigned (function returns true if it can't). We are in fact applying
 | |
|  * one of the CBS rules: when a task wakes up, if the residual runtime
 | |
|  * over residual deadline fits within the allocated bandwidth, then we
 | |
|  * can keep the current (absolute) deadline and residual budget without
 | |
|  * disrupting the schedulability of the system. Otherwise, we should
 | |
|  * refill the runtime and set the deadline a period in the future,
 | |
|  * because keeping the current (absolute) deadline of the task would
 | |
|  * result in breaking guarantees promised to other tasks (refer to
 | |
|  * Documentation/scheduler/sched-deadline.txt for more informations).
 | |
|  *
 | |
|  * This function returns true if:
 | |
|  *
 | |
|  *   runtime / (deadline - t) > dl_runtime / dl_period ,
 | |
|  *
 | |
|  * IOW we can't recycle current parameters.
 | |
|  *
 | |
|  * Notice that the bandwidth check is done against the period. For
 | |
|  * task with deadline equal to period this is the same of using
 | |
|  * dl_deadline instead of dl_period in the equation above.
 | |
|  */
 | |
| static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
 | |
| 			       struct sched_dl_entity *pi_se, u64 t)
 | |
| {
 | |
| 	u64 left, right;
 | |
| 
 | |
| 	/*
 | |
| 	 * left and right are the two sides of the equation above,
 | |
| 	 * after a bit of shuffling to use multiplications instead
 | |
| 	 * of divisions.
 | |
| 	 *
 | |
| 	 * Note that none of the time values involved in the two
 | |
| 	 * multiplications are absolute: dl_deadline and dl_runtime
 | |
| 	 * are the relative deadline and the maximum runtime of each
 | |
| 	 * instance, runtime is the runtime left for the last instance
 | |
| 	 * and (deadline - t), since t is rq->clock, is the time left
 | |
| 	 * to the (absolute) deadline. Even if overflowing the u64 type
 | |
| 	 * is very unlikely to occur in both cases, here we scale down
 | |
| 	 * as we want to avoid that risk at all. Scaling down by 10
 | |
| 	 * means that we reduce granularity to 1us. We are fine with it,
 | |
| 	 * since this is only a true/false check and, anyway, thinking
 | |
| 	 * of anything below microseconds resolution is actually fiction
 | |
| 	 * (but still we want to give the user that illusion >;).
 | |
| 	 */
 | |
| 	left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 | |
| 	right = ((dl_se->deadline - t) >> DL_SCALE) *
 | |
| 		(pi_se->dl_runtime >> DL_SCALE);
 | |
| 
 | |
| 	return dl_time_before(right, left);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When a -deadline entity is queued back on the runqueue, its runtime and
 | |
|  * deadline might need updating.
 | |
|  *
 | |
|  * The policy here is that we update the deadline of the entity only if:
 | |
|  *  - the current deadline is in the past,
 | |
|  *  - using the remaining runtime with the current deadline would make
 | |
|  *    the entity exceed its bandwidth.
 | |
|  */
 | |
| static void update_dl_entity(struct sched_dl_entity *dl_se,
 | |
| 			     struct sched_dl_entity *pi_se)
 | |
| {
 | |
| 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 | |
| 	struct rq *rq = rq_of_dl_rq(dl_rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * The arrival of a new instance needs special treatment, i.e.,
 | |
| 	 * the actual scheduling parameters have to be "renewed".
 | |
| 	 */
 | |
| 	if (dl_se->dl_new) {
 | |
| 		setup_new_dl_entity(dl_se, pi_se);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
 | |
| 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
 | |
| 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 | |
| 		dl_se->runtime = pi_se->dl_runtime;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the entity depleted all its runtime, and if we want it to sleep
 | |
|  * while waiting for some new execution time to become available, we
 | |
|  * set the bandwidth enforcement timer to the replenishment instant
 | |
|  * and try to activate it.
 | |
|  *
 | |
|  * Notice that it is important for the caller to know if the timer
 | |
|  * actually started or not (i.e., the replenishment instant is in
 | |
|  * the future or in the past).
 | |
|  */
 | |
| static int start_dl_timer(struct task_struct *p)
 | |
| {
 | |
| 	struct sched_dl_entity *dl_se = &p->dl;
 | |
| 	struct hrtimer *timer = &dl_se->dl_timer;
 | |
| 	struct rq *rq = task_rq(p);
 | |
| 	ktime_t now, act;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	lockdep_assert_held(&rq->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We want the timer to fire at the deadline, but considering
 | |
| 	 * that it is actually coming from rq->clock and not from
 | |
| 	 * hrtimer's time base reading.
 | |
| 	 */
 | |
| 	act = ns_to_ktime(dl_se->deadline);
 | |
| 	now = hrtimer_cb_get_time(timer);
 | |
| 	delta = ktime_to_ns(now) - rq_clock(rq);
 | |
| 	act = ktime_add_ns(act, delta);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the expiry time already passed, e.g., because the value
 | |
| 	 * chosen as the deadline is too small, don't even try to
 | |
| 	 * start the timer in the past!
 | |
| 	 */
 | |
| 	if (ktime_us_delta(act, now) < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * !enqueued will guarantee another callback; even if one is already in
 | |
| 	 * progress. This ensures a balanced {get,put}_task_struct().
 | |
| 	 *
 | |
| 	 * The race against __run_timer() clearing the enqueued state is
 | |
| 	 * harmless because we're holding task_rq()->lock, therefore the timer
 | |
| 	 * expiring after we've done the check will wait on its task_rq_lock()
 | |
| 	 * and observe our state.
 | |
| 	 */
 | |
| 	if (!hrtimer_is_queued(timer)) {
 | |
| 		get_task_struct(p);
 | |
| 		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the bandwidth enforcement timer callback. If here, we know
 | |
|  * a task is not on its dl_rq, since the fact that the timer was running
 | |
|  * means the task is throttled and needs a runtime replenishment.
 | |
|  *
 | |
|  * However, what we actually do depends on the fact the task is active,
 | |
|  * (it is on its rq) or has been removed from there by a call to
 | |
|  * dequeue_task_dl(). In the former case we must issue the runtime
 | |
|  * replenishment and add the task back to the dl_rq; in the latter, we just
 | |
|  * do nothing but clearing dl_throttled, so that runtime and deadline
 | |
|  * updating (and the queueing back to dl_rq) will be done by the
 | |
|  * next call to enqueue_task_dl().
 | |
|  */
 | |
| static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
 | |
| {
 | |
| 	struct sched_dl_entity *dl_se = container_of(timer,
 | |
| 						     struct sched_dl_entity,
 | |
| 						     dl_timer);
 | |
| 	struct task_struct *p = dl_task_of(dl_se);
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	rq = task_rq_lock(p, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * The task might have changed its scheduling policy to something
 | |
| 	 * different than SCHED_DEADLINE (through switched_fromd_dl()).
 | |
| 	 */
 | |
| 	if (!dl_task(p)) {
 | |
| 		__dl_clear_params(p);
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This is possible if switched_from_dl() raced against a running
 | |
| 	 * callback that took the above !dl_task() path and we've since then
 | |
| 	 * switched back into SCHED_DEADLINE.
 | |
| 	 *
 | |
| 	 * There's nothing to do except drop our task reference.
 | |
| 	 */
 | |
| 	if (dl_se->dl_new)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * The task might have been boosted by someone else and might be in the
 | |
| 	 * boosting/deboosting path, its not throttled.
 | |
| 	 */
 | |
| 	if (dl_se->dl_boosted)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Spurious timer due to start_dl_timer() race; or we already received
 | |
| 	 * a replenishment from rt_mutex_setprio().
 | |
| 	 */
 | |
| 	if (!dl_se->dl_throttled)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	sched_clock_tick();
 | |
| 	update_rq_clock(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the throttle happened during sched-out; like:
 | |
| 	 *
 | |
| 	 *   schedule()
 | |
| 	 *     deactivate_task()
 | |
| 	 *       dequeue_task_dl()
 | |
| 	 *         update_curr_dl()
 | |
| 	 *           start_dl_timer()
 | |
| 	 *         __dequeue_task_dl()
 | |
| 	 *     prev->on_rq = 0;
 | |
| 	 *
 | |
| 	 * We can be both throttled and !queued. Replenish the counter
 | |
| 	 * but do not enqueue -- wait for our wakeup to do that.
 | |
| 	 */
 | |
| 	if (!task_on_rq_queued(p)) {
 | |
| 		replenish_dl_entity(dl_se, dl_se);
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
 | |
| 	if (dl_task(rq->curr))
 | |
| 		check_preempt_curr_dl(rq, p, 0);
 | |
| 	else
 | |
| 		resched_curr(rq);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * Perform balancing operations here; after the replenishments.  We
 | |
| 	 * cannot drop rq->lock before this, otherwise the assertion in
 | |
| 	 * start_dl_timer() about not missing updates is not true.
 | |
| 	 *
 | |
| 	 * If we find that the rq the task was on is no longer available, we
 | |
| 	 * need to select a new rq.
 | |
| 	 *
 | |
| 	 * XXX figure out if select_task_rq_dl() deals with offline cpus.
 | |
| 	 */
 | |
| 	if (unlikely(!rq->online))
 | |
| 		rq = dl_task_offline_migration(rq, p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Queueing this task back might have overloaded rq, check if we need
 | |
| 	 * to kick someone away.
 | |
| 	 */
 | |
| 	if (has_pushable_dl_tasks(rq))
 | |
| 		push_dl_task(rq);
 | |
| #endif
 | |
| 
 | |
| unlock:
 | |
| 	task_rq_unlock(rq, p, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * This can free the task_struct, including this hrtimer, do not touch
 | |
| 	 * anything related to that after this.
 | |
| 	 */
 | |
| 	put_task_struct(p);
 | |
| 
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| void init_dl_task_timer(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct hrtimer *timer = &dl_se->dl_timer;
 | |
| 
 | |
| 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 | |
| 	timer->function = dl_task_timer;
 | |
| }
 | |
| 
 | |
| static
 | |
| int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	return (dl_se->runtime <= 0);
 | |
| }
 | |
| 
 | |
| extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
 | |
| 
 | |
| /*
 | |
|  * Update the current task's runtime statistics (provided it is still
 | |
|  * a -deadline task and has not been removed from the dl_rq).
 | |
|  */
 | |
| static void update_curr_dl(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *curr = rq->curr;
 | |
| 	struct sched_dl_entity *dl_se = &curr->dl;
 | |
| 	u64 delta_exec;
 | |
| 
 | |
| 	if (!dl_task(curr) || !on_dl_rq(dl_se))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Consumed budget is computed considering the time as
 | |
| 	 * observed by schedulable tasks (excluding time spent
 | |
| 	 * in hardirq context, etc.). Deadlines are instead
 | |
| 	 * computed using hard walltime. This seems to be the more
 | |
| 	 * natural solution, but the full ramifications of this
 | |
| 	 * approach need further study.
 | |
| 	 */
 | |
| 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
 | |
| 	if (unlikely((s64)delta_exec <= 0))
 | |
| 		return;
 | |
| 
 | |
| 	schedstat_set(curr->se.statistics.exec_max,
 | |
| 		      max(curr->se.statistics.exec_max, delta_exec));
 | |
| 
 | |
| 	curr->se.sum_exec_runtime += delta_exec;
 | |
| 	account_group_exec_runtime(curr, delta_exec);
 | |
| 
 | |
| 	curr->se.exec_start = rq_clock_task(rq);
 | |
| 	cpuacct_charge(curr, delta_exec);
 | |
| 
 | |
| 	sched_rt_avg_update(rq, delta_exec);
 | |
| 
 | |
| 	dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
 | |
| 	if (dl_runtime_exceeded(dl_se)) {
 | |
| 		dl_se->dl_throttled = 1;
 | |
| 		__dequeue_task_dl(rq, curr, 0);
 | |
| 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
 | |
| 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
 | |
| 
 | |
| 		if (!is_leftmost(curr, &rq->dl))
 | |
| 			resched_curr(rq);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Because -- for now -- we share the rt bandwidth, we need to
 | |
| 	 * account our runtime there too, otherwise actual rt tasks
 | |
| 	 * would be able to exceed the shared quota.
 | |
| 	 *
 | |
| 	 * Account to the root rt group for now.
 | |
| 	 *
 | |
| 	 * The solution we're working towards is having the RT groups scheduled
 | |
| 	 * using deadline servers -- however there's a few nasties to figure
 | |
| 	 * out before that can happen.
 | |
| 	 */
 | |
| 	if (rt_bandwidth_enabled()) {
 | |
| 		struct rt_rq *rt_rq = &rq->rt;
 | |
| 
 | |
| 		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 		/*
 | |
| 		 * We'll let actual RT tasks worry about the overflow here, we
 | |
| 		 * have our own CBS to keep us inline; only account when RT
 | |
| 		 * bandwidth is relevant.
 | |
| 		 */
 | |
| 		if (sched_rt_bandwidth_account(rt_rq))
 | |
| 			rt_rq->rt_time += delta_exec;
 | |
| 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
 | |
| 
 | |
| static inline u64 next_deadline(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
 | |
| 
 | |
| 	if (next && dl_prio(next->prio))
 | |
| 		return next->dl.deadline;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
 | |
| {
 | |
| 	struct rq *rq = rq_of_dl_rq(dl_rq);
 | |
| 
 | |
| 	if (dl_rq->earliest_dl.curr == 0 ||
 | |
| 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
 | |
| 		/*
 | |
| 		 * If the dl_rq had no -deadline tasks, or if the new task
 | |
| 		 * has shorter deadline than the current one on dl_rq, we
 | |
| 		 * know that the previous earliest becomes our next earliest,
 | |
| 		 * as the new task becomes the earliest itself.
 | |
| 		 */
 | |
| 		dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
 | |
| 		dl_rq->earliest_dl.curr = deadline;
 | |
| 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
 | |
| 	} else if (dl_rq->earliest_dl.next == 0 ||
 | |
| 		   dl_time_before(deadline, dl_rq->earliest_dl.next)) {
 | |
| 		/*
 | |
| 		 * On the other hand, if the new -deadline task has a
 | |
| 		 * a later deadline than the earliest one on dl_rq, but
 | |
| 		 * it is earlier than the next (if any), we must
 | |
| 		 * recompute the next-earliest.
 | |
| 		 */
 | |
| 		dl_rq->earliest_dl.next = next_deadline(rq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
 | |
| {
 | |
| 	struct rq *rq = rq_of_dl_rq(dl_rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we may have removed our earliest (and/or next earliest)
 | |
| 	 * task we must recompute them.
 | |
| 	 */
 | |
| 	if (!dl_rq->dl_nr_running) {
 | |
| 		dl_rq->earliest_dl.curr = 0;
 | |
| 		dl_rq->earliest_dl.next = 0;
 | |
| 		cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
 | |
| 	} else {
 | |
| 		struct rb_node *leftmost = dl_rq->rb_leftmost;
 | |
| 		struct sched_dl_entity *entry;
 | |
| 
 | |
| 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
 | |
| 		dl_rq->earliest_dl.curr = entry->deadline;
 | |
| 		dl_rq->earliest_dl.next = next_deadline(rq);
 | |
| 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
 | |
| static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static inline
 | |
| void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 | |
| {
 | |
| 	int prio = dl_task_of(dl_se)->prio;
 | |
| 	u64 deadline = dl_se->deadline;
 | |
| 
 | |
| 	WARN_ON(!dl_prio(prio));
 | |
| 	dl_rq->dl_nr_running++;
 | |
| 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
 | |
| 
 | |
| 	inc_dl_deadline(dl_rq, deadline);
 | |
| 	inc_dl_migration(dl_se, dl_rq);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 | |
| {
 | |
| 	int prio = dl_task_of(dl_se)->prio;
 | |
| 
 | |
| 	WARN_ON(!dl_prio(prio));
 | |
| 	WARN_ON(!dl_rq->dl_nr_running);
 | |
| 	dl_rq->dl_nr_running--;
 | |
| 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
 | |
| 
 | |
| 	dec_dl_deadline(dl_rq, dl_se->deadline);
 | |
| 	dec_dl_migration(dl_se, dl_rq);
 | |
| }
 | |
| 
 | |
| static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 | |
| 	struct rb_node **link = &dl_rq->rb_root.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct sched_dl_entity *entry;
 | |
| 	int leftmost = 1;
 | |
| 
 | |
| 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
 | |
| 
 | |
| 	while (*link) {
 | |
| 		parent = *link;
 | |
| 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
 | |
| 		if (dl_time_before(dl_se->deadline, entry->deadline))
 | |
| 			link = &parent->rb_left;
 | |
| 		else {
 | |
| 			link = &parent->rb_right;
 | |
| 			leftmost = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (leftmost)
 | |
| 		dl_rq->rb_leftmost = &dl_se->rb_node;
 | |
| 
 | |
| 	rb_link_node(&dl_se->rb_node, parent, link);
 | |
| 	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
 | |
| 
 | |
| 	inc_dl_tasks(dl_se, dl_rq);
 | |
| }
 | |
| 
 | |
| static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 | |
| 
 | |
| 	if (RB_EMPTY_NODE(&dl_se->rb_node))
 | |
| 		return;
 | |
| 
 | |
| 	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
 | |
| 		struct rb_node *next_node;
 | |
| 
 | |
| 		next_node = rb_next(&dl_se->rb_node);
 | |
| 		dl_rq->rb_leftmost = next_node;
 | |
| 	}
 | |
| 
 | |
| 	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
 | |
| 	RB_CLEAR_NODE(&dl_se->rb_node);
 | |
| 
 | |
| 	dec_dl_tasks(dl_se, dl_rq);
 | |
| }
 | |
| 
 | |
| static void
 | |
| enqueue_dl_entity(struct sched_dl_entity *dl_se,
 | |
| 		  struct sched_dl_entity *pi_se, int flags)
 | |
| {
 | |
| 	BUG_ON(on_dl_rq(dl_se));
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a wakeup or a new instance, the scheduling
 | |
| 	 * parameters of the task might need updating. Otherwise,
 | |
| 	 * we want a replenishment of its runtime.
 | |
| 	 */
 | |
| 	if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
 | |
| 		update_dl_entity(dl_se, pi_se);
 | |
| 	else if (flags & ENQUEUE_REPLENISH)
 | |
| 		replenish_dl_entity(dl_se, pi_se);
 | |
| 
 | |
| 	__enqueue_dl_entity(dl_se);
 | |
| }
 | |
| 
 | |
| static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
 | |
| {
 | |
| 	__dequeue_dl_entity(dl_se);
 | |
| }
 | |
| 
 | |
| static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
 | |
| 	struct sched_dl_entity *pi_se = &p->dl;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use the scheduling parameters of the top pi-waiter
 | |
| 	 * task if we have one and its (relative) deadline is
 | |
| 	 * smaller than our one... OTW we keep our runtime and
 | |
| 	 * deadline.
 | |
| 	 */
 | |
| 	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
 | |
| 		pi_se = &pi_task->dl;
 | |
| 	} else if (!dl_prio(p->normal_prio)) {
 | |
| 		/*
 | |
| 		 * Special case in which we have a !SCHED_DEADLINE task
 | |
| 		 * that is going to be deboosted, but exceedes its
 | |
| 		 * runtime while doing so. No point in replenishing
 | |
| 		 * it, as it's going to return back to its original
 | |
| 		 * scheduling class after this.
 | |
| 		 */
 | |
| 		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If p is throttled, we do nothing. In fact, if it exhausted
 | |
| 	 * its budget it needs a replenishment and, since it now is on
 | |
| 	 * its rq, the bandwidth timer callback (which clearly has not
 | |
| 	 * run yet) will take care of this.
 | |
| 	 */
 | |
| 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
 | |
| 		return;
 | |
| 
 | |
| 	enqueue_dl_entity(&p->dl, pi_se, flags);
 | |
| 
 | |
| 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
 | |
| 		enqueue_pushable_dl_task(rq, p);
 | |
| }
 | |
| 
 | |
| static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	dequeue_dl_entity(&p->dl);
 | |
| 	dequeue_pushable_dl_task(rq, p);
 | |
| }
 | |
| 
 | |
| static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	update_curr_dl(rq);
 | |
| 	__dequeue_task_dl(rq, p, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Yield task semantic for -deadline tasks is:
 | |
|  *
 | |
|  *   get off from the CPU until our next instance, with
 | |
|  *   a new runtime. This is of little use now, since we
 | |
|  *   don't have a bandwidth reclaiming mechanism. Anyway,
 | |
|  *   bandwidth reclaiming is planned for the future, and
 | |
|  *   yield_task_dl will indicate that some spare budget
 | |
|  *   is available for other task instances to use it.
 | |
|  */
 | |
| static void yield_task_dl(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *p = rq->curr;
 | |
| 
 | |
| 	/*
 | |
| 	 * We make the task go to sleep until its current deadline by
 | |
| 	 * forcing its runtime to zero. This way, update_curr_dl() stops
 | |
| 	 * it and the bandwidth timer will wake it up and will give it
 | |
| 	 * new scheduling parameters (thanks to dl_yielded=1).
 | |
| 	 */
 | |
| 	if (p->dl.runtime > 0) {
 | |
| 		rq->curr->dl.dl_yielded = 1;
 | |
| 		p->dl.runtime = 0;
 | |
| 	}
 | |
| 	update_rq_clock(rq);
 | |
| 	update_curr_dl(rq);
 | |
| 	/*
 | |
| 	 * Tell update_rq_clock() that we've just updated,
 | |
| 	 * so we don't do microscopic update in schedule()
 | |
| 	 * and double the fastpath cost.
 | |
| 	 */
 | |
| 	rq_clock_skip_update(rq, true);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static int find_later_rq(struct task_struct *task);
 | |
| 
 | |
| static int
 | |
| select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
 | |
| {
 | |
| 	struct task_struct *curr;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	if (sd_flag != SD_BALANCE_WAKE)
 | |
| 		goto out;
 | |
| 
 | |
| 	rq = cpu_rq(cpu);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	curr = READ_ONCE(rq->curr); /* unlocked access */
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are dealing with a -deadline task, we must
 | |
| 	 * decide where to wake it up.
 | |
| 	 * If it has a later deadline and the current task
 | |
| 	 * on this rq can't move (provided the waking task
 | |
| 	 * can!) we prefer to send it somewhere else. On the
 | |
| 	 * other hand, if it has a shorter deadline, we
 | |
| 	 * try to make it stay here, it might be important.
 | |
| 	 */
 | |
| 	if (unlikely(dl_task(curr)) &&
 | |
| 	    (curr->nr_cpus_allowed < 2 ||
 | |
| 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
 | |
| 	    (p->nr_cpus_allowed > 1)) {
 | |
| 		int target = find_later_rq(p);
 | |
| 
 | |
| 		if (target != -1 &&
 | |
| 				dl_time_before(p->dl.deadline,
 | |
| 					cpu_rq(target)->dl.earliest_dl.curr))
 | |
| 			cpu = target;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| out:
 | |
| 	return cpu;
 | |
| }
 | |
| 
 | |
| static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * Current can't be migrated, useless to reschedule,
 | |
| 	 * let's hope p can move out.
 | |
| 	 */
 | |
| 	if (rq->curr->nr_cpus_allowed == 1 ||
 | |
| 	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * p is migratable, so let's not schedule it and
 | |
| 	 * see if it is pushed or pulled somewhere else.
 | |
| 	 */
 | |
| 	if (p->nr_cpus_allowed != 1 &&
 | |
| 	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
 | |
| 		return;
 | |
| 
 | |
| 	resched_curr(rq);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * Only called when both the current and waking task are -deadline
 | |
|  * tasks.
 | |
|  */
 | |
| static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
 | |
| 				  int flags)
 | |
| {
 | |
| 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
 | |
| 		resched_curr(rq);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * In the unlikely case current and p have the same deadline
 | |
| 	 * let us try to decide what's the best thing to do...
 | |
| 	 */
 | |
| 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
 | |
| 	    !test_tsk_need_resched(rq->curr))
 | |
| 		check_preempt_equal_dl(rq, p);
 | |
| #endif /* CONFIG_SMP */
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SCHED_HRTICK
 | |
| static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	hrtick_start(rq, p->dl.runtime);
 | |
| }
 | |
| #else /* !CONFIG_SCHED_HRTICK */
 | |
| static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
 | |
| 						   struct dl_rq *dl_rq)
 | |
| {
 | |
| 	struct rb_node *left = dl_rq->rb_leftmost;
 | |
| 
 | |
| 	if (!left)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return rb_entry(left, struct sched_dl_entity, rb_node);
 | |
| }
 | |
| 
 | |
| struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	struct sched_dl_entity *dl_se;
 | |
| 	struct task_struct *p;
 | |
| 	struct dl_rq *dl_rq;
 | |
| 
 | |
| 	dl_rq = &rq->dl;
 | |
| 
 | |
| 	if (need_pull_dl_task(rq, prev)) {
 | |
| 		/*
 | |
| 		 * This is OK, because current is on_cpu, which avoids it being
 | |
| 		 * picked for load-balance and preemption/IRQs are still
 | |
| 		 * disabled avoiding further scheduler activity on it and we're
 | |
| 		 * being very careful to re-start the picking loop.
 | |
| 		 */
 | |
| 		lockdep_unpin_lock(&rq->lock);
 | |
| 		pull_dl_task(rq);
 | |
| 		lockdep_pin_lock(&rq->lock);
 | |
| 		/*
 | |
| 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
 | |
| 		 * means a stop task can slip in, in which case we need to
 | |
| 		 * re-start task selection.
 | |
| 		 */
 | |
| 		if (rq->stop && task_on_rq_queued(rq->stop))
 | |
| 			return RETRY_TASK;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When prev is DL, we may throttle it in put_prev_task().
 | |
| 	 * So, we update time before we check for dl_nr_running.
 | |
| 	 */
 | |
| 	if (prev->sched_class == &dl_sched_class)
 | |
| 		update_curr_dl(rq);
 | |
| 
 | |
| 	if (unlikely(!dl_rq->dl_nr_running))
 | |
| 		return NULL;
 | |
| 
 | |
| 	put_prev_task(rq, prev);
 | |
| 
 | |
| 	dl_se = pick_next_dl_entity(rq, dl_rq);
 | |
| 	BUG_ON(!dl_se);
 | |
| 
 | |
| 	p = dl_task_of(dl_se);
 | |
| 	p->se.exec_start = rq_clock_task(rq);
 | |
| 
 | |
| 	/* Running task will never be pushed. */
 | |
|        dequeue_pushable_dl_task(rq, p);
 | |
| 
 | |
| 	if (hrtick_enabled(rq))
 | |
| 		start_hrtick_dl(rq, p);
 | |
| 
 | |
| 	queue_push_tasks(rq);
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	update_curr_dl(rq);
 | |
| 
 | |
| 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
 | |
| 		enqueue_pushable_dl_task(rq, p);
 | |
| }
 | |
| 
 | |
| static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
 | |
| {
 | |
| 	update_curr_dl(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Even when we have runtime, update_curr_dl() might have resulted in us
 | |
| 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
 | |
| 	 * be set and schedule() will start a new hrtick for the next task.
 | |
| 	 */
 | |
| 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
 | |
| 	    is_leftmost(p, &rq->dl))
 | |
| 		start_hrtick_dl(rq, p);
 | |
| }
 | |
| 
 | |
| static void task_fork_dl(struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
 | |
| 	 * sched_fork()
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| static void task_dead_dl(struct task_struct *p)
 | |
| {
 | |
| 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we are TASK_DEAD we won't slip out of the domain!
 | |
| 	 */
 | |
| 	raw_spin_lock_irq(&dl_b->lock);
 | |
| 	/* XXX we should retain the bw until 0-lag */
 | |
| 	dl_b->total_bw -= p->dl.dl_bw;
 | |
| 	raw_spin_unlock_irq(&dl_b->lock);
 | |
| }
 | |
| 
 | |
| static void set_curr_task_dl(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *p = rq->curr;
 | |
| 
 | |
| 	p->se.exec_start = rq_clock_task(rq);
 | |
| 
 | |
| 	/* You can't push away the running task */
 | |
| 	dequeue_pushable_dl_task(rq, p);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| /* Only try algorithms three times */
 | |
| #define DL_MAX_TRIES 3
 | |
| 
 | |
| static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
 | |
| {
 | |
| 	if (!task_running(rq, p) &&
 | |
| 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Returns the second earliest -deadline task, NULL otherwise */
 | |
| static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
 | |
| {
 | |
| 	struct rb_node *next_node = rq->dl.rb_leftmost;
 | |
| 	struct sched_dl_entity *dl_se;
 | |
| 	struct task_struct *p = NULL;
 | |
| 
 | |
| next_node:
 | |
| 	next_node = rb_next(next_node);
 | |
| 	if (next_node) {
 | |
| 		dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
 | |
| 		p = dl_task_of(dl_se);
 | |
| 
 | |
| 		if (pick_dl_task(rq, p, cpu))
 | |
| 			return p;
 | |
| 
 | |
| 		goto next_node;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the earliest pushable rq's task, which is suitable to be executed
 | |
|  * on the CPU, NULL otherwise:
 | |
|  */
 | |
| static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
 | |
| {
 | |
| 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
 | |
| 	struct task_struct *p = NULL;
 | |
| 
 | |
| 	if (!has_pushable_dl_tasks(rq))
 | |
| 		return NULL;
 | |
| 
 | |
| next_node:
 | |
| 	if (next_node) {
 | |
| 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
 | |
| 
 | |
| 		if (pick_dl_task(rq, p, cpu))
 | |
| 			return p;
 | |
| 
 | |
| 		next_node = rb_next(next_node);
 | |
| 		goto next_node;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
 | |
| 
 | |
| static int find_later_rq(struct task_struct *task)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
 | |
| 	int this_cpu = smp_processor_id();
 | |
| 	int best_cpu, cpu = task_cpu(task);
 | |
| 
 | |
| 	/* Make sure the mask is initialized first */
 | |
| 	if (unlikely(!later_mask))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (task->nr_cpus_allowed == 1)
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to consider system topology and task affinity
 | |
| 	 * first, then we can look for a suitable cpu.
 | |
| 	 */
 | |
| 	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
 | |
| 			task, later_mask);
 | |
| 	if (best_cpu == -1)
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are here, some target has been found,
 | |
| 	 * the most suitable of which is cached in best_cpu.
 | |
| 	 * This is, among the runqueues where the current tasks
 | |
| 	 * have later deadlines than the task's one, the rq
 | |
| 	 * with the latest possible one.
 | |
| 	 *
 | |
| 	 * Now we check how well this matches with task's
 | |
| 	 * affinity and system topology.
 | |
| 	 *
 | |
| 	 * The last cpu where the task run is our first
 | |
| 	 * guess, since it is most likely cache-hot there.
 | |
| 	 */
 | |
| 	if (cpumask_test_cpu(cpu, later_mask))
 | |
| 		return cpu;
 | |
| 	/*
 | |
| 	 * Check if this_cpu is to be skipped (i.e., it is
 | |
| 	 * not in the mask) or not.
 | |
| 	 */
 | |
| 	if (!cpumask_test_cpu(this_cpu, later_mask))
 | |
| 		this_cpu = -1;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_domain(cpu, sd) {
 | |
| 		if (sd->flags & SD_WAKE_AFFINE) {
 | |
| 
 | |
| 			/*
 | |
| 			 * If possible, preempting this_cpu is
 | |
| 			 * cheaper than migrating.
 | |
| 			 */
 | |
| 			if (this_cpu != -1 &&
 | |
| 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
 | |
| 				rcu_read_unlock();
 | |
| 				return this_cpu;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Last chance: if best_cpu is valid and is
 | |
| 			 * in the mask, that becomes our choice.
 | |
| 			 */
 | |
| 			if (best_cpu < nr_cpu_ids &&
 | |
| 			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
 | |
| 				rcu_read_unlock();
 | |
| 				return best_cpu;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, all our guesses failed, we just return
 | |
| 	 * 'something', and let the caller sort the things out.
 | |
| 	 */
 | |
| 	if (this_cpu != -1)
 | |
| 		return this_cpu;
 | |
| 
 | |
| 	cpu = cpumask_any(later_mask);
 | |
| 	if (cpu < nr_cpu_ids)
 | |
| 		return cpu;
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Locks the rq it finds */
 | |
| static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
 | |
| {
 | |
| 	struct rq *later_rq = NULL;
 | |
| 	int tries;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
 | |
| 		cpu = find_later_rq(task);
 | |
| 
 | |
| 		if ((cpu == -1) || (cpu == rq->cpu))
 | |
| 			break;
 | |
| 
 | |
| 		later_rq = cpu_rq(cpu);
 | |
| 
 | |
| 		if (!dl_time_before(task->dl.deadline,
 | |
| 					later_rq->dl.earliest_dl.curr)) {
 | |
| 			/*
 | |
| 			 * Target rq has tasks of equal or earlier deadline,
 | |
| 			 * retrying does not release any lock and is unlikely
 | |
| 			 * to yield a different result.
 | |
| 			 */
 | |
| 			later_rq = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Retry if something changed. */
 | |
| 		if (double_lock_balance(rq, later_rq)) {
 | |
| 			if (unlikely(task_rq(task) != rq ||
 | |
| 				     !cpumask_test_cpu(later_rq->cpu,
 | |
| 				                       &task->cpus_allowed) ||
 | |
| 				     task_running(rq, task) ||
 | |
| 				     !task_on_rq_queued(task))) {
 | |
| 				double_unlock_balance(rq, later_rq);
 | |
| 				later_rq = NULL;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If the rq we found has no -deadline task, or
 | |
| 		 * its earliest one has a later deadline than our
 | |
| 		 * task, the rq is a good one.
 | |
| 		 */
 | |
| 		if (!later_rq->dl.dl_nr_running ||
 | |
| 		    dl_time_before(task->dl.deadline,
 | |
| 				   later_rq->dl.earliest_dl.curr))
 | |
| 			break;
 | |
| 
 | |
| 		/* Otherwise we try again. */
 | |
| 		double_unlock_balance(rq, later_rq);
 | |
| 		later_rq = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return later_rq;
 | |
| }
 | |
| 
 | |
| static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	if (!has_pushable_dl_tasks(rq))
 | |
| 		return NULL;
 | |
| 
 | |
| 	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
 | |
| 		     struct task_struct, pushable_dl_tasks);
 | |
| 
 | |
| 	BUG_ON(rq->cpu != task_cpu(p));
 | |
| 	BUG_ON(task_current(rq, p));
 | |
| 	BUG_ON(p->nr_cpus_allowed <= 1);
 | |
| 
 | |
| 	BUG_ON(!task_on_rq_queued(p));
 | |
| 	BUG_ON(!dl_task(p));
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See if the non running -deadline tasks on this rq
 | |
|  * can be sent to some other CPU where they can preempt
 | |
|  * and start executing.
 | |
|  */
 | |
| static int push_dl_task(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *next_task;
 | |
| 	struct rq *later_rq;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!rq->dl.overloaded)
 | |
| 		return 0;
 | |
| 
 | |
| 	next_task = pick_next_pushable_dl_task(rq);
 | |
| 	if (!next_task)
 | |
| 		return 0;
 | |
| 
 | |
| retry:
 | |
| 	if (unlikely(next_task == rq->curr)) {
 | |
| 		WARN_ON(1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If next_task preempts rq->curr, and rq->curr
 | |
| 	 * can move away, it makes sense to just reschedule
 | |
| 	 * without going further in pushing next_task.
 | |
| 	 */
 | |
| 	if (dl_task(rq->curr) &&
 | |
| 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
 | |
| 	    rq->curr->nr_cpus_allowed > 1) {
 | |
| 		resched_curr(rq);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* We might release rq lock */
 | |
| 	get_task_struct(next_task);
 | |
| 
 | |
| 	/* Will lock the rq it'll find */
 | |
| 	later_rq = find_lock_later_rq(next_task, rq);
 | |
| 	if (!later_rq) {
 | |
| 		struct task_struct *task;
 | |
| 
 | |
| 		/*
 | |
| 		 * We must check all this again, since
 | |
| 		 * find_lock_later_rq releases rq->lock and it is
 | |
| 		 * then possible that next_task has migrated.
 | |
| 		 */
 | |
| 		task = pick_next_pushable_dl_task(rq);
 | |
| 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
 | |
| 			/*
 | |
| 			 * The task is still there. We don't try
 | |
| 			 * again, some other cpu will pull it when ready.
 | |
| 			 */
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (!task)
 | |
| 			/* No more tasks */
 | |
| 			goto out;
 | |
| 
 | |
| 		put_task_struct(next_task);
 | |
| 		next_task = task;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	deactivate_task(rq, next_task, 0);
 | |
| 	set_task_cpu(next_task, later_rq->cpu);
 | |
| 	activate_task(later_rq, next_task, 0);
 | |
| 	ret = 1;
 | |
| 
 | |
| 	resched_curr(later_rq);
 | |
| 
 | |
| 	double_unlock_balance(rq, later_rq);
 | |
| 
 | |
| out:
 | |
| 	put_task_struct(next_task);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void push_dl_tasks(struct rq *rq)
 | |
| {
 | |
| 	/* Terminates as it moves a -deadline task */
 | |
| 	while (push_dl_task(rq))
 | |
| 		;
 | |
| }
 | |
| 
 | |
| static void pull_dl_task(struct rq *this_rq)
 | |
| {
 | |
| 	int this_cpu = this_rq->cpu, cpu;
 | |
| 	struct task_struct *p;
 | |
| 	bool resched = false;
 | |
| 	struct rq *src_rq;
 | |
| 	u64 dmin = LONG_MAX;
 | |
| 
 | |
| 	if (likely(!dl_overloaded(this_rq)))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
 | |
| 	 * see overloaded we must also see the dlo_mask bit.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
 | |
| 		if (this_cpu == cpu)
 | |
| 			continue;
 | |
| 
 | |
| 		src_rq = cpu_rq(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * It looks racy, abd it is! However, as in sched_rt.c,
 | |
| 		 * we are fine with this.
 | |
| 		 */
 | |
| 		if (this_rq->dl.dl_nr_running &&
 | |
| 		    dl_time_before(this_rq->dl.earliest_dl.curr,
 | |
| 				   src_rq->dl.earliest_dl.next))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Might drop this_rq->lock */
 | |
| 		double_lock_balance(this_rq, src_rq);
 | |
| 
 | |
| 		/*
 | |
| 		 * If there are no more pullable tasks on the
 | |
| 		 * rq, we're done with it.
 | |
| 		 */
 | |
| 		if (src_rq->dl.dl_nr_running <= 1)
 | |
| 			goto skip;
 | |
| 
 | |
| 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * We found a task to be pulled if:
 | |
| 		 *  - it preempts our current (if there's one),
 | |
| 		 *  - it will preempt the last one we pulled (if any).
 | |
| 		 */
 | |
| 		if (p && dl_time_before(p->dl.deadline, dmin) &&
 | |
| 		    (!this_rq->dl.dl_nr_running ||
 | |
| 		     dl_time_before(p->dl.deadline,
 | |
| 				    this_rq->dl.earliest_dl.curr))) {
 | |
| 			WARN_ON(p == src_rq->curr);
 | |
| 			WARN_ON(!task_on_rq_queued(p));
 | |
| 
 | |
| 			/*
 | |
| 			 * Then we pull iff p has actually an earlier
 | |
| 			 * deadline than the current task of its runqueue.
 | |
| 			 */
 | |
| 			if (dl_time_before(p->dl.deadline,
 | |
| 					   src_rq->curr->dl.deadline))
 | |
| 				goto skip;
 | |
| 
 | |
| 			resched = true;
 | |
| 
 | |
| 			deactivate_task(src_rq, p, 0);
 | |
| 			set_task_cpu(p, this_cpu);
 | |
| 			activate_task(this_rq, p, 0);
 | |
| 			dmin = p->dl.deadline;
 | |
| 
 | |
| 			/* Is there any other task even earlier? */
 | |
| 		}
 | |
| skip:
 | |
| 		double_unlock_balance(this_rq, src_rq);
 | |
| 	}
 | |
| 
 | |
| 	if (resched)
 | |
| 		resched_curr(this_rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Since the task is not running and a reschedule is not going to happen
 | |
|  * anytime soon on its runqueue, we try pushing it away now.
 | |
|  */
 | |
| static void task_woken_dl(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	if (!task_running(rq, p) &&
 | |
| 	    !test_tsk_need_resched(rq->curr) &&
 | |
| 	    has_pushable_dl_tasks(rq) &&
 | |
| 	    p->nr_cpus_allowed > 1 &&
 | |
| 	    dl_task(rq->curr) &&
 | |
| 	    (rq->curr->nr_cpus_allowed < 2 ||
 | |
| 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
 | |
| 		push_dl_tasks(rq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_cpus_allowed_dl(struct task_struct *p,
 | |
| 				const struct cpumask *new_mask)
 | |
| {
 | |
| 	struct rq *rq;
 | |
| 	struct root_domain *src_rd;
 | |
| 	int weight;
 | |
| 
 | |
| 	BUG_ON(!dl_task(p));
 | |
| 
 | |
| 	rq = task_rq(p);
 | |
| 	src_rd = rq->rd;
 | |
| 	/*
 | |
| 	 * Migrating a SCHED_DEADLINE task between exclusive
 | |
| 	 * cpusets (different root_domains) entails a bandwidth
 | |
| 	 * update. We already made space for us in the destination
 | |
| 	 * domain (see cpuset_can_attach()).
 | |
| 	 */
 | |
| 	if (!cpumask_intersects(src_rd->span, new_mask)) {
 | |
| 		struct dl_bw *src_dl_b;
 | |
| 
 | |
| 		src_dl_b = dl_bw_of(cpu_of(rq));
 | |
| 		/*
 | |
| 		 * We now free resources of the root_domain we are migrating
 | |
| 		 * off. In the worst case, sched_setattr() may temporary fail
 | |
| 		 * until we complete the update.
 | |
| 		 */
 | |
| 		raw_spin_lock(&src_dl_b->lock);
 | |
| 		__dl_clear(src_dl_b, p->dl.dl_bw);
 | |
| 		raw_spin_unlock(&src_dl_b->lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Update only if the task is actually running (i.e.,
 | |
| 	 * it is on the rq AND it is not throttled).
 | |
| 	 */
 | |
| 	if (!on_dl_rq(&p->dl))
 | |
| 		return;
 | |
| 
 | |
| 	weight = cpumask_weight(new_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Only update if the process changes its state from whether it
 | |
| 	 * can migrate or not.
 | |
| 	 */
 | |
| 	if ((p->nr_cpus_allowed > 1) == (weight > 1))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * The process used to be able to migrate OR it can now migrate
 | |
| 	 */
 | |
| 	if (weight <= 1) {
 | |
| 		if (!task_current(rq, p))
 | |
| 			dequeue_pushable_dl_task(rq, p);
 | |
| 		BUG_ON(!rq->dl.dl_nr_migratory);
 | |
| 		rq->dl.dl_nr_migratory--;
 | |
| 	} else {
 | |
| 		if (!task_current(rq, p))
 | |
| 			enqueue_pushable_dl_task(rq, p);
 | |
| 		rq->dl.dl_nr_migratory++;
 | |
| 	}
 | |
| 
 | |
| 	update_dl_migration(&rq->dl);
 | |
| }
 | |
| 
 | |
| /* Assumes rq->lock is held */
 | |
| static void rq_online_dl(struct rq *rq)
 | |
| {
 | |
| 	if (rq->dl.overloaded)
 | |
| 		dl_set_overload(rq);
 | |
| 
 | |
| 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
 | |
| 	if (rq->dl.dl_nr_running > 0)
 | |
| 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
 | |
| }
 | |
| 
 | |
| /* Assumes rq->lock is held */
 | |
| static void rq_offline_dl(struct rq *rq)
 | |
| {
 | |
| 	if (rq->dl.overloaded)
 | |
| 		dl_clear_overload(rq);
 | |
| 
 | |
| 	cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
 | |
| 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
 | |
| }
 | |
| 
 | |
| void __init init_sched_dl_class(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i)
 | |
| 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
 | |
| 					GFP_KERNEL, cpu_to_node(i));
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static void switched_from_dl(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * Start the deadline timer; if we switch back to dl before this we'll
 | |
| 	 * continue consuming our current CBS slice. If we stay outside of
 | |
| 	 * SCHED_DEADLINE until the deadline passes, the timer will reset the
 | |
| 	 * task.
 | |
| 	 */
 | |
| 	if (!start_dl_timer(p))
 | |
| 		__dl_clear_params(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since this might be the only -deadline task on the rq,
 | |
| 	 * this is the right place to try to pull some other one
 | |
| 	 * from an overloaded cpu, if any.
 | |
| 	 */
 | |
| 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
 | |
| 		return;
 | |
| 
 | |
| 	queue_pull_task(rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When switching to -deadline, we may overload the rq, then
 | |
|  * we try to push someone off, if possible.
 | |
|  */
 | |
| static void switched_to_dl(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	if (task_on_rq_queued(p) && rq->curr != p) {
 | |
| #ifdef CONFIG_SMP
 | |
| 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
 | |
| 			queue_push_tasks(rq);
 | |
| #else
 | |
| 		if (dl_task(rq->curr))
 | |
| 			check_preempt_curr_dl(rq, p, 0);
 | |
| 		else
 | |
| 			resched_curr(rq);
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the scheduling parameters of a -deadline task changed,
 | |
|  * a push or pull operation might be needed.
 | |
|  */
 | |
| static void prio_changed_dl(struct rq *rq, struct task_struct *p,
 | |
| 			    int oldprio)
 | |
| {
 | |
| 	if (task_on_rq_queued(p) || rq->curr == p) {
 | |
| #ifdef CONFIG_SMP
 | |
| 		/*
 | |
| 		 * This might be too much, but unfortunately
 | |
| 		 * we don't have the old deadline value, and
 | |
| 		 * we can't argue if the task is increasing
 | |
| 		 * or lowering its prio, so...
 | |
| 		 */
 | |
| 		if (!rq->dl.overloaded)
 | |
| 			queue_pull_task(rq);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we now have a earlier deadline task than p,
 | |
| 		 * then reschedule, provided p is still on this
 | |
| 		 * runqueue.
 | |
| 		 */
 | |
| 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
 | |
| 			resched_curr(rq);
 | |
| #else
 | |
| 		/*
 | |
| 		 * Again, we don't know if p has a earlier
 | |
| 		 * or later deadline, so let's blindly set a
 | |
| 		 * (maybe not needed) rescheduling point.
 | |
| 		 */
 | |
| 		resched_curr(rq);
 | |
| #endif /* CONFIG_SMP */
 | |
| 	} else
 | |
| 		switched_to_dl(rq, p);
 | |
| }
 | |
| 
 | |
| const struct sched_class dl_sched_class = {
 | |
| 	.next			= &rt_sched_class,
 | |
| 	.enqueue_task		= enqueue_task_dl,
 | |
| 	.dequeue_task		= dequeue_task_dl,
 | |
| 	.yield_task		= yield_task_dl,
 | |
| 
 | |
| 	.check_preempt_curr	= check_preempt_curr_dl,
 | |
| 
 | |
| 	.pick_next_task		= pick_next_task_dl,
 | |
| 	.put_prev_task		= put_prev_task_dl,
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	.select_task_rq		= select_task_rq_dl,
 | |
| 	.set_cpus_allowed       = set_cpus_allowed_dl,
 | |
| 	.rq_online              = rq_online_dl,
 | |
| 	.rq_offline             = rq_offline_dl,
 | |
| 	.task_woken		= task_woken_dl,
 | |
| #endif
 | |
| 
 | |
| 	.set_curr_task		= set_curr_task_dl,
 | |
| 	.task_tick		= task_tick_dl,
 | |
| 	.task_fork              = task_fork_dl,
 | |
| 	.task_dead		= task_dead_dl,
 | |
| 
 | |
| 	.prio_changed           = prio_changed_dl,
 | |
| 	.switched_from		= switched_from_dl,
 | |
| 	.switched_to		= switched_to_dl,
 | |
| 
 | |
| 	.update_curr		= update_curr_dl,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
 | |
| 
 | |
| void print_dl_stats(struct seq_file *m, int cpu)
 | |
| {
 | |
| 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
 | |
| }
 | |
| #endif /* CONFIG_SCHED_DEBUG */
 |