1299 lines
		
	
	
	
		
			32 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1299 lines
		
	
	
	
		
			32 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_shared.h"
 | |
| #include "xfs_format.h"
 | |
| #include "xfs_log_format.h"
 | |
| #include "xfs_trans_resv.h"
 | |
| #include "xfs_bit.h"
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_da_format.h"
 | |
| #include "xfs_da_btree.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_dir2.h"
 | |
| #include "xfs_ialloc.h"
 | |
| #include "xfs_alloc.h"
 | |
| #include "xfs_rtalloc.h"
 | |
| #include "xfs_bmap.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_trans_priv.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_quota.h"
 | |
| #include "xfs_fsops.h"
 | |
| #include "xfs_trace.h"
 | |
| #include "xfs_icache.h"
 | |
| #include "xfs_sysfs.h"
 | |
| 
 | |
| 
 | |
| static DEFINE_MUTEX(xfs_uuid_table_mutex);
 | |
| static int xfs_uuid_table_size;
 | |
| static uuid_t *xfs_uuid_table;
 | |
| 
 | |
| /*
 | |
|  * See if the UUID is unique among mounted XFS filesystems.
 | |
|  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_uuid_mount(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
 | |
| 	int			hole, i;
 | |
| 
 | |
| 	if (mp->m_flags & XFS_MOUNT_NOUUID)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (uuid_is_nil(uuid)) {
 | |
| 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&xfs_uuid_table_mutex);
 | |
| 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
 | |
| 		if (uuid_is_nil(&xfs_uuid_table[i])) {
 | |
| 			hole = i;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
 | |
| 			goto out_duplicate;
 | |
| 	}
 | |
| 
 | |
| 	if (hole < 0) {
 | |
| 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
 | |
| 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
 | |
| 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
 | |
| 			KM_SLEEP);
 | |
| 		hole = xfs_uuid_table_size++;
 | |
| 	}
 | |
| 	xfs_uuid_table[hole] = *uuid;
 | |
| 	mutex_unlock(&xfs_uuid_table_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  out_duplicate:
 | |
| 	mutex_unlock(&xfs_uuid_table_mutex);
 | |
| 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_uuid_unmount(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
 | |
| 	int			i;
 | |
| 
 | |
| 	if (mp->m_flags & XFS_MOUNT_NOUUID)
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&xfs_uuid_table_mutex);
 | |
| 	for (i = 0; i < xfs_uuid_table_size; i++) {
 | |
| 		if (uuid_is_nil(&xfs_uuid_table[i]))
 | |
| 			continue;
 | |
| 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 | |
| 			continue;
 | |
| 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 | |
| 		break;
 | |
| 	}
 | |
| 	ASSERT(i < xfs_uuid_table_size);
 | |
| 	mutex_unlock(&xfs_uuid_table_mutex);
 | |
| }
 | |
| 
 | |
| 
 | |
| STATIC void
 | |
| __xfs_free_perag(
 | |
| 	struct rcu_head	*head)
 | |
| {
 | |
| 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 | |
| 
 | |
| 	ASSERT(atomic_read(&pag->pag_ref) == 0);
 | |
| 	kmem_free(pag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free up the per-ag resources associated with the mount structure.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_free_perag(
 | |
| 	xfs_mount_t	*mp)
 | |
| {
 | |
| 	xfs_agnumber_t	agno;
 | |
| 	struct xfs_perag *pag;
 | |
| 
 | |
| 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 | |
| 		spin_lock(&mp->m_perag_lock);
 | |
| 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
 | |
| 		spin_unlock(&mp->m_perag_lock);
 | |
| 		ASSERT(pag);
 | |
| 		ASSERT(atomic_read(&pag->pag_ref) == 0);
 | |
| 		call_rcu(&pag->rcu_head, __xfs_free_perag);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check size of device based on the (data/realtime) block count.
 | |
|  * Note: this check is used by the growfs code as well as mount.
 | |
|  */
 | |
| int
 | |
| xfs_sb_validate_fsb_count(
 | |
| 	xfs_sb_t	*sbp,
 | |
| 	__uint64_t	nblocks)
 | |
| {
 | |
| 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 | |
| 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
 | |
| 
 | |
| 	/* Limited by ULONG_MAX of page cache index */
 | |
| 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 | |
| 		return -EFBIG;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_initialize_perag(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_agnumber_t	agcount,
 | |
| 	xfs_agnumber_t	*maxagi)
 | |
| {
 | |
| 	xfs_agnumber_t	index;
 | |
| 	xfs_agnumber_t	first_initialised = 0;
 | |
| 	xfs_perag_t	*pag;
 | |
| 	xfs_agino_t	agino;
 | |
| 	xfs_ino_t	ino;
 | |
| 	xfs_sb_t	*sbp = &mp->m_sb;
 | |
| 	int		error = -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Walk the current per-ag tree so we don't try to initialise AGs
 | |
| 	 * that already exist (growfs case). Allocate and insert all the
 | |
| 	 * AGs we don't find ready for initialisation.
 | |
| 	 */
 | |
| 	for (index = 0; index < agcount; index++) {
 | |
| 		pag = xfs_perag_get(mp, index);
 | |
| 		if (pag) {
 | |
| 			xfs_perag_put(pag);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!first_initialised)
 | |
| 			first_initialised = index;
 | |
| 
 | |
| 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 | |
| 		if (!pag)
 | |
| 			goto out_unwind;
 | |
| 		pag->pag_agno = index;
 | |
| 		pag->pag_mount = mp;
 | |
| 		spin_lock_init(&pag->pag_ici_lock);
 | |
| 		mutex_init(&pag->pag_ici_reclaim_lock);
 | |
| 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 | |
| 		spin_lock_init(&pag->pag_buf_lock);
 | |
| 		pag->pag_buf_tree = RB_ROOT;
 | |
| 
 | |
| 		if (radix_tree_preload(GFP_NOFS))
 | |
| 			goto out_unwind;
 | |
| 
 | |
| 		spin_lock(&mp->m_perag_lock);
 | |
| 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 | |
| 			BUG();
 | |
| 			spin_unlock(&mp->m_perag_lock);
 | |
| 			radix_tree_preload_end();
 | |
| 			error = -EEXIST;
 | |
| 			goto out_unwind;
 | |
| 		}
 | |
| 		spin_unlock(&mp->m_perag_lock);
 | |
| 		radix_tree_preload_end();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we mount with the inode64 option, or no inode overflows
 | |
| 	 * the legacy 32-bit address space clear the inode32 option.
 | |
| 	 */
 | |
| 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
 | |
| 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
 | |
| 
 | |
| 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
 | |
| 		mp->m_flags |= XFS_MOUNT_32BITINODES;
 | |
| 	else
 | |
| 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
 | |
| 
 | |
| 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
 | |
| 		index = xfs_set_inode32(mp, agcount);
 | |
| 	else
 | |
| 		index = xfs_set_inode64(mp, agcount);
 | |
| 
 | |
| 	if (maxagi)
 | |
| 		*maxagi = index;
 | |
| 	return 0;
 | |
| 
 | |
| out_unwind:
 | |
| 	kmem_free(pag);
 | |
| 	for (; index > first_initialised; index--) {
 | |
| 		pag = radix_tree_delete(&mp->m_perag_tree, index);
 | |
| 		kmem_free(pag);
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_readsb
 | |
|  *
 | |
|  * Does the initial read of the superblock.
 | |
|  */
 | |
| int
 | |
| xfs_readsb(
 | |
| 	struct xfs_mount *mp,
 | |
| 	int		flags)
 | |
| {
 | |
| 	unsigned int	sector_size;
 | |
| 	struct xfs_buf	*bp;
 | |
| 	struct xfs_sb	*sbp = &mp->m_sb;
 | |
| 	int		error;
 | |
| 	int		loud = !(flags & XFS_MFSI_QUIET);
 | |
| 	const struct xfs_buf_ops *buf_ops;
 | |
| 
 | |
| 	ASSERT(mp->m_sb_bp == NULL);
 | |
| 	ASSERT(mp->m_ddev_targp != NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * For the initial read, we must guess at the sector
 | |
| 	 * size based on the block device.  It's enough to
 | |
| 	 * get the sb_sectsize out of the superblock and
 | |
| 	 * then reread with the proper length.
 | |
| 	 * We don't verify it yet, because it may not be complete.
 | |
| 	 */
 | |
| 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 | |
| 	buf_ops = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a (locked) buffer to hold the superblock.
 | |
| 	 * This will be kept around at all times to optimize
 | |
| 	 * access to the superblock.
 | |
| 	 */
 | |
| reread:
 | |
| 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 | |
| 				   BTOBB(sector_size), 0, &bp, buf_ops);
 | |
| 	if (error) {
 | |
| 		if (loud)
 | |
| 			xfs_warn(mp, "SB validate failed with error %d.", error);
 | |
| 		/* bad CRC means corrupted metadata */
 | |
| 		if (error == -EFSBADCRC)
 | |
| 			error = -EFSCORRUPTED;
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the mount structure from the superblock.
 | |
| 	 */
 | |
| 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
 | |
| 
 | |
| 	/*
 | |
| 	 * If we haven't validated the superblock, do so now before we try
 | |
| 	 * to check the sector size and reread the superblock appropriately.
 | |
| 	 */
 | |
| 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 | |
| 		if (loud)
 | |
| 			xfs_warn(mp, "Invalid superblock magic number");
 | |
| 		error = -EINVAL;
 | |
| 		goto release_buf;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We must be able to do sector-sized and sector-aligned IO.
 | |
| 	 */
 | |
| 	if (sector_size > sbp->sb_sectsize) {
 | |
| 		if (loud)
 | |
| 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
 | |
| 				sector_size, sbp->sb_sectsize);
 | |
| 		error = -ENOSYS;
 | |
| 		goto release_buf;
 | |
| 	}
 | |
| 
 | |
| 	if (buf_ops == NULL) {
 | |
| 		/*
 | |
| 		 * Re-read the superblock so the buffer is correctly sized,
 | |
| 		 * and properly verified.
 | |
| 		 */
 | |
| 		xfs_buf_relse(bp);
 | |
| 		sector_size = sbp->sb_sectsize;
 | |
| 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
 | |
| 		goto reread;
 | |
| 	}
 | |
| 
 | |
| 	xfs_reinit_percpu_counters(mp);
 | |
| 
 | |
| 	/* no need to be quiet anymore, so reset the buf ops */
 | |
| 	bp->b_ops = &xfs_sb_buf_ops;
 | |
| 
 | |
| 	mp->m_sb_bp = bp;
 | |
| 	xfs_buf_unlock(bp);
 | |
| 	return 0;
 | |
| 
 | |
| release_buf:
 | |
| 	xfs_buf_relse(bp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update alignment values based on mount options and sb values
 | |
|  */
 | |
| STATIC int
 | |
| xfs_update_alignment(xfs_mount_t *mp)
 | |
| {
 | |
| 	xfs_sb_t	*sbp = &(mp->m_sb);
 | |
| 
 | |
| 	if (mp->m_dalign) {
 | |
| 		/*
 | |
| 		 * If stripe unit and stripe width are not multiples
 | |
| 		 * of the fs blocksize turn off alignment.
 | |
| 		 */
 | |
| 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 | |
| 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 | |
| 			xfs_warn(mp,
 | |
| 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
 | |
| 				sbp->sb_blocksize);
 | |
| 			return -EINVAL;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Convert the stripe unit and width to FSBs.
 | |
| 			 */
 | |
| 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 | |
| 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
 | |
| 				xfs_warn(mp,
 | |
| 			"alignment check failed: sunit/swidth vs. agsize(%d)",
 | |
| 					 sbp->sb_agblocks);
 | |
| 				return -EINVAL;
 | |
| 			} else if (mp->m_dalign) {
 | |
| 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 | |
| 			} else {
 | |
| 				xfs_warn(mp,
 | |
| 			"alignment check failed: sunit(%d) less than bsize(%d)",
 | |
| 					 mp->m_dalign, sbp->sb_blocksize);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Update superblock with new values
 | |
| 		 * and log changes
 | |
| 		 */
 | |
| 		if (xfs_sb_version_hasdalign(sbp)) {
 | |
| 			if (sbp->sb_unit != mp->m_dalign) {
 | |
| 				sbp->sb_unit = mp->m_dalign;
 | |
| 				mp->m_update_sb = true;
 | |
| 			}
 | |
| 			if (sbp->sb_width != mp->m_swidth) {
 | |
| 				sbp->sb_width = mp->m_swidth;
 | |
| 				mp->m_update_sb = true;
 | |
| 			}
 | |
| 		} else {
 | |
| 			xfs_warn(mp,
 | |
| 	"cannot change alignment: superblock does not support data alignment");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 | |
| 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
 | |
| 			mp->m_dalign = sbp->sb_unit;
 | |
| 			mp->m_swidth = sbp->sb_width;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the maximum inode count for this filesystem
 | |
|  */
 | |
| STATIC void
 | |
| xfs_set_maxicount(xfs_mount_t *mp)
 | |
| {
 | |
| 	xfs_sb_t	*sbp = &(mp->m_sb);
 | |
| 	__uint64_t	icount;
 | |
| 
 | |
| 	if (sbp->sb_imax_pct) {
 | |
| 		/*
 | |
| 		 * Make sure the maximum inode count is a multiple
 | |
| 		 * of the units we allocate inodes in.
 | |
| 		 */
 | |
| 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 | |
| 		do_div(icount, 100);
 | |
| 		do_div(icount, mp->m_ialloc_blks);
 | |
| 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
 | |
| 				   sbp->sb_inopblog;
 | |
| 	} else {
 | |
| 		mp->m_maxicount = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the default minimum read and write sizes unless
 | |
|  * already specified in a mount option.
 | |
|  * We use smaller I/O sizes when the file system
 | |
|  * is being used for NFS service (wsync mount option).
 | |
|  */
 | |
| STATIC void
 | |
| xfs_set_rw_sizes(xfs_mount_t *mp)
 | |
| {
 | |
| 	xfs_sb_t	*sbp = &(mp->m_sb);
 | |
| 	int		readio_log, writeio_log;
 | |
| 
 | |
| 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
 | |
| 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
 | |
| 			readio_log = XFS_WSYNC_READIO_LOG;
 | |
| 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
 | |
| 		} else {
 | |
| 			readio_log = XFS_READIO_LOG_LARGE;
 | |
| 			writeio_log = XFS_WRITEIO_LOG_LARGE;
 | |
| 		}
 | |
| 	} else {
 | |
| 		readio_log = mp->m_readio_log;
 | |
| 		writeio_log = mp->m_writeio_log;
 | |
| 	}
 | |
| 
 | |
| 	if (sbp->sb_blocklog > readio_log) {
 | |
| 		mp->m_readio_log = sbp->sb_blocklog;
 | |
| 	} else {
 | |
| 		mp->m_readio_log = readio_log;
 | |
| 	}
 | |
| 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
 | |
| 	if (sbp->sb_blocklog > writeio_log) {
 | |
| 		mp->m_writeio_log = sbp->sb_blocklog;
 | |
| 	} else {
 | |
| 		mp->m_writeio_log = writeio_log;
 | |
| 	}
 | |
| 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * precalculate the low space thresholds for dynamic speculative preallocation.
 | |
|  */
 | |
| void
 | |
| xfs_set_low_space_thresholds(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
 | |
| 		__uint64_t space = mp->m_sb.sb_dblocks;
 | |
| 
 | |
| 		do_div(space, 100);
 | |
| 		mp->m_low_space[i] = space * (i + 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Set whether we're using inode alignment.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_set_inoalignment(xfs_mount_t *mp)
 | |
| {
 | |
| 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
 | |
| 	    mp->m_sb.sb_inoalignmt >=
 | |
| 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
 | |
| 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
 | |
| 	else
 | |
| 		mp->m_inoalign_mask = 0;
 | |
| 	/*
 | |
| 	 * If we are using stripe alignment, check whether
 | |
| 	 * the stripe unit is a multiple of the inode alignment
 | |
| 	 */
 | |
| 	if (mp->m_dalign && mp->m_inoalign_mask &&
 | |
| 	    !(mp->m_dalign & mp->m_inoalign_mask))
 | |
| 		mp->m_sinoalign = mp->m_dalign;
 | |
| 	else
 | |
| 		mp->m_sinoalign = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that the data (and log if separate) is an ok size.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_check_sizes(
 | |
| 	struct xfs_mount *mp)
 | |
| {
 | |
| 	struct xfs_buf	*bp;
 | |
| 	xfs_daddr_t	d;
 | |
| 	int		error;
 | |
| 
 | |
| 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 | |
| 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 | |
| 		xfs_warn(mp, "filesystem size mismatch detected");
 | |
| 		return -EFBIG;
 | |
| 	}
 | |
| 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
 | |
| 					d - XFS_FSS_TO_BB(mp, 1),
 | |
| 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "last sector read failed");
 | |
| 		return error;
 | |
| 	}
 | |
| 	xfs_buf_relse(bp);
 | |
| 
 | |
| 	if (mp->m_logdev_targp == mp->m_ddev_targp)
 | |
| 		return 0;
 | |
| 
 | |
| 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 | |
| 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 | |
| 		xfs_warn(mp, "log size mismatch detected");
 | |
| 		return -EFBIG;
 | |
| 	}
 | |
| 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
 | |
| 					d - XFS_FSB_TO_BB(mp, 1),
 | |
| 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "log device read failed");
 | |
| 		return error;
 | |
| 	}
 | |
| 	xfs_buf_relse(bp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear the quotaflags in memory and in the superblock.
 | |
|  */
 | |
| int
 | |
| xfs_mount_reset_sbqflags(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	mp->m_qflags = 0;
 | |
| 
 | |
| 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
 | |
| 	if (mp->m_sb.sb_qflags == 0)
 | |
| 		return 0;
 | |
| 	spin_lock(&mp->m_sb_lock);
 | |
| 	mp->m_sb.sb_qflags = 0;
 | |
| 	spin_unlock(&mp->m_sb_lock);
 | |
| 
 | |
| 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
 | |
| 		return 0;
 | |
| 
 | |
| 	return xfs_sync_sb(mp, false);
 | |
| }
 | |
| 
 | |
| __uint64_t
 | |
| xfs_default_resblks(xfs_mount_t *mp)
 | |
| {
 | |
| 	__uint64_t resblks;
 | |
| 
 | |
| 	/*
 | |
| 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
 | |
| 	 * smaller.  This is intended to cover concurrent allocation
 | |
| 	 * transactions when we initially hit enospc. These each require a 4
 | |
| 	 * block reservation. Hence by default we cover roughly 2000 concurrent
 | |
| 	 * allocation reservations.
 | |
| 	 */
 | |
| 	resblks = mp->m_sb.sb_dblocks;
 | |
| 	do_div(resblks, 20);
 | |
| 	resblks = min_t(__uint64_t, resblks, 8192);
 | |
| 	return resblks;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function does the following on an initial mount of a file system:
 | |
|  *	- reads the superblock from disk and init the mount struct
 | |
|  *	- if we're a 32-bit kernel, do a size check on the superblock
 | |
|  *		so we don't mount terabyte filesystems
 | |
|  *	- init mount struct realtime fields
 | |
|  *	- allocate inode hash table for fs
 | |
|  *	- init directory manager
 | |
|  *	- perform recovery and init the log manager
 | |
|  */
 | |
| int
 | |
| xfs_mountfs(
 | |
| 	xfs_mount_t	*mp)
 | |
| {
 | |
| 	xfs_sb_t	*sbp = &(mp->m_sb);
 | |
| 	xfs_inode_t	*rip;
 | |
| 	__uint64_t	resblks;
 | |
| 	uint		quotamount = 0;
 | |
| 	uint		quotaflags = 0;
 | |
| 	int		error = 0;
 | |
| 
 | |
| 	xfs_sb_mount_common(mp, sbp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for a mismatched features2 values.  Older kernels read & wrote
 | |
| 	 * into the wrong sb offset for sb_features2 on some platforms due to
 | |
| 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
 | |
| 	 * which made older superblock reading/writing routines swap it as a
 | |
| 	 * 64-bit value.
 | |
| 	 *
 | |
| 	 * For backwards compatibility, we make both slots equal.
 | |
| 	 *
 | |
| 	 * If we detect a mismatched field, we OR the set bits into the existing
 | |
| 	 * features2 field in case it has already been modified; we don't want
 | |
| 	 * to lose any features.  We then update the bad location with the ORed
 | |
| 	 * value so that older kernels will see any features2 flags. The
 | |
| 	 * superblock writeback code ensures the new sb_features2 is copied to
 | |
| 	 * sb_bad_features2 before it is logged or written to disk.
 | |
| 	 */
 | |
| 	if (xfs_sb_has_mismatched_features2(sbp)) {
 | |
| 		xfs_warn(mp, "correcting sb_features alignment problem");
 | |
| 		sbp->sb_features2 |= sbp->sb_bad_features2;
 | |
| 		mp->m_update_sb = true;
 | |
| 
 | |
| 		/*
 | |
| 		 * Re-check for ATTR2 in case it was found in bad_features2
 | |
| 		 * slot.
 | |
| 		 */
 | |
| 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 | |
| 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 | |
| 			mp->m_flags |= XFS_MOUNT_ATTR2;
 | |
| 	}
 | |
| 
 | |
| 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 | |
| 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 | |
| 		xfs_sb_version_removeattr2(&mp->m_sb);
 | |
| 		mp->m_update_sb = true;
 | |
| 
 | |
| 		/* update sb_versionnum for the clearing of the morebits */
 | |
| 		if (!sbp->sb_features2)
 | |
| 			mp->m_update_sb = true;
 | |
| 	}
 | |
| 
 | |
| 	/* always use v2 inodes by default now */
 | |
| 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
 | |
| 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
 | |
| 		mp->m_update_sb = true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if sb_agblocks is aligned at stripe boundary
 | |
| 	 * If sb_agblocks is NOT aligned turn off m_dalign since
 | |
| 	 * allocator alignment is within an ag, therefore ag has
 | |
| 	 * to be aligned at stripe boundary.
 | |
| 	 */
 | |
| 	error = xfs_update_alignment(mp);
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	xfs_alloc_compute_maxlevels(mp);
 | |
| 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 | |
| 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 | |
| 	xfs_ialloc_compute_maxlevels(mp);
 | |
| 
 | |
| 	xfs_set_maxicount(mp);
 | |
| 
 | |
| 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	error = xfs_uuid_mount(mp);
 | |
| 	if (error)
 | |
| 		goto out_remove_sysfs;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the minimum read and write sizes
 | |
| 	 */
 | |
| 	xfs_set_rw_sizes(mp);
 | |
| 
 | |
| 	/* set the low space thresholds for dynamic preallocation */
 | |
| 	xfs_set_low_space_thresholds(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the inode cluster size.
 | |
| 	 * This may still be overridden by the file system
 | |
| 	 * block size if it is larger than the chosen cluster size.
 | |
| 	 *
 | |
| 	 * For v5 filesystems, scale the cluster size with the inode size to
 | |
| 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
 | |
| 	 * has set the inode alignment value appropriately for larger cluster
 | |
| 	 * sizes.
 | |
| 	 */
 | |
| 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
 | |
| 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
 | |
| 		int	new_size = mp->m_inode_cluster_size;
 | |
| 
 | |
| 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
 | |
| 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
 | |
| 			mp->m_inode_cluster_size = new_size;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If enabled, sparse inode chunk alignment is expected to match the
 | |
| 	 * cluster size. Full inode chunk alignment must match the chunk size,
 | |
| 	 * but that is checked on sb read verification...
 | |
| 	 */
 | |
| 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
 | |
| 	    mp->m_sb.sb_spino_align !=
 | |
| 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
 | |
| 		xfs_warn(mp,
 | |
| 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
 | |
| 			 mp->m_sb.sb_spino_align,
 | |
| 			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
 | |
| 		error = -EINVAL;
 | |
| 		goto out_remove_uuid;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set inode alignment fields
 | |
| 	 */
 | |
| 	xfs_set_inoalignment(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check that the data (and log if separate) is an ok size.
 | |
| 	 */
 | |
| 	error = xfs_check_sizes(mp);
 | |
| 	if (error)
 | |
| 		goto out_remove_uuid;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize realtime fields in the mount structure
 | |
| 	 */
 | |
| 	error = xfs_rtmount_init(mp);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "RT mount failed");
 | |
| 		goto out_remove_uuid;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *  Copies the low order bits of the timestamp and the randomly
 | |
| 	 *  set "sequence" number out of a UUID.
 | |
| 	 */
 | |
| 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
 | |
| 
 | |
| 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
 | |
| 
 | |
| 	error = xfs_da_mount(mp);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "Failed dir/attr init: %d", error);
 | |
| 		goto out_remove_uuid;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the precomputed transaction reservations values.
 | |
| 	 */
 | |
| 	xfs_trans_init(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate and initialize the per-ag data.
 | |
| 	 */
 | |
| 	spin_lock_init(&mp->m_perag_lock);
 | |
| 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
 | |
| 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "Failed per-ag init: %d", error);
 | |
| 		goto out_free_dir;
 | |
| 	}
 | |
| 
 | |
| 	if (!sbp->sb_logblocks) {
 | |
| 		xfs_warn(mp, "no log defined");
 | |
| 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
 | |
| 		error = -EFSCORRUPTED;
 | |
| 		goto out_free_perag;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * log's mount-time initialization. Perform 1st part recovery if needed
 | |
| 	 */
 | |
| 	error = xfs_log_mount(mp, mp->m_logdev_targp,
 | |
| 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 | |
| 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "log mount failed");
 | |
| 		goto out_fail_wait;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now the log is mounted, we know if it was an unclean shutdown or
 | |
| 	 * not. If it was, with the first phase of recovery has completed, we
 | |
| 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
 | |
| 	 * but they are recovered transactionally in the second recovery phase
 | |
| 	 * later.
 | |
| 	 *
 | |
| 	 * Hence we can safely re-initialise incore superblock counters from
 | |
| 	 * the per-ag data. These may not be correct if the filesystem was not
 | |
| 	 * cleanly unmounted, so we need to wait for recovery to finish before
 | |
| 	 * doing this.
 | |
| 	 *
 | |
| 	 * If the filesystem was cleanly unmounted, then we can trust the
 | |
| 	 * values in the superblock to be correct and we don't need to do
 | |
| 	 * anything here.
 | |
| 	 *
 | |
| 	 * If we are currently making the filesystem, the initialisation will
 | |
| 	 * fail as the perag data is in an undefined state.
 | |
| 	 */
 | |
| 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
 | |
| 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 | |
| 	     !mp->m_sb.sb_inprogress) {
 | |
| 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
 | |
| 		if (error)
 | |
| 			goto out_log_dealloc;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get and sanity-check the root inode.
 | |
| 	 * Save the pointer to it in the mount structure.
 | |
| 	 */
 | |
| 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "failed to read root inode");
 | |
| 		goto out_log_dealloc;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(rip != NULL);
 | |
| 
 | |
| 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
 | |
| 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
 | |
| 			(unsigned long long)rip->i_ino);
 | |
| 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
 | |
| 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
 | |
| 				 mp);
 | |
| 		error = -EFSCORRUPTED;
 | |
| 		goto out_rele_rip;
 | |
| 	}
 | |
| 	mp->m_rootip = rip;	/* save it */
 | |
| 
 | |
| 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize realtime inode pointers in the mount structure
 | |
| 	 */
 | |
| 	error = xfs_rtmount_inodes(mp);
 | |
| 	if (error) {
 | |
| 		/*
 | |
| 		 * Free up the root inode.
 | |
| 		 */
 | |
| 		xfs_warn(mp, "failed to read RT inodes");
 | |
| 		goto out_rele_rip;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a read-only mount defer the superblock updates until
 | |
| 	 * the next remount into writeable mode.  Otherwise we would never
 | |
| 	 * perform the update e.g. for the root filesystem.
 | |
| 	 */
 | |
| 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 | |
| 		error = xfs_sync_sb(mp, false);
 | |
| 		if (error) {
 | |
| 			xfs_warn(mp, "failed to write sb changes");
 | |
| 			goto out_rtunmount;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialise the XFS quota management subsystem for this mount
 | |
| 	 */
 | |
| 	if (XFS_IS_QUOTA_RUNNING(mp)) {
 | |
| 		error = xfs_qm_newmount(mp, "amount, "aflags);
 | |
| 		if (error)
 | |
| 			goto out_rtunmount;
 | |
| 	} else {
 | |
| 		ASSERT(!XFS_IS_QUOTA_ON(mp));
 | |
| 
 | |
| 		/*
 | |
| 		 * If a file system had quotas running earlier, but decided to
 | |
| 		 * mount without -o uquota/pquota/gquota options, revoke the
 | |
| 		 * quotachecked license.
 | |
| 		 */
 | |
| 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 | |
| 			xfs_notice(mp, "resetting quota flags");
 | |
| 			error = xfs_mount_reset_sbqflags(mp);
 | |
| 			if (error)
 | |
| 				goto out_rtunmount;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Finish recovering the file system.  This part needed to be
 | |
| 	 * delayed until after the root and real-time bitmap inodes
 | |
| 	 * were consistently read in.
 | |
| 	 */
 | |
| 	error = xfs_log_mount_finish(mp);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "log mount finish failed");
 | |
| 		goto out_rtunmount;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Complete the quota initialisation, post-log-replay component.
 | |
| 	 */
 | |
| 	if (quotamount) {
 | |
| 		ASSERT(mp->m_qflags == 0);
 | |
| 		mp->m_qflags = quotaflags;
 | |
| 
 | |
| 		xfs_qm_mount_quotas(mp);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we are mounted, reserve a small amount of unused space for
 | |
| 	 * privileged transactions. This is needed so that transaction
 | |
| 	 * space required for critical operations can dip into this pool
 | |
| 	 * when at ENOSPC. This is needed for operations like create with
 | |
| 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 | |
| 	 * are not allowed to use this reserved space.
 | |
| 	 *
 | |
| 	 * This may drive us straight to ENOSPC on mount, but that implies
 | |
| 	 * we were already there on the last unmount. Warn if this occurs.
 | |
| 	 */
 | |
| 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 | |
| 		resblks = xfs_default_resblks(mp);
 | |
| 		error = xfs_reserve_blocks(mp, &resblks, NULL);
 | |
| 		if (error)
 | |
| 			xfs_warn(mp,
 | |
| 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  out_rtunmount:
 | |
| 	xfs_rtunmount_inodes(mp);
 | |
|  out_rele_rip:
 | |
| 	IRELE(rip);
 | |
|  out_log_dealloc:
 | |
| 	xfs_log_unmount(mp);
 | |
|  out_fail_wait:
 | |
| 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
 | |
| 		xfs_wait_buftarg(mp->m_logdev_targp);
 | |
| 	xfs_wait_buftarg(mp->m_ddev_targp);
 | |
|  out_free_perag:
 | |
| 	xfs_free_perag(mp);
 | |
|  out_free_dir:
 | |
| 	xfs_da_unmount(mp);
 | |
|  out_remove_uuid:
 | |
| 	xfs_uuid_unmount(mp);
 | |
|  out_remove_sysfs:
 | |
| 	xfs_sysfs_del(&mp->m_kobj);
 | |
|  out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This flushes out the inodes,dquots and the superblock, unmounts the
 | |
|  * log and makes sure that incore structures are freed.
 | |
|  */
 | |
| void
 | |
| xfs_unmountfs(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	__uint64_t		resblks;
 | |
| 	int			error;
 | |
| 
 | |
| 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
 | |
| 
 | |
| 	xfs_qm_unmount_quotas(mp);
 | |
| 	xfs_rtunmount_inodes(mp);
 | |
| 	IRELE(mp->m_rootip);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can potentially deadlock here if we have an inode cluster
 | |
| 	 * that has been freed has its buffer still pinned in memory because
 | |
| 	 * the transaction is still sitting in a iclog. The stale inodes
 | |
| 	 * on that buffer will have their flush locks held until the
 | |
| 	 * transaction hits the disk and the callbacks run. the inode
 | |
| 	 * flush takes the flush lock unconditionally and with nothing to
 | |
| 	 * push out the iclog we will never get that unlocked. hence we
 | |
| 	 * need to force the log first.
 | |
| 	 */
 | |
| 	xfs_log_force(mp, XFS_LOG_SYNC);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush all pending changes from the AIL.
 | |
| 	 */
 | |
| 	xfs_ail_push_all_sync(mp->m_ail);
 | |
| 
 | |
| 	/*
 | |
| 	 * And reclaim all inodes.  At this point there should be no dirty
 | |
| 	 * inodes and none should be pinned or locked, but use synchronous
 | |
| 	 * reclaim just to be sure. We can stop background inode reclaim
 | |
| 	 * here as well if it is still running.
 | |
| 	 */
 | |
| 	cancel_delayed_work_sync(&mp->m_reclaim_work);
 | |
| 	xfs_reclaim_inodes(mp, SYNC_WAIT);
 | |
| 
 | |
| 	xfs_qm_unmount(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Unreserve any blocks we have so that when we unmount we don't account
 | |
| 	 * the reserved free space as used. This is really only necessary for
 | |
| 	 * lazy superblock counting because it trusts the incore superblock
 | |
| 	 * counters to be absolutely correct on clean unmount.
 | |
| 	 *
 | |
| 	 * We don't bother correcting this elsewhere for lazy superblock
 | |
| 	 * counting because on mount of an unclean filesystem we reconstruct the
 | |
| 	 * correct counter value and this is irrelevant.
 | |
| 	 *
 | |
| 	 * For non-lazy counter filesystems, this doesn't matter at all because
 | |
| 	 * we only every apply deltas to the superblock and hence the incore
 | |
| 	 * value does not matter....
 | |
| 	 */
 | |
| 	resblks = 0;
 | |
| 	error = xfs_reserve_blocks(mp, &resblks, NULL);
 | |
| 	if (error)
 | |
| 		xfs_warn(mp, "Unable to free reserved block pool. "
 | |
| 				"Freespace may not be correct on next mount.");
 | |
| 
 | |
| 	error = xfs_log_sbcount(mp);
 | |
| 	if (error)
 | |
| 		xfs_warn(mp, "Unable to update superblock counters. "
 | |
| 				"Freespace may not be correct on next mount.");
 | |
| 
 | |
| 	xfs_log_unmount(mp);
 | |
| 	xfs_da_unmount(mp);
 | |
| 	xfs_uuid_unmount(mp);
 | |
| 
 | |
| #if defined(DEBUG)
 | |
| 	xfs_errortag_clearall(mp, 0);
 | |
| #endif
 | |
| 	xfs_free_perag(mp);
 | |
| 
 | |
| 	xfs_sysfs_del(&mp->m_kobj);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine whether modifications can proceed. The caller specifies the minimum
 | |
|  * freeze level for which modifications should not be allowed. This allows
 | |
|  * certain operations to proceed while the freeze sequence is in progress, if
 | |
|  * necessary.
 | |
|  */
 | |
| bool
 | |
| xfs_fs_writable(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	int			level)
 | |
| {
 | |
| 	ASSERT(level > SB_UNFROZEN);
 | |
| 	if ((mp->m_super->s_writers.frozen >= level) ||
 | |
| 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_log_sbcount
 | |
|  *
 | |
|  * Sync the superblock counters to disk.
 | |
|  *
 | |
|  * Note this code can be called during the process of freezing, so we use the
 | |
|  * transaction allocator that does not block when the transaction subsystem is
 | |
|  * in its frozen state.
 | |
|  */
 | |
| int
 | |
| xfs_log_sbcount(xfs_mount_t *mp)
 | |
| {
 | |
| 	/* allow this to proceed during the freeze sequence... */
 | |
| 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * we don't need to do this if we are updating the superblock
 | |
| 	 * counters on every modification.
 | |
| 	 */
 | |
| 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
 | |
| 		return 0;
 | |
| 
 | |
| 	return xfs_sync_sb(mp, true);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Deltas for the inode count are +/-64, hence we use a large batch size
 | |
|  * of 128 so we don't need to take the counter lock on every update.
 | |
|  */
 | |
| #define XFS_ICOUNT_BATCH	128
 | |
| int
 | |
| xfs_mod_icount(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	int64_t			delta)
 | |
| {
 | |
| 	__percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
 | |
| 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
 | |
| 		ASSERT(0);
 | |
| 		percpu_counter_add(&mp->m_icount, -delta);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_mod_ifree(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	int64_t			delta)
 | |
| {
 | |
| 	percpu_counter_add(&mp->m_ifree, delta);
 | |
| 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
 | |
| 		ASSERT(0);
 | |
| 		percpu_counter_add(&mp->m_ifree, -delta);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Deltas for the block count can vary from 1 to very large, but lock contention
 | |
|  * only occurs on frequent small block count updates such as in the delayed
 | |
|  * allocation path for buffered writes (page a time updates). Hence we set
 | |
|  * a large batch count (1024) to minimise global counter updates except when
 | |
|  * we get near to ENOSPC and we have to be very accurate with our updates.
 | |
|  */
 | |
| #define XFS_FDBLOCKS_BATCH	1024
 | |
| int
 | |
| xfs_mod_fdblocks(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	int64_t			delta,
 | |
| 	bool			rsvd)
 | |
| {
 | |
| 	int64_t			lcounter;
 | |
| 	long long		res_used;
 | |
| 	s32			batch;
 | |
| 
 | |
| 	if (delta > 0) {
 | |
| 		/*
 | |
| 		 * If the reserve pool is depleted, put blocks back into it
 | |
| 		 * first. Most of the time the pool is full.
 | |
| 		 */
 | |
| 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
 | |
| 			percpu_counter_add(&mp->m_fdblocks, delta);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock(&mp->m_sb_lock);
 | |
| 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
 | |
| 
 | |
| 		if (res_used > delta) {
 | |
| 			mp->m_resblks_avail += delta;
 | |
| 		} else {
 | |
| 			delta -= res_used;
 | |
| 			mp->m_resblks_avail = mp->m_resblks;
 | |
| 			percpu_counter_add(&mp->m_fdblocks, delta);
 | |
| 		}
 | |
| 		spin_unlock(&mp->m_sb_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Taking blocks away, need to be more accurate the closer we
 | |
| 	 * are to zero.
 | |
| 	 *
 | |
| 	 * If the counter has a value of less than 2 * max batch size,
 | |
| 	 * then make everything serialise as we are real close to
 | |
| 	 * ENOSPC.
 | |
| 	 */
 | |
| 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
 | |
| 				     XFS_FDBLOCKS_BATCH) < 0)
 | |
| 		batch = 1;
 | |
| 	else
 | |
| 		batch = XFS_FDBLOCKS_BATCH;
 | |
| 
 | |
| 	__percpu_counter_add(&mp->m_fdblocks, delta, batch);
 | |
| 	if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp),
 | |
| 				     XFS_FDBLOCKS_BATCH) >= 0) {
 | |
| 		/* we had space! */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * lock up the sb for dipping into reserves before releasing the space
 | |
| 	 * that took us to ENOSPC.
 | |
| 	 */
 | |
| 	spin_lock(&mp->m_sb_lock);
 | |
| 	percpu_counter_add(&mp->m_fdblocks, -delta);
 | |
| 	if (!rsvd)
 | |
| 		goto fdblocks_enospc;
 | |
| 
 | |
| 	lcounter = (long long)mp->m_resblks_avail + delta;
 | |
| 	if (lcounter >= 0) {
 | |
| 		mp->m_resblks_avail = lcounter;
 | |
| 		spin_unlock(&mp->m_sb_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	printk_once(KERN_WARNING
 | |
| 		"Filesystem \"%s\": reserve blocks depleted! "
 | |
| 		"Consider increasing reserve pool size.",
 | |
| 		mp->m_fsname);
 | |
| fdblocks_enospc:
 | |
| 	spin_unlock(&mp->m_sb_lock);
 | |
| 	return -ENOSPC;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_mod_frextents(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	int64_t			delta)
 | |
| {
 | |
| 	int64_t			lcounter;
 | |
| 	int			ret = 0;
 | |
| 
 | |
| 	spin_lock(&mp->m_sb_lock);
 | |
| 	lcounter = mp->m_sb.sb_frextents + delta;
 | |
| 	if (lcounter < 0)
 | |
| 		ret = -ENOSPC;
 | |
| 	else
 | |
| 		mp->m_sb.sb_frextents = lcounter;
 | |
| 	spin_unlock(&mp->m_sb_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_getsb() is called to obtain the buffer for the superblock.
 | |
|  * The buffer is returned locked and read in from disk.
 | |
|  * The buffer should be released with a call to xfs_brelse().
 | |
|  *
 | |
|  * If the flags parameter is BUF_TRYLOCK, then we'll only return
 | |
|  * the superblock buffer if it can be locked without sleeping.
 | |
|  * If it can't then we'll return NULL.
 | |
|  */
 | |
| struct xfs_buf *
 | |
| xfs_getsb(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	int			flags)
 | |
| {
 | |
| 	struct xfs_buf		*bp = mp->m_sb_bp;
 | |
| 
 | |
| 	if (!xfs_buf_trylock(bp)) {
 | |
| 		if (flags & XBF_TRYLOCK)
 | |
| 			return NULL;
 | |
| 		xfs_buf_lock(bp);
 | |
| 	}
 | |
| 
 | |
| 	xfs_buf_hold(bp);
 | |
| 	ASSERT(XFS_BUF_ISDONE(bp));
 | |
| 	return bp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to free the superblock along various error paths.
 | |
|  */
 | |
| void
 | |
| xfs_freesb(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	struct xfs_buf		*bp = mp->m_sb_bp;
 | |
| 
 | |
| 	xfs_buf_lock(bp);
 | |
| 	mp->m_sb_bp = NULL;
 | |
| 	xfs_buf_relse(bp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the underlying (data/log/rt) device is readonly, there are some
 | |
|  * operations that cannot proceed.
 | |
|  */
 | |
| int
 | |
| xfs_dev_is_read_only(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	char			*message)
 | |
| {
 | |
| 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
 | |
| 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
 | |
| 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
 | |
| 		xfs_notice(mp, "%s required on read-only device.", message);
 | |
| 		xfs_notice(mp, "write access unavailable, cannot proceed.");
 | |
| 		return -EROFS;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | 
