 c7c6b39050
			
		
	
	
	c7c6b39050
	
	
	
		
			
			Not cache coherent R10k systems (like IP28) need to do real cache invalidates in dma_cache_sync(). Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
		
			
				
	
	
		
			389 lines
		
	
	
	
		
			8.6 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			389 lines
		
	
	
	
		
			8.6 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This file is subject to the terms and conditions of the GNU General Public
 | |
|  * License.  See the file "COPYING" in the main directory of this archive
 | |
|  * for more details.
 | |
|  *
 | |
|  * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
 | |
|  * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org>
 | |
|  * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
 | |
|  */
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/string.h>
 | |
| 
 | |
| #include <asm/cache.h>
 | |
| #include <asm/io.h>
 | |
| 
 | |
| #include <dma-coherence.h>
 | |
| 
 | |
| static inline unsigned long dma_addr_to_virt(dma_addr_t dma_addr)
 | |
| {
 | |
| 	unsigned long addr = plat_dma_addr_to_phys(dma_addr);
 | |
| 
 | |
| 	return (unsigned long)phys_to_virt(addr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Warning on the terminology - Linux calls an uncached area coherent;
 | |
|  * MIPS terminology calls memory areas with hardware maintained coherency
 | |
|  * coherent.
 | |
|  */
 | |
| 
 | |
| static inline int cpu_is_noncoherent_r10000(struct device *dev)
 | |
| {
 | |
| 	return !plat_device_is_coherent(dev) &&
 | |
| 	       (current_cpu_type() == CPU_R10000 ||
 | |
| 	       current_cpu_type() == CPU_R12000);
 | |
| }
 | |
| 
 | |
| static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
 | |
| {
 | |
| 	/* ignore region specifiers */
 | |
| 	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	if (dev == NULL)
 | |
| 		gfp |= __GFP_DMA;
 | |
| 	else if (dev->coherent_dma_mask < DMA_BIT_MASK(24))
 | |
| 		gfp |= __GFP_DMA;
 | |
| 	else
 | |
| #endif
 | |
| #ifdef CONFIG_ZONE_DMA32
 | |
| 	     if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
 | |
| 		gfp |= __GFP_DMA32;
 | |
| 	else
 | |
| #endif
 | |
| 		;
 | |
| 
 | |
| 	/* Don't invoke OOM killer */
 | |
| 	gfp |= __GFP_NORETRY;
 | |
| 
 | |
| 	return gfp;
 | |
| }
 | |
| 
 | |
| void *dma_alloc_noncoherent(struct device *dev, size_t size,
 | |
| 	dma_addr_t * dma_handle, gfp_t gfp)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	gfp = massage_gfp_flags(dev, gfp);
 | |
| 
 | |
| 	ret = (void *) __get_free_pages(gfp, get_order(size));
 | |
| 
 | |
| 	if (ret != NULL) {
 | |
| 		memset(ret, 0, size);
 | |
| 		*dma_handle = plat_map_dma_mem(dev, ret, size);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_alloc_noncoherent);
 | |
| 
 | |
| void *dma_alloc_coherent(struct device *dev, size_t size,
 | |
| 	dma_addr_t * dma_handle, gfp_t gfp)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	gfp = massage_gfp_flags(dev, gfp);
 | |
| 
 | |
| 	ret = (void *) __get_free_pages(gfp, get_order(size));
 | |
| 
 | |
| 	if (ret) {
 | |
| 		memset(ret, 0, size);
 | |
| 		*dma_handle = plat_map_dma_mem(dev, ret, size);
 | |
| 
 | |
| 		if (!plat_device_is_coherent(dev)) {
 | |
| 			dma_cache_wback_inv((unsigned long) ret, size);
 | |
| 			ret = UNCAC_ADDR(ret);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_alloc_coherent);
 | |
| 
 | |
| void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
 | |
| 	dma_addr_t dma_handle)
 | |
| {
 | |
| 	free_pages((unsigned long) vaddr, get_order(size));
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_free_noncoherent);
 | |
| 
 | |
| void dma_free_coherent(struct device *dev, size_t size, void *vaddr,
 | |
| 	dma_addr_t dma_handle)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long) vaddr;
 | |
| 
 | |
| 	if (!plat_device_is_coherent(dev))
 | |
| 		addr = CAC_ADDR(addr);
 | |
| 
 | |
| 	free_pages(addr, get_order(size));
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_free_coherent);
 | |
| 
 | |
| static inline void __dma_sync(unsigned long addr, size_t size,
 | |
| 	enum dma_data_direction direction)
 | |
| {
 | |
| 	switch (direction) {
 | |
| 	case DMA_TO_DEVICE:
 | |
| 		dma_cache_wback(addr, size);
 | |
| 		break;
 | |
| 
 | |
| 	case DMA_FROM_DEVICE:
 | |
| 		dma_cache_inv(addr, size);
 | |
| 		break;
 | |
| 
 | |
| 	case DMA_BIDIRECTIONAL:
 | |
| 		dma_cache_wback_inv(addr, size);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
 | |
| 	enum dma_data_direction direction)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long) ptr;
 | |
| 
 | |
| 	if (!plat_device_is_coherent(dev))
 | |
| 		__dma_sync(addr, size, direction);
 | |
| 
 | |
| 	return plat_map_dma_mem(dev, ptr, size);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_map_single);
 | |
| 
 | |
| void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
 | |
| 	enum dma_data_direction direction)
 | |
| {
 | |
| 	if (cpu_is_noncoherent_r10000(dev))
 | |
| 		__dma_sync(dma_addr_to_virt(dma_addr), size,
 | |
| 		           direction);
 | |
| 
 | |
| 	plat_unmap_dma_mem(dma_addr);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_unmap_single);
 | |
| 
 | |
| int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 | |
| 	enum dma_data_direction direction)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(direction == DMA_NONE);
 | |
| 
 | |
| 	for (i = 0; i < nents; i++, sg++) {
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		addr = (unsigned long) sg_virt(sg);
 | |
| 		if (!plat_device_is_coherent(dev) && addr)
 | |
| 			__dma_sync(addr, sg->length, direction);
 | |
| 		sg->dma_address = plat_map_dma_mem(dev,
 | |
| 				                   (void *)addr, sg->length);
 | |
| 	}
 | |
| 
 | |
| 	return nents;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_map_sg);
 | |
| 
 | |
| dma_addr_t dma_map_page(struct device *dev, struct page *page,
 | |
| 	unsigned long offset, size_t size, enum dma_data_direction direction)
 | |
| {
 | |
| 	BUG_ON(direction == DMA_NONE);
 | |
| 
 | |
| 	if (!plat_device_is_coherent(dev)) {
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		addr = (unsigned long) page_address(page) + offset;
 | |
| 		dma_cache_wback_inv(addr, size);
 | |
| 	}
 | |
| 
 | |
| 	return plat_map_dma_mem_page(dev, page) + offset;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_map_page);
 | |
| 
 | |
| void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
 | |
| 	enum dma_data_direction direction)
 | |
| {
 | |
| 	BUG_ON(direction == DMA_NONE);
 | |
| 
 | |
| 	if (!plat_device_is_coherent(dev) && direction != DMA_TO_DEVICE) {
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		addr = plat_dma_addr_to_phys(dma_address);
 | |
| 		dma_cache_wback_inv(addr, size);
 | |
| 	}
 | |
| 
 | |
| 	plat_unmap_dma_mem(dma_address);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_unmap_page);
 | |
| 
 | |
| void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
 | |
| 	enum dma_data_direction direction)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(direction == DMA_NONE);
 | |
| 
 | |
| 	for (i = 0; i < nhwentries; i++, sg++) {
 | |
| 		if (!plat_device_is_coherent(dev) &&
 | |
| 		    direction != DMA_TO_DEVICE) {
 | |
| 			addr = (unsigned long) sg_virt(sg);
 | |
| 			if (addr)
 | |
| 				__dma_sync(addr, sg->length, direction);
 | |
| 		}
 | |
| 		plat_unmap_dma_mem(sg->dma_address);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_unmap_sg);
 | |
| 
 | |
| void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
 | |
| 	size_t size, enum dma_data_direction direction)
 | |
| {
 | |
| 	BUG_ON(direction == DMA_NONE);
 | |
| 
 | |
| 	if (cpu_is_noncoherent_r10000(dev)) {
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		addr = dma_addr_to_virt(dma_handle);
 | |
| 		__dma_sync(addr, size, direction);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_sync_single_for_cpu);
 | |
| 
 | |
| void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
 | |
| 	size_t size, enum dma_data_direction direction)
 | |
| {
 | |
| 	BUG_ON(direction == DMA_NONE);
 | |
| 
 | |
| 	if (!plat_device_is_coherent(dev)) {
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		addr = dma_addr_to_virt(dma_handle);
 | |
| 		__dma_sync(addr, size, direction);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_sync_single_for_device);
 | |
| 
 | |
| void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
 | |
| 	unsigned long offset, size_t size, enum dma_data_direction direction)
 | |
| {
 | |
| 	BUG_ON(direction == DMA_NONE);
 | |
| 
 | |
| 	if (cpu_is_noncoherent_r10000(dev)) {
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		addr = dma_addr_to_virt(dma_handle);
 | |
| 		__dma_sync(addr + offset, size, direction);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
 | |
| 
 | |
| void dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle,
 | |
| 	unsigned long offset, size_t size, enum dma_data_direction direction)
 | |
| {
 | |
| 	BUG_ON(direction == DMA_NONE);
 | |
| 
 | |
| 	if (!plat_device_is_coherent(dev)) {
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		addr = dma_addr_to_virt(dma_handle);
 | |
| 		__dma_sync(addr + offset, size, direction);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_sync_single_range_for_device);
 | |
| 
 | |
| void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
 | |
| 	enum dma_data_direction direction)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(direction == DMA_NONE);
 | |
| 
 | |
| 	/* Make sure that gcc doesn't leave the empty loop body.  */
 | |
| 	for (i = 0; i < nelems; i++, sg++) {
 | |
| 		if (cpu_is_noncoherent_r10000(dev))
 | |
| 			__dma_sync((unsigned long)page_address(sg_page(sg)),
 | |
| 			           sg->length, direction);
 | |
| 		plat_unmap_dma_mem(sg->dma_address);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_sync_sg_for_cpu);
 | |
| 
 | |
| void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
 | |
| 	enum dma_data_direction direction)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(direction == DMA_NONE);
 | |
| 
 | |
| 	/* Make sure that gcc doesn't leave the empty loop body.  */
 | |
| 	for (i = 0; i < nelems; i++, sg++) {
 | |
| 		if (!plat_device_is_coherent(dev))
 | |
| 			__dma_sync((unsigned long)page_address(sg_page(sg)),
 | |
| 			           sg->length, direction);
 | |
| 		plat_unmap_dma_mem(sg->dma_address);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_sync_sg_for_device);
 | |
| 
 | |
| int dma_mapping_error(dma_addr_t dma_addr)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_mapping_error);
 | |
| 
 | |
| int dma_supported(struct device *dev, u64 mask)
 | |
| {
 | |
| 	/*
 | |
| 	 * we fall back to GFP_DMA when the mask isn't all 1s,
 | |
| 	 * so we can't guarantee allocations that must be
 | |
| 	 * within a tighter range than GFP_DMA..
 | |
| 	 */
 | |
| 	if (mask < DMA_BIT_MASK(24))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_supported);
 | |
| 
 | |
| int dma_is_consistent(struct device *dev, dma_addr_t dma_addr)
 | |
| {
 | |
| 	return plat_device_is_coherent(dev);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_is_consistent);
 | |
| 
 | |
| void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
 | |
| 	       enum dma_data_direction direction)
 | |
| {
 | |
| 	BUG_ON(direction == DMA_NONE);
 | |
| 
 | |
| 	if (!plat_device_is_coherent(dev))
 | |
| 		__dma_sync((unsigned long)vaddr, size, direction);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_cache_sync);
 |