475 lines
		
	
	
	
		
			12 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			475 lines
		
	
	
	
		
			12 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/fs/ext4/crypto.c
 | |
|  *
 | |
|  * Copyright (C) 2015, Google, Inc.
 | |
|  *
 | |
|  * This contains encryption functions for ext4
 | |
|  *
 | |
|  * Written by Michael Halcrow, 2014.
 | |
|  *
 | |
|  * Filename encryption additions
 | |
|  *	Uday Savagaonkar, 2014
 | |
|  * Encryption policy handling additions
 | |
|  *	Ildar Muslukhov, 2014
 | |
|  *
 | |
|  * This has not yet undergone a rigorous security audit.
 | |
|  *
 | |
|  * The usage of AES-XTS should conform to recommendations in NIST
 | |
|  * Special Publication 800-38E and IEEE P1619/D16.
 | |
|  */
 | |
| 
 | |
| #include <crypto/hash.h>
 | |
| #include <crypto/sha.h>
 | |
| #include <keys/user-type.h>
 | |
| #include <keys/encrypted-type.h>
 | |
| #include <linux/crypto.h>
 | |
| #include <linux/ecryptfs.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/key.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/mempool.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/spinlock_types.h>
 | |
| 
 | |
| #include "ext4_extents.h"
 | |
| #include "xattr.h"
 | |
| 
 | |
| /* Encryption added and removed here! (L: */
 | |
| 
 | |
| static unsigned int num_prealloc_crypto_pages = 32;
 | |
| static unsigned int num_prealloc_crypto_ctxs = 128;
 | |
| 
 | |
| module_param(num_prealloc_crypto_pages, uint, 0444);
 | |
| MODULE_PARM_DESC(num_prealloc_crypto_pages,
 | |
| 		 "Number of crypto pages to preallocate");
 | |
| module_param(num_prealloc_crypto_ctxs, uint, 0444);
 | |
| MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
 | |
| 		 "Number of crypto contexts to preallocate");
 | |
| 
 | |
| static mempool_t *ext4_bounce_page_pool;
 | |
| 
 | |
| static LIST_HEAD(ext4_free_crypto_ctxs);
 | |
| static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
 | |
| 
 | |
| static struct kmem_cache *ext4_crypto_ctx_cachep;
 | |
| struct kmem_cache *ext4_crypt_info_cachep;
 | |
| 
 | |
| /**
 | |
|  * ext4_release_crypto_ctx() - Releases an encryption context
 | |
|  * @ctx: The encryption context to release.
 | |
|  *
 | |
|  * If the encryption context was allocated from the pre-allocated pool, returns
 | |
|  * it to that pool. Else, frees it.
 | |
|  *
 | |
|  * If there's a bounce page in the context, this frees that.
 | |
|  */
 | |
| void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page)
 | |
| 		mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool);
 | |
| 	ctx->w.bounce_page = NULL;
 | |
| 	ctx->w.control_page = NULL;
 | |
| 	if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
 | |
| 		kmem_cache_free(ext4_crypto_ctx_cachep, ctx);
 | |
| 	} else {
 | |
| 		spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
 | |
| 		list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
 | |
| 		spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ext4_get_crypto_ctx() - Gets an encryption context
 | |
|  * @inode:       The inode for which we are doing the crypto
 | |
|  *
 | |
|  * Allocates and initializes an encryption context.
 | |
|  *
 | |
|  * Return: An allocated and initialized encryption context on success; error
 | |
|  * value or NULL otherwise.
 | |
|  */
 | |
| struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode)
 | |
| {
 | |
| 	struct ext4_crypto_ctx *ctx = NULL;
 | |
| 	int res = 0;
 | |
| 	unsigned long flags;
 | |
| 	struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
 | |
| 
 | |
| 	if (ci == NULL)
 | |
| 		return ERR_PTR(-ENOKEY);
 | |
| 
 | |
| 	/*
 | |
| 	 * We first try getting the ctx from a free list because in
 | |
| 	 * the common case the ctx will have an allocated and
 | |
| 	 * initialized crypto tfm, so it's probably a worthwhile
 | |
| 	 * optimization. For the bounce page, we first try getting it
 | |
| 	 * from the kernel allocator because that's just about as fast
 | |
| 	 * as getting it from a list and because a cache of free pages
 | |
| 	 * should generally be a "last resort" option for a filesystem
 | |
| 	 * to be able to do its job.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
 | |
| 	ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
 | |
| 				       struct ext4_crypto_ctx, free_list);
 | |
| 	if (ctx)
 | |
| 		list_del(&ctx->free_list);
 | |
| 	spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
 | |
| 	if (!ctx) {
 | |
| 		ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
 | |
| 		if (!ctx) {
 | |
| 			res = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
 | |
| 	} else {
 | |
| 		ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
 | |
| 	}
 | |
| 	ctx->flags &= ~EXT4_WRITE_PATH_FL;
 | |
| 
 | |
| out:
 | |
| 	if (res) {
 | |
| 		if (!IS_ERR_OR_NULL(ctx))
 | |
| 			ext4_release_crypto_ctx(ctx);
 | |
| 		ctx = ERR_PTR(res);
 | |
| 	}
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| struct workqueue_struct *ext4_read_workqueue;
 | |
| static DEFINE_MUTEX(crypto_init);
 | |
| 
 | |
| /**
 | |
|  * ext4_exit_crypto() - Shutdown the ext4 encryption system
 | |
|  */
 | |
| void ext4_exit_crypto(void)
 | |
| {
 | |
| 	struct ext4_crypto_ctx *pos, *n;
 | |
| 
 | |
| 	list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list)
 | |
| 		kmem_cache_free(ext4_crypto_ctx_cachep, pos);
 | |
| 	INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
 | |
| 	if (ext4_bounce_page_pool)
 | |
| 		mempool_destroy(ext4_bounce_page_pool);
 | |
| 	ext4_bounce_page_pool = NULL;
 | |
| 	if (ext4_read_workqueue)
 | |
| 		destroy_workqueue(ext4_read_workqueue);
 | |
| 	ext4_read_workqueue = NULL;
 | |
| 	if (ext4_crypto_ctx_cachep)
 | |
| 		kmem_cache_destroy(ext4_crypto_ctx_cachep);
 | |
| 	ext4_crypto_ctx_cachep = NULL;
 | |
| 	if (ext4_crypt_info_cachep)
 | |
| 		kmem_cache_destroy(ext4_crypt_info_cachep);
 | |
| 	ext4_crypt_info_cachep = NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ext4_init_crypto() - Set up for ext4 encryption.
 | |
|  *
 | |
|  * We only call this when we start accessing encrypted files, since it
 | |
|  * results in memory getting allocated that wouldn't otherwise be used.
 | |
|  *
 | |
|  * Return: Zero on success, non-zero otherwise.
 | |
|  */
 | |
| int ext4_init_crypto(void)
 | |
| {
 | |
| 	int i, res = -ENOMEM;
 | |
| 
 | |
| 	mutex_lock(&crypto_init);
 | |
| 	if (ext4_read_workqueue)
 | |
| 		goto already_initialized;
 | |
| 	ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
 | |
| 	if (!ext4_read_workqueue)
 | |
| 		goto fail;
 | |
| 
 | |
| 	ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx,
 | |
| 					    SLAB_RECLAIM_ACCOUNT);
 | |
| 	if (!ext4_crypto_ctx_cachep)
 | |
| 		goto fail;
 | |
| 
 | |
| 	ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info,
 | |
| 					    SLAB_RECLAIM_ACCOUNT);
 | |
| 	if (!ext4_crypt_info_cachep)
 | |
| 		goto fail;
 | |
| 
 | |
| 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
 | |
| 		struct ext4_crypto_ctx *ctx;
 | |
| 
 | |
| 		ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
 | |
| 		if (!ctx) {
 | |
| 			res = -ENOMEM;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
 | |
| 	}
 | |
| 
 | |
| 	ext4_bounce_page_pool =
 | |
| 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
 | |
| 	if (!ext4_bounce_page_pool) {
 | |
| 		res = -ENOMEM;
 | |
| 		goto fail;
 | |
| 	}
 | |
| already_initialized:
 | |
| 	mutex_unlock(&crypto_init);
 | |
| 	return 0;
 | |
| fail:
 | |
| 	ext4_exit_crypto();
 | |
| 	mutex_unlock(&crypto_init);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| void ext4_restore_control_page(struct page *data_page)
 | |
| {
 | |
| 	struct ext4_crypto_ctx *ctx =
 | |
| 		(struct ext4_crypto_ctx *)page_private(data_page);
 | |
| 
 | |
| 	set_page_private(data_page, (unsigned long)NULL);
 | |
| 	ClearPagePrivate(data_page);
 | |
| 	unlock_page(data_page);
 | |
| 	ext4_release_crypto_ctx(ctx);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ext4_crypt_complete() - The completion callback for page encryption
 | |
|  * @req: The asynchronous encryption request context
 | |
|  * @res: The result of the encryption operation
 | |
|  */
 | |
| static void ext4_crypt_complete(struct crypto_async_request *req, int res)
 | |
| {
 | |
| 	struct ext4_completion_result *ecr = req->data;
 | |
| 
 | |
| 	if (res == -EINPROGRESS)
 | |
| 		return;
 | |
| 	ecr->res = res;
 | |
| 	complete(&ecr->completion);
 | |
| }
 | |
| 
 | |
| typedef enum {
 | |
| 	EXT4_DECRYPT = 0,
 | |
| 	EXT4_ENCRYPT,
 | |
| } ext4_direction_t;
 | |
| 
 | |
| static int ext4_page_crypto(struct ext4_crypto_ctx *ctx,
 | |
| 			    struct inode *inode,
 | |
| 			    ext4_direction_t rw,
 | |
| 			    pgoff_t index,
 | |
| 			    struct page *src_page,
 | |
| 			    struct page *dest_page)
 | |
| 
 | |
| {
 | |
| 	u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
 | |
| 	struct ablkcipher_request *req = NULL;
 | |
| 	DECLARE_EXT4_COMPLETION_RESULT(ecr);
 | |
| 	struct scatterlist dst, src;
 | |
| 	struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
 | |
| 	struct crypto_ablkcipher *tfm = ci->ci_ctfm;
 | |
| 	int res = 0;
 | |
| 
 | |
| 	req = ablkcipher_request_alloc(tfm, GFP_NOFS);
 | |
| 	if (!req) {
 | |
| 		printk_ratelimited(KERN_ERR
 | |
| 				   "%s: crypto_request_alloc() failed\n",
 | |
| 				   __func__);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	ablkcipher_request_set_callback(
 | |
| 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 | |
| 		ext4_crypt_complete, &ecr);
 | |
| 
 | |
| 	BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
 | |
| 	memcpy(xts_tweak, &index, sizeof(index));
 | |
| 	memset(&xts_tweak[sizeof(index)], 0,
 | |
| 	       EXT4_XTS_TWEAK_SIZE - sizeof(index));
 | |
| 
 | |
| 	sg_init_table(&dst, 1);
 | |
| 	sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
 | |
| 	sg_init_table(&src, 1);
 | |
| 	sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
 | |
| 	ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
 | |
| 				     xts_tweak);
 | |
| 	if (rw == EXT4_DECRYPT)
 | |
| 		res = crypto_ablkcipher_decrypt(req);
 | |
| 	else
 | |
| 		res = crypto_ablkcipher_encrypt(req);
 | |
| 	if (res == -EINPROGRESS || res == -EBUSY) {
 | |
| 		BUG_ON(req->base.data != &ecr);
 | |
| 		wait_for_completion(&ecr.completion);
 | |
| 		res = ecr.res;
 | |
| 	}
 | |
| 	ablkcipher_request_free(req);
 | |
| 	if (res) {
 | |
| 		printk_ratelimited(
 | |
| 			KERN_ERR
 | |
| 			"%s: crypto_ablkcipher_encrypt() returned %d\n",
 | |
| 			__func__, res);
 | |
| 		return res;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx)
 | |
| {
 | |
| 	ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, GFP_NOWAIT);
 | |
| 	if (ctx->w.bounce_page == NULL)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	ctx->flags |= EXT4_WRITE_PATH_FL;
 | |
| 	return ctx->w.bounce_page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ext4_encrypt() - Encrypts a page
 | |
|  * @inode:          The inode for which the encryption should take place
 | |
|  * @plaintext_page: The page to encrypt. Must be locked.
 | |
|  *
 | |
|  * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
 | |
|  * encryption context.
 | |
|  *
 | |
|  * Called on the page write path.  The caller must call
 | |
|  * ext4_restore_control_page() on the returned ciphertext page to
 | |
|  * release the bounce buffer and the encryption context.
 | |
|  *
 | |
|  * Return: An allocated page with the encrypted content on success. Else, an
 | |
|  * error value or NULL.
 | |
|  */
 | |
| struct page *ext4_encrypt(struct inode *inode,
 | |
| 			  struct page *plaintext_page)
 | |
| {
 | |
| 	struct ext4_crypto_ctx *ctx;
 | |
| 	struct page *ciphertext_page = NULL;
 | |
| 	int err;
 | |
| 
 | |
| 	BUG_ON(!PageLocked(plaintext_page));
 | |
| 
 | |
| 	ctx = ext4_get_crypto_ctx(inode);
 | |
| 	if (IS_ERR(ctx))
 | |
| 		return (struct page *) ctx;
 | |
| 
 | |
| 	/* The encryption operation will require a bounce page. */
 | |
| 	ciphertext_page = alloc_bounce_page(ctx);
 | |
| 	if (IS_ERR(ciphertext_page))
 | |
| 		goto errout;
 | |
| 	ctx->w.control_page = plaintext_page;
 | |
| 	err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index,
 | |
| 			       plaintext_page, ciphertext_page);
 | |
| 	if (err) {
 | |
| 		ciphertext_page = ERR_PTR(err);
 | |
| 	errout:
 | |
| 		ext4_release_crypto_ctx(ctx);
 | |
| 		return ciphertext_page;
 | |
| 	}
 | |
| 	SetPagePrivate(ciphertext_page);
 | |
| 	set_page_private(ciphertext_page, (unsigned long)ctx);
 | |
| 	lock_page(ciphertext_page);
 | |
| 	return ciphertext_page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ext4_decrypt() - Decrypts a page in-place
 | |
|  * @ctx:  The encryption context.
 | |
|  * @page: The page to decrypt. Must be locked.
 | |
|  *
 | |
|  * Decrypts page in-place using the ctx encryption context.
 | |
|  *
 | |
|  * Called from the read completion callback.
 | |
|  *
 | |
|  * Return: Zero on success, non-zero otherwise.
 | |
|  */
 | |
| int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page)
 | |
| {
 | |
| 	BUG_ON(!PageLocked(page));
 | |
| 
 | |
| 	return ext4_page_crypto(ctx, page->mapping->host,
 | |
| 				EXT4_DECRYPT, page->index, page, page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convenience function which takes care of allocating and
 | |
|  * deallocating the encryption context
 | |
|  */
 | |
| int ext4_decrypt_one(struct inode *inode, struct page *page)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode);
 | |
| 
 | |
| 	if (IS_ERR(ctx))
 | |
| 		return PTR_ERR(ctx);
 | |
| 	ret = ext4_decrypt(ctx, page);
 | |
| 	ext4_release_crypto_ctx(ctx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex)
 | |
| {
 | |
| 	struct ext4_crypto_ctx	*ctx;
 | |
| 	struct page		*ciphertext_page = NULL;
 | |
| 	struct bio		*bio;
 | |
| 	ext4_lblk_t		lblk = ex->ee_block;
 | |
| 	ext4_fsblk_t		pblk = ext4_ext_pblock(ex);
 | |
| 	unsigned int		len = ext4_ext_get_actual_len(ex);
 | |
| 	int			err = 0;
 | |
| 
 | |
| 	BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);
 | |
| 
 | |
| 	ctx = ext4_get_crypto_ctx(inode);
 | |
| 	if (IS_ERR(ctx))
 | |
| 		return PTR_ERR(ctx);
 | |
| 
 | |
| 	ciphertext_page = alloc_bounce_page(ctx);
 | |
| 	if (IS_ERR(ciphertext_page)) {
 | |
| 		err = PTR_ERR(ciphertext_page);
 | |
| 		goto errout;
 | |
| 	}
 | |
| 
 | |
| 	while (len--) {
 | |
| 		err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk,
 | |
| 				       ZERO_PAGE(0), ciphertext_page);
 | |
| 		if (err)
 | |
| 			goto errout;
 | |
| 
 | |
| 		bio = bio_alloc(GFP_KERNEL, 1);
 | |
| 		if (!bio) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto errout;
 | |
| 		}
 | |
| 		bio->bi_bdev = inode->i_sb->s_bdev;
 | |
| 		bio->bi_iter.bi_sector = pblk;
 | |
| 		err = bio_add_page(bio, ciphertext_page,
 | |
| 				   inode->i_sb->s_blocksize, 0);
 | |
| 		if (err) {
 | |
| 			bio_put(bio);
 | |
| 			goto errout;
 | |
| 		}
 | |
| 		err = submit_bio_wait(WRITE, bio);
 | |
| 		bio_put(bio);
 | |
| 		if (err)
 | |
| 			goto errout;
 | |
| 	}
 | |
| 	err = 0;
 | |
| errout:
 | |
| 	ext4_release_crypto_ctx(ctx);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| bool ext4_valid_contents_enc_mode(uint32_t mode)
 | |
| {
 | |
| 	return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ext4_validate_encryption_key_size() - Validate the encryption key size
 | |
|  * @mode: The key mode.
 | |
|  * @size: The key size to validate.
 | |
|  *
 | |
|  * Return: The validated key size for @mode. Zero if invalid.
 | |
|  */
 | |
| uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
 | |
| {
 | |
| 	if (size == ext4_encryption_key_size(mode))
 | |
| 		return size;
 | |
| 	return 0;
 | |
| }
 | 
