 a102292719
			
		
	
	
	a102292719
	
	
	
		
			
			CMD_SYNC is really 0 which is confusing: if (cmd.flags & CMD_SYNC) is always false. Fix this by simply removing its definition. Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
		
			
				
	
	
		
			1113 lines
		
	
	
	
		
			36 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1113 lines
		
	
	
	
		
			36 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /******************************************************************************
 | |
|  *
 | |
|  * This file is provided under a dual BSD/GPLv2 license.  When using or
 | |
|  * redistributing this file, you may do so under either license.
 | |
|  *
 | |
|  * GPL LICENSE SUMMARY
 | |
|  *
 | |
|  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of version 2 of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 | |
|  * USA
 | |
|  *
 | |
|  * The full GNU General Public License is included in this distribution
 | |
|  * in the file called COPYING.
 | |
|  *
 | |
|  * Contact Information:
 | |
|  *  Intel Linux Wireless <ilw@linux.intel.com>
 | |
|  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 | |
|  *
 | |
|  * BSD LICENSE
 | |
|  *
 | |
|  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  *  * Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *  * Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in
 | |
|  *    the documentation and/or other materials provided with the
 | |
|  *    distribution.
 | |
|  *  * Neither the name Intel Corporation nor the names of its
 | |
|  *    contributors may be used to endorse or promote products derived
 | |
|  *    from this software without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
|  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
|  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
|  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
|  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
|  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  *****************************************************************************/
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <net/mac80211.h>
 | |
| 
 | |
| #include "iwl-trans.h"
 | |
| 
 | |
| #include "dev.h"
 | |
| #include "calib.h"
 | |
| #include "agn.h"
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * INIT calibrations framework
 | |
|  *****************************************************************************/
 | |
| 
 | |
| /* Opaque calibration results */
 | |
| struct iwl_calib_result {
 | |
| 	struct list_head list;
 | |
| 	size_t cmd_len;
 | |
| 	struct iwl_calib_hdr hdr;
 | |
| 	/* data follows */
 | |
| };
 | |
| 
 | |
| struct statistics_general_data {
 | |
| 	u32 beacon_silence_rssi_a;
 | |
| 	u32 beacon_silence_rssi_b;
 | |
| 	u32 beacon_silence_rssi_c;
 | |
| 	u32 beacon_energy_a;
 | |
| 	u32 beacon_energy_b;
 | |
| 	u32 beacon_energy_c;
 | |
| };
 | |
| 
 | |
| int iwl_send_calib_results(struct iwl_priv *priv)
 | |
| {
 | |
| 	struct iwl_host_cmd hcmd = {
 | |
| 		.id = REPLY_PHY_CALIBRATION_CMD,
 | |
| 	};
 | |
| 	struct iwl_calib_result *res;
 | |
| 
 | |
| 	list_for_each_entry(res, &priv->calib_results, list) {
 | |
| 		int ret;
 | |
| 
 | |
| 		hcmd.len[0] = res->cmd_len;
 | |
| 		hcmd.data[0] = &res->hdr;
 | |
| 		hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
 | |
| 		ret = iwl_dvm_send_cmd(priv, &hcmd);
 | |
| 		if (ret) {
 | |
| 			IWL_ERR(priv, "Error %d on calib cmd %d\n",
 | |
| 				ret, res->hdr.op_code);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int iwl_calib_set(struct iwl_priv *priv,
 | |
| 		  const struct iwl_calib_hdr *cmd, int len)
 | |
| {
 | |
| 	struct iwl_calib_result *res, *tmp;
 | |
| 
 | |
| 	res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
 | |
| 		      GFP_ATOMIC);
 | |
| 	if (!res)
 | |
| 		return -ENOMEM;
 | |
| 	memcpy(&res->hdr, cmd, len);
 | |
| 	res->cmd_len = len;
 | |
| 
 | |
| 	list_for_each_entry(tmp, &priv->calib_results, list) {
 | |
| 		if (tmp->hdr.op_code == res->hdr.op_code) {
 | |
| 			list_replace(&tmp->list, &res->list);
 | |
| 			kfree(tmp);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* wasn't in list already */
 | |
| 	list_add_tail(&res->list, &priv->calib_results);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void iwl_calib_free_results(struct iwl_priv *priv)
 | |
| {
 | |
| 	struct iwl_calib_result *res, *tmp;
 | |
| 
 | |
| 	list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
 | |
| 		list_del(&res->list);
 | |
| 		kfree(res);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * RUNTIME calibrations framework
 | |
|  *****************************************************************************/
 | |
| 
 | |
| /* "false alarms" are signals that our DSP tries to lock onto,
 | |
|  *   but then determines that they are either noise, or transmissions
 | |
|  *   from a distant wireless network (also "noise", really) that get
 | |
|  *   "stepped on" by stronger transmissions within our own network.
 | |
|  * This algorithm attempts to set a sensitivity level that is high
 | |
|  *   enough to receive all of our own network traffic, but not so
 | |
|  *   high that our DSP gets too busy trying to lock onto non-network
 | |
|  *   activity/noise. */
 | |
| static int iwl_sens_energy_cck(struct iwl_priv *priv,
 | |
| 				   u32 norm_fa,
 | |
| 				   u32 rx_enable_time,
 | |
| 				   struct statistics_general_data *rx_info)
 | |
| {
 | |
| 	u32 max_nrg_cck = 0;
 | |
| 	int i = 0;
 | |
| 	u8 max_silence_rssi = 0;
 | |
| 	u32 silence_ref = 0;
 | |
| 	u8 silence_rssi_a = 0;
 | |
| 	u8 silence_rssi_b = 0;
 | |
| 	u8 silence_rssi_c = 0;
 | |
| 	u32 val;
 | |
| 
 | |
| 	/* "false_alarms" values below are cross-multiplications to assess the
 | |
| 	 *   numbers of false alarms within the measured period of actual Rx
 | |
| 	 *   (Rx is off when we're txing), vs the min/max expected false alarms
 | |
| 	 *   (some should be expected if rx is sensitive enough) in a
 | |
| 	 *   hypothetical listening period of 200 time units (TU), 204.8 msec:
 | |
| 	 *
 | |
| 	 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
 | |
| 	 *
 | |
| 	 * */
 | |
| 	u32 false_alarms = norm_fa * 200 * 1024;
 | |
| 	u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
 | |
| 	u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
 | |
| 	struct iwl_sensitivity_data *data = NULL;
 | |
| 	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 | |
| 
 | |
| 	data = &(priv->sensitivity_data);
 | |
| 
 | |
| 	data->nrg_auto_corr_silence_diff = 0;
 | |
| 
 | |
| 	/* Find max silence rssi among all 3 receivers.
 | |
| 	 * This is background noise, which may include transmissions from other
 | |
| 	 *    networks, measured during silence before our network's beacon */
 | |
| 	silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
 | |
| 			    ALL_BAND_FILTER) >> 8);
 | |
| 	silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
 | |
| 			    ALL_BAND_FILTER) >> 8);
 | |
| 	silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
 | |
| 			    ALL_BAND_FILTER) >> 8);
 | |
| 
 | |
| 	val = max(silence_rssi_b, silence_rssi_c);
 | |
| 	max_silence_rssi = max(silence_rssi_a, (u8) val);
 | |
| 
 | |
| 	/* Store silence rssi in 20-beacon history table */
 | |
| 	data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
 | |
| 	data->nrg_silence_idx++;
 | |
| 	if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
 | |
| 		data->nrg_silence_idx = 0;
 | |
| 
 | |
| 	/* Find max silence rssi across 20 beacon history */
 | |
| 	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
 | |
| 		val = data->nrg_silence_rssi[i];
 | |
| 		silence_ref = max(silence_ref, val);
 | |
| 	}
 | |
| 	IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
 | |
| 			silence_rssi_a, silence_rssi_b, silence_rssi_c,
 | |
| 			silence_ref);
 | |
| 
 | |
| 	/* Find max rx energy (min value!) among all 3 receivers,
 | |
| 	 *   measured during beacon frame.
 | |
| 	 * Save it in 10-beacon history table. */
 | |
| 	i = data->nrg_energy_idx;
 | |
| 	val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
 | |
| 	data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
 | |
| 
 | |
| 	data->nrg_energy_idx++;
 | |
| 	if (data->nrg_energy_idx >= 10)
 | |
| 		data->nrg_energy_idx = 0;
 | |
| 
 | |
| 	/* Find min rx energy (max value) across 10 beacon history.
 | |
| 	 * This is the minimum signal level that we want to receive well.
 | |
| 	 * Add backoff (margin so we don't miss slightly lower energy frames).
 | |
| 	 * This establishes an upper bound (min value) for energy threshold. */
 | |
| 	max_nrg_cck = data->nrg_value[0];
 | |
| 	for (i = 1; i < 10; i++)
 | |
| 		max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
 | |
| 	max_nrg_cck += 6;
 | |
| 
 | |
| 	IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
 | |
| 			rx_info->beacon_energy_a, rx_info->beacon_energy_b,
 | |
| 			rx_info->beacon_energy_c, max_nrg_cck - 6);
 | |
| 
 | |
| 	/* Count number of consecutive beacons with fewer-than-desired
 | |
| 	 *   false alarms. */
 | |
| 	if (false_alarms < min_false_alarms)
 | |
| 		data->num_in_cck_no_fa++;
 | |
| 	else
 | |
| 		data->num_in_cck_no_fa = 0;
 | |
| 	IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
 | |
| 			data->num_in_cck_no_fa);
 | |
| 
 | |
| 	/* If we got too many false alarms this time, reduce sensitivity */
 | |
| 	if ((false_alarms > max_false_alarms) &&
 | |
| 		(data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
 | |
| 		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
 | |
| 		     false_alarms, max_false_alarms);
 | |
| 		IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
 | |
| 		data->nrg_curr_state = IWL_FA_TOO_MANY;
 | |
| 		/* Store for "fewer than desired" on later beacon */
 | |
| 		data->nrg_silence_ref = silence_ref;
 | |
| 
 | |
| 		/* increase energy threshold (reduce nrg value)
 | |
| 		 *   to decrease sensitivity */
 | |
| 		data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
 | |
| 	/* Else if we got fewer than desired, increase sensitivity */
 | |
| 	} else if (false_alarms < min_false_alarms) {
 | |
| 		data->nrg_curr_state = IWL_FA_TOO_FEW;
 | |
| 
 | |
| 		/* Compare silence level with silence level for most recent
 | |
| 		 *   healthy number or too many false alarms */
 | |
| 		data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
 | |
| 						   (s32)silence_ref;
 | |
| 
 | |
| 		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
 | |
| 			 false_alarms, min_false_alarms,
 | |
| 			 data->nrg_auto_corr_silence_diff);
 | |
| 
 | |
| 		/* Increase value to increase sensitivity, but only if:
 | |
| 		 * 1a) previous beacon did *not* have *too many* false alarms
 | |
| 		 * 1b) AND there's a significant difference in Rx levels
 | |
| 		 *      from a previous beacon with too many, or healthy # FAs
 | |
| 		 * OR 2) We've seen a lot of beacons (100) with too few
 | |
| 		 *       false alarms */
 | |
| 		if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
 | |
| 			((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
 | |
| 			(data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
 | |
| 
 | |
| 			IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
 | |
| 			/* Increase nrg value to increase sensitivity */
 | |
| 			val = data->nrg_th_cck + NRG_STEP_CCK;
 | |
| 			data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
 | |
| 		} else {
 | |
| 			IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
 | |
| 		}
 | |
| 
 | |
| 	/* Else we got a healthy number of false alarms, keep status quo */
 | |
| 	} else {
 | |
| 		IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
 | |
| 		data->nrg_curr_state = IWL_FA_GOOD_RANGE;
 | |
| 
 | |
| 		/* Store for use in "fewer than desired" with later beacon */
 | |
| 		data->nrg_silence_ref = silence_ref;
 | |
| 
 | |
| 		/* If previous beacon had too many false alarms,
 | |
| 		 *   give it some extra margin by reducing sensitivity again
 | |
| 		 *   (but don't go below measured energy of desired Rx) */
 | |
| 		if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
 | |
| 			IWL_DEBUG_CALIB(priv, "... increasing margin\n");
 | |
| 			if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
 | |
| 				data->nrg_th_cck -= NRG_MARGIN;
 | |
| 			else
 | |
| 				data->nrg_th_cck = max_nrg_cck;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure the energy threshold does not go above the measured
 | |
| 	 * energy of the desired Rx signals (reduced by backoff margin),
 | |
| 	 * or else we might start missing Rx frames.
 | |
| 	 * Lower value is higher energy, so we use max()!
 | |
| 	 */
 | |
| 	data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
 | |
| 	IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
 | |
| 
 | |
| 	data->nrg_prev_state = data->nrg_curr_state;
 | |
| 
 | |
| 	/* Auto-correlation CCK algorithm */
 | |
| 	if (false_alarms > min_false_alarms) {
 | |
| 
 | |
| 		/* increase auto_corr values to decrease sensitivity
 | |
| 		 * so the DSP won't be disturbed by the noise
 | |
| 		 */
 | |
| 		if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
 | |
| 			data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
 | |
| 		else {
 | |
| 			val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
 | |
| 			data->auto_corr_cck =
 | |
| 				min((u32)ranges->auto_corr_max_cck, val);
 | |
| 		}
 | |
| 		val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
 | |
| 		data->auto_corr_cck_mrc =
 | |
| 			min((u32)ranges->auto_corr_max_cck_mrc, val);
 | |
| 	} else if ((false_alarms < min_false_alarms) &&
 | |
| 	   ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
 | |
| 	   (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
 | |
| 
 | |
| 		/* Decrease auto_corr values to increase sensitivity */
 | |
| 		val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
 | |
| 		data->auto_corr_cck =
 | |
| 			max((u32)ranges->auto_corr_min_cck, val);
 | |
| 		val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
 | |
| 		data->auto_corr_cck_mrc =
 | |
| 			max((u32)ranges->auto_corr_min_cck_mrc, val);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
 | |
| 				       u32 norm_fa,
 | |
| 				       u32 rx_enable_time)
 | |
| {
 | |
| 	u32 val;
 | |
| 	u32 false_alarms = norm_fa * 200 * 1024;
 | |
| 	u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
 | |
| 	u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
 | |
| 	struct iwl_sensitivity_data *data = NULL;
 | |
| 	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 | |
| 
 | |
| 	data = &(priv->sensitivity_data);
 | |
| 
 | |
| 	/* If we got too many false alarms this time, reduce sensitivity */
 | |
| 	if (false_alarms > max_false_alarms) {
 | |
| 
 | |
| 		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
 | |
| 			     false_alarms, max_false_alarms);
 | |
| 
 | |
| 		val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
 | |
| 		data->auto_corr_ofdm =
 | |
| 			min((u32)ranges->auto_corr_max_ofdm, val);
 | |
| 
 | |
| 		val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
 | |
| 		data->auto_corr_ofdm_mrc =
 | |
| 			min((u32)ranges->auto_corr_max_ofdm_mrc, val);
 | |
| 
 | |
| 		val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
 | |
| 		data->auto_corr_ofdm_x1 =
 | |
| 			min((u32)ranges->auto_corr_max_ofdm_x1, val);
 | |
| 
 | |
| 		val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
 | |
| 		data->auto_corr_ofdm_mrc_x1 =
 | |
| 			min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
 | |
| 	}
 | |
| 
 | |
| 	/* Else if we got fewer than desired, increase sensitivity */
 | |
| 	else if (false_alarms < min_false_alarms) {
 | |
| 
 | |
| 		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
 | |
| 			     false_alarms, min_false_alarms);
 | |
| 
 | |
| 		val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
 | |
| 		data->auto_corr_ofdm =
 | |
| 			max((u32)ranges->auto_corr_min_ofdm, val);
 | |
| 
 | |
| 		val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
 | |
| 		data->auto_corr_ofdm_mrc =
 | |
| 			max((u32)ranges->auto_corr_min_ofdm_mrc, val);
 | |
| 
 | |
| 		val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
 | |
| 		data->auto_corr_ofdm_x1 =
 | |
| 			max((u32)ranges->auto_corr_min_ofdm_x1, val);
 | |
| 
 | |
| 		val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
 | |
| 		data->auto_corr_ofdm_mrc_x1 =
 | |
| 			max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
 | |
| 	} else {
 | |
| 		IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
 | |
| 			 min_false_alarms, false_alarms, max_false_alarms);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
 | |
| 				struct iwl_sensitivity_data *data,
 | |
| 				__le16 *tbl)
 | |
| {
 | |
| 	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
 | |
| 				cpu_to_le16((u16)data->auto_corr_ofdm);
 | |
| 	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
 | |
| 				cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
 | |
| 	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
 | |
| 				cpu_to_le16((u16)data->auto_corr_ofdm_x1);
 | |
| 	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
 | |
| 				cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
 | |
| 
 | |
| 	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
 | |
| 				cpu_to_le16((u16)data->auto_corr_cck);
 | |
| 	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
 | |
| 				cpu_to_le16((u16)data->auto_corr_cck_mrc);
 | |
| 
 | |
| 	tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
 | |
| 				cpu_to_le16((u16)data->nrg_th_cck);
 | |
| 	tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
 | |
| 				cpu_to_le16((u16)data->nrg_th_ofdm);
 | |
| 
 | |
| 	tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
 | |
| 				cpu_to_le16(data->barker_corr_th_min);
 | |
| 	tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
 | |
| 				cpu_to_le16(data->barker_corr_th_min_mrc);
 | |
| 	tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
 | |
| 				cpu_to_le16(data->nrg_th_cca);
 | |
| 
 | |
| 	IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
 | |
| 			data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
 | |
| 			data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
 | |
| 			data->nrg_th_ofdm);
 | |
| 
 | |
| 	IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
 | |
| 			data->auto_corr_cck, data->auto_corr_cck_mrc,
 | |
| 			data->nrg_th_cck);
 | |
| }
 | |
| 
 | |
| /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
 | |
| static int iwl_sensitivity_write(struct iwl_priv *priv)
 | |
| {
 | |
| 	struct iwl_sensitivity_cmd cmd;
 | |
| 	struct iwl_sensitivity_data *data = NULL;
 | |
| 	struct iwl_host_cmd cmd_out = {
 | |
| 		.id = SENSITIVITY_CMD,
 | |
| 		.len = { sizeof(struct iwl_sensitivity_cmd), },
 | |
| 		.flags = CMD_ASYNC,
 | |
| 		.data = { &cmd, },
 | |
| 	};
 | |
| 
 | |
| 	data = &(priv->sensitivity_data);
 | |
| 
 | |
| 	memset(&cmd, 0, sizeof(cmd));
 | |
| 
 | |
| 	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
 | |
| 
 | |
| 	/* Update uCode's "work" table, and copy it to DSP */
 | |
| 	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
 | |
| 
 | |
| 	/* Don't send command to uCode if nothing has changed */
 | |
| 	if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
 | |
| 		    sizeof(u16)*HD_TABLE_SIZE)) {
 | |
| 		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Copy table for comparison next time */
 | |
| 	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
 | |
| 	       sizeof(u16)*HD_TABLE_SIZE);
 | |
| 
 | |
| 	return iwl_dvm_send_cmd(priv, &cmd_out);
 | |
| }
 | |
| 
 | |
| /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
 | |
| static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
 | |
| {
 | |
| 	struct iwl_enhance_sensitivity_cmd cmd;
 | |
| 	struct iwl_sensitivity_data *data = NULL;
 | |
| 	struct iwl_host_cmd cmd_out = {
 | |
| 		.id = SENSITIVITY_CMD,
 | |
| 		.len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
 | |
| 		.flags = CMD_ASYNC,
 | |
| 		.data = { &cmd, },
 | |
| 	};
 | |
| 
 | |
| 	data = &(priv->sensitivity_data);
 | |
| 
 | |
| 	memset(&cmd, 0, sizeof(cmd));
 | |
| 
 | |
| 	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
 | |
| 
 | |
| 	if (priv->lib->hd_v2) {
 | |
| 		cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
 | |
| 			HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
 | |
| 		cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
 | |
| 			HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
 | |
| 		cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
 | |
| 			HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
 | |
| 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 | |
| 			HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
 | |
| 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 | |
| 			HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
 | |
| 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
 | |
| 			HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
 | |
| 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
 | |
| 			HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
 | |
| 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 | |
| 			HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
 | |
| 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 | |
| 			HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
 | |
| 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
 | |
| 			HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
 | |
| 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
 | |
| 			HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
 | |
| 	} else {
 | |
| 		cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
 | |
| 			HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
 | |
| 		cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
 | |
| 			HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
 | |
| 		cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
 | |
| 			HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
 | |
| 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 | |
| 			HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
 | |
| 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 | |
| 			HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
 | |
| 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
 | |
| 			HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
 | |
| 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
 | |
| 			HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
 | |
| 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 | |
| 			HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
 | |
| 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 | |
| 			HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
 | |
| 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
 | |
| 			HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
 | |
| 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
 | |
| 			HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
 | |
| 	}
 | |
| 
 | |
| 	/* Update uCode's "work" table, and copy it to DSP */
 | |
| 	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
 | |
| 
 | |
| 	/* Don't send command to uCode if nothing has changed */
 | |
| 	if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
 | |
| 		    sizeof(u16)*HD_TABLE_SIZE) &&
 | |
| 	    !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
 | |
| 		    &(priv->enhance_sensitivity_tbl[0]),
 | |
| 		    sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
 | |
| 		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Copy table for comparison next time */
 | |
| 	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
 | |
| 	       sizeof(u16)*HD_TABLE_SIZE);
 | |
| 	memcpy(&(priv->enhance_sensitivity_tbl[0]),
 | |
| 	       &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
 | |
| 	       sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
 | |
| 
 | |
| 	return iwl_dvm_send_cmd(priv, &cmd_out);
 | |
| }
 | |
| 
 | |
| void iwl_init_sensitivity(struct iwl_priv *priv)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 	struct iwl_sensitivity_data *data = NULL;
 | |
| 	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 | |
| 
 | |
| 	if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
 | |
| 		return;
 | |
| 
 | |
| 	IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
 | |
| 
 | |
| 	/* Clear driver's sensitivity algo data */
 | |
| 	data = &(priv->sensitivity_data);
 | |
| 
 | |
| 	if (ranges == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	memset(data, 0, sizeof(struct iwl_sensitivity_data));
 | |
| 
 | |
| 	data->num_in_cck_no_fa = 0;
 | |
| 	data->nrg_curr_state = IWL_FA_TOO_MANY;
 | |
| 	data->nrg_prev_state = IWL_FA_TOO_MANY;
 | |
| 	data->nrg_silence_ref = 0;
 | |
| 	data->nrg_silence_idx = 0;
 | |
| 	data->nrg_energy_idx = 0;
 | |
| 
 | |
| 	for (i = 0; i < 10; i++)
 | |
| 		data->nrg_value[i] = 0;
 | |
| 
 | |
| 	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
 | |
| 		data->nrg_silence_rssi[i] = 0;
 | |
| 
 | |
| 	data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
 | |
| 	data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
 | |
| 	data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
 | |
| 	data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
 | |
| 	data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
 | |
| 	data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
 | |
| 	data->nrg_th_cck = ranges->nrg_th_cck;
 | |
| 	data->nrg_th_ofdm = ranges->nrg_th_ofdm;
 | |
| 	data->barker_corr_th_min = ranges->barker_corr_th_min;
 | |
| 	data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
 | |
| 	data->nrg_th_cca = ranges->nrg_th_cca;
 | |
| 
 | |
| 	data->last_bad_plcp_cnt_ofdm = 0;
 | |
| 	data->last_fa_cnt_ofdm = 0;
 | |
| 	data->last_bad_plcp_cnt_cck = 0;
 | |
| 	data->last_fa_cnt_cck = 0;
 | |
| 
 | |
| 	if (priv->fw->enhance_sensitivity_table)
 | |
| 		ret |= iwl_enhance_sensitivity_write(priv);
 | |
| 	else
 | |
| 		ret |= iwl_sensitivity_write(priv);
 | |
| 	IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
 | |
| }
 | |
| 
 | |
| void iwl_sensitivity_calibration(struct iwl_priv *priv)
 | |
| {
 | |
| 	u32 rx_enable_time;
 | |
| 	u32 fa_cck;
 | |
| 	u32 fa_ofdm;
 | |
| 	u32 bad_plcp_cck;
 | |
| 	u32 bad_plcp_ofdm;
 | |
| 	u32 norm_fa_ofdm;
 | |
| 	u32 norm_fa_cck;
 | |
| 	struct iwl_sensitivity_data *data = NULL;
 | |
| 	struct statistics_rx_non_phy *rx_info;
 | |
| 	struct statistics_rx_phy *ofdm, *cck;
 | |
| 	struct statistics_general_data statis;
 | |
| 
 | |
| 	if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
 | |
| 		return;
 | |
| 
 | |
| 	data = &(priv->sensitivity_data);
 | |
| 
 | |
| 	if (!iwl_is_any_associated(priv)) {
 | |
| 		IWL_DEBUG_CALIB(priv, "<< - not associated\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_bh(&priv->statistics.lock);
 | |
| 	rx_info = &priv->statistics.rx_non_phy;
 | |
| 	ofdm = &priv->statistics.rx_ofdm;
 | |
| 	cck = &priv->statistics.rx_cck;
 | |
| 	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
 | |
| 		IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
 | |
| 		spin_unlock_bh(&priv->statistics.lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Extract Statistics: */
 | |
| 	rx_enable_time = le32_to_cpu(rx_info->channel_load);
 | |
| 	fa_cck = le32_to_cpu(cck->false_alarm_cnt);
 | |
| 	fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
 | |
| 	bad_plcp_cck = le32_to_cpu(cck->plcp_err);
 | |
| 	bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
 | |
| 
 | |
| 	statis.beacon_silence_rssi_a =
 | |
| 			le32_to_cpu(rx_info->beacon_silence_rssi_a);
 | |
| 	statis.beacon_silence_rssi_b =
 | |
| 			le32_to_cpu(rx_info->beacon_silence_rssi_b);
 | |
| 	statis.beacon_silence_rssi_c =
 | |
| 			le32_to_cpu(rx_info->beacon_silence_rssi_c);
 | |
| 	statis.beacon_energy_a =
 | |
| 			le32_to_cpu(rx_info->beacon_energy_a);
 | |
| 	statis.beacon_energy_b =
 | |
| 			le32_to_cpu(rx_info->beacon_energy_b);
 | |
| 	statis.beacon_energy_c =
 | |
| 			le32_to_cpu(rx_info->beacon_energy_c);
 | |
| 
 | |
| 	spin_unlock_bh(&priv->statistics.lock);
 | |
| 
 | |
| 	IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
 | |
| 
 | |
| 	if (!rx_enable_time) {
 | |
| 		IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* These statistics increase monotonically, and do not reset
 | |
| 	 *   at each beacon.  Calculate difference from last value, or just
 | |
| 	 *   use the new statistics value if it has reset or wrapped around. */
 | |
| 	if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
 | |
| 		data->last_bad_plcp_cnt_cck = bad_plcp_cck;
 | |
| 	else {
 | |
| 		bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
 | |
| 		data->last_bad_plcp_cnt_cck += bad_plcp_cck;
 | |
| 	}
 | |
| 
 | |
| 	if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
 | |
| 		data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
 | |
| 	else {
 | |
| 		bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
 | |
| 		data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
 | |
| 	}
 | |
| 
 | |
| 	if (data->last_fa_cnt_ofdm > fa_ofdm)
 | |
| 		data->last_fa_cnt_ofdm = fa_ofdm;
 | |
| 	else {
 | |
| 		fa_ofdm -= data->last_fa_cnt_ofdm;
 | |
| 		data->last_fa_cnt_ofdm += fa_ofdm;
 | |
| 	}
 | |
| 
 | |
| 	if (data->last_fa_cnt_cck > fa_cck)
 | |
| 		data->last_fa_cnt_cck = fa_cck;
 | |
| 	else {
 | |
| 		fa_cck -= data->last_fa_cnt_cck;
 | |
| 		data->last_fa_cnt_cck += fa_cck;
 | |
| 	}
 | |
| 
 | |
| 	/* Total aborted signal locks */
 | |
| 	norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
 | |
| 	norm_fa_cck = fa_cck + bad_plcp_cck;
 | |
| 
 | |
| 	IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
 | |
| 			bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
 | |
| 
 | |
| 	iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
 | |
| 	iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
 | |
| 	if (priv->fw->enhance_sensitivity_table)
 | |
| 		iwl_enhance_sensitivity_write(priv);
 | |
| 	else
 | |
| 		iwl_sensitivity_write(priv);
 | |
| }
 | |
| 
 | |
| static inline u8 find_first_chain(u8 mask)
 | |
| {
 | |
| 	if (mask & ANT_A)
 | |
| 		return CHAIN_A;
 | |
| 	if (mask & ANT_B)
 | |
| 		return CHAIN_B;
 | |
| 	return CHAIN_C;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Run disconnected antenna algorithm to find out which antennas are
 | |
|  * disconnected.
 | |
|  */
 | |
| static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
 | |
| 				     struct iwl_chain_noise_data *data)
 | |
| {
 | |
| 	u32 active_chains = 0;
 | |
| 	u32 max_average_sig;
 | |
| 	u16 max_average_sig_antenna_i;
 | |
| 	u8 num_tx_chains;
 | |
| 	u8 first_chain;
 | |
| 	u16 i = 0;
 | |
| 
 | |
| 	average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
 | |
| 	average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
 | |
| 	average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
 | |
| 
 | |
| 	if (average_sig[0] >= average_sig[1]) {
 | |
| 		max_average_sig = average_sig[0];
 | |
| 		max_average_sig_antenna_i = 0;
 | |
| 		active_chains = (1 << max_average_sig_antenna_i);
 | |
| 	} else {
 | |
| 		max_average_sig = average_sig[1];
 | |
| 		max_average_sig_antenna_i = 1;
 | |
| 		active_chains = (1 << max_average_sig_antenna_i);
 | |
| 	}
 | |
| 
 | |
| 	if (average_sig[2] >= max_average_sig) {
 | |
| 		max_average_sig = average_sig[2];
 | |
| 		max_average_sig_antenna_i = 2;
 | |
| 		active_chains = (1 << max_average_sig_antenna_i);
 | |
| 	}
 | |
| 
 | |
| 	IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
 | |
| 		     average_sig[0], average_sig[1], average_sig[2]);
 | |
| 	IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
 | |
| 		     max_average_sig, max_average_sig_antenna_i);
 | |
| 
 | |
| 	/* Compare signal strengths for all 3 receivers. */
 | |
| 	for (i = 0; i < NUM_RX_CHAINS; i++) {
 | |
| 		if (i != max_average_sig_antenna_i) {
 | |
| 			s32 rssi_delta = (max_average_sig - average_sig[i]);
 | |
| 
 | |
| 			/* If signal is very weak, compared with
 | |
| 			 * strongest, mark it as disconnected. */
 | |
| 			if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
 | |
| 				data->disconn_array[i] = 1;
 | |
| 			else
 | |
| 				active_chains |= (1 << i);
 | |
| 			IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
 | |
| 			     "disconn_array[i] = %d\n",
 | |
| 			     i, rssi_delta, data->disconn_array[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The above algorithm sometimes fails when the ucode
 | |
| 	 * reports 0 for all chains. It's not clear why that
 | |
| 	 * happens to start with, but it is then causing trouble
 | |
| 	 * because this can make us enable more chains than the
 | |
| 	 * hardware really has.
 | |
| 	 *
 | |
| 	 * To be safe, simply mask out any chains that we know
 | |
| 	 * are not on the device.
 | |
| 	 */
 | |
| 	active_chains &= priv->nvm_data->valid_rx_ant;
 | |
| 
 | |
| 	num_tx_chains = 0;
 | |
| 	for (i = 0; i < NUM_RX_CHAINS; i++) {
 | |
| 		/* loops on all the bits of
 | |
| 		 * priv->hw_setting.valid_tx_ant */
 | |
| 		u8 ant_msk = (1 << i);
 | |
| 		if (!(priv->nvm_data->valid_tx_ant & ant_msk))
 | |
| 			continue;
 | |
| 
 | |
| 		num_tx_chains++;
 | |
| 		if (data->disconn_array[i] == 0)
 | |
| 			/* there is a Tx antenna connected */
 | |
| 			break;
 | |
| 		if (num_tx_chains == priv->hw_params.tx_chains_num &&
 | |
| 		    data->disconn_array[i]) {
 | |
| 			/*
 | |
| 			 * If all chains are disconnected
 | |
| 			 * connect the first valid tx chain
 | |
| 			 */
 | |
| 			first_chain =
 | |
| 				find_first_chain(priv->nvm_data->valid_tx_ant);
 | |
| 			data->disconn_array[first_chain] = 0;
 | |
| 			active_chains |= BIT(first_chain);
 | |
| 			IWL_DEBUG_CALIB(priv,
 | |
| 					"All Tx chains are disconnected W/A - declare %d as connected\n",
 | |
| 					first_chain);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (active_chains != priv->nvm_data->valid_rx_ant &&
 | |
| 	    active_chains != priv->chain_noise_data.active_chains)
 | |
| 		IWL_DEBUG_CALIB(priv,
 | |
| 				"Detected that not all antennas are connected! "
 | |
| 				"Connected: %#x, valid: %#x.\n",
 | |
| 				active_chains,
 | |
| 				priv->nvm_data->valid_rx_ant);
 | |
| 
 | |
| 	/* Save for use within RXON, TX, SCAN commands, etc. */
 | |
| 	data->active_chains = active_chains;
 | |
| 	IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
 | |
| 			active_chains);
 | |
| }
 | |
| 
 | |
| static void iwlagn_gain_computation(struct iwl_priv *priv,
 | |
| 				    u32 average_noise[NUM_RX_CHAINS],
 | |
| 				    u8 default_chain)
 | |
| {
 | |
| 	int i;
 | |
| 	s32 delta_g;
 | |
| 	struct iwl_chain_noise_data *data = &priv->chain_noise_data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find Gain Code for the chains based on "default chain"
 | |
| 	 */
 | |
| 	for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
 | |
| 		if ((data->disconn_array[i])) {
 | |
| 			data->delta_gain_code[i] = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		delta_g = (priv->lib->chain_noise_scale *
 | |
| 			((s32)average_noise[default_chain] -
 | |
| 			(s32)average_noise[i])) / 1500;
 | |
| 
 | |
| 		/* bound gain by 2 bits value max, 3rd bit is sign */
 | |
| 		data->delta_gain_code[i] =
 | |
| 			min(abs(delta_g),
 | |
| 			(long) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
 | |
| 
 | |
| 		if (delta_g < 0)
 | |
| 			/*
 | |
| 			 * set negative sign ...
 | |
| 			 * note to Intel developers:  This is uCode API format,
 | |
| 			 *   not the format of any internal device registers.
 | |
| 			 *   Do not change this format for e.g. 6050 or similar
 | |
| 			 *   devices.  Change format only if more resolution
 | |
| 			 *   (i.e. more than 2 bits magnitude) is needed.
 | |
| 			 */
 | |
| 			data->delta_gain_code[i] |= (1 << 2);
 | |
| 	}
 | |
| 
 | |
| 	IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d  ANT_C = %d\n",
 | |
| 			data->delta_gain_code[1], data->delta_gain_code[2]);
 | |
| 
 | |
| 	if (!data->radio_write) {
 | |
| 		struct iwl_calib_chain_noise_gain_cmd cmd;
 | |
| 
 | |
| 		memset(&cmd, 0, sizeof(cmd));
 | |
| 
 | |
| 		iwl_set_calib_hdr(&cmd.hdr,
 | |
| 			priv->phy_calib_chain_noise_gain_cmd);
 | |
| 		cmd.delta_gain_1 = data->delta_gain_code[1];
 | |
| 		cmd.delta_gain_2 = data->delta_gain_code[2];
 | |
| 		iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
 | |
| 			CMD_ASYNC, sizeof(cmd), &cmd);
 | |
| 
 | |
| 		data->radio_write = 1;
 | |
| 		data->state = IWL_CHAIN_NOISE_CALIBRATED;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Accumulate 16 beacons of signal and noise statistics for each of
 | |
|  *   3 receivers/antennas/rx-chains, then figure out:
 | |
|  * 1)  Which antennas are connected.
 | |
|  * 2)  Differential rx gain settings to balance the 3 receivers.
 | |
|  */
 | |
| void iwl_chain_noise_calibration(struct iwl_priv *priv)
 | |
| {
 | |
| 	struct iwl_chain_noise_data *data = NULL;
 | |
| 
 | |
| 	u32 chain_noise_a;
 | |
| 	u32 chain_noise_b;
 | |
| 	u32 chain_noise_c;
 | |
| 	u32 chain_sig_a;
 | |
| 	u32 chain_sig_b;
 | |
| 	u32 chain_sig_c;
 | |
| 	u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
 | |
| 	u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
 | |
| 	u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
 | |
| 	u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
 | |
| 	u16 i = 0;
 | |
| 	u16 rxon_chnum = INITIALIZATION_VALUE;
 | |
| 	u16 stat_chnum = INITIALIZATION_VALUE;
 | |
| 	u8 rxon_band24;
 | |
| 	u8 stat_band24;
 | |
| 	struct statistics_rx_non_phy *rx_info;
 | |
| 
 | |
| 	/*
 | |
| 	 * MULTI-FIXME:
 | |
| 	 * When we support multiple interfaces on different channels,
 | |
| 	 * this must be modified/fixed.
 | |
| 	 */
 | |
| 	struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
 | |
| 
 | |
| 	if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
 | |
| 		return;
 | |
| 
 | |
| 	data = &(priv->chain_noise_data);
 | |
| 
 | |
| 	/*
 | |
| 	 * Accumulate just the first "chain_noise_num_beacons" after
 | |
| 	 * the first association, then we're done forever.
 | |
| 	 */
 | |
| 	if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
 | |
| 		if (data->state == IWL_CHAIN_NOISE_ALIVE)
 | |
| 			IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_bh(&priv->statistics.lock);
 | |
| 
 | |
| 	rx_info = &priv->statistics.rx_non_phy;
 | |
| 
 | |
| 	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
 | |
| 		IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
 | |
| 		spin_unlock_bh(&priv->statistics.lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
 | |
| 	rxon_chnum = le16_to_cpu(ctx->staging.channel);
 | |
| 	stat_band24 =
 | |
| 		!!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
 | |
| 	stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
 | |
| 
 | |
| 	/* Make sure we accumulate data for just the associated channel
 | |
| 	 *   (even if scanning). */
 | |
| 	if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
 | |
| 		IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
 | |
| 				rxon_chnum, rxon_band24);
 | |
| 		spin_unlock_bh(&priv->statistics.lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *  Accumulate beacon statistics values across
 | |
| 	 * "chain_noise_num_beacons"
 | |
| 	 */
 | |
| 	chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
 | |
| 				IN_BAND_FILTER;
 | |
| 	chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
 | |
| 				IN_BAND_FILTER;
 | |
| 	chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
 | |
| 				IN_BAND_FILTER;
 | |
| 
 | |
| 	chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
 | |
| 	chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
 | |
| 	chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
 | |
| 
 | |
| 	spin_unlock_bh(&priv->statistics.lock);
 | |
| 
 | |
| 	data->beacon_count++;
 | |
| 
 | |
| 	data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
 | |
| 	data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
 | |
| 	data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
 | |
| 
 | |
| 	data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
 | |
| 	data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
 | |
| 	data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
 | |
| 
 | |
| 	IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
 | |
| 			rxon_chnum, rxon_band24, data->beacon_count);
 | |
| 	IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
 | |
| 			chain_sig_a, chain_sig_b, chain_sig_c);
 | |
| 	IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
 | |
| 			chain_noise_a, chain_noise_b, chain_noise_c);
 | |
| 
 | |
| 	/* If this is the "chain_noise_num_beacons", determine:
 | |
| 	 * 1)  Disconnected antennas (using signal strengths)
 | |
| 	 * 2)  Differential gain (using silence noise) to balance receivers */
 | |
| 	if (data->beacon_count != IWL_CAL_NUM_BEACONS)
 | |
| 		return;
 | |
| 
 | |
| 	/* Analyze signal for disconnected antenna */
 | |
| 	if (priv->lib->bt_params &&
 | |
| 	    priv->lib->bt_params->advanced_bt_coexist) {
 | |
| 		/* Disable disconnected antenna algorithm for advanced
 | |
| 		   bt coex, assuming valid antennas are connected */
 | |
| 		data->active_chains = priv->nvm_data->valid_rx_ant;
 | |
| 		for (i = 0; i < NUM_RX_CHAINS; i++)
 | |
| 			if (!(data->active_chains & (1<<i)))
 | |
| 				data->disconn_array[i] = 1;
 | |
| 	} else
 | |
| 		iwl_find_disconn_antenna(priv, average_sig, data);
 | |
| 
 | |
| 	/* Analyze noise for rx balance */
 | |
| 	average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
 | |
| 	average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
 | |
| 	average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
 | |
| 
 | |
| 	for (i = 0; i < NUM_RX_CHAINS; i++) {
 | |
| 		if (!(data->disconn_array[i]) &&
 | |
| 		   (average_noise[i] <= min_average_noise)) {
 | |
| 			/* This means that chain i is active and has
 | |
| 			 * lower noise values so far: */
 | |
| 			min_average_noise = average_noise[i];
 | |
| 			min_average_noise_antenna_i = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
 | |
| 			average_noise[0], average_noise[1],
 | |
| 			average_noise[2]);
 | |
| 
 | |
| 	IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
 | |
| 			min_average_noise, min_average_noise_antenna_i);
 | |
| 
 | |
| 	iwlagn_gain_computation(
 | |
| 		priv, average_noise,
 | |
| 		find_first_chain(priv->nvm_data->valid_rx_ant));
 | |
| 
 | |
| 	/* Some power changes may have been made during the calibration.
 | |
| 	 * Update and commit the RXON
 | |
| 	 */
 | |
| 	iwl_update_chain_flags(priv);
 | |
| 
 | |
| 	data->state = IWL_CHAIN_NOISE_DONE;
 | |
| 	iwl_power_update_mode(priv, false);
 | |
| }
 | |
| 
 | |
| void iwl_reset_run_time_calib(struct iwl_priv *priv)
 | |
| {
 | |
| 	int i;
 | |
| 	memset(&(priv->sensitivity_data), 0,
 | |
| 	       sizeof(struct iwl_sensitivity_data));
 | |
| 	memset(&(priv->chain_noise_data), 0,
 | |
| 	       sizeof(struct iwl_chain_noise_data));
 | |
| 	for (i = 0; i < NUM_RX_CHAINS; i++)
 | |
| 		priv->chain_noise_data.delta_gain_code[i] =
 | |
| 				CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
 | |
| 
 | |
| 	/* Ask for statistics now, the uCode will send notification
 | |
| 	 * periodically after association */
 | |
| 	iwl_send_statistics_request(priv, CMD_ASYNC, true);
 | |
| }
 |