 327c685eb7
			
		
	
	
	327c685eb7
	
	
	
		
			
			Patch in preparation for the upcoming EF10 sriov support. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1668 lines
		
	
	
	
		
			46 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1668 lines
		
	
	
	
		
			46 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /****************************************************************************
 | |
|  * Driver for Solarflare network controllers and boards
 | |
|  * Copyright 2010-2012 Solarflare Communications Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License version 2 as published
 | |
|  * by the Free Software Foundation, incorporated herein by reference.
 | |
|  */
 | |
| #include <linux/pci.h>
 | |
| #include <linux/module.h>
 | |
| #include "net_driver.h"
 | |
| #include "efx.h"
 | |
| #include "nic.h"
 | |
| #include "io.h"
 | |
| #include "mcdi.h"
 | |
| #include "filter.h"
 | |
| #include "mcdi_pcol.h"
 | |
| #include "farch_regs.h"
 | |
| #include "vfdi.h"
 | |
| 
 | |
| /* Number of longs required to track all the VIs in a VF */
 | |
| #define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
 | |
| 
 | |
| /* Maximum number of RX queues supported */
 | |
| #define VF_MAX_RX_QUEUES 63
 | |
| 
 | |
| /**
 | |
|  * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
 | |
|  * @VF_TX_FILTER_OFF: Disabled
 | |
|  * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
 | |
|  *	2 TX queues allowed per VF.
 | |
|  * @VF_TX_FILTER_ON: Enabled
 | |
|  */
 | |
| enum efx_vf_tx_filter_mode {
 | |
| 	VF_TX_FILTER_OFF,
 | |
| 	VF_TX_FILTER_AUTO,
 | |
| 	VF_TX_FILTER_ON,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct efx_vf - Back-end resource and protocol state for a PCI VF
 | |
|  * @efx: The Efx NIC owning this VF
 | |
|  * @pci_rid: The PCI requester ID for this VF
 | |
|  * @pci_name: The PCI name (formatted address) of this VF
 | |
|  * @index: Index of VF within its port and PF.
 | |
|  * @req: VFDI incoming request work item. Incoming USR_EV events are received
 | |
|  *	by the NAPI handler, but must be handled by executing MCDI requests
 | |
|  *	inside a work item.
 | |
|  * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
 | |
|  * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
 | |
|  * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
 | |
|  * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
 | |
|  *	@status_lock
 | |
|  * @busy: VFDI request queued to be processed or being processed. Receiving
 | |
|  *	a VFDI request when @busy is set is an error condition.
 | |
|  * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
 | |
|  * @buftbl_base: Buffer table entries for this VF start at this index.
 | |
|  * @rx_filtering: Receive filtering has been requested by the VF driver.
 | |
|  * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
 | |
|  * @rx_filter_qid: VF relative qid for RX filter requested by VF.
 | |
|  * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
 | |
|  * @tx_filter_mode: Transmit MAC filtering mode.
 | |
|  * @tx_filter_id: Transmit MAC filter ID.
 | |
|  * @addr: The MAC address and outer vlan tag of the VF.
 | |
|  * @status_addr: VF DMA address of page for &struct vfdi_status updates.
 | |
|  * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
 | |
|  *	@peer_page_addrs and @peer_page_count from simultaneous
 | |
|  *	updates by the VM and consumption by
 | |
|  *	efx_siena_sriov_update_vf_addr()
 | |
|  * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
 | |
|  * @peer_page_count: Number of entries in @peer_page_count.
 | |
|  * @evq0_addrs: Array of guest pages backing evq0.
 | |
|  * @evq0_count: Number of entries in @evq0_addrs.
 | |
|  * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
 | |
|  *	to wait for flush completions.
 | |
|  * @txq_lock: Mutex for TX queue allocation.
 | |
|  * @txq_mask: Mask of initialized transmit queues.
 | |
|  * @txq_count: Number of initialized transmit queues.
 | |
|  * @rxq_mask: Mask of initialized receive queues.
 | |
|  * @rxq_count: Number of initialized receive queues.
 | |
|  * @rxq_retry_mask: Mask or receive queues that need to be flushed again
 | |
|  *	due to flush failure.
 | |
|  * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
 | |
|  * @reset_work: Work item to schedule a VF reset.
 | |
|  */
 | |
| struct efx_vf {
 | |
| 	struct efx_nic *efx;
 | |
| 	unsigned int pci_rid;
 | |
| 	char pci_name[13]; /* dddd:bb:dd.f */
 | |
| 	unsigned int index;
 | |
| 	struct work_struct req;
 | |
| 	u64 req_addr;
 | |
| 	int req_type;
 | |
| 	unsigned req_seqno;
 | |
| 	unsigned msg_seqno;
 | |
| 	bool busy;
 | |
| 	struct efx_buffer buf;
 | |
| 	unsigned buftbl_base;
 | |
| 	bool rx_filtering;
 | |
| 	enum efx_filter_flags rx_filter_flags;
 | |
| 	unsigned rx_filter_qid;
 | |
| 	int rx_filter_id;
 | |
| 	enum efx_vf_tx_filter_mode tx_filter_mode;
 | |
| 	int tx_filter_id;
 | |
| 	struct vfdi_endpoint addr;
 | |
| 	u64 status_addr;
 | |
| 	struct mutex status_lock;
 | |
| 	u64 *peer_page_addrs;
 | |
| 	unsigned peer_page_count;
 | |
| 	u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
 | |
| 		       EFX_BUF_SIZE];
 | |
| 	unsigned evq0_count;
 | |
| 	wait_queue_head_t flush_waitq;
 | |
| 	struct mutex txq_lock;
 | |
| 	unsigned long txq_mask[VI_MASK_LENGTH];
 | |
| 	unsigned txq_count;
 | |
| 	unsigned long rxq_mask[VI_MASK_LENGTH];
 | |
| 	unsigned rxq_count;
 | |
| 	unsigned long rxq_retry_mask[VI_MASK_LENGTH];
 | |
| 	atomic_t rxq_retry_count;
 | |
| 	struct work_struct reset_work;
 | |
| };
 | |
| 
 | |
| struct efx_memcpy_req {
 | |
| 	unsigned int from_rid;
 | |
| 	void *from_buf;
 | |
| 	u64 from_addr;
 | |
| 	unsigned int to_rid;
 | |
| 	u64 to_addr;
 | |
| 	unsigned length;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct efx_local_addr - A MAC address on the vswitch without a VF.
 | |
|  *
 | |
|  * Siena does not have a switch, so VFs can't transmit data to each
 | |
|  * other. Instead the VFs must be made aware of the local addresses
 | |
|  * on the vswitch, so that they can arrange for an alternative
 | |
|  * software datapath to be used.
 | |
|  *
 | |
|  * @link: List head for insertion into efx->local_addr_list.
 | |
|  * @addr: Ethernet address
 | |
|  */
 | |
| struct efx_local_addr {
 | |
| 	struct list_head link;
 | |
| 	u8 addr[ETH_ALEN];
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct efx_endpoint_page - Page of vfdi_endpoint structures
 | |
|  *
 | |
|  * @link: List head for insertion into efx->local_page_list.
 | |
|  * @ptr: Pointer to page.
 | |
|  * @addr: DMA address of page.
 | |
|  */
 | |
| struct efx_endpoint_page {
 | |
| 	struct list_head link;
 | |
| 	void *ptr;
 | |
| 	dma_addr_t addr;
 | |
| };
 | |
| 
 | |
| /* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
 | |
| #define EFX_BUFTBL_TXQ_BASE(_vf, _qid)					\
 | |
| 	((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
 | |
| #define EFX_BUFTBL_RXQ_BASE(_vf, _qid)					\
 | |
| 	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
 | |
| 	 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
 | |
| #define EFX_BUFTBL_EVQ_BASE(_vf, _qid)					\
 | |
| 	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
 | |
| 	 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
 | |
| 
 | |
| #define EFX_FIELD_MASK(_field)			\
 | |
| 	((1 << _field ## _WIDTH) - 1)
 | |
| 
 | |
| /* VFs can only use this many transmit channels */
 | |
| static unsigned int vf_max_tx_channels = 2;
 | |
| module_param(vf_max_tx_channels, uint, 0444);
 | |
| MODULE_PARM_DESC(vf_max_tx_channels,
 | |
| 		 "Limit the number of TX channels VFs can use");
 | |
| 
 | |
| static int max_vfs = -1;
 | |
| module_param(max_vfs, int, 0444);
 | |
| MODULE_PARM_DESC(max_vfs,
 | |
| 		 "Reduce the number of VFs initialized by the driver");
 | |
| 
 | |
| /* Workqueue used by VFDI communication.  We can't use the global
 | |
|  * workqueue because it may be running the VF driver's probe()
 | |
|  * routine, which will be blocked there waiting for a VFDI response.
 | |
|  */
 | |
| static struct workqueue_struct *vfdi_workqueue;
 | |
| 
 | |
| static unsigned abs_index(struct efx_vf *vf, unsigned index)
 | |
| {
 | |
| 	return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
 | |
| }
 | |
| 
 | |
| static int efx_siena_sriov_cmd(struct efx_nic *efx, bool enable,
 | |
| 			       unsigned *vi_scale_out, unsigned *vf_total_out)
 | |
| {
 | |
| 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN);
 | |
| 	MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN);
 | |
| 	unsigned vi_scale, vf_total;
 | |
| 	size_t outlen;
 | |
| 	int rc;
 | |
| 
 | |
| 	MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
 | |
| 	MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
 | |
| 	MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
 | |
| 
 | |
| 	rc = efx_mcdi_rpc(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN,
 | |
| 			  outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	if (outlen < MC_CMD_SRIOV_OUT_LEN)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
 | |
| 	vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
 | |
| 	if (vi_scale > EFX_VI_SCALE_MAX)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (vi_scale_out)
 | |
| 		*vi_scale_out = vi_scale;
 | |
| 	if (vf_total_out)
 | |
| 		*vf_total_out = vf_total;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void efx_siena_sriov_usrev(struct efx_nic *efx, bool enabled)
 | |
| {
 | |
| 	struct siena_nic_data *nic_data = efx->nic_data;
 | |
| 	efx_oword_t reg;
 | |
| 
 | |
| 	EFX_POPULATE_OWORD_2(reg,
 | |
| 			     FRF_CZ_USREV_DIS, enabled ? 0 : 1,
 | |
| 			     FRF_CZ_DFLT_EVQ, nic_data->vfdi_channel->channel);
 | |
| 	efx_writeo(efx, ®, FR_CZ_USR_EV_CFG);
 | |
| }
 | |
| 
 | |
| static int efx_siena_sriov_memcpy(struct efx_nic *efx,
 | |
| 				  struct efx_memcpy_req *req,
 | |
| 				  unsigned int count)
 | |
| {
 | |
| 	MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1);
 | |
| 	MCDI_DECLARE_STRUCT_PTR(record);
 | |
| 	unsigned int index, used;
 | |
| 	u64 from_addr;
 | |
| 	u32 from_rid;
 | |
| 	int rc;
 | |
| 
 | |
| 	mb();	/* Finish writing source/reading dest before DMA starts */
 | |
| 
 | |
| 	if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM))
 | |
| 		return -ENOBUFS;
 | |
| 	used = MC_CMD_MEMCPY_IN_LEN(count);
 | |
| 
 | |
| 	for (index = 0; index < count; index++) {
 | |
| 		record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index);
 | |
| 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS,
 | |
| 			       count);
 | |
| 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
 | |
| 			       req->to_rid);
 | |
| 		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR,
 | |
| 			       req->to_addr);
 | |
| 		if (req->from_buf == NULL) {
 | |
| 			from_rid = req->from_rid;
 | |
| 			from_addr = req->from_addr;
 | |
| 		} else {
 | |
| 			if (WARN_ON(used + req->length >
 | |
| 				    MCDI_CTL_SDU_LEN_MAX_V1)) {
 | |
| 				rc = -ENOBUFS;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
 | |
| 			from_addr = used;
 | |
| 			memcpy(_MCDI_PTR(inbuf, used), req->from_buf,
 | |
| 			       req->length);
 | |
| 			used += req->length;
 | |
| 		}
 | |
| 
 | |
| 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
 | |
| 		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR,
 | |
| 			       from_addr);
 | |
| 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
 | |
| 			       req->length);
 | |
| 
 | |
| 		++req;
 | |
| 	}
 | |
| 
 | |
| 	rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
 | |
| out:
 | |
| 	mb();	/* Don't write source/read dest before DMA is complete */
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* The TX filter is entirely controlled by this driver, and is modified
 | |
|  * underneath the feet of the VF
 | |
|  */
 | |
| static void efx_siena_sriov_reset_tx_filter(struct efx_vf *vf)
 | |
| {
 | |
| 	struct efx_nic *efx = vf->efx;
 | |
| 	struct efx_filter_spec filter;
 | |
| 	u16 vlan;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (vf->tx_filter_id != -1) {
 | |
| 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 | |
| 					  vf->tx_filter_id);
 | |
| 		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
 | |
| 			  vf->pci_name, vf->tx_filter_id);
 | |
| 		vf->tx_filter_id = -1;
 | |
| 	}
 | |
| 
 | |
| 	if (is_zero_ether_addr(vf->addr.mac_addr))
 | |
| 		return;
 | |
| 
 | |
| 	/* Turn on TX filtering automatically if not explicitly
 | |
| 	 * enabled or disabled.
 | |
| 	 */
 | |
| 	if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
 | |
| 		vf->tx_filter_mode = VF_TX_FILTER_ON;
 | |
| 
 | |
| 	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
 | |
| 	efx_filter_init_tx(&filter, abs_index(vf, 0));
 | |
| 	rc = efx_filter_set_eth_local(&filter,
 | |
| 				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
 | |
| 				      vf->addr.mac_addr);
 | |
| 	BUG_ON(rc);
 | |
| 
 | |
| 	rc = efx_filter_insert_filter(efx, &filter, true);
 | |
| 	if (rc < 0) {
 | |
| 		netif_warn(efx, hw, efx->net_dev,
 | |
| 			   "Unable to migrate tx filter for vf %s\n",
 | |
| 			   vf->pci_name);
 | |
| 	} else {
 | |
| 		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
 | |
| 			  vf->pci_name, rc);
 | |
| 		vf->tx_filter_id = rc;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* The RX filter is managed here on behalf of the VF driver */
 | |
| static void efx_siena_sriov_reset_rx_filter(struct efx_vf *vf)
 | |
| {
 | |
| 	struct efx_nic *efx = vf->efx;
 | |
| 	struct efx_filter_spec filter;
 | |
| 	u16 vlan;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (vf->rx_filter_id != -1) {
 | |
| 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 | |
| 					  vf->rx_filter_id);
 | |
| 		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
 | |
| 			  vf->pci_name, vf->rx_filter_id);
 | |
| 		vf->rx_filter_id = -1;
 | |
| 	}
 | |
| 
 | |
| 	if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
 | |
| 		return;
 | |
| 
 | |
| 	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
 | |
| 	efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
 | |
| 			   vf->rx_filter_flags,
 | |
| 			   abs_index(vf, vf->rx_filter_qid));
 | |
| 	rc = efx_filter_set_eth_local(&filter,
 | |
| 				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
 | |
| 				      vf->addr.mac_addr);
 | |
| 	BUG_ON(rc);
 | |
| 
 | |
| 	rc = efx_filter_insert_filter(efx, &filter, true);
 | |
| 	if (rc < 0) {
 | |
| 		netif_warn(efx, hw, efx->net_dev,
 | |
| 			   "Unable to insert rx filter for vf %s\n",
 | |
| 			   vf->pci_name);
 | |
| 	} else {
 | |
| 		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
 | |
| 			  vf->pci_name, rc);
 | |
| 		vf->rx_filter_id = rc;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __efx_siena_sriov_update_vf_addr(struct efx_vf *vf)
 | |
| {
 | |
| 	struct efx_nic *efx = vf->efx;
 | |
| 	struct siena_nic_data *nic_data = efx->nic_data;
 | |
| 
 | |
| 	efx_siena_sriov_reset_tx_filter(vf);
 | |
| 	efx_siena_sriov_reset_rx_filter(vf);
 | |
| 	queue_work(vfdi_workqueue, &nic_data->peer_work);
 | |
| }
 | |
| 
 | |
| /* Push the peer list to this VF. The caller must hold status_lock to interlock
 | |
|  * with VFDI requests, and they must be serialised against manipulation of
 | |
|  * local_page_list, either by acquiring local_lock or by running from
 | |
|  * efx_siena_sriov_peer_work()
 | |
|  */
 | |
| static void __efx_siena_sriov_push_vf_status(struct efx_vf *vf)
 | |
| {
 | |
| 	struct efx_nic *efx = vf->efx;
 | |
| 	struct siena_nic_data *nic_data = efx->nic_data;
 | |
| 	struct vfdi_status *status = nic_data->vfdi_status.addr;
 | |
| 	struct efx_memcpy_req copy[4];
 | |
| 	struct efx_endpoint_page *epp;
 | |
| 	unsigned int pos, count;
 | |
| 	unsigned data_offset;
 | |
| 	efx_qword_t event;
 | |
| 
 | |
| 	WARN_ON(!mutex_is_locked(&vf->status_lock));
 | |
| 	WARN_ON(!vf->status_addr);
 | |
| 
 | |
| 	status->local = vf->addr;
 | |
| 	status->generation_end = ++status->generation_start;
 | |
| 
 | |
| 	memset(copy, '\0', sizeof(copy));
 | |
| 	/* Write generation_start */
 | |
| 	copy[0].from_buf = &status->generation_start;
 | |
| 	copy[0].to_rid = vf->pci_rid;
 | |
| 	copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
 | |
| 						     generation_start);
 | |
| 	copy[0].length = sizeof(status->generation_start);
 | |
| 	/* DMA the rest of the structure (excluding the generations). This
 | |
| 	 * assumes that the non-generation portion of vfdi_status is in
 | |
| 	 * one chunk starting at the version member.
 | |
| 	 */
 | |
| 	data_offset = offsetof(struct vfdi_status, version);
 | |
| 	copy[1].from_rid = efx->pci_dev->devfn;
 | |
| 	copy[1].from_addr = nic_data->vfdi_status.dma_addr + data_offset;
 | |
| 	copy[1].to_rid = vf->pci_rid;
 | |
| 	copy[1].to_addr = vf->status_addr + data_offset;
 | |
| 	copy[1].length =  status->length - data_offset;
 | |
| 
 | |
| 	/* Copy the peer pages */
 | |
| 	pos = 2;
 | |
| 	count = 0;
 | |
| 	list_for_each_entry(epp, &nic_data->local_page_list, link) {
 | |
| 		if (count == vf->peer_page_count) {
 | |
| 			/* The VF driver will know they need to provide more
 | |
| 			 * pages because peer_addr_count is too large.
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 		copy[pos].from_buf = NULL;
 | |
| 		copy[pos].from_rid = efx->pci_dev->devfn;
 | |
| 		copy[pos].from_addr = epp->addr;
 | |
| 		copy[pos].to_rid = vf->pci_rid;
 | |
| 		copy[pos].to_addr = vf->peer_page_addrs[count];
 | |
| 		copy[pos].length = EFX_PAGE_SIZE;
 | |
| 
 | |
| 		if (++pos == ARRAY_SIZE(copy)) {
 | |
| 			efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
 | |
| 			pos = 0;
 | |
| 		}
 | |
| 		++count;
 | |
| 	}
 | |
| 
 | |
| 	/* Write generation_end */
 | |
| 	copy[pos].from_buf = &status->generation_end;
 | |
| 	copy[pos].to_rid = vf->pci_rid;
 | |
| 	copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
 | |
| 						       generation_end);
 | |
| 	copy[pos].length = sizeof(status->generation_end);
 | |
| 	efx_siena_sriov_memcpy(efx, copy, pos + 1);
 | |
| 
 | |
| 	/* Notify the guest */
 | |
| 	EFX_POPULATE_QWORD_3(event,
 | |
| 			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
 | |
| 			     VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
 | |
| 			     VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
 | |
| 	++vf->msg_seqno;
 | |
| 	efx_farch_generate_event(efx,
 | |
| 				 EFX_VI_BASE + vf->index * efx_vf_size(efx),
 | |
| 				 &event);
 | |
| }
 | |
| 
 | |
| static void efx_siena_sriov_bufs(struct efx_nic *efx, unsigned offset,
 | |
| 				 u64 *addr, unsigned count)
 | |
| {
 | |
| 	efx_qword_t buf;
 | |
| 	unsigned pos;
 | |
| 
 | |
| 	for (pos = 0; pos < count; ++pos) {
 | |
| 		EFX_POPULATE_QWORD_3(buf,
 | |
| 				     FRF_AZ_BUF_ADR_REGION, 0,
 | |
| 				     FRF_AZ_BUF_ADR_FBUF,
 | |
| 				     addr ? addr[pos] >> 12 : 0,
 | |
| 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 | |
| 		efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
 | |
| 				&buf, offset + pos);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool bad_vf_index(struct efx_nic *efx, unsigned index)
 | |
| {
 | |
| 	return index >= efx_vf_size(efx);
 | |
| }
 | |
| 
 | |
| static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
 | |
| {
 | |
| 	unsigned max_buf_count = max_entry_count *
 | |
| 		sizeof(efx_qword_t) / EFX_BUF_SIZE;
 | |
| 
 | |
| 	return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
 | |
| }
 | |
| 
 | |
| /* Check that VI specified by per-port index belongs to a VF.
 | |
|  * Optionally set VF index and VI index within the VF.
 | |
|  */
 | |
| static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
 | |
| 			 struct efx_vf **vf_out, unsigned *rel_index_out)
 | |
| {
 | |
| 	unsigned vf_i;
 | |
| 
 | |
| 	if (abs_index < EFX_VI_BASE)
 | |
| 		return true;
 | |
| 	vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
 | |
| 	if (vf_i >= efx->vf_init_count)
 | |
| 		return true;
 | |
| 
 | |
| 	if (vf_out)
 | |
| 		*vf_out = efx->vf + vf_i;
 | |
| 	if (rel_index_out)
 | |
| 		*rel_index_out = abs_index % efx_vf_size(efx);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int efx_vfdi_init_evq(struct efx_vf *vf)
 | |
| {
 | |
| 	struct efx_nic *efx = vf->efx;
 | |
| 	struct vfdi_req *req = vf->buf.addr;
 | |
| 	unsigned vf_evq = req->u.init_evq.index;
 | |
| 	unsigned buf_count = req->u.init_evq.buf_count;
 | |
| 	unsigned abs_evq = abs_index(vf, vf_evq);
 | |
| 	unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
 | |
| 	efx_oword_t reg;
 | |
| 
 | |
| 	if (bad_vf_index(efx, vf_evq) ||
 | |
| 	    bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
 | |
| 		if (net_ratelimit())
 | |
| 			netif_err(efx, hw, efx->net_dev,
 | |
| 				  "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
 | |
| 				  vf->pci_name, vf_evq, buf_count);
 | |
| 		return VFDI_RC_EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	efx_siena_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
 | |
| 
 | |
| 	EFX_POPULATE_OWORD_3(reg,
 | |
| 			     FRF_CZ_TIMER_Q_EN, 1,
 | |
| 			     FRF_CZ_HOST_NOTIFY_MODE, 0,
 | |
| 			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
 | |
| 	efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, abs_evq);
 | |
| 	EFX_POPULATE_OWORD_3(reg,
 | |
| 			     FRF_AZ_EVQ_EN, 1,
 | |
| 			     FRF_AZ_EVQ_SIZE, __ffs(buf_count),
 | |
| 			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
 | |
| 	efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL, abs_evq);
 | |
| 
 | |
| 	if (vf_evq == 0) {
 | |
| 		memcpy(vf->evq0_addrs, req->u.init_evq.addr,
 | |
| 		       buf_count * sizeof(u64));
 | |
| 		vf->evq0_count = buf_count;
 | |
| 	}
 | |
| 
 | |
| 	return VFDI_RC_SUCCESS;
 | |
| }
 | |
| 
 | |
| static int efx_vfdi_init_rxq(struct efx_vf *vf)
 | |
| {
 | |
| 	struct efx_nic *efx = vf->efx;
 | |
| 	struct vfdi_req *req = vf->buf.addr;
 | |
| 	unsigned vf_rxq = req->u.init_rxq.index;
 | |
| 	unsigned vf_evq = req->u.init_rxq.evq;
 | |
| 	unsigned buf_count = req->u.init_rxq.buf_count;
 | |
| 	unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
 | |
| 	unsigned label;
 | |
| 	efx_oword_t reg;
 | |
| 
 | |
| 	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
 | |
| 	    vf_rxq >= VF_MAX_RX_QUEUES ||
 | |
| 	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
 | |
| 		if (net_ratelimit())
 | |
| 			netif_err(efx, hw, efx->net_dev,
 | |
| 				  "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
 | |
| 				  "buf_count %d\n", vf->pci_name, vf_rxq,
 | |
| 				  vf_evq, buf_count);
 | |
| 		return VFDI_RC_EINVAL;
 | |
| 	}
 | |
| 	if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
 | |
| 		++vf->rxq_count;
 | |
| 	efx_siena_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
 | |
| 
 | |
| 	label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
 | |
| 	EFX_POPULATE_OWORD_6(reg,
 | |
| 			     FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
 | |
| 			     FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
 | |
| 			     FRF_AZ_RX_DESCQ_LABEL, label,
 | |
| 			     FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
 | |
| 			     FRF_AZ_RX_DESCQ_JUMBO,
 | |
| 			     !!(req->u.init_rxq.flags &
 | |
| 				VFDI_RXQ_FLAG_SCATTER_EN),
 | |
| 			     FRF_AZ_RX_DESCQ_EN, 1);
 | |
| 	efx_writeo_table(efx, ®, FR_BZ_RX_DESC_PTR_TBL,
 | |
| 			 abs_index(vf, vf_rxq));
 | |
| 
 | |
| 	return VFDI_RC_SUCCESS;
 | |
| }
 | |
| 
 | |
| static int efx_vfdi_init_txq(struct efx_vf *vf)
 | |
| {
 | |
| 	struct efx_nic *efx = vf->efx;
 | |
| 	struct vfdi_req *req = vf->buf.addr;
 | |
| 	unsigned vf_txq = req->u.init_txq.index;
 | |
| 	unsigned vf_evq = req->u.init_txq.evq;
 | |
| 	unsigned buf_count = req->u.init_txq.buf_count;
 | |
| 	unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
 | |
| 	unsigned label, eth_filt_en;
 | |
| 	efx_oword_t reg;
 | |
| 
 | |
| 	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
 | |
| 	    vf_txq >= vf_max_tx_channels ||
 | |
| 	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
 | |
| 		if (net_ratelimit())
 | |
| 			netif_err(efx, hw, efx->net_dev,
 | |
| 				  "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
 | |
| 				  "buf_count %d\n", vf->pci_name, vf_txq,
 | |
| 				  vf_evq, buf_count);
 | |
| 		return VFDI_RC_EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&vf->txq_lock);
 | |
| 	if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
 | |
| 		++vf->txq_count;
 | |
| 	mutex_unlock(&vf->txq_lock);
 | |
| 	efx_siena_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
 | |
| 
 | |
| 	eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
 | |
| 
 | |
| 	label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
 | |
| 	EFX_POPULATE_OWORD_8(reg,
 | |
| 			     FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
 | |
| 			     FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
 | |
| 			     FRF_AZ_TX_DESCQ_EN, 1,
 | |
| 			     FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
 | |
| 			     FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
 | |
| 			     FRF_AZ_TX_DESCQ_LABEL, label,
 | |
| 			     FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
 | |
| 			     FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 | |
| 	efx_writeo_table(efx, ®, FR_BZ_TX_DESC_PTR_TBL,
 | |
| 			 abs_index(vf, vf_txq));
 | |
| 
 | |
| 	return VFDI_RC_SUCCESS;
 | |
| }
 | |
| 
 | |
| /* Returns true when efx_vfdi_fini_all_queues should wake */
 | |
| static bool efx_vfdi_flush_wake(struct efx_vf *vf)
 | |
| {
 | |
| 	/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	return (!vf->txq_count && !vf->rxq_count) ||
 | |
| 		atomic_read(&vf->rxq_retry_count);
 | |
| }
 | |
| 
 | |
| static void efx_vfdi_flush_clear(struct efx_vf *vf)
 | |
| {
 | |
| 	memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
 | |
| 	vf->txq_count = 0;
 | |
| 	memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
 | |
| 	vf->rxq_count = 0;
 | |
| 	memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
 | |
| 	atomic_set(&vf->rxq_retry_count, 0);
 | |
| }
 | |
| 
 | |
| static int efx_vfdi_fini_all_queues(struct efx_vf *vf)
 | |
| {
 | |
| 	struct efx_nic *efx = vf->efx;
 | |
| 	efx_oword_t reg;
 | |
| 	unsigned count = efx_vf_size(efx);
 | |
| 	unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
 | |
| 	unsigned timeout = HZ;
 | |
| 	unsigned index, rxqs_count;
 | |
| 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX);
 | |
| 	int rc;
 | |
| 
 | |
| 	BUILD_BUG_ON(VF_MAX_RX_QUEUES >
 | |
| 		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 	siena_prepare_flush(efx);
 | |
| 	rtnl_unlock();
 | |
| 
 | |
| 	/* Flush all the initialized queues */
 | |
| 	rxqs_count = 0;
 | |
| 	for (index = 0; index < count; ++index) {
 | |
| 		if (test_bit(index, vf->txq_mask)) {
 | |
| 			EFX_POPULATE_OWORD_2(reg,
 | |
| 					     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 | |
| 					     FRF_AZ_TX_FLUSH_DESCQ,
 | |
| 					     vf_offset + index);
 | |
| 			efx_writeo(efx, ®, FR_AZ_TX_FLUSH_DESCQ);
 | |
| 		}
 | |
| 		if (test_bit(index, vf->rxq_mask)) {
 | |
| 			MCDI_SET_ARRAY_DWORD(
 | |
| 				inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
 | |
| 				rxqs_count, vf_offset + index);
 | |
| 			rxqs_count++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&vf->rxq_retry_count, 0);
 | |
| 	while (timeout && (vf->rxq_count || vf->txq_count)) {
 | |
| 		rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
 | |
| 				  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count),
 | |
| 				  NULL, 0, NULL);
 | |
| 		WARN_ON(rc < 0);
 | |
| 
 | |
| 		timeout = wait_event_timeout(vf->flush_waitq,
 | |
| 					     efx_vfdi_flush_wake(vf),
 | |
| 					     timeout);
 | |
| 		rxqs_count = 0;
 | |
| 		for (index = 0; index < count; ++index) {
 | |
| 			if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
 | |
| 				atomic_dec(&vf->rxq_retry_count);
 | |
| 				MCDI_SET_ARRAY_DWORD(
 | |
| 					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
 | |
| 					rxqs_count, vf_offset + index);
 | |
| 				rxqs_count++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 	siena_finish_flush(efx);
 | |
| 	rtnl_unlock();
 | |
| 
 | |
| 	/* Irrespective of success/failure, fini the queues */
 | |
| 	EFX_ZERO_OWORD(reg);
 | |
| 	for (index = 0; index < count; ++index) {
 | |
| 		efx_writeo_table(efx, ®, FR_BZ_RX_DESC_PTR_TBL,
 | |
| 				 vf_offset + index);
 | |
| 		efx_writeo_table(efx, ®, FR_BZ_TX_DESC_PTR_TBL,
 | |
| 				 vf_offset + index);
 | |
| 		efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL,
 | |
| 				 vf_offset + index);
 | |
| 		efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL,
 | |
| 				 vf_offset + index);
 | |
| 	}
 | |
| 	efx_siena_sriov_bufs(efx, vf->buftbl_base, NULL,
 | |
| 			     EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
 | |
| 	efx_vfdi_flush_clear(vf);
 | |
| 
 | |
| 	vf->evq0_count = 0;
 | |
| 
 | |
| 	return timeout ? 0 : VFDI_RC_ETIMEDOUT;
 | |
| }
 | |
| 
 | |
| static int efx_vfdi_insert_filter(struct efx_vf *vf)
 | |
| {
 | |
| 	struct efx_nic *efx = vf->efx;
 | |
| 	struct siena_nic_data *nic_data = efx->nic_data;
 | |
| 	struct vfdi_req *req = vf->buf.addr;
 | |
| 	unsigned vf_rxq = req->u.mac_filter.rxq;
 | |
| 	unsigned flags;
 | |
| 
 | |
| 	if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
 | |
| 		if (net_ratelimit())
 | |
| 			netif_err(efx, hw, efx->net_dev,
 | |
| 				  "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
 | |
| 				  "flags 0x%x\n", vf->pci_name, vf_rxq,
 | |
| 				  req->u.mac_filter.flags);
 | |
| 		return VFDI_RC_EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	flags = 0;
 | |
| 	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
 | |
| 		flags |= EFX_FILTER_FLAG_RX_RSS;
 | |
| 	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
 | |
| 		flags |= EFX_FILTER_FLAG_RX_SCATTER;
 | |
| 	vf->rx_filter_flags = flags;
 | |
| 	vf->rx_filter_qid = vf_rxq;
 | |
| 	vf->rx_filtering = true;
 | |
| 
 | |
| 	efx_siena_sriov_reset_rx_filter(vf);
 | |
| 	queue_work(vfdi_workqueue, &nic_data->peer_work);
 | |
| 
 | |
| 	return VFDI_RC_SUCCESS;
 | |
| }
 | |
| 
 | |
| static int efx_vfdi_remove_all_filters(struct efx_vf *vf)
 | |
| {
 | |
| 	struct efx_nic *efx = vf->efx;
 | |
| 	struct siena_nic_data *nic_data = efx->nic_data;
 | |
| 
 | |
| 	vf->rx_filtering = false;
 | |
| 	efx_siena_sriov_reset_rx_filter(vf);
 | |
| 	queue_work(vfdi_workqueue, &nic_data->peer_work);
 | |
| 
 | |
| 	return VFDI_RC_SUCCESS;
 | |
| }
 | |
| 
 | |
| static int efx_vfdi_set_status_page(struct efx_vf *vf)
 | |
| {
 | |
| 	struct efx_nic *efx = vf->efx;
 | |
| 	struct siena_nic_data *nic_data = efx->nic_data;
 | |
| 	struct vfdi_req *req = vf->buf.addr;
 | |
| 	u64 page_count = req->u.set_status_page.peer_page_count;
 | |
| 	u64 max_page_count =
 | |
| 		(EFX_PAGE_SIZE -
 | |
| 		 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
 | |
| 		/ sizeof(req->u.set_status_page.peer_page_addr[0]);
 | |
| 
 | |
| 	if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
 | |
| 		if (net_ratelimit())
 | |
| 			netif_err(efx, hw, efx->net_dev,
 | |
| 				  "ERROR: Invalid SET_STATUS_PAGE from %s\n",
 | |
| 				  vf->pci_name);
 | |
| 		return VFDI_RC_EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&nic_data->local_lock);
 | |
| 	mutex_lock(&vf->status_lock);
 | |
| 	vf->status_addr = req->u.set_status_page.dma_addr;
 | |
| 
 | |
| 	kfree(vf->peer_page_addrs);
 | |
| 	vf->peer_page_addrs = NULL;
 | |
| 	vf->peer_page_count = 0;
 | |
| 
 | |
| 	if (page_count) {
 | |
| 		vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
 | |
| 					      GFP_KERNEL);
 | |
| 		if (vf->peer_page_addrs) {
 | |
| 			memcpy(vf->peer_page_addrs,
 | |
| 			       req->u.set_status_page.peer_page_addr,
 | |
| 			       page_count * sizeof(u64));
 | |
| 			vf->peer_page_count = page_count;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	__efx_siena_sriov_push_vf_status(vf);
 | |
| 	mutex_unlock(&vf->status_lock);
 | |
| 	mutex_unlock(&nic_data->local_lock);
 | |
| 
 | |
| 	return VFDI_RC_SUCCESS;
 | |
| }
 | |
| 
 | |
| static int efx_vfdi_clear_status_page(struct efx_vf *vf)
 | |
| {
 | |
| 	mutex_lock(&vf->status_lock);
 | |
| 	vf->status_addr = 0;
 | |
| 	mutex_unlock(&vf->status_lock);
 | |
| 
 | |
| 	return VFDI_RC_SUCCESS;
 | |
| }
 | |
| 
 | |
| typedef int (*efx_vfdi_op_t)(struct efx_vf *vf);
 | |
| 
 | |
| static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
 | |
| 	[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
 | |
| 	[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
 | |
| 	[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
 | |
| 	[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
 | |
| 	[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
 | |
| 	[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
 | |
| 	[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
 | |
| 	[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
 | |
| };
 | |
| 
 | |
| static void efx_siena_sriov_vfdi(struct work_struct *work)
 | |
| {
 | |
| 	struct efx_vf *vf = container_of(work, struct efx_vf, req);
 | |
| 	struct efx_nic *efx = vf->efx;
 | |
| 	struct vfdi_req *req = vf->buf.addr;
 | |
| 	struct efx_memcpy_req copy[2];
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Copy this page into the local address space */
 | |
| 	memset(copy, '\0', sizeof(copy));
 | |
| 	copy[0].from_rid = vf->pci_rid;
 | |
| 	copy[0].from_addr = vf->req_addr;
 | |
| 	copy[0].to_rid = efx->pci_dev->devfn;
 | |
| 	copy[0].to_addr = vf->buf.dma_addr;
 | |
| 	copy[0].length = EFX_PAGE_SIZE;
 | |
| 	rc = efx_siena_sriov_memcpy(efx, copy, 1);
 | |
| 	if (rc) {
 | |
| 		/* If we can't get the request, we can't reply to the caller */
 | |
| 		if (net_ratelimit())
 | |
| 			netif_err(efx, hw, efx->net_dev,
 | |
| 				  "ERROR: Unable to fetch VFDI request from %s rc %d\n",
 | |
| 				  vf->pci_name, -rc);
 | |
| 		vf->busy = false;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
 | |
| 		rc = vfdi_ops[req->op](vf);
 | |
| 		if (rc == 0) {
 | |
| 			netif_dbg(efx, hw, efx->net_dev,
 | |
| 				  "vfdi request %d from %s ok\n",
 | |
| 				  req->op, vf->pci_name);
 | |
| 		}
 | |
| 	} else {
 | |
| 		netif_dbg(efx, hw, efx->net_dev,
 | |
| 			  "ERROR: Unrecognised request %d from VF %s addr "
 | |
| 			  "%llx\n", req->op, vf->pci_name,
 | |
| 			  (unsigned long long)vf->req_addr);
 | |
| 		rc = VFDI_RC_EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	/* Allow subsequent VF requests */
 | |
| 	vf->busy = false;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	/* Respond to the request */
 | |
| 	req->rc = rc;
 | |
| 	req->op = VFDI_OP_RESPONSE;
 | |
| 
 | |
| 	memset(copy, '\0', sizeof(copy));
 | |
| 	copy[0].from_buf = &req->rc;
 | |
| 	copy[0].to_rid = vf->pci_rid;
 | |
| 	copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
 | |
| 	copy[0].length = sizeof(req->rc);
 | |
| 	copy[1].from_buf = &req->op;
 | |
| 	copy[1].to_rid = vf->pci_rid;
 | |
| 	copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
 | |
| 	copy[1].length = sizeof(req->op);
 | |
| 
 | |
| 	(void)efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* After a reset the event queues inside the guests no longer exist. Fill the
 | |
|  * event ring in guest memory with VFDI reset events, then (re-initialise) the
 | |
|  * event queue to raise an interrupt. The guest driver will then recover.
 | |
|  */
 | |
| static void efx_siena_sriov_reset_vf(struct efx_vf *vf,
 | |
| 				     struct efx_buffer *buffer)
 | |
| {
 | |
| 	struct efx_nic *efx = vf->efx;
 | |
| 	struct efx_memcpy_req copy_req[4];
 | |
| 	efx_qword_t event;
 | |
| 	unsigned int pos, count, k, buftbl, abs_evq;
 | |
| 	efx_oword_t reg;
 | |
| 	efx_dword_t ptr;
 | |
| 	int rc;
 | |
| 
 | |
| 	BUG_ON(buffer->len != EFX_PAGE_SIZE);
 | |
| 
 | |
| 	if (!vf->evq0_count)
 | |
| 		return;
 | |
| 	BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
 | |
| 
 | |
| 	mutex_lock(&vf->status_lock);
 | |
| 	EFX_POPULATE_QWORD_3(event,
 | |
| 			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
 | |
| 			     VFDI_EV_SEQ, vf->msg_seqno,
 | |
| 			     VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
 | |
| 	vf->msg_seqno++;
 | |
| 	for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
 | |
| 		memcpy(buffer->addr + pos, &event, sizeof(event));
 | |
| 
 | |
| 	for (pos = 0; pos < vf->evq0_count; pos += count) {
 | |
| 		count = min_t(unsigned, vf->evq0_count - pos,
 | |
| 			      ARRAY_SIZE(copy_req));
 | |
| 		for (k = 0; k < count; k++) {
 | |
| 			copy_req[k].from_buf = NULL;
 | |
| 			copy_req[k].from_rid = efx->pci_dev->devfn;
 | |
| 			copy_req[k].from_addr = buffer->dma_addr;
 | |
| 			copy_req[k].to_rid = vf->pci_rid;
 | |
| 			copy_req[k].to_addr = vf->evq0_addrs[pos + k];
 | |
| 			copy_req[k].length = EFX_PAGE_SIZE;
 | |
| 		}
 | |
| 		rc = efx_siena_sriov_memcpy(efx, copy_req, count);
 | |
| 		if (rc) {
 | |
| 			if (net_ratelimit())
 | |
| 				netif_err(efx, hw, efx->net_dev,
 | |
| 					  "ERROR: Unable to notify %s of reset"
 | |
| 					  ": %d\n", vf->pci_name, -rc);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Reinitialise, arm and trigger evq0 */
 | |
| 	abs_evq = abs_index(vf, 0);
 | |
| 	buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
 | |
| 	efx_siena_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
 | |
| 
 | |
| 	EFX_POPULATE_OWORD_3(reg,
 | |
| 			     FRF_CZ_TIMER_Q_EN, 1,
 | |
| 			     FRF_CZ_HOST_NOTIFY_MODE, 0,
 | |
| 			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
 | |
| 	efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, abs_evq);
 | |
| 	EFX_POPULATE_OWORD_3(reg,
 | |
| 			     FRF_AZ_EVQ_EN, 1,
 | |
| 			     FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
 | |
| 			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
 | |
| 	efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL, abs_evq);
 | |
| 	EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
 | |
| 	efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq);
 | |
| 
 | |
| 	mutex_unlock(&vf->status_lock);
 | |
| }
 | |
| 
 | |
| static void efx_siena_sriov_reset_vf_work(struct work_struct *work)
 | |
| {
 | |
| 	struct efx_vf *vf = container_of(work, struct efx_vf, req);
 | |
| 	struct efx_nic *efx = vf->efx;
 | |
| 	struct efx_buffer buf;
 | |
| 
 | |
| 	if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) {
 | |
| 		efx_siena_sriov_reset_vf(vf, &buf);
 | |
| 		efx_nic_free_buffer(efx, &buf);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void efx_siena_sriov_handle_no_channel(struct efx_nic *efx)
 | |
| {
 | |
| 	netif_err(efx, drv, efx->net_dev,
 | |
| 		  "ERROR: IOV requires MSI-X and 1 additional interrupt"
 | |
| 		  "vector. IOV disabled\n");
 | |
| 	efx->vf_count = 0;
 | |
| }
 | |
| 
 | |
| static int efx_siena_sriov_probe_channel(struct efx_channel *channel)
 | |
| {
 | |
| 	struct siena_nic_data *nic_data = channel->efx->nic_data;
 | |
| 	nic_data->vfdi_channel = channel;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| efx_siena_sriov_get_channel_name(struct efx_channel *channel,
 | |
| 				 char *buf, size_t len)
 | |
| {
 | |
| 	snprintf(buf, len, "%s-iov", channel->efx->name);
 | |
| }
 | |
| 
 | |
| static const struct efx_channel_type efx_siena_sriov_channel_type = {
 | |
| 	.handle_no_channel	= efx_siena_sriov_handle_no_channel,
 | |
| 	.pre_probe		= efx_siena_sriov_probe_channel,
 | |
| 	.post_remove		= efx_channel_dummy_op_void,
 | |
| 	.get_name		= efx_siena_sriov_get_channel_name,
 | |
| 	/* no copy operation; channel must not be reallocated */
 | |
| 	.keep_eventq		= true,
 | |
| };
 | |
| 
 | |
| void efx_siena_sriov_probe(struct efx_nic *efx)
 | |
| {
 | |
| 	unsigned count;
 | |
| 
 | |
| 	if (!max_vfs)
 | |
| 		return;
 | |
| 
 | |
| 	if (efx_siena_sriov_cmd(efx, false, &efx->vi_scale, &count))
 | |
| 		return;
 | |
| 	if (count > 0 && count > max_vfs)
 | |
| 		count = max_vfs;
 | |
| 
 | |
| 	/* efx_nic_dimension_resources() will reduce vf_count as appopriate */
 | |
| 	efx->vf_count = count;
 | |
| 
 | |
| 	efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_siena_sriov_channel_type;
 | |
| }
 | |
| 
 | |
| /* Copy the list of individual addresses into the vfdi_status.peers
 | |
|  * array and auxillary pages, protected by %local_lock. Drop that lock
 | |
|  * and then broadcast the address list to every VF.
 | |
|  */
 | |
| static void efx_siena_sriov_peer_work(struct work_struct *data)
 | |
| {
 | |
| 	struct siena_nic_data *nic_data = container_of(data,
 | |
| 						       struct siena_nic_data,
 | |
| 						       peer_work);
 | |
| 	struct efx_nic *efx = nic_data->efx;
 | |
| 	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
 | |
| 	struct efx_vf *vf;
 | |
| 	struct efx_local_addr *local_addr;
 | |
| 	struct vfdi_endpoint *peer;
 | |
| 	struct efx_endpoint_page *epp;
 | |
| 	struct list_head pages;
 | |
| 	unsigned int peer_space;
 | |
| 	unsigned int peer_count;
 | |
| 	unsigned int pos;
 | |
| 
 | |
| 	mutex_lock(&nic_data->local_lock);
 | |
| 
 | |
| 	/* Move the existing peer pages off %local_page_list */
 | |
| 	INIT_LIST_HEAD(&pages);
 | |
| 	list_splice_tail_init(&nic_data->local_page_list, &pages);
 | |
| 
 | |
| 	/* Populate the VF addresses starting from entry 1 (entry 0 is
 | |
| 	 * the PF address)
 | |
| 	 */
 | |
| 	peer = vfdi_status->peers + 1;
 | |
| 	peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
 | |
| 	peer_count = 1;
 | |
| 	for (pos = 0; pos < efx->vf_count; ++pos) {
 | |
| 		vf = efx->vf + pos;
 | |
| 
 | |
| 		mutex_lock(&vf->status_lock);
 | |
| 		if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
 | |
| 			*peer++ = vf->addr;
 | |
| 			++peer_count;
 | |
| 			--peer_space;
 | |
| 			BUG_ON(peer_space == 0);
 | |
| 		}
 | |
| 		mutex_unlock(&vf->status_lock);
 | |
| 	}
 | |
| 
 | |
| 	/* Fill the remaining addresses */
 | |
| 	list_for_each_entry(local_addr, &nic_data->local_addr_list, link) {
 | |
| 		ether_addr_copy(peer->mac_addr, local_addr->addr);
 | |
| 		peer->tci = 0;
 | |
| 		++peer;
 | |
| 		++peer_count;
 | |
| 		if (--peer_space == 0) {
 | |
| 			if (list_empty(&pages)) {
 | |
| 				epp = kmalloc(sizeof(*epp), GFP_KERNEL);
 | |
| 				if (!epp)
 | |
| 					break;
 | |
| 				epp->ptr = dma_alloc_coherent(
 | |
| 					&efx->pci_dev->dev, EFX_PAGE_SIZE,
 | |
| 					&epp->addr, GFP_KERNEL);
 | |
| 				if (!epp->ptr) {
 | |
| 					kfree(epp);
 | |
| 					break;
 | |
| 				}
 | |
| 			} else {
 | |
| 				epp = list_first_entry(
 | |
| 					&pages, struct efx_endpoint_page, link);
 | |
| 				list_del(&epp->link);
 | |
| 			}
 | |
| 
 | |
| 			list_add_tail(&epp->link, &nic_data->local_page_list);
 | |
| 			peer = (struct vfdi_endpoint *)epp->ptr;
 | |
| 			peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
 | |
| 		}
 | |
| 	}
 | |
| 	vfdi_status->peer_count = peer_count;
 | |
| 	mutex_unlock(&nic_data->local_lock);
 | |
| 
 | |
| 	/* Free any now unused endpoint pages */
 | |
| 	while (!list_empty(&pages)) {
 | |
| 		epp = list_first_entry(
 | |
| 			&pages, struct efx_endpoint_page, link);
 | |
| 		list_del(&epp->link);
 | |
| 		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
 | |
| 				  epp->ptr, epp->addr);
 | |
| 		kfree(epp);
 | |
| 	}
 | |
| 
 | |
| 	/* Finally, push the pages */
 | |
| 	for (pos = 0; pos < efx->vf_count; ++pos) {
 | |
| 		vf = efx->vf + pos;
 | |
| 
 | |
| 		mutex_lock(&vf->status_lock);
 | |
| 		if (vf->status_addr)
 | |
| 			__efx_siena_sriov_push_vf_status(vf);
 | |
| 		mutex_unlock(&vf->status_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void efx_siena_sriov_free_local(struct efx_nic *efx)
 | |
| {
 | |
| 	struct siena_nic_data *nic_data = efx->nic_data;
 | |
| 	struct efx_local_addr *local_addr;
 | |
| 	struct efx_endpoint_page *epp;
 | |
| 
 | |
| 	while (!list_empty(&nic_data->local_addr_list)) {
 | |
| 		local_addr = list_first_entry(&nic_data->local_addr_list,
 | |
| 					      struct efx_local_addr, link);
 | |
| 		list_del(&local_addr->link);
 | |
| 		kfree(local_addr);
 | |
| 	}
 | |
| 
 | |
| 	while (!list_empty(&nic_data->local_page_list)) {
 | |
| 		epp = list_first_entry(&nic_data->local_page_list,
 | |
| 				       struct efx_endpoint_page, link);
 | |
| 		list_del(&epp->link);
 | |
| 		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
 | |
| 				  epp->ptr, epp->addr);
 | |
| 		kfree(epp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int efx_siena_sriov_vf_alloc(struct efx_nic *efx)
 | |
| {
 | |
| 	unsigned index;
 | |
| 	struct efx_vf *vf;
 | |
| 
 | |
| 	efx->vf = kzalloc(sizeof(struct efx_vf) * efx->vf_count, GFP_KERNEL);
 | |
| 	if (!efx->vf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (index = 0; index < efx->vf_count; ++index) {
 | |
| 		vf = efx->vf + index;
 | |
| 
 | |
| 		vf->efx = efx;
 | |
| 		vf->index = index;
 | |
| 		vf->rx_filter_id = -1;
 | |
| 		vf->tx_filter_mode = VF_TX_FILTER_AUTO;
 | |
| 		vf->tx_filter_id = -1;
 | |
| 		INIT_WORK(&vf->req, efx_siena_sriov_vfdi);
 | |
| 		INIT_WORK(&vf->reset_work, efx_siena_sriov_reset_vf_work);
 | |
| 		init_waitqueue_head(&vf->flush_waitq);
 | |
| 		mutex_init(&vf->status_lock);
 | |
| 		mutex_init(&vf->txq_lock);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void efx_siena_sriov_vfs_fini(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_vf *vf;
 | |
| 	unsigned int pos;
 | |
| 
 | |
| 	for (pos = 0; pos < efx->vf_count; ++pos) {
 | |
| 		vf = efx->vf + pos;
 | |
| 
 | |
| 		efx_nic_free_buffer(efx, &vf->buf);
 | |
| 		kfree(vf->peer_page_addrs);
 | |
| 		vf->peer_page_addrs = NULL;
 | |
| 		vf->peer_page_count = 0;
 | |
| 
 | |
| 		vf->evq0_count = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int efx_siena_sriov_vfs_init(struct efx_nic *efx)
 | |
| {
 | |
| 	struct pci_dev *pci_dev = efx->pci_dev;
 | |
| 	struct siena_nic_data *nic_data = efx->nic_data;
 | |
| 	unsigned index, devfn, sriov, buftbl_base;
 | |
| 	u16 offset, stride;
 | |
| 	struct efx_vf *vf;
 | |
| 	int rc;
 | |
| 
 | |
| 	sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
 | |
| 	if (!sriov)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
 | |
| 	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
 | |
| 
 | |
| 	buftbl_base = nic_data->vf_buftbl_base;
 | |
| 	devfn = pci_dev->devfn + offset;
 | |
| 	for (index = 0; index < efx->vf_count; ++index) {
 | |
| 		vf = efx->vf + index;
 | |
| 
 | |
| 		/* Reserve buffer entries */
 | |
| 		vf->buftbl_base = buftbl_base;
 | |
| 		buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
 | |
| 
 | |
| 		vf->pci_rid = devfn;
 | |
| 		snprintf(vf->pci_name, sizeof(vf->pci_name),
 | |
| 			 "%04x:%02x:%02x.%d",
 | |
| 			 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
 | |
| 			 PCI_SLOT(devfn), PCI_FUNC(devfn));
 | |
| 
 | |
| 		rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE,
 | |
| 					  GFP_KERNEL);
 | |
| 		if (rc)
 | |
| 			goto fail;
 | |
| 
 | |
| 		devfn += stride;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	efx_siena_sriov_vfs_fini(efx);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int efx_siena_sriov_init(struct efx_nic *efx)
 | |
| {
 | |
| 	struct net_device *net_dev = efx->net_dev;
 | |
| 	struct siena_nic_data *nic_data = efx->nic_data;
 | |
| 	struct vfdi_status *vfdi_status;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Ensure there's room for vf_channel */
 | |
| 	BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
 | |
| 	/* Ensure that VI_BASE is aligned on VI_SCALE */
 | |
| 	BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
 | |
| 
 | |
| 	if (efx->vf_count == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	rc = efx_siena_sriov_cmd(efx, true, NULL, NULL);
 | |
| 	if (rc)
 | |
| 		goto fail_cmd;
 | |
| 
 | |
| 	rc = efx_nic_alloc_buffer(efx, &nic_data->vfdi_status,
 | |
| 				  sizeof(*vfdi_status), GFP_KERNEL);
 | |
| 	if (rc)
 | |
| 		goto fail_status;
 | |
| 	vfdi_status = nic_data->vfdi_status.addr;
 | |
| 	memset(vfdi_status, 0, sizeof(*vfdi_status));
 | |
| 	vfdi_status->version = 1;
 | |
| 	vfdi_status->length = sizeof(*vfdi_status);
 | |
| 	vfdi_status->max_tx_channels = vf_max_tx_channels;
 | |
| 	vfdi_status->vi_scale = efx->vi_scale;
 | |
| 	vfdi_status->rss_rxq_count = efx->rss_spread;
 | |
| 	vfdi_status->peer_count = 1 + efx->vf_count;
 | |
| 	vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
 | |
| 
 | |
| 	rc = efx_siena_sriov_vf_alloc(efx);
 | |
| 	if (rc)
 | |
| 		goto fail_alloc;
 | |
| 
 | |
| 	mutex_init(&nic_data->local_lock);
 | |
| 	INIT_WORK(&nic_data->peer_work, efx_siena_sriov_peer_work);
 | |
| 	INIT_LIST_HEAD(&nic_data->local_addr_list);
 | |
| 	INIT_LIST_HEAD(&nic_data->local_page_list);
 | |
| 
 | |
| 	rc = efx_siena_sriov_vfs_init(efx);
 | |
| 	if (rc)
 | |
| 		goto fail_vfs;
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 	ether_addr_copy(vfdi_status->peers[0].mac_addr, net_dev->dev_addr);
 | |
| 	efx->vf_init_count = efx->vf_count;
 | |
| 	rtnl_unlock();
 | |
| 
 | |
| 	efx_siena_sriov_usrev(efx, true);
 | |
| 
 | |
| 	/* At this point we must be ready to accept VFDI requests */
 | |
| 
 | |
| 	rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
 | |
| 	if (rc)
 | |
| 		goto fail_pci;
 | |
| 
 | |
| 	netif_info(efx, probe, net_dev,
 | |
| 		   "enabled SR-IOV for %d VFs, %d VI per VF\n",
 | |
| 		   efx->vf_count, efx_vf_size(efx));
 | |
| 	return 0;
 | |
| 
 | |
| fail_pci:
 | |
| 	efx_siena_sriov_usrev(efx, false);
 | |
| 	rtnl_lock();
 | |
| 	efx->vf_init_count = 0;
 | |
| 	rtnl_unlock();
 | |
| 	efx_siena_sriov_vfs_fini(efx);
 | |
| fail_vfs:
 | |
| 	cancel_work_sync(&nic_data->peer_work);
 | |
| 	efx_siena_sriov_free_local(efx);
 | |
| 	kfree(efx->vf);
 | |
| fail_alloc:
 | |
| 	efx_nic_free_buffer(efx, &nic_data->vfdi_status);
 | |
| fail_status:
 | |
| 	efx_siena_sriov_cmd(efx, false, NULL, NULL);
 | |
| fail_cmd:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| void efx_siena_sriov_fini(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_vf *vf;
 | |
| 	unsigned int pos;
 | |
| 	struct siena_nic_data *nic_data = efx->nic_data;
 | |
| 
 | |
| 	if (efx->vf_init_count == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Disable all interfaces to reconfiguration */
 | |
| 	BUG_ON(nic_data->vfdi_channel->enabled);
 | |
| 	efx_siena_sriov_usrev(efx, false);
 | |
| 	rtnl_lock();
 | |
| 	efx->vf_init_count = 0;
 | |
| 	rtnl_unlock();
 | |
| 
 | |
| 	/* Flush all reconfiguration work */
 | |
| 	for (pos = 0; pos < efx->vf_count; ++pos) {
 | |
| 		vf = efx->vf + pos;
 | |
| 		cancel_work_sync(&vf->req);
 | |
| 		cancel_work_sync(&vf->reset_work);
 | |
| 	}
 | |
| 	cancel_work_sync(&nic_data->peer_work);
 | |
| 
 | |
| 	pci_disable_sriov(efx->pci_dev);
 | |
| 
 | |
| 	/* Tear down back-end state */
 | |
| 	efx_siena_sriov_vfs_fini(efx);
 | |
| 	efx_siena_sriov_free_local(efx);
 | |
| 	kfree(efx->vf);
 | |
| 	efx_nic_free_buffer(efx, &nic_data->vfdi_status);
 | |
| 	efx_siena_sriov_cmd(efx, false, NULL, NULL);
 | |
| }
 | |
| 
 | |
| void efx_siena_sriov_event(struct efx_channel *channel, efx_qword_t *event)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	struct efx_vf *vf;
 | |
| 	unsigned qid, seq, type, data;
 | |
| 
 | |
| 	qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
 | |
| 
 | |
| 	/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
 | |
| 	BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
 | |
| 	seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
 | |
| 	type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
 | |
| 	data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
 | |
| 
 | |
| 	netif_vdbg(efx, hw, efx->net_dev,
 | |
| 		   "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
 | |
| 		   qid, seq, type, data);
 | |
| 
 | |
| 	if (map_vi_index(efx, qid, &vf, NULL))
 | |
| 		return;
 | |
| 	if (vf->busy)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (type == VFDI_EV_TYPE_REQ_WORD0) {
 | |
| 		/* Resynchronise */
 | |
| 		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
 | |
| 		vf->req_seqno = seq + 1;
 | |
| 		vf->req_addr = 0;
 | |
| 	} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
 | |
| 		goto error;
 | |
| 
 | |
| 	switch (vf->req_type) {
 | |
| 	case VFDI_EV_TYPE_REQ_WORD0:
 | |
| 	case VFDI_EV_TYPE_REQ_WORD1:
 | |
| 	case VFDI_EV_TYPE_REQ_WORD2:
 | |
| 		vf->req_addr |= (u64)data << (vf->req_type << 4);
 | |
| 		++vf->req_type;
 | |
| 		return;
 | |
| 
 | |
| 	case VFDI_EV_TYPE_REQ_WORD3:
 | |
| 		vf->req_addr |= (u64)data << 48;
 | |
| 		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
 | |
| 		vf->busy = true;
 | |
| 		queue_work(vfdi_workqueue, &vf->req);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| error:
 | |
| 	if (net_ratelimit())
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "ERROR: Screaming VFDI request from %s\n",
 | |
| 			  vf->pci_name);
 | |
| 	/* Reset the request and sequence number */
 | |
| 	vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
 | |
| 	vf->req_seqno = seq + 1;
 | |
| }
 | |
| 
 | |
| void efx_siena_sriov_flr(struct efx_nic *efx, unsigned vf_i)
 | |
| {
 | |
| 	struct efx_vf *vf;
 | |
| 
 | |
| 	if (vf_i > efx->vf_init_count)
 | |
| 		return;
 | |
| 	vf = efx->vf + vf_i;
 | |
| 	netif_info(efx, hw, efx->net_dev,
 | |
| 		   "FLR on VF %s\n", vf->pci_name);
 | |
| 
 | |
| 	vf->status_addr = 0;
 | |
| 	efx_vfdi_remove_all_filters(vf);
 | |
| 	efx_vfdi_flush_clear(vf);
 | |
| 
 | |
| 	vf->evq0_count = 0;
 | |
| }
 | |
| 
 | |
| void efx_siena_sriov_mac_address_changed(struct efx_nic *efx)
 | |
| {
 | |
| 	struct siena_nic_data *nic_data = efx->nic_data;
 | |
| 	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
 | |
| 
 | |
| 	if (!efx->vf_init_count)
 | |
| 		return;
 | |
| 	ether_addr_copy(vfdi_status->peers[0].mac_addr,
 | |
| 			efx->net_dev->dev_addr);
 | |
| 	queue_work(vfdi_workqueue, &nic_data->peer_work);
 | |
| }
 | |
| 
 | |
| void efx_siena_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
 | |
| {
 | |
| 	struct efx_vf *vf;
 | |
| 	unsigned queue, qid;
 | |
| 
 | |
| 	queue = EFX_QWORD_FIELD(*event,  FSF_AZ_DRIVER_EV_SUBDATA);
 | |
| 	if (map_vi_index(efx, queue, &vf, &qid))
 | |
| 		return;
 | |
| 	/* Ignore flush completions triggered by an FLR */
 | |
| 	if (!test_bit(qid, vf->txq_mask))
 | |
| 		return;
 | |
| 
 | |
| 	__clear_bit(qid, vf->txq_mask);
 | |
| 	--vf->txq_count;
 | |
| 
 | |
| 	if (efx_vfdi_flush_wake(vf))
 | |
| 		wake_up(&vf->flush_waitq);
 | |
| }
 | |
| 
 | |
| void efx_siena_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
 | |
| {
 | |
| 	struct efx_vf *vf;
 | |
| 	unsigned ev_failed, queue, qid;
 | |
| 
 | |
| 	queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
 | |
| 	ev_failed = EFX_QWORD_FIELD(*event,
 | |
| 				    FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
 | |
| 	if (map_vi_index(efx, queue, &vf, &qid))
 | |
| 		return;
 | |
| 	if (!test_bit(qid, vf->rxq_mask))
 | |
| 		return;
 | |
| 
 | |
| 	if (ev_failed) {
 | |
| 		set_bit(qid, vf->rxq_retry_mask);
 | |
| 		atomic_inc(&vf->rxq_retry_count);
 | |
| 	} else {
 | |
| 		__clear_bit(qid, vf->rxq_mask);
 | |
| 		--vf->rxq_count;
 | |
| 	}
 | |
| 	if (efx_vfdi_flush_wake(vf))
 | |
| 		wake_up(&vf->flush_waitq);
 | |
| }
 | |
| 
 | |
| /* Called from napi. Schedule the reset work item */
 | |
| void efx_siena_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
 | |
| {
 | |
| 	struct efx_vf *vf;
 | |
| 	unsigned int rel;
 | |
| 
 | |
| 	if (map_vi_index(efx, dmaq, &vf, &rel))
 | |
| 		return;
 | |
| 
 | |
| 	if (net_ratelimit())
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "VF %d DMA Q %d reports descriptor fetch error.\n",
 | |
| 			  vf->index, rel);
 | |
| 	queue_work(vfdi_workqueue, &vf->reset_work);
 | |
| }
 | |
| 
 | |
| /* Reset all VFs */
 | |
| void efx_siena_sriov_reset(struct efx_nic *efx)
 | |
| {
 | |
| 	unsigned int vf_i;
 | |
| 	struct efx_buffer buf;
 | |
| 	struct efx_vf *vf;
 | |
| 
 | |
| 	ASSERT_RTNL();
 | |
| 
 | |
| 	if (efx->vf_init_count == 0)
 | |
| 		return;
 | |
| 
 | |
| 	efx_siena_sriov_usrev(efx, true);
 | |
| 	(void)efx_siena_sriov_cmd(efx, true, NULL, NULL);
 | |
| 
 | |
| 	if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO))
 | |
| 		return;
 | |
| 
 | |
| 	for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
 | |
| 		vf = efx->vf + vf_i;
 | |
| 		efx_siena_sriov_reset_vf(vf, &buf);
 | |
| 	}
 | |
| 
 | |
| 	efx_nic_free_buffer(efx, &buf);
 | |
| }
 | |
| 
 | |
| int efx_init_sriov(void)
 | |
| {
 | |
| 	/* A single threaded workqueue is sufficient. efx_siena_sriov_vfdi() and
 | |
| 	 * efx_siena_sriov_peer_work() spend almost all their time sleeping for
 | |
| 	 * MCDI to complete anyway
 | |
| 	 */
 | |
| 	vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
 | |
| 	if (!vfdi_workqueue)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void efx_fini_sriov(void)
 | |
| {
 | |
| 	destroy_workqueue(vfdi_workqueue);
 | |
| }
 | |
| 
 | |
| int efx_siena_sriov_set_vf_mac(struct net_device *net_dev, int vf_i, u8 *mac)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 	struct efx_vf *vf;
 | |
| 
 | |
| 	if (vf_i >= efx->vf_init_count)
 | |
| 		return -EINVAL;
 | |
| 	vf = efx->vf + vf_i;
 | |
| 
 | |
| 	mutex_lock(&vf->status_lock);
 | |
| 	ether_addr_copy(vf->addr.mac_addr, mac);
 | |
| 	__efx_siena_sriov_update_vf_addr(vf);
 | |
| 	mutex_unlock(&vf->status_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int efx_siena_sriov_set_vf_vlan(struct net_device *net_dev, int vf_i,
 | |
| 				u16 vlan, u8 qos)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 	struct efx_vf *vf;
 | |
| 	u16 tci;
 | |
| 
 | |
| 	if (vf_i >= efx->vf_init_count)
 | |
| 		return -EINVAL;
 | |
| 	vf = efx->vf + vf_i;
 | |
| 
 | |
| 	mutex_lock(&vf->status_lock);
 | |
| 	tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
 | |
| 	vf->addr.tci = htons(tci);
 | |
| 	__efx_siena_sriov_update_vf_addr(vf);
 | |
| 	mutex_unlock(&vf->status_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int efx_siena_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf_i,
 | |
| 				    bool spoofchk)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 	struct efx_vf *vf;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (vf_i >= efx->vf_init_count)
 | |
| 		return -EINVAL;
 | |
| 	vf = efx->vf + vf_i;
 | |
| 
 | |
| 	mutex_lock(&vf->txq_lock);
 | |
| 	if (vf->txq_count == 0) {
 | |
| 		vf->tx_filter_mode =
 | |
| 			spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
 | |
| 		rc = 0;
 | |
| 	} else {
 | |
| 		/* This cannot be changed while TX queues are running */
 | |
| 		rc = -EBUSY;
 | |
| 	}
 | |
| 	mutex_unlock(&vf->txq_lock);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int efx_siena_sriov_get_vf_config(struct net_device *net_dev, int vf_i,
 | |
| 				  struct ifla_vf_info *ivi)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 	struct efx_vf *vf;
 | |
| 	u16 tci;
 | |
| 
 | |
| 	if (vf_i >= efx->vf_init_count)
 | |
| 		return -EINVAL;
 | |
| 	vf = efx->vf + vf_i;
 | |
| 
 | |
| 	ivi->vf = vf_i;
 | |
| 	ether_addr_copy(ivi->mac, vf->addr.mac_addr);
 | |
| 	ivi->max_tx_rate = 0;
 | |
| 	ivi->min_tx_rate = 0;
 | |
| 	tci = ntohs(vf->addr.tci);
 | |
| 	ivi->vlan = tci & VLAN_VID_MASK;
 | |
| 	ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
 | |
| 	ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 |