 fe10b84e7f
			
		
	
	
	fe10b84e7f
	
	
	
		
			
			drivers/media/tuners/mt2063.c:1238:56: warning: cast truncates bits from constant value (ffffff0f becomes f) drivers/media/tuners/mt2063.c:1313:62: warning: cast truncates bits from constant value (ffffff7f becomes 7f) drivers/media/tuners/mt2063.c:1321:62: warning: cast truncates bits from constant value (ffffff7f becomes 7f) Cast to u8 is unnecessary. Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
		
			
				
	
	
		
			2303 lines
		
	
	
	
		
			66 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2303 lines
		
	
	
	
		
			66 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Driver for mt2063 Micronas tuner
 | |
|  *
 | |
|  * Copyright (c) 2011 Mauro Carvalho Chehab
 | |
|  *
 | |
|  * This driver came from a driver originally written by:
 | |
|  *		Henry Wang <Henry.wang@AzureWave.com>
 | |
|  * Made publicly available by Terratec, at:
 | |
|  *	http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
 | |
|  * The original driver's license is GPL, as declared with MODULE_LICENSE()
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation under version 2 of the License.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/videodev2.h>
 | |
| 
 | |
| #include "mt2063.h"
 | |
| 
 | |
| static unsigned int debug;
 | |
| module_param(debug, int, 0644);
 | |
| MODULE_PARM_DESC(debug, "Set Verbosity level");
 | |
| 
 | |
| #define dprintk(level, fmt, arg...) do {				\
 | |
| if (debug >= level)							\
 | |
| 	printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg);	\
 | |
| } while (0)
 | |
| 
 | |
| 
 | |
| /* positive error codes used internally */
 | |
| 
 | |
| /*  Info: Unavoidable LO-related spur may be present in the output  */
 | |
| #define MT2063_SPUR_PRESENT_ERR             (0x00800000)
 | |
| 
 | |
| /*  Info: Mask of bits used for # of LO-related spurs that were avoided during tuning  */
 | |
| #define MT2063_SPUR_CNT_MASK                (0x001f0000)
 | |
| #define MT2063_SPUR_SHIFT                   (16)
 | |
| 
 | |
| /*  Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
 | |
| #define MT2063_UPC_RANGE                    (0x04000000)
 | |
| 
 | |
| /*  Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
 | |
| #define MT2063_DNC_RANGE                    (0x08000000)
 | |
| 
 | |
| /*
 | |
|  *  Constant defining the version of the following structure
 | |
|  *  and therefore the API for this code.
 | |
|  *
 | |
|  *  When compiling the tuner driver, the preprocessor will
 | |
|  *  check against this version number to make sure that
 | |
|  *  it matches the version that the tuner driver knows about.
 | |
|  */
 | |
| 
 | |
| /* DECT Frequency Avoidance */
 | |
| #define MT2063_DECT_AVOID_US_FREQS      0x00000001
 | |
| 
 | |
| #define MT2063_DECT_AVOID_EURO_FREQS    0x00000002
 | |
| 
 | |
| #define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0)
 | |
| 
 | |
| #define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0)
 | |
| 
 | |
| enum MT2063_DECT_Avoid_Type {
 | |
| 	MT2063_NO_DECT_AVOIDANCE = 0,				/* Do not create DECT exclusion zones.     */
 | |
| 	MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS,	/* Avoid US DECT frequencies.              */
 | |
| 	MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS,	/* Avoid European DECT frequencies.        */
 | |
| 	MT2063_AVOID_BOTH					/* Avoid both regions. Not typically used. */
 | |
| };
 | |
| 
 | |
| #define MT2063_MAX_ZONES 48
 | |
| 
 | |
| struct MT2063_ExclZone_t {
 | |
| 	u32 min_;
 | |
| 	u32 max_;
 | |
| 	struct MT2063_ExclZone_t *next_;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *  Structure of data needed for Spur Avoidance
 | |
|  */
 | |
| struct MT2063_AvoidSpursData_t {
 | |
| 	u32 f_ref;
 | |
| 	u32 f_in;
 | |
| 	u32 f_LO1;
 | |
| 	u32 f_if1_Center;
 | |
| 	u32 f_if1_Request;
 | |
| 	u32 f_if1_bw;
 | |
| 	u32 f_LO2;
 | |
| 	u32 f_out;
 | |
| 	u32 f_out_bw;
 | |
| 	u32 f_LO1_Step;
 | |
| 	u32 f_LO2_Step;
 | |
| 	u32 f_LO1_FracN_Avoid;
 | |
| 	u32 f_LO2_FracN_Avoid;
 | |
| 	u32 f_zif_bw;
 | |
| 	u32 f_min_LO_Separation;
 | |
| 	u32 maxH1;
 | |
| 	u32 maxH2;
 | |
| 	enum MT2063_DECT_Avoid_Type avoidDECT;
 | |
| 	u32 bSpurPresent;
 | |
| 	u32 bSpurAvoided;
 | |
| 	u32 nSpursFound;
 | |
| 	u32 nZones;
 | |
| 	struct MT2063_ExclZone_t *freeZones;
 | |
| 	struct MT2063_ExclZone_t *usedZones;
 | |
| 	struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Parameter for function MT2063_SetPowerMask that specifies the power down
 | |
|  * of various sections of the MT2063.
 | |
|  */
 | |
| enum MT2063_Mask_Bits {
 | |
| 	MT2063_REG_SD = 0x0040,		/* Shutdown regulator                 */
 | |
| 	MT2063_SRO_SD = 0x0020,		/* Shutdown SRO                       */
 | |
| 	MT2063_AFC_SD = 0x0010,		/* Shutdown AFC A/D                   */
 | |
| 	MT2063_PD_SD = 0x0002,		/* Enable power detector shutdown     */
 | |
| 	MT2063_PDADC_SD = 0x0001,	/* Enable power detector A/D shutdown */
 | |
| 	MT2063_VCO_SD = 0x8000,		/* Enable VCO shutdown                */
 | |
| 	MT2063_LTX_SD = 0x4000,		/* Enable LTX shutdown                */
 | |
| 	MT2063_LT1_SD = 0x2000,		/* Enable LT1 shutdown                */
 | |
| 	MT2063_LNA_SD = 0x1000,		/* Enable LNA shutdown                */
 | |
| 	MT2063_UPC_SD = 0x0800,		/* Enable upconverter shutdown        */
 | |
| 	MT2063_DNC_SD = 0x0400,		/* Enable downconverter shutdown      */
 | |
| 	MT2063_VGA_SD = 0x0200,		/* Enable VGA shutdown                */
 | |
| 	MT2063_AMP_SD = 0x0100,		/* Enable AMP shutdown                */
 | |
| 	MT2063_ALL_SD = 0xFF73,		/* All shutdown bits for this tuner   */
 | |
| 	MT2063_NONE_SD = 0x0000		/* No shutdown bits                   */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *  Possible values for MT2063_DNC_OUTPUT
 | |
|  */
 | |
| enum MT2063_DNC_Output_Enable {
 | |
| 	MT2063_DNC_NONE = 0,
 | |
| 	MT2063_DNC_1,
 | |
| 	MT2063_DNC_2,
 | |
| 	MT2063_DNC_BOTH
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *  Two-wire serial bus subaddresses of the tuner registers.
 | |
|  *  Also known as the tuner's register addresses.
 | |
|  */
 | |
| enum MT2063_Register_Offsets {
 | |
| 	MT2063_REG_PART_REV = 0,	/*  0x00: Part/Rev Code         */
 | |
| 	MT2063_REG_LO1CQ_1,		/*  0x01: LO1C Queued Byte 1    */
 | |
| 	MT2063_REG_LO1CQ_2,		/*  0x02: LO1C Queued Byte 2    */
 | |
| 	MT2063_REG_LO2CQ_1,		/*  0x03: LO2C Queued Byte 1    */
 | |
| 	MT2063_REG_LO2CQ_2,		/*  0x04: LO2C Queued Byte 2    */
 | |
| 	MT2063_REG_LO2CQ_3,		/*  0x05: LO2C Queued Byte 3    */
 | |
| 	MT2063_REG_RSVD_06,		/*  0x06: Reserved              */
 | |
| 	MT2063_REG_LO_STATUS,		/*  0x07: LO Status             */
 | |
| 	MT2063_REG_FIFFC,		/*  0x08: FIFF Center           */
 | |
| 	MT2063_REG_CLEARTUNE,		/*  0x09: ClearTune Filter      */
 | |
| 	MT2063_REG_ADC_OUT,		/*  0x0A: ADC_OUT               */
 | |
| 	MT2063_REG_LO1C_1,		/*  0x0B: LO1C Byte 1           */
 | |
| 	MT2063_REG_LO1C_2,		/*  0x0C: LO1C Byte 2           */
 | |
| 	MT2063_REG_LO2C_1,		/*  0x0D: LO2C Byte 1           */
 | |
| 	MT2063_REG_LO2C_2,		/*  0x0E: LO2C Byte 2           */
 | |
| 	MT2063_REG_LO2C_3,		/*  0x0F: LO2C Byte 3           */
 | |
| 	MT2063_REG_RSVD_10,		/*  0x10: Reserved              */
 | |
| 	MT2063_REG_PWR_1,		/*  0x11: PWR Byte 1            */
 | |
| 	MT2063_REG_PWR_2,		/*  0x12: PWR Byte 2            */
 | |
| 	MT2063_REG_TEMP_STATUS,		/*  0x13: Temp Status           */
 | |
| 	MT2063_REG_XO_STATUS,		/*  0x14: Crystal Status        */
 | |
| 	MT2063_REG_RF_STATUS,		/*  0x15: RF Attn Status        */
 | |
| 	MT2063_REG_FIF_STATUS,		/*  0x16: FIF Attn Status       */
 | |
| 	MT2063_REG_LNA_OV,		/*  0x17: LNA Attn Override     */
 | |
| 	MT2063_REG_RF_OV,		/*  0x18: RF Attn Override      */
 | |
| 	MT2063_REG_FIF_OV,		/*  0x19: FIF Attn Override     */
 | |
| 	MT2063_REG_LNA_TGT,		/*  0x1A: Reserved              */
 | |
| 	MT2063_REG_PD1_TGT,		/*  0x1B: Pwr Det 1 Target      */
 | |
| 	MT2063_REG_PD2_TGT,		/*  0x1C: Pwr Det 2 Target      */
 | |
| 	MT2063_REG_RSVD_1D,		/*  0x1D: Reserved              */
 | |
| 	MT2063_REG_RSVD_1E,		/*  0x1E: Reserved              */
 | |
| 	MT2063_REG_RSVD_1F,		/*  0x1F: Reserved              */
 | |
| 	MT2063_REG_RSVD_20,		/*  0x20: Reserved              */
 | |
| 	MT2063_REG_BYP_CTRL,		/*  0x21: Bypass Control        */
 | |
| 	MT2063_REG_RSVD_22,		/*  0x22: Reserved              */
 | |
| 	MT2063_REG_RSVD_23,		/*  0x23: Reserved              */
 | |
| 	MT2063_REG_RSVD_24,		/*  0x24: Reserved              */
 | |
| 	MT2063_REG_RSVD_25,		/*  0x25: Reserved              */
 | |
| 	MT2063_REG_RSVD_26,		/*  0x26: Reserved              */
 | |
| 	MT2063_REG_RSVD_27,		/*  0x27: Reserved              */
 | |
| 	MT2063_REG_FIFF_CTRL,		/*  0x28: FIFF Control          */
 | |
| 	MT2063_REG_FIFF_OFFSET,		/*  0x29: FIFF Offset           */
 | |
| 	MT2063_REG_CTUNE_CTRL,		/*  0x2A: Reserved              */
 | |
| 	MT2063_REG_CTUNE_OV,		/*  0x2B: Reserved              */
 | |
| 	MT2063_REG_CTRL_2C,		/*  0x2C: Reserved              */
 | |
| 	MT2063_REG_FIFF_CTRL2,		/*  0x2D: Fiff Control          */
 | |
| 	MT2063_REG_RSVD_2E,		/*  0x2E: Reserved              */
 | |
| 	MT2063_REG_DNC_GAIN,		/*  0x2F: DNC Control           */
 | |
| 	MT2063_REG_VGA_GAIN,		/*  0x30: VGA Gain Ctrl         */
 | |
| 	MT2063_REG_RSVD_31,		/*  0x31: Reserved              */
 | |
| 	MT2063_REG_TEMP_SEL,		/*  0x32: Temperature Selection */
 | |
| 	MT2063_REG_RSVD_33,		/*  0x33: Reserved              */
 | |
| 	MT2063_REG_RSVD_34,		/*  0x34: Reserved              */
 | |
| 	MT2063_REG_RSVD_35,		/*  0x35: Reserved              */
 | |
| 	MT2063_REG_RSVD_36,		/*  0x36: Reserved              */
 | |
| 	MT2063_REG_RSVD_37,		/*  0x37: Reserved              */
 | |
| 	MT2063_REG_RSVD_38,		/*  0x38: Reserved              */
 | |
| 	MT2063_REG_RSVD_39,		/*  0x39: Reserved              */
 | |
| 	MT2063_REG_RSVD_3A,		/*  0x3A: Reserved              */
 | |
| 	MT2063_REG_RSVD_3B,		/*  0x3B: Reserved              */
 | |
| 	MT2063_REG_RSVD_3C,		/*  0x3C: Reserved              */
 | |
| 	MT2063_REG_END_REGS
 | |
| };
 | |
| 
 | |
| struct mt2063_state {
 | |
| 	struct i2c_adapter *i2c;
 | |
| 
 | |
| 	bool init;
 | |
| 
 | |
| 	const struct mt2063_config *config;
 | |
| 	struct dvb_tuner_ops ops;
 | |
| 	struct dvb_frontend *frontend;
 | |
| 	struct tuner_state status;
 | |
| 
 | |
| 	u32 frequency;
 | |
| 	u32 srate;
 | |
| 	u32 bandwidth;
 | |
| 	u32 reference;
 | |
| 
 | |
| 	u32 tuner_id;
 | |
| 	struct MT2063_AvoidSpursData_t AS_Data;
 | |
| 	u32 f_IF1_actual;
 | |
| 	u32 rcvr_mode;
 | |
| 	u32 ctfilt_sw;
 | |
| 	u32 CTFiltMax[31];
 | |
| 	u32 num_regs;
 | |
| 	u8 reg[MT2063_REG_END_REGS];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * mt2063_write - Write data into the I2C bus
 | |
|  */
 | |
| static int mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len)
 | |
| {
 | |
| 	struct dvb_frontend *fe = state->frontend;
 | |
| 	int ret;
 | |
| 	u8 buf[60];
 | |
| 	struct i2c_msg msg = {
 | |
| 		.addr = state->config->tuner_address,
 | |
| 		.flags = 0,
 | |
| 		.buf = buf,
 | |
| 		.len = len + 1
 | |
| 	};
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	msg.buf[0] = reg;
 | |
| 	memcpy(msg.buf + 1, data, len);
 | |
| 
 | |
| 	if (fe->ops.i2c_gate_ctrl)
 | |
| 		fe->ops.i2c_gate_ctrl(fe, 1);
 | |
| 	ret = i2c_transfer(state->i2c, &msg, 1);
 | |
| 	if (fe->ops.i2c_gate_ctrl)
 | |
| 		fe->ops.i2c_gate_ctrl(fe, 0);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		printk(KERN_ERR "%s error ret=%d\n", __func__, ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mt2063_write - Write register data into the I2C bus, caching the value
 | |
|  */
 | |
| static int mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val)
 | |
| {
 | |
| 	int status;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	if (reg >= MT2063_REG_END_REGS)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	status = mt2063_write(state, reg, &val, 1);
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	state->reg[reg] = val;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mt2063_read - Read data from the I2C bus
 | |
|  */
 | |
| static int mt2063_read(struct mt2063_state *state,
 | |
| 			   u8 subAddress, u8 *pData, u32 cnt)
 | |
| {
 | |
| 	int status = 0;	/* Status to be returned        */
 | |
| 	struct dvb_frontend *fe = state->frontend;
 | |
| 	u32 i = 0;
 | |
| 
 | |
| 	dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt);
 | |
| 
 | |
| 	if (fe->ops.i2c_gate_ctrl)
 | |
| 		fe->ops.i2c_gate_ctrl(fe, 1);
 | |
| 
 | |
| 	for (i = 0; i < cnt; i++) {
 | |
| 		u8 b0[] = { subAddress + i };
 | |
| 		struct i2c_msg msg[] = {
 | |
| 			{
 | |
| 				.addr = state->config->tuner_address,
 | |
| 				.flags = 0,
 | |
| 				.buf = b0,
 | |
| 				.len = 1
 | |
| 			}, {
 | |
| 				.addr = state->config->tuner_address,
 | |
| 				.flags = I2C_M_RD,
 | |
| 				.buf = pData + i,
 | |
| 				.len = 1
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		status = i2c_transfer(state->i2c, msg, 2);
 | |
| 		dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n",
 | |
| 			   subAddress + i, status, *(pData + i));
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (fe->ops.i2c_gate_ctrl)
 | |
| 		fe->ops.i2c_gate_ctrl(fe, 0);
 | |
| 
 | |
| 	if (status < 0)
 | |
| 		printk(KERN_ERR "Can't read from address 0x%02x,\n",
 | |
| 		       subAddress + i);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * FIXME: Is this really needed?
 | |
|  */
 | |
| static int MT2063_Sleep(struct dvb_frontend *fe)
 | |
| {
 | |
| 	/*
 | |
| 	 *  ToDo:  Add code here to implement a OS blocking
 | |
| 	 */
 | |
| 	msleep(100);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Microtune spur avoidance
 | |
|  */
 | |
| 
 | |
| /*  Implement ceiling, floor functions.  */
 | |
| #define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
 | |
| #define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))
 | |
| 
 | |
| struct MT2063_FIFZone_t {
 | |
| 	s32 min_;
 | |
| 	s32 max_;
 | |
| };
 | |
| 
 | |
| static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t
 | |
| 					    *pAS_Info,
 | |
| 					    struct MT2063_ExclZone_t *pPrevNode)
 | |
| {
 | |
| 	struct MT2063_ExclZone_t *pNode;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	/*  Check for a node in the free list  */
 | |
| 	if (pAS_Info->freeZones != NULL) {
 | |
| 		/*  Use one from the free list  */
 | |
| 		pNode = pAS_Info->freeZones;
 | |
| 		pAS_Info->freeZones = pNode->next_;
 | |
| 	} else {
 | |
| 		/*  Grab a node from the array  */
 | |
| 		pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones];
 | |
| 	}
 | |
| 
 | |
| 	if (pPrevNode != NULL) {
 | |
| 		pNode->next_ = pPrevNode->next_;
 | |
| 		pPrevNode->next_ = pNode;
 | |
| 	} else {		/*  insert at the beginning of the list  */
 | |
| 
 | |
| 		pNode->next_ = pAS_Info->usedZones;
 | |
| 		pAS_Info->usedZones = pNode;
 | |
| 	}
 | |
| 
 | |
| 	pAS_Info->nZones++;
 | |
| 	return pNode;
 | |
| }
 | |
| 
 | |
| static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t
 | |
| 					    *pAS_Info,
 | |
| 					    struct MT2063_ExclZone_t *pPrevNode,
 | |
| 					    struct MT2063_ExclZone_t
 | |
| 					    *pNodeToRemove)
 | |
| {
 | |
| 	struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	/*  Make previous node point to the subsequent node  */
 | |
| 	if (pPrevNode != NULL)
 | |
| 		pPrevNode->next_ = pNext;
 | |
| 
 | |
| 	/*  Add pNodeToRemove to the beginning of the freeZones  */
 | |
| 	pNodeToRemove->next_ = pAS_Info->freeZones;
 | |
| 	pAS_Info->freeZones = pNodeToRemove;
 | |
| 
 | |
| 	/*  Decrement node count  */
 | |
| 	pAS_Info->nZones--;
 | |
| 
 | |
| 	return pNext;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MT_AddExclZone()
 | |
|  *
 | |
|  * Add (and merge) an exclusion zone into the list.
 | |
|  * If the range (f_min, f_max) is totally outside the
 | |
|  * 1st IF BW, ignore the entry.
 | |
|  * If the range (f_min, f_max) is negative, ignore the entry.
 | |
|  */
 | |
| static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
 | |
| 			       u32 f_min, u32 f_max)
 | |
| {
 | |
| 	struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
 | |
| 	struct MT2063_ExclZone_t *pPrev = NULL;
 | |
| 	struct MT2063_ExclZone_t *pNext = NULL;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	/*  Check to see if this overlaps the 1st IF filter  */
 | |
| 	if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2)))
 | |
| 	    && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2)))
 | |
| 	    && (f_min < f_max)) {
 | |
| 		/*
 | |
| 		 *                1        2         3      4       5        6
 | |
| 		 *
 | |
| 		 *   New entry:  |---|    |--|      |--|    |-|    |---|    |--|
 | |
| 		 *                or       or        or     or      or
 | |
| 		 *   Existing:  |--|      |--|      |--|    |---|  |-|      |--|
 | |
| 		 */
 | |
| 
 | |
| 		/*  Check for our place in the list  */
 | |
| 		while ((pNode != NULL) && (pNode->max_ < f_min)) {
 | |
| 			pPrev = pNode;
 | |
| 			pNode = pNode->next_;
 | |
| 		}
 | |
| 
 | |
| 		if ((pNode != NULL) && (pNode->min_ < f_max)) {
 | |
| 			/*  Combine me with pNode  */
 | |
| 			if (f_min < pNode->min_)
 | |
| 				pNode->min_ = f_min;
 | |
| 			if (f_max > pNode->max_)
 | |
| 				pNode->max_ = f_max;
 | |
| 		} else {
 | |
| 			pNode = InsertNode(pAS_Info, pPrev);
 | |
| 			pNode->min_ = f_min;
 | |
| 			pNode->max_ = f_max;
 | |
| 		}
 | |
| 
 | |
| 		/*  Look for merging possibilities  */
 | |
| 		pNext = pNode->next_;
 | |
| 		while ((pNext != NULL) && (pNext->min_ < pNode->max_)) {
 | |
| 			if (pNext->max_ > pNode->max_)
 | |
| 				pNode->max_ = pNext->max_;
 | |
| 			/*  Remove pNext, return ptr to pNext->next  */
 | |
| 			pNext = RemoveNode(pAS_Info, pNode, pNext);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Reset all exclusion zones.
 | |
|  *  Add zones to protect the PLL FracN regions near zero
 | |
|  */
 | |
| static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info)
 | |
| {
 | |
| 	u32 center;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	pAS_Info->nZones = 0;	/*  this clears the used list  */
 | |
| 	pAS_Info->usedZones = NULL;	/*  reset ptr                  */
 | |
| 	pAS_Info->freeZones = NULL;	/*  reset ptr                  */
 | |
| 
 | |
| 	center =
 | |
| 	    pAS_Info->f_ref *
 | |
| 	    ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 +
 | |
| 	      pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in;
 | |
| 	while (center <
 | |
| 	       pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
 | |
| 	       pAS_Info->f_LO1_FracN_Avoid) {
 | |
| 		/*  Exclude LO1 FracN  */
 | |
| 		MT2063_AddExclZone(pAS_Info,
 | |
| 				   center - pAS_Info->f_LO1_FracN_Avoid,
 | |
| 				   center - 1);
 | |
| 		MT2063_AddExclZone(pAS_Info, center + 1,
 | |
| 				   center + pAS_Info->f_LO1_FracN_Avoid);
 | |
| 		center += pAS_Info->f_ref;
 | |
| 	}
 | |
| 
 | |
| 	center =
 | |
| 	    pAS_Info->f_ref *
 | |
| 	    ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 -
 | |
| 	      pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out;
 | |
| 	while (center <
 | |
| 	       pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
 | |
| 	       pAS_Info->f_LO2_FracN_Avoid) {
 | |
| 		/*  Exclude LO2 FracN  */
 | |
| 		MT2063_AddExclZone(pAS_Info,
 | |
| 				   center - pAS_Info->f_LO2_FracN_Avoid,
 | |
| 				   center - 1);
 | |
| 		MT2063_AddExclZone(pAS_Info, center + 1,
 | |
| 				   center + pAS_Info->f_LO2_FracN_Avoid);
 | |
| 		center += pAS_Info->f_ref;
 | |
| 	}
 | |
| 
 | |
| 	if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
 | |
| 		/*  Exclude LO1 values that conflict with DECT channels */
 | |
| 		MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in);	/* Ctr = 1921.536 */
 | |
| 		MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in);	/* Ctr = 1923.264 */
 | |
| 		MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in);	/* Ctr = 1924.992 */
 | |
| 		MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in);	/* Ctr = 1926.720 */
 | |
| 		MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in);	/* Ctr = 1928.448 */
 | |
| 	}
 | |
| 
 | |
| 	if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
 | |
| 		MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in);	/* Ctr = 1897.344 */
 | |
| 		MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in);	/* Ctr = 1895.616 */
 | |
| 		MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in);	/* Ctr = 1893.888 */
 | |
| 		MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in);	/* Ctr = 1892.16  */
 | |
| 		MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in);	/* Ctr = 1890.432 */
 | |
| 		MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in);	/* Ctr = 1888.704 */
 | |
| 		MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in);	/* Ctr = 1886.976 */
 | |
| 		MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in);	/* Ctr = 1885.248 */
 | |
| 		MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in);	/* Ctr = 1883.52  */
 | |
| 		MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in);	/* Ctr = 1881.792 */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MT_ChooseFirstIF - Choose the best available 1st IF
 | |
|  *                    If f_Desired is not excluded, choose that first.
 | |
|  *                    Otherwise, return the value closest to f_Center that is
 | |
|  *                    not excluded
 | |
|  */
 | |
| static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info)
 | |
| {
 | |
| 	/*
 | |
| 	 * Update "f_Desired" to be the nearest "combinational-multiple" of
 | |
| 	 * "f_LO1_Step".
 | |
| 	 * The resulting number, F_LO1 must be a multiple of f_LO1_Step.
 | |
| 	 * And F_LO1 is the arithmetic sum of f_in + f_Center.
 | |
| 	 * Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
 | |
| 	 * However, the sum must be.
 | |
| 	 */
 | |
| 	const u32 f_Desired =
 | |
| 	    pAS_Info->f_LO1_Step *
 | |
| 	    ((pAS_Info->f_if1_Request + pAS_Info->f_in +
 | |
| 	      pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) -
 | |
| 	    pAS_Info->f_in;
 | |
| 	const u32 f_Step =
 | |
| 	    (pAS_Info->f_LO1_Step >
 | |
| 	     pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info->
 | |
| 	    f_LO2_Step;
 | |
| 	u32 f_Center;
 | |
| 	s32 i;
 | |
| 	s32 j = 0;
 | |
| 	u32 bDesiredExcluded = 0;
 | |
| 	u32 bZeroExcluded = 0;
 | |
| 	s32 tmpMin, tmpMax;
 | |
| 	s32 bestDiff;
 | |
| 	struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
 | |
| 	struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES];
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	if (pAS_Info->nZones == 0)
 | |
| 		return f_Desired;
 | |
| 
 | |
| 	/*
 | |
| 	 *  f_Center needs to be an integer multiple of f_Step away
 | |
| 	 *  from f_Desired
 | |
| 	 */
 | |
| 	if (pAS_Info->f_if1_Center > f_Desired)
 | |
| 		f_Center =
 | |
| 		    f_Desired +
 | |
| 		    f_Step *
 | |
| 		    ((pAS_Info->f_if1_Center - f_Desired +
 | |
| 		      f_Step / 2) / f_Step);
 | |
| 	else
 | |
| 		f_Center =
 | |
| 		    f_Desired -
 | |
| 		    f_Step *
 | |
| 		    ((f_Desired - pAS_Info->f_if1_Center +
 | |
| 		      f_Step / 2) / f_Step);
 | |
| 
 | |
| 	/*
 | |
| 	 * Take MT_ExclZones, center around f_Center and change the
 | |
| 	 * resolution to f_Step
 | |
| 	 */
 | |
| 	while (pNode != NULL) {
 | |
| 		/*  floor function  */
 | |
| 		tmpMin =
 | |
| 		    floor((s32) (pNode->min_ - f_Center), (s32) f_Step);
 | |
| 
 | |
| 		/*  ceil function  */
 | |
| 		tmpMax =
 | |
| 		    ceil((s32) (pNode->max_ - f_Center), (s32) f_Step);
 | |
| 
 | |
| 		if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired))
 | |
| 			bDesiredExcluded = 1;
 | |
| 
 | |
| 		if ((tmpMin < 0) && (tmpMax > 0))
 | |
| 			bZeroExcluded = 1;
 | |
| 
 | |
| 		/*  See if this zone overlaps the previous  */
 | |
| 		if ((j > 0) && (tmpMin < zones[j - 1].max_))
 | |
| 			zones[j - 1].max_ = tmpMax;
 | |
| 		else {
 | |
| 			/*  Add new zone  */
 | |
| 			zones[j].min_ = tmpMin;
 | |
| 			zones[j].max_ = tmpMax;
 | |
| 			j++;
 | |
| 		}
 | |
| 		pNode = pNode->next_;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *  If the desired is okay, return with it
 | |
| 	 */
 | |
| 	if (bDesiredExcluded == 0)
 | |
| 		return f_Desired;
 | |
| 
 | |
| 	/*
 | |
| 	 *  If the desired is excluded and the center is okay, return with it
 | |
| 	 */
 | |
| 	if (bZeroExcluded == 0)
 | |
| 		return f_Center;
 | |
| 
 | |
| 	/*  Find the value closest to 0 (f_Center)  */
 | |
| 	bestDiff = zones[0].min_;
 | |
| 	for (i = 0; i < j; i++) {
 | |
| 		if (abs(zones[i].min_) < abs(bestDiff))
 | |
| 			bestDiff = zones[i].min_;
 | |
| 		if (abs(zones[i].max_) < abs(bestDiff))
 | |
| 			bestDiff = zones[i].max_;
 | |
| 	}
 | |
| 
 | |
| 	if (bestDiff < 0)
 | |
| 		return f_Center - ((u32) (-bestDiff) * f_Step);
 | |
| 
 | |
| 	return f_Center + (bestDiff * f_Step);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * gcd() - Uses Euclid's algorithm
 | |
|  *
 | |
|  * @u, @v:	Unsigned values whose GCD is desired.
 | |
|  *
 | |
|  * Returns THE greatest common divisor of u and v, if either value is 0,
 | |
|  * the other value is returned as the result.
 | |
|  */
 | |
| static u32 MT2063_gcd(u32 u, u32 v)
 | |
| {
 | |
| 	u32 r;
 | |
| 
 | |
| 	while (v != 0) {
 | |
| 		r = u % v;
 | |
| 		u = v;
 | |
| 		v = r;
 | |
| 	}
 | |
| 
 | |
| 	return u;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * IsSpurInBand() - Checks to see if a spur will be present within the IF's
 | |
|  *                  bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
 | |
|  *
 | |
|  *                    ma   mb                                     mc   md
 | |
|  *                  <--+-+-+-------------------+-------------------+-+-+-->
 | |
|  *                     |   ^                   0                   ^   |
 | |
|  *                     ^   b=-fIFOut+fIFBW/2      -b=+fIFOut-fIFBW/2   ^
 | |
|  *                     a=-fIFOut-fIFBW/2              -a=+fIFOut+fIFBW/2
 | |
|  *
 | |
|  *                  Note that some equations are doubled to prevent round-off
 | |
|  *                  problems when calculating fIFBW/2
 | |
|  *
 | |
|  * @pAS_Info:	Avoid Spurs information block
 | |
|  * @fm:		If spur, amount f_IF1 has to move negative
 | |
|  * @fp:		If spur, amount f_IF1 has to move positive
 | |
|  *
 | |
|  *  Returns 1 if an LO spur would be present, otherwise 0.
 | |
|  */
 | |
| static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info,
 | |
| 			u32 *fm, u32 * fp)
 | |
| {
 | |
| 	/*
 | |
| 	 **  Calculate LO frequency settings.
 | |
| 	 */
 | |
| 	u32 n, n0;
 | |
| 	const u32 f_LO1 = pAS_Info->f_LO1;
 | |
| 	const u32 f_LO2 = pAS_Info->f_LO2;
 | |
| 	const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2;
 | |
| 	const u32 c = d - pAS_Info->f_out_bw;
 | |
| 	const u32 f = pAS_Info->f_zif_bw / 2;
 | |
| 	const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1;
 | |
| 	s32 f_nsLO1, f_nsLO2;
 | |
| 	s32 f_Spur;
 | |
| 	u32 ma, mb, mc, md, me, mf;
 | |
| 	u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	*fm = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 ** For each edge (d, c & f), calculate a scale, based on the gcd
 | |
| 	 ** of f_LO1, f_LO2 and the edge value.  Use the larger of this
 | |
| 	 ** gcd-based scale factor or f_Scale.
 | |
| 	 */
 | |
| 	lo_gcd = MT2063_gcd(f_LO1, f_LO2);
 | |
| 	gd_Scale = max((u32) MT2063_gcd(lo_gcd, d), f_Scale);
 | |
| 	hgds = gd_Scale / 2;
 | |
| 	gc_Scale = max((u32) MT2063_gcd(lo_gcd, c), f_Scale);
 | |
| 	hgcs = gc_Scale / 2;
 | |
| 	gf_Scale = max((u32) MT2063_gcd(lo_gcd, f), f_Scale);
 | |
| 	hgfs = gf_Scale / 2;
 | |
| 
 | |
| 	n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2);
 | |
| 
 | |
| 	/*  Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic  */
 | |
| 	for (n = n0; n <= pAS_Info->maxH1; ++n) {
 | |
| 		md = (n * ((f_LO1 + hgds) / gd_Scale) -
 | |
| 		      ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
 | |
| 
 | |
| 		/*  If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present  */
 | |
| 		if (md >= pAS_Info->maxH1)
 | |
| 			break;
 | |
| 
 | |
| 		ma = (n * ((f_LO1 + hgds) / gd_Scale) +
 | |
| 		      ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
 | |
| 
 | |
| 		/*  If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic  */
 | |
| 		if (md == ma)
 | |
| 			continue;
 | |
| 
 | |
| 		mc = (n * ((f_LO1 + hgcs) / gc_Scale) -
 | |
| 		      ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
 | |
| 		if (mc != md) {
 | |
| 			f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale));
 | |
| 			f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale));
 | |
| 			f_Spur =
 | |
| 			    (gc_Scale * (f_nsLO1 - f_nsLO2)) +
 | |
| 			    n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale);
 | |
| 
 | |
| 			*fp = ((f_Spur - (s32) c) / (mc - n)) + 1;
 | |
| 			*fm = (((s32) d - f_Spur) / (mc - n)) + 1;
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		/*  Location of Zero-IF-spur to be checked  */
 | |
| 		me = (n * ((f_LO1 + hgfs) / gf_Scale) +
 | |
| 		      ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
 | |
| 		mf = (n * ((f_LO1 + hgfs) / gf_Scale) -
 | |
| 		      ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
 | |
| 		if (me != mf) {
 | |
| 			f_nsLO1 = n * (f_LO1 / gf_Scale);
 | |
| 			f_nsLO2 = me * (f_LO2 / gf_Scale);
 | |
| 			f_Spur =
 | |
| 			    (gf_Scale * (f_nsLO1 - f_nsLO2)) +
 | |
| 			    n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale);
 | |
| 
 | |
| 			*fp = ((f_Spur + (s32) f) / (me - n)) + 1;
 | |
| 			*fm = (((s32) f - f_Spur) / (me - n)) + 1;
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		mb = (n * ((f_LO1 + hgcs) / gc_Scale) +
 | |
| 		      ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
 | |
| 		if (ma != mb) {
 | |
| 			f_nsLO1 = n * (f_LO1 / gc_Scale);
 | |
| 			f_nsLO2 = ma * (f_LO2 / gc_Scale);
 | |
| 			f_Spur =
 | |
| 			    (gc_Scale * (f_nsLO1 - f_nsLO2)) +
 | |
| 			    n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale);
 | |
| 
 | |
| 			*fp = (((s32) d + f_Spur) / (ma - n)) + 1;
 | |
| 			*fm = (-(f_Spur + (s32) c) / (ma - n)) + 1;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*  No spurs found  */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MT_AvoidSpurs() - Main entry point to avoid spurs.
 | |
|  *                   Checks for existing spurs in present LO1, LO2 freqs
 | |
|  *                   and if present, chooses spur-free LO1, LO2 combination
 | |
|  *                   that tunes the same input/output frequencies.
 | |
|  */
 | |
| static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info)
 | |
| {
 | |
| 	int status = 0;
 | |
| 	u32 fm, fp;		/*  restricted range on LO's        */
 | |
| 	pAS_Info->bSpurAvoided = 0;
 | |
| 	pAS_Info->nSpursFound = 0;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	if (pAS_Info->maxH1 == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid LO Generated Spurs
 | |
| 	 *
 | |
| 	 * Make sure that have no LO-related spurs within the IF output
 | |
| 	 * bandwidth.
 | |
| 	 *
 | |
| 	 * If there is an LO spur in this band, start at the current IF1 frequency
 | |
| 	 * and work out until we find a spur-free frequency or run up against the
 | |
| 	 * 1st IF SAW band edge.  Use temporary copies of fLO1 and fLO2 so that they
 | |
| 	 * will be unchanged if a spur-free setting is not found.
 | |
| 	 */
 | |
| 	pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
 | |
| 	if (pAS_Info->bSpurPresent) {
 | |
| 		u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in;	/*  current attempt at a 1st IF  */
 | |
| 		u32 zfLO1 = pAS_Info->f_LO1;	/*  current attempt at an LO1 freq  */
 | |
| 		u32 zfLO2 = pAS_Info->f_LO2;	/*  current attempt at an LO2 freq  */
 | |
| 		u32 delta_IF1;
 | |
| 		u32 new_IF1;
 | |
| 
 | |
| 		/*
 | |
| 		 **  Spur was found, attempt to find a spur-free 1st IF
 | |
| 		 */
 | |
| 		do {
 | |
| 			pAS_Info->nSpursFound++;
 | |
| 
 | |
| 			/*  Raise f_IF1_upper, if needed  */
 | |
| 			MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp);
 | |
| 
 | |
| 			/*  Choose next IF1 that is closest to f_IF1_CENTER              */
 | |
| 			new_IF1 = MT2063_ChooseFirstIF(pAS_Info);
 | |
| 
 | |
| 			if (new_IF1 > zfIF1) {
 | |
| 				pAS_Info->f_LO1 += (new_IF1 - zfIF1);
 | |
| 				pAS_Info->f_LO2 += (new_IF1 - zfIF1);
 | |
| 			} else {
 | |
| 				pAS_Info->f_LO1 -= (zfIF1 - new_IF1);
 | |
| 				pAS_Info->f_LO2 -= (zfIF1 - new_IF1);
 | |
| 			}
 | |
| 			zfIF1 = new_IF1;
 | |
| 
 | |
| 			if (zfIF1 > pAS_Info->f_if1_Center)
 | |
| 				delta_IF1 = zfIF1 - pAS_Info->f_if1_Center;
 | |
| 			else
 | |
| 				delta_IF1 = pAS_Info->f_if1_Center - zfIF1;
 | |
| 
 | |
| 			pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
 | |
| 		/*
 | |
| 		 *  Continue while the new 1st IF is still within the 1st IF bandwidth
 | |
| 		 *  and there is a spur in the band (again)
 | |
| 		 */
 | |
| 		} while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent);
 | |
| 
 | |
| 		/*
 | |
| 		 * Use the LO-spur free values found.  If the search went all
 | |
| 		 * the way to the 1st IF band edge and always found spurs, just
 | |
| 		 * leave the original choice.  It's as "good" as any other.
 | |
| 		 */
 | |
| 		if (pAS_Info->bSpurPresent == 1) {
 | |
| 			status |= MT2063_SPUR_PRESENT_ERR;
 | |
| 			pAS_Info->f_LO1 = zfLO1;
 | |
| 			pAS_Info->f_LO2 = zfLO2;
 | |
| 		} else
 | |
| 			pAS_Info->bSpurAvoided = 1;
 | |
| 	}
 | |
| 
 | |
| 	status |=
 | |
| 	    ((pAS_Info->
 | |
| 	      nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Constants used by the tuning algorithm
 | |
|  */
 | |
| #define MT2063_REF_FREQ          (16000000UL)	/* Reference oscillator Frequency (in Hz) */
 | |
| #define MT2063_IF1_BW            (22000000UL)	/* The IF1 filter bandwidth (in Hz) */
 | |
| #define MT2063_TUNE_STEP_SIZE       (50000UL)	/* Tune in steps of 50 kHz */
 | |
| #define MT2063_SPUR_STEP_HZ        (250000UL)	/* Step size (in Hz) to move IF1 when avoiding spurs */
 | |
| #define MT2063_ZIF_BW             (2000000UL)	/* Zero-IF spur-free bandwidth (in Hz) */
 | |
| #define MT2063_MAX_HARMONICS_1         (15UL)	/* Highest intra-tuner LO Spur Harmonic to be avoided */
 | |
| #define MT2063_MAX_HARMONICS_2          (5UL)	/* Highest inter-tuner LO Spur Harmonic to be avoided */
 | |
| #define MT2063_MIN_LO_SEP         (1000000UL)	/* Minimum inter-tuner LO frequency separation */
 | |
| #define MT2063_LO1_FRACN_AVOID          (0UL)	/* LO1 FracN numerator avoid region (in Hz) */
 | |
| #define MT2063_LO2_FRACN_AVOID     (199999UL)	/* LO2 FracN numerator avoid region (in Hz) */
 | |
| #define MT2063_MIN_FIN_FREQ      (44000000UL)	/* Minimum input frequency (in Hz) */
 | |
| #define MT2063_MAX_FIN_FREQ    (1100000000UL)	/* Maximum input frequency (in Hz) */
 | |
| #define MT2063_MIN_FOUT_FREQ     (36000000UL)	/* Minimum output frequency (in Hz) */
 | |
| #define MT2063_MAX_FOUT_FREQ     (57000000UL)	/* Maximum output frequency (in Hz) */
 | |
| #define MT2063_MIN_DNC_FREQ    (1293000000UL)	/* Minimum LO2 frequency (in Hz) */
 | |
| #define MT2063_MAX_DNC_FREQ    (1614000000UL)	/* Maximum LO2 frequency (in Hz) */
 | |
| #define MT2063_MIN_UPC_FREQ    (1396000000UL)	/* Minimum LO1 frequency (in Hz) */
 | |
| #define MT2063_MAX_UPC_FREQ    (2750000000UL)	/* Maximum LO1 frequency (in Hz) */
 | |
| 
 | |
| /*
 | |
|  *  Define the supported Part/Rev codes for the MT2063
 | |
|  */
 | |
| #define MT2063_B0       (0x9B)
 | |
| #define MT2063_B1       (0x9C)
 | |
| #define MT2063_B2       (0x9D)
 | |
| #define MT2063_B3       (0x9E)
 | |
| 
 | |
| /**
 | |
|  * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
 | |
|  *
 | |
|  * @state:	struct mt2063_state pointer
 | |
|  *
 | |
|  * This function returns 0, if no lock, 1 if locked and a value < 1 if error
 | |
|  */
 | |
| static int mt2063_lockStatus(struct mt2063_state *state)
 | |
| {
 | |
| 	const u32 nMaxWait = 100;	/*  wait a maximum of 100 msec   */
 | |
| 	const u32 nPollRate = 2;	/*  poll status bits every 2 ms */
 | |
| 	const u32 nMaxLoops = nMaxWait / nPollRate;
 | |
| 	const u8 LO1LK = 0x80;
 | |
| 	u8 LO2LK = 0x08;
 | |
| 	int status;
 | |
| 	u32 nDelays = 0;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	/*  LO2 Lock bit was in a different place for B0 version  */
 | |
| 	if (state->tuner_id == MT2063_B0)
 | |
| 		LO2LK = 0x40;
 | |
| 
 | |
| 	do {
 | |
| 		status = mt2063_read(state, MT2063_REG_LO_STATUS,
 | |
| 				     &state->reg[MT2063_REG_LO_STATUS], 1);
 | |
| 
 | |
| 		if (status < 0)
 | |
| 			return status;
 | |
| 
 | |
| 		if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) ==
 | |
| 		    (LO1LK | LO2LK)) {
 | |
| 			return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO;
 | |
| 		}
 | |
| 		msleep(nPollRate);	/*  Wait between retries  */
 | |
| 	} while (++nDelays < nMaxLoops);
 | |
| 
 | |
| 	/*
 | |
| 	 * Got no lock or partial lock
 | |
| 	 */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Constants for setting receiver modes.
 | |
|  *  (6 modes defined at this time, enumerated by mt2063_delivery_sys)
 | |
|  *  (DNC1GC & DNC2GC are the values, which are used, when the specific
 | |
|  *   DNC Output is selected, the other is always off)
 | |
|  *
 | |
|  *                enum mt2063_delivery_sys
 | |
|  * -------------+----------------------------------------------
 | |
|  * Mode 0 :     | MT2063_CABLE_QAM
 | |
|  * Mode 1 :     | MT2063_CABLE_ANALOG
 | |
|  * Mode 2 :     | MT2063_OFFAIR_COFDM
 | |
|  * Mode 3 :     | MT2063_OFFAIR_COFDM_SAWLESS
 | |
|  * Mode 4 :     | MT2063_OFFAIR_ANALOG
 | |
|  * Mode 5 :     | MT2063_OFFAIR_8VSB
 | |
|  * --------------+----------------------------------------------
 | |
|  *
 | |
|  *                |<----------   Mode  -------------->|
 | |
|  *    Reg Field   |  0  |  1  |  2  |  3  |  4  |  5  |
 | |
|  *    ------------+-----+-----+-----+-----+-----+-----+
 | |
|  *    RFAGCen     | OFF | OFF | OFF | OFF | OFF | OFF
 | |
|  *    LNARin      |   0 |   0 |   3 |   3 |  3  |  3
 | |
|  *    FIFFQen     |   1 |   1 |   1 |   1 |  1  |  1
 | |
|  *    FIFFq       |   0 |   0 |   0 |   0 |  0  |  0
 | |
|  *    DNC1gc      |   0 |   0 |   0 |   0 |  0  |  0
 | |
|  *    DNC2gc      |   0 |   0 |   0 |   0 |  0  |  0
 | |
|  *    GCU Auto    |   1 |   1 |   1 |   1 |  1  |  1
 | |
|  *    LNA max Atn |  31 |  31 |  31 |  31 | 31  | 31
 | |
|  *    LNA Target  |  44 |  43 |  43 |  43 | 43  | 43
 | |
|  *    ign  RF Ovl |   0 |   0 |   0 |   0 |  0  |  0
 | |
|  *    RF  max Atn |  31 |  31 |  31 |  31 | 31  | 31
 | |
|  *    PD1 Target  |  36 |  36 |  38 |  38 | 36  | 38
 | |
|  *    ign FIF Ovl |   0 |   0 |   0 |   0 |  0  |  0
 | |
|  *    FIF max Atn |   5 |   5 |   5 |   5 |  5  |  5
 | |
|  *    PD2 Target  |  40 |  33 |  42 |  42 | 33  | 42
 | |
|  */
 | |
| 
 | |
| enum mt2063_delivery_sys {
 | |
| 	MT2063_CABLE_QAM = 0,
 | |
| 	MT2063_CABLE_ANALOG,
 | |
| 	MT2063_OFFAIR_COFDM,
 | |
| 	MT2063_OFFAIR_COFDM_SAWLESS,
 | |
| 	MT2063_OFFAIR_ANALOG,
 | |
| 	MT2063_OFFAIR_8VSB,
 | |
| 	MT2063_NUM_RCVR_MODES
 | |
| };
 | |
| 
 | |
| static const char *mt2063_mode_name[] = {
 | |
| 	[MT2063_CABLE_QAM]		= "digital cable",
 | |
| 	[MT2063_CABLE_ANALOG]		= "analog cable",
 | |
| 	[MT2063_OFFAIR_COFDM]		= "digital offair",
 | |
| 	[MT2063_OFFAIR_COFDM_SAWLESS]	= "digital offair without SAW",
 | |
| 	[MT2063_OFFAIR_ANALOG]		= "analog offair",
 | |
| 	[MT2063_OFFAIR_8VSB]		= "analog offair 8vsb",
 | |
| };
 | |
| 
 | |
| static const u8 RFAGCEN[]	= {  0,  0,  0,  0,  0,  0 };
 | |
| static const u8 LNARIN[]	= {  0,  0,  3,  3,  3,  3 };
 | |
| static const u8 FIFFQEN[]	= {  1,  1,  1,  1,  1,  1 };
 | |
| static const u8 FIFFQ[]		= {  0,  0,  0,  0,  0,  0 };
 | |
| static const u8 DNC1GC[]	= {  0,  0,  0,  0,  0,  0 };
 | |
| static const u8 DNC2GC[]	= {  0,  0,  0,  0,  0,  0 };
 | |
| static const u8 ACLNAMAX[]	= { 31, 31, 31, 31, 31, 31 };
 | |
| static const u8 LNATGT[]	= { 44, 43, 43, 43, 43, 43 };
 | |
| static const u8 RFOVDIS[]	= {  0,  0,  0,  0,  0,  0 };
 | |
| static const u8 ACRFMAX[]	= { 31, 31, 31, 31, 31, 31 };
 | |
| static const u8 PD1TGT[]	= { 36, 36, 38, 38, 36, 38 };
 | |
| static const u8 FIFOVDIS[]	= {  0,  0,  0,  0,  0,  0 };
 | |
| static const u8 ACFIFMAX[]	= { 29, 29, 29, 29, 29, 29 };
 | |
| static const u8 PD2TGT[]	= { 40, 33, 38, 42, 30, 38 };
 | |
| 
 | |
| /*
 | |
|  * mt2063_set_dnc_output_enable()
 | |
|  */
 | |
| static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state,
 | |
| 					enum MT2063_DNC_Output_Enable *pValue)
 | |
| {
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) {	/* if DNC1 is off */
 | |
| 		if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03)	/* if DNC2 is off */
 | |
| 			*pValue = MT2063_DNC_NONE;
 | |
| 		else
 | |
| 			*pValue = MT2063_DNC_2;
 | |
| 	} else {	/* DNC1 is on */
 | |
| 		if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03)	/* if DNC2 is off */
 | |
| 			*pValue = MT2063_DNC_1;
 | |
| 		else
 | |
| 			*pValue = MT2063_DNC_BOTH;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mt2063_set_dnc_output_enable()
 | |
|  */
 | |
| static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state,
 | |
| 					enum MT2063_DNC_Output_Enable nValue)
 | |
| {
 | |
| 	int status = 0;	/* Status to be returned        */
 | |
| 	u8 val = 0;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	/* selects, which DNC output is used */
 | |
| 	switch (nValue) {
 | |
| 	case MT2063_DNC_NONE:
 | |
| 		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03;	/* Set DNC1GC=3 */
 | |
| 		if (state->reg[MT2063_REG_DNC_GAIN] !=
 | |
| 		    val)
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state,
 | |
| 					  MT2063_REG_DNC_GAIN,
 | |
| 					  val);
 | |
| 
 | |
| 		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03;	/* Set DNC2GC=3 */
 | |
| 		if (state->reg[MT2063_REG_VGA_GAIN] !=
 | |
| 		    val)
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state,
 | |
| 					  MT2063_REG_VGA_GAIN,
 | |
| 					  val);
 | |
| 
 | |
| 		val = (state->reg[MT2063_REG_RSVD_20] & ~0x40);	/* Set PD2MUX=0 */
 | |
| 		if (state->reg[MT2063_REG_RSVD_20] !=
 | |
| 		    val)
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state,
 | |
| 					  MT2063_REG_RSVD_20,
 | |
| 					  val);
 | |
| 
 | |
| 		break;
 | |
| 	case MT2063_DNC_1:
 | |
| 		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03);	/* Set DNC1GC=x */
 | |
| 		if (state->reg[MT2063_REG_DNC_GAIN] !=
 | |
| 		    val)
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state,
 | |
| 					  MT2063_REG_DNC_GAIN,
 | |
| 					  val);
 | |
| 
 | |
| 		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03;	/* Set DNC2GC=3 */
 | |
| 		if (state->reg[MT2063_REG_VGA_GAIN] !=
 | |
| 		    val)
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state,
 | |
| 					  MT2063_REG_VGA_GAIN,
 | |
| 					  val);
 | |
| 
 | |
| 		val = (state->reg[MT2063_REG_RSVD_20] & ~0x40);	/* Set PD2MUX=0 */
 | |
| 		if (state->reg[MT2063_REG_RSVD_20] !=
 | |
| 		    val)
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state,
 | |
| 					  MT2063_REG_RSVD_20,
 | |
| 					  val);
 | |
| 
 | |
| 		break;
 | |
| 	case MT2063_DNC_2:
 | |
| 		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03;	/* Set DNC1GC=3 */
 | |
| 		if (state->reg[MT2063_REG_DNC_GAIN] !=
 | |
| 		    val)
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state,
 | |
| 					  MT2063_REG_DNC_GAIN,
 | |
| 					  val);
 | |
| 
 | |
| 		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03);	/* Set DNC2GC=x */
 | |
| 		if (state->reg[MT2063_REG_VGA_GAIN] !=
 | |
| 		    val)
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state,
 | |
| 					  MT2063_REG_VGA_GAIN,
 | |
| 					  val);
 | |
| 
 | |
| 		val = (state->reg[MT2063_REG_RSVD_20] | 0x40);	/* Set PD2MUX=1 */
 | |
| 		if (state->reg[MT2063_REG_RSVD_20] !=
 | |
| 		    val)
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state,
 | |
| 					  MT2063_REG_RSVD_20,
 | |
| 					  val);
 | |
| 
 | |
| 		break;
 | |
| 	case MT2063_DNC_BOTH:
 | |
| 		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03);	/* Set DNC1GC=x */
 | |
| 		if (state->reg[MT2063_REG_DNC_GAIN] !=
 | |
| 		    val)
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state,
 | |
| 					  MT2063_REG_DNC_GAIN,
 | |
| 					  val);
 | |
| 
 | |
| 		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03);	/* Set DNC2GC=x */
 | |
| 		if (state->reg[MT2063_REG_VGA_GAIN] !=
 | |
| 		    val)
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state,
 | |
| 					  MT2063_REG_VGA_GAIN,
 | |
| 					  val);
 | |
| 
 | |
| 		val = (state->reg[MT2063_REG_RSVD_20] | 0x40);	/* Set PD2MUX=1 */
 | |
| 		if (state->reg[MT2063_REG_RSVD_20] !=
 | |
| 		    val)
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state,
 | |
| 					  MT2063_REG_RSVD_20,
 | |
| 					  val);
 | |
| 
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
 | |
|  * 			      the selected enum mt2063_delivery_sys type.
 | |
|  *
 | |
|  *  (DNC1GC & DNC2GC are the values, which are used, when the specific
 | |
|  *   DNC Output is selected, the other is always off)
 | |
|  *
 | |
|  * @state:	ptr to mt2063_state structure
 | |
|  * @Mode:	desired receiver delivery system
 | |
|  *
 | |
|  * Note: Register cache must be valid for it to work
 | |
|  */
 | |
| 
 | |
| static u32 MT2063_SetReceiverMode(struct mt2063_state *state,
 | |
| 				  enum mt2063_delivery_sys Mode)
 | |
| {
 | |
| 	int status = 0;	/* Status to be returned        */
 | |
| 	u8 val;
 | |
| 	u32 longval;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	if (Mode >= MT2063_NUM_RCVR_MODES)
 | |
| 		status = -ERANGE;
 | |
| 
 | |
| 	/* RFAGCen */
 | |
| 	if (status >= 0) {
 | |
| 		val =
 | |
| 		    (state->
 | |
| 		     reg[MT2063_REG_PD1_TGT] & ~0x40) | (RFAGCEN[Mode]
 | |
| 								   ? 0x40 :
 | |
| 								   0x00);
 | |
| 		if (state->reg[MT2063_REG_PD1_TGT] != val)
 | |
| 			status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
 | |
| 	}
 | |
| 
 | |
| 	/* LNARin */
 | |
| 	if (status >= 0) {
 | |
| 		u8 val = (state->reg[MT2063_REG_CTRL_2C] & ~0x03) |
 | |
| 			 (LNARIN[Mode] & 0x03);
 | |
| 		if (state->reg[MT2063_REG_CTRL_2C] != val)
 | |
| 			status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val);
 | |
| 	}
 | |
| 
 | |
| 	/* FIFFQEN and FIFFQ */
 | |
| 	if (status >= 0) {
 | |
| 		val =
 | |
| 		    (state->
 | |
| 		     reg[MT2063_REG_FIFF_CTRL2] & ~0xF0) |
 | |
| 		    (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4);
 | |
| 		if (state->reg[MT2063_REG_FIFF_CTRL2] != val) {
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val);
 | |
| 			/* trigger FIFF calibration, needed after changing FIFFQ */
 | |
| 			val =
 | |
| 			    (state->reg[MT2063_REG_FIFF_CTRL] | 0x01);
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
 | |
| 			val =
 | |
| 			    (state->
 | |
| 			     reg[MT2063_REG_FIFF_CTRL] & ~0x01);
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* DNC1GC & DNC2GC */
 | |
| 	status |= mt2063_get_dnc_output_enable(state, &longval);
 | |
| 	status |= mt2063_set_dnc_output_enable(state, longval);
 | |
| 
 | |
| 	/* acLNAmax */
 | |
| 	if (status >= 0) {
 | |
| 		u8 val = (state->reg[MT2063_REG_LNA_OV] & ~0x1F) |
 | |
| 			 (ACLNAMAX[Mode] & 0x1F);
 | |
| 		if (state->reg[MT2063_REG_LNA_OV] != val)
 | |
| 			status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val);
 | |
| 	}
 | |
| 
 | |
| 	/* LNATGT */
 | |
| 	if (status >= 0) {
 | |
| 		u8 val = (state->reg[MT2063_REG_LNA_TGT] & ~0x3F) |
 | |
| 			 (LNATGT[Mode] & 0x3F);
 | |
| 		if (state->reg[MT2063_REG_LNA_TGT] != val)
 | |
| 			status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
 | |
| 	}
 | |
| 
 | |
| 	/* ACRF */
 | |
| 	if (status >= 0) {
 | |
| 		u8 val = (state->reg[MT2063_REG_RF_OV] & ~0x1F) |
 | |
| 			 (ACRFMAX[Mode] & 0x1F);
 | |
| 		if (state->reg[MT2063_REG_RF_OV] != val)
 | |
| 			status |= mt2063_setreg(state, MT2063_REG_RF_OV, val);
 | |
| 	}
 | |
| 
 | |
| 	/* PD1TGT */
 | |
| 	if (status >= 0) {
 | |
| 		u8 val = (state->reg[MT2063_REG_PD1_TGT] & ~0x3F) |
 | |
| 			 (PD1TGT[Mode] & 0x3F);
 | |
| 		if (state->reg[MT2063_REG_PD1_TGT] != val)
 | |
| 			status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
 | |
| 	}
 | |
| 
 | |
| 	/* FIFATN */
 | |
| 	if (status >= 0) {
 | |
| 		u8 val = ACFIFMAX[Mode];
 | |
| 		if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5)
 | |
| 			val = 5;
 | |
| 		val = (state->reg[MT2063_REG_FIF_OV] & ~0x1F) |
 | |
| 		      (val & 0x1F);
 | |
| 		if (state->reg[MT2063_REG_FIF_OV] != val)
 | |
| 			status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val);
 | |
| 	}
 | |
| 
 | |
| 	/* PD2TGT */
 | |
| 	if (status >= 0) {
 | |
| 		u8 val = (state->reg[MT2063_REG_PD2_TGT] & ~0x3F) |
 | |
| 		    (PD2TGT[Mode] & 0x3F);
 | |
| 		if (state->reg[MT2063_REG_PD2_TGT] != val)
 | |
| 			status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val);
 | |
| 	}
 | |
| 
 | |
| 	/* Ignore ATN Overload */
 | |
| 	if (status >= 0) {
 | |
| 		val = (state->reg[MT2063_REG_LNA_TGT] & ~0x80) |
 | |
| 		      (RFOVDIS[Mode] ? 0x80 : 0x00);
 | |
| 		if (state->reg[MT2063_REG_LNA_TGT] != val)
 | |
| 			status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
 | |
| 	}
 | |
| 
 | |
| 	/* Ignore FIF Overload */
 | |
| 	if (status >= 0) {
 | |
| 		val = (state->reg[MT2063_REG_PD1_TGT] & ~0x80) |
 | |
| 		      (FIFOVDIS[Mode] ? 0x80 : 0x00);
 | |
| 		if (state->reg[MT2063_REG_PD1_TGT] != val)
 | |
| 			status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
 | |
| 	}
 | |
| 
 | |
| 	if (status >= 0) {
 | |
| 		state->rcvr_mode = Mode;
 | |
| 		dprintk(1, "mt2063 mode changed to %s\n",
 | |
| 			mt2063_mode_name[state->rcvr_mode]);
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
 | |
|  *				  sections of the MT2063
 | |
|  *
 | |
|  * @Bits:		Mask bits to be cleared.
 | |
|  *
 | |
|  * See definition of MT2063_Mask_Bits type for description
 | |
|  * of each of the power bits.
 | |
|  */
 | |
| static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state,
 | |
| 				     enum MT2063_Mask_Bits Bits)
 | |
| {
 | |
| 	int status = 0;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 	Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD);	/* Only valid bits for this tuner */
 | |
| 	if ((Bits & 0xFF00) != 0) {
 | |
| 		state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8);
 | |
| 		status |=
 | |
| 		    mt2063_write(state,
 | |
| 				    MT2063_REG_PWR_2,
 | |
| 				    &state->reg[MT2063_REG_PWR_2], 1);
 | |
| 	}
 | |
| 	if ((Bits & 0xFF) != 0) {
 | |
| 		state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF);
 | |
| 		status |=
 | |
| 		    mt2063_write(state,
 | |
| 				    MT2063_REG_PWR_1,
 | |
| 				    &state->reg[MT2063_REG_PWR_1], 1);
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
 | |
|  *			       When Shutdown is 1, any section whose power
 | |
|  *			       mask is set will be shutdown.
 | |
|  */
 | |
| static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown)
 | |
| {
 | |
| 	int status;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 	if (Shutdown == 1)
 | |
| 		state->reg[MT2063_REG_PWR_1] |= 0x04;
 | |
| 	else
 | |
| 		state->reg[MT2063_REG_PWR_1] &= ~0x04;
 | |
| 
 | |
| 	status = mt2063_write(state,
 | |
| 			    MT2063_REG_PWR_1,
 | |
| 			    &state->reg[MT2063_REG_PWR_1], 1);
 | |
| 
 | |
| 	if (Shutdown != 1) {
 | |
| 		state->reg[MT2063_REG_BYP_CTRL] =
 | |
| 		    (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40;
 | |
| 		status |=
 | |
| 		    mt2063_write(state,
 | |
| 				    MT2063_REG_BYP_CTRL,
 | |
| 				    &state->reg[MT2063_REG_BYP_CTRL],
 | |
| 				    1);
 | |
| 		state->reg[MT2063_REG_BYP_CTRL] =
 | |
| 		    (state->reg[MT2063_REG_BYP_CTRL] & 0x9F);
 | |
| 		status |=
 | |
| 		    mt2063_write(state,
 | |
| 				    MT2063_REG_BYP_CTRL,
 | |
| 				    &state->reg[MT2063_REG_BYP_CTRL],
 | |
| 				    1);
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref)
 | |
| {
 | |
| 	return f_ref * (f_LO / f_ref)
 | |
| 	    + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
 | |
|  *                        This function preserves maximum precision without
 | |
|  *                        risk of overflow.  It accurately calculates
 | |
|  *                        f_ref * num / denom to within 1 HZ with fixed math.
 | |
|  *
 | |
|  * @num :	Fractional portion of the multiplier
 | |
|  * @denom:	denominator portion of the ratio
 | |
|  * @f_Ref:	SRO frequency.
 | |
|  *
 | |
|  * This calculation handles f_ref as two separate 14-bit fields.
 | |
|  * Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
 | |
|  * This is the genesis of the magic number "14" and the magic mask value of
 | |
|  * 0x03FFF.
 | |
|  *
 | |
|  * This routine successfully handles denom values up to and including 2^18.
 | |
|  *  Returns:        f_ref * num / denom
 | |
|  */
 | |
| static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom)
 | |
| {
 | |
| 	u32 t1 = (f_ref >> 14) * num;
 | |
| 	u32 term1 = t1 / denom;
 | |
| 	u32 loss = t1 % denom;
 | |
| 	u32 term2 =
 | |
| 	    (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom;
 | |
| 	return (term1 << 14) + term2;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * CalcLO1Mult()- Calculates Integer divider value and the numerator
 | |
|  *                value for a FracN PLL.
 | |
|  *
 | |
|  *                This function assumes that the f_LO and f_Ref are
 | |
|  *                evenly divisible by f_LO_Step.
 | |
|  *
 | |
|  * @Div:	OUTPUT: Whole number portion of the multiplier
 | |
|  * @FracN:	OUTPUT: Fractional portion of the multiplier
 | |
|  * @f_LO:	desired LO frequency.
 | |
|  * @f_LO_Step:	Minimum step size for the LO (in Hz).
 | |
|  * @f_Ref:	SRO frequency.
 | |
|  * @f_Avoid:	Range of PLL frequencies to avoid near integer multiples
 | |
|  *		of f_Ref (in Hz).
 | |
|  *
 | |
|  * Returns:        Recalculated LO frequency.
 | |
|  */
 | |
| static u32 MT2063_CalcLO1Mult(u32 *Div,
 | |
| 			      u32 *FracN,
 | |
| 			      u32 f_LO,
 | |
| 			      u32 f_LO_Step, u32 f_Ref)
 | |
| {
 | |
| 	/*  Calculate the whole number portion of the divider */
 | |
| 	*Div = f_LO / f_Ref;
 | |
| 
 | |
| 	/*  Calculate the numerator value (round to nearest f_LO_Step) */
 | |
| 	*FracN =
 | |
| 	    (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
 | |
| 	     (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
 | |
| 
 | |
| 	return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * CalcLO2Mult() - Calculates Integer divider value and the numerator
 | |
|  *                 value for a FracN PLL.
 | |
|  *
 | |
|  *                  This function assumes that the f_LO and f_Ref are
 | |
|  *                  evenly divisible by f_LO_Step.
 | |
|  *
 | |
|  * @Div:	OUTPUT: Whole number portion of the multiplier
 | |
|  * @FracN:	OUTPUT: Fractional portion of the multiplier
 | |
|  * @f_LO:	desired LO frequency.
 | |
|  * @f_LO_Step:	Minimum step size for the LO (in Hz).
 | |
|  * @f_Ref:	SRO frequency.
 | |
|  * @f_Avoid:	Range of PLL frequencies to avoid near
 | |
|  *		integer multiples of f_Ref (in Hz).
 | |
|  *
 | |
|  * Returns: Recalculated LO frequency.
 | |
|  */
 | |
| static u32 MT2063_CalcLO2Mult(u32 *Div,
 | |
| 			      u32 *FracN,
 | |
| 			      u32 f_LO,
 | |
| 			      u32 f_LO_Step, u32 f_Ref)
 | |
| {
 | |
| 	/*  Calculate the whole number portion of the divider */
 | |
| 	*Div = f_LO / f_Ref;
 | |
| 
 | |
| 	/*  Calculate the numerator value (round to nearest f_LO_Step) */
 | |
| 	*FracN =
 | |
| 	    (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
 | |
| 	     (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
 | |
| 
 | |
| 	return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN,
 | |
| 							    8191);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
 | |
|  *			   used for a given input frequency.
 | |
|  *
 | |
|  * @state:	ptr to tuner data structure
 | |
|  * @f_in:	RF input center frequency (in Hz).
 | |
|  *
 | |
|  * Returns: ClearTune filter number (0-31)
 | |
|  */
 | |
| static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in)
 | |
| {
 | |
| 	u32 RFBand;
 | |
| 	u32 idx;		/*  index loop                      */
 | |
| 
 | |
| 	/*
 | |
| 	 **  Find RF Band setting
 | |
| 	 */
 | |
| 	RFBand = 31;		/*  def when f_in > all    */
 | |
| 	for (idx = 0; idx < 31; ++idx) {
 | |
| 		if (state->CTFiltMax[idx] >= f_in) {
 | |
| 			RFBand = idx;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return RFBand;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MT2063_Tune() - Change the tuner's tuned frequency to RFin.
 | |
|  */
 | |
| static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in)
 | |
| {				/* RF input center frequency   */
 | |
| 
 | |
| 	int status = 0;
 | |
| 	u32 LO1;		/*  1st LO register value           */
 | |
| 	u32 Num1;		/*  Numerator for LO1 reg. value    */
 | |
| 	u32 f_IF1;		/*  1st IF requested                */
 | |
| 	u32 LO2;		/*  2nd LO register value           */
 | |
| 	u32 Num2;		/*  Numerator for LO2 reg. value    */
 | |
| 	u32 ofLO1, ofLO2;	/*  last time's LO frequencies      */
 | |
| 	u8 fiffc = 0x80;	/*  FIFF center freq from tuner     */
 | |
| 	u32 fiffof;		/*  Offset from FIFF center freq    */
 | |
| 	const u8 LO1LK = 0x80;	/*  Mask for LO1 Lock bit           */
 | |
| 	u8 LO2LK = 0x08;	/*  Mask for LO2 Lock bit           */
 | |
| 	u8 val;
 | |
| 	u32 RFBand;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 	/*  Check the input and output frequency ranges                   */
 | |
| 	if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ)
 | |
| 	    || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Save original LO1 and LO2 register values
 | |
| 	 */
 | |
| 	ofLO1 = state->AS_Data.f_LO1;
 | |
| 	ofLO2 = state->AS_Data.f_LO2; 
 | |
| 
 | |
| 	/*
 | |
| 	 * Find and set RF Band setting
 | |
| 	 */
 | |
| 	if (state->ctfilt_sw == 1) {
 | |
| 		val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08);
 | |
| 		if (state->reg[MT2063_REG_CTUNE_CTRL] != val) {
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val);
 | |
| 		}
 | |
| 		val = state->reg[MT2063_REG_CTUNE_OV];
 | |
| 		RFBand = FindClearTuneFilter(state, f_in);
 | |
| 		state->reg[MT2063_REG_CTUNE_OV] =
 | |
| 		    (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F)
 | |
| 			      | RFBand);
 | |
| 		if (state->reg[MT2063_REG_CTUNE_OV] != val) {
 | |
| 			status |=
 | |
| 			    mt2063_setreg(state, MT2063_REG_CTUNE_OV, val);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the FIFF Center Frequency from the tuner
 | |
| 	 */
 | |
| 	if (status >= 0) {
 | |
| 		status |=
 | |
| 		    mt2063_read(state,
 | |
| 				   MT2063_REG_FIFFC,
 | |
| 				   &state->reg[MT2063_REG_FIFFC], 1);
 | |
| 		fiffc = state->reg[MT2063_REG_FIFFC];
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Assign in the requested values
 | |
| 	 */
 | |
| 	state->AS_Data.f_in = f_in;
 | |
| 	/*  Request a 1st IF such that LO1 is on a step size */
 | |
| 	state->AS_Data.f_if1_Request =
 | |
| 	    MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in,
 | |
| 			     state->AS_Data.f_LO1_Step,
 | |
| 			     state->AS_Data.f_ref) - f_in;
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate frequency settings.  f_IF1_FREQ + f_in is the
 | |
| 	 * desired LO1 frequency
 | |
| 	 */
 | |
| 	MT2063_ResetExclZones(&state->AS_Data);
 | |
| 
 | |
| 	f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data);
 | |
| 
 | |
| 	state->AS_Data.f_LO1 =
 | |
| 	    MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step,
 | |
| 			     state->AS_Data.f_ref);
 | |
| 
 | |
| 	state->AS_Data.f_LO2 =
 | |
| 	    MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
 | |
| 			     state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for any LO spurs in the output bandwidth and adjust
 | |
| 	 * the LO settings to avoid them if needed
 | |
| 	 */
 | |
| 	status |= MT2063_AvoidSpurs(&state->AS_Data);
 | |
| 	/*
 | |
| 	 * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
 | |
| 	 * Recalculate the LO frequencies and the values to be placed
 | |
| 	 * in the tuning registers.
 | |
| 	 */
 | |
| 	state->AS_Data.f_LO1 =
 | |
| 	    MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1,
 | |
| 			       state->AS_Data.f_LO1_Step, state->AS_Data.f_ref);
 | |
| 	state->AS_Data.f_LO2 =
 | |
| 	    MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
 | |
| 			     state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
 | |
| 	state->AS_Data.f_LO2 =
 | |
| 	    MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2,
 | |
| 			       state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
 | |
| 
 | |
| 	/*
 | |
| 	 *  Check the upconverter and downconverter frequency ranges
 | |
| 	 */
 | |
| 	if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ)
 | |
| 	    || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ))
 | |
| 		status |= MT2063_UPC_RANGE;
 | |
| 	if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ)
 | |
| 	    || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ))
 | |
| 		status |= MT2063_DNC_RANGE;
 | |
| 	/*  LO2 Lock bit was in a different place for B0 version  */
 | |
| 	if (state->tuner_id == MT2063_B0)
 | |
| 		LO2LK = 0x40;
 | |
| 
 | |
| 	/*
 | |
| 	 *  If we have the same LO frequencies and we're already locked,
 | |
| 	 *  then skip re-programming the LO registers.
 | |
| 	 */
 | |
| 	if ((ofLO1 != state->AS_Data.f_LO1)
 | |
| 	    || (ofLO2 != state->AS_Data.f_LO2)
 | |
| 	    || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) !=
 | |
| 		(LO1LK | LO2LK))) {
 | |
| 		/*
 | |
| 		 * Calculate the FIFFOF register value
 | |
| 		 *
 | |
| 		 *           IF1_Actual
 | |
| 		 * FIFFOF = ------------ - 8 * FIFFC - 4992
 | |
| 		 *            f_ref/64
 | |
| 		 */
 | |
| 		fiffof =
 | |
| 		    (state->AS_Data.f_LO1 -
 | |
| 		     f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc -
 | |
| 		    4992;
 | |
| 		if (fiffof > 0xFF)
 | |
| 			fiffof = 0xFF;
 | |
| 
 | |
| 		/*
 | |
| 		 * Place all of the calculated values into the local tuner
 | |
| 		 * register fields.
 | |
| 		 */
 | |
| 		if (status >= 0) {
 | |
| 			state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF);	/* DIV1q */
 | |
| 			state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F);	/* NUM1q */
 | |
| 			state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1)	/* DIV2q */
 | |
| 								   |(Num2 >> 12));	/* NUM2q (hi) */
 | |
| 			state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4);	/* NUM2q (mid) */
 | |
| 			state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F));	/* NUM2q (lo) */
 | |
| 
 | |
| 			/*
 | |
| 			 * Now write out the computed register values
 | |
| 			 * IMPORTANT: There is a required order for writing
 | |
| 			 *            (0x05 must follow all the others).
 | |
| 			 */
 | |
| 			status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5);	/* 0x01 - 0x05 */
 | |
| 			if (state->tuner_id == MT2063_B0) {
 | |
| 				/* Re-write the one-shot bits to trigger the tune operation */
 | |
| 				status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1);	/* 0x05 */
 | |
| 			}
 | |
| 			/* Write out the FIFF offset only if it's changing */
 | |
| 			if (state->reg[MT2063_REG_FIFF_OFFSET] !=
 | |
| 			    (u8) fiffof) {
 | |
| 				state->reg[MT2063_REG_FIFF_OFFSET] =
 | |
| 				    (u8) fiffof;
 | |
| 				status |=
 | |
| 				    mt2063_write(state,
 | |
| 						    MT2063_REG_FIFF_OFFSET,
 | |
| 						    &state->
 | |
| 						    reg[MT2063_REG_FIFF_OFFSET],
 | |
| 						    1);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Check for LO's locking
 | |
| 		 */
 | |
| 
 | |
| 		if (status < 0)
 | |
| 			return status;
 | |
| 
 | |
| 		status = mt2063_lockStatus(state);
 | |
| 		if (status < 0)
 | |
| 			return status;
 | |
| 		if (!status)
 | |
| 			return -EINVAL;		/* Couldn't lock */
 | |
| 
 | |
| 		/*
 | |
| 		 * If we locked OK, assign calculated data to mt2063_state structure
 | |
| 		 */
 | |
| 		state->f_IF1_actual = state->AS_Data.f_LO1 - f_in;
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static const u8 MT2063B0_defaults[] = {
 | |
| 	/* Reg,  Value */
 | |
| 	0x19, 0x05,
 | |
| 	0x1B, 0x1D,
 | |
| 	0x1C, 0x1F,
 | |
| 	0x1D, 0x0F,
 | |
| 	0x1E, 0x3F,
 | |
| 	0x1F, 0x0F,
 | |
| 	0x20, 0x3F,
 | |
| 	0x22, 0x21,
 | |
| 	0x23, 0x3F,
 | |
| 	0x24, 0x20,
 | |
| 	0x25, 0x3F,
 | |
| 	0x27, 0xEE,
 | |
| 	0x2C, 0x27,	/*  bit at 0x20 is cleared below  */
 | |
| 	0x30, 0x03,
 | |
| 	0x2C, 0x07,	/*  bit at 0x20 is cleared here   */
 | |
| 	0x2D, 0x87,
 | |
| 	0x2E, 0xAA,
 | |
| 	0x28, 0xE1,	/*  Set the FIFCrst bit here      */
 | |
| 	0x28, 0xE0,	/*  Clear the FIFCrst bit here    */
 | |
| 	0x00
 | |
| };
 | |
| 
 | |
| /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
 | |
| static const u8 MT2063B1_defaults[] = {
 | |
| 	/* Reg,  Value */
 | |
| 	0x05, 0xF0,
 | |
| 	0x11, 0x10,	/* New Enable AFCsd */
 | |
| 	0x19, 0x05,
 | |
| 	0x1A, 0x6C,
 | |
| 	0x1B, 0x24,
 | |
| 	0x1C, 0x28,
 | |
| 	0x1D, 0x8F,
 | |
| 	0x1E, 0x14,
 | |
| 	0x1F, 0x8F,
 | |
| 	0x20, 0x57,
 | |
| 	0x22, 0x21,	/* New - ver 1.03 */
 | |
| 	0x23, 0x3C,	/* New - ver 1.10 */
 | |
| 	0x24, 0x20,	/* New - ver 1.03 */
 | |
| 	0x2C, 0x24,	/*  bit at 0x20 is cleared below  */
 | |
| 	0x2D, 0x87,	/*  FIFFQ=0  */
 | |
| 	0x2F, 0xF3,
 | |
| 	0x30, 0x0C,	/* New - ver 1.11 */
 | |
| 	0x31, 0x1B,	/* New - ver 1.11 */
 | |
| 	0x2C, 0x04,	/*  bit at 0x20 is cleared here  */
 | |
| 	0x28, 0xE1,	/*  Set the FIFCrst bit here      */
 | |
| 	0x28, 0xE0,	/*  Clear the FIFCrst bit here    */
 | |
| 	0x00
 | |
| };
 | |
| 
 | |
| /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
 | |
| static const u8 MT2063B3_defaults[] = {
 | |
| 	/* Reg,  Value */
 | |
| 	0x05, 0xF0,
 | |
| 	0x19, 0x3D,
 | |
| 	0x2C, 0x24,	/*  bit at 0x20 is cleared below  */
 | |
| 	0x2C, 0x04,	/*  bit at 0x20 is cleared here  */
 | |
| 	0x28, 0xE1,	/*  Set the FIFCrst bit here      */
 | |
| 	0x28, 0xE0,	/*  Clear the FIFCrst bit here    */
 | |
| 	0x00
 | |
| };
 | |
| 
 | |
| static int mt2063_init(struct dvb_frontend *fe)
 | |
| {
 | |
| 	int status;
 | |
| 	struct mt2063_state *state = fe->tuner_priv;
 | |
| 	u8 all_resets = 0xF0;	/* reset/load bits */
 | |
| 	const u8 *def = NULL;
 | |
| 	char *step;
 | |
| 	u32 FCRUN;
 | |
| 	s32 maxReads;
 | |
| 	u32 fcu_osc;
 | |
| 	u32 i;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	state->rcvr_mode = MT2063_CABLE_QAM;
 | |
| 
 | |
| 	/*  Read the Part/Rev code from the tuner */
 | |
| 	status = mt2063_read(state, MT2063_REG_PART_REV,
 | |
| 			     &state->reg[MT2063_REG_PART_REV], 1);
 | |
| 	if (status < 0) {
 | |
| 		printk(KERN_ERR "Can't read mt2063 part ID\n");
 | |
| 		return status;
 | |
| 	}
 | |
| 
 | |
| 	/* Check the part/rev code */
 | |
| 	switch (state->reg[MT2063_REG_PART_REV]) {
 | |
| 	case MT2063_B0:
 | |
| 		step = "B0";
 | |
| 		break;
 | |
| 	case MT2063_B1:
 | |
| 		step = "B1";
 | |
| 		break;
 | |
| 	case MT2063_B2:
 | |
| 		step = "B2";
 | |
| 		break;
 | |
| 	case MT2063_B3:
 | |
| 		step = "B3";
 | |
| 		break;
 | |
| 	default:
 | |
| 		printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
 | |
| 		       state->reg[MT2063_REG_PART_REV]);
 | |
| 		return -ENODEV;	/*  Wrong tuner Part/Rev code */
 | |
| 	}
 | |
| 
 | |
| 	/*  Check the 2nd byte of the Part/Rev code from the tuner */
 | |
| 	status = mt2063_read(state, MT2063_REG_RSVD_3B,
 | |
| 			     &state->reg[MT2063_REG_RSVD_3B], 1);
 | |
| 
 | |
| 	/* b7 != 0 ==> NOT MT2063 */
 | |
| 	if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) {
 | |
| 		printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
 | |
| 		       state->reg[MT2063_REG_PART_REV],
 | |
| 		       state->reg[MT2063_REG_RSVD_3B]);
 | |
| 		return -ENODEV;	/*  Wrong tuner Part/Rev code */
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step);
 | |
| 
 | |
| 	/*  Reset the tuner  */
 | |
| 	status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1);
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	/* change all of the default values that vary from the HW reset values */
 | |
| 	/*  def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
 | |
| 	switch (state->reg[MT2063_REG_PART_REV]) {
 | |
| 	case MT2063_B3:
 | |
| 		def = MT2063B3_defaults;
 | |
| 		break;
 | |
| 
 | |
| 	case MT2063_B1:
 | |
| 		def = MT2063B1_defaults;
 | |
| 		break;
 | |
| 
 | |
| 	case MT2063_B0:
 | |
| 		def = MT2063B0_defaults;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return -ENODEV;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	while (status >= 0 && *def) {
 | |
| 		u8 reg = *def++;
 | |
| 		u8 val = *def++;
 | |
| 		status = mt2063_write(state, reg, &val, 1);
 | |
| 	}
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	/*  Wait for FIFF location to complete.  */
 | |
| 	FCRUN = 1;
 | |
| 	maxReads = 10;
 | |
| 	while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) {
 | |
| 		msleep(2);
 | |
| 		status = mt2063_read(state,
 | |
| 					 MT2063_REG_XO_STATUS,
 | |
| 					 &state->
 | |
| 					 reg[MT2063_REG_XO_STATUS], 1);
 | |
| 		FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6;
 | |
| 	}
 | |
| 
 | |
| 	if (FCRUN != 0 || status < 0)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	status = mt2063_read(state,
 | |
| 			   MT2063_REG_FIFFC,
 | |
| 			   &state->reg[MT2063_REG_FIFFC], 1);
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	/* Read back all the registers from the tuner */
 | |
| 	status = mt2063_read(state,
 | |
| 				MT2063_REG_PART_REV,
 | |
| 				state->reg, MT2063_REG_END_REGS);
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	/*  Initialize the tuner state.  */
 | |
| 	state->tuner_id = state->reg[MT2063_REG_PART_REV];
 | |
| 	state->AS_Data.f_ref = MT2063_REF_FREQ;
 | |
| 	state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) *
 | |
| 				      ((u32) state->reg[MT2063_REG_FIFFC] + 640);
 | |
| 	state->AS_Data.f_if1_bw = MT2063_IF1_BW;
 | |
| 	state->AS_Data.f_out = 43750000UL;
 | |
| 	state->AS_Data.f_out_bw = 6750000UL;
 | |
| 	state->AS_Data.f_zif_bw = MT2063_ZIF_BW;
 | |
| 	state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64;
 | |
| 	state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE;
 | |
| 	state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1;
 | |
| 	state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2;
 | |
| 	state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP;
 | |
| 	state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center;
 | |
| 	state->AS_Data.f_LO1 = 2181000000UL;
 | |
| 	state->AS_Data.f_LO2 = 1486249786UL;
 | |
| 	state->f_IF1_actual = state->AS_Data.f_if1_Center;
 | |
| 	state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual;
 | |
| 	state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID;
 | |
| 	state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID;
 | |
| 	state->num_regs = MT2063_REG_END_REGS;
 | |
| 	state->AS_Data.avoidDECT = MT2063_AVOID_BOTH;
 | |
| 	state->ctfilt_sw = 0;
 | |
| 
 | |
| 	state->CTFiltMax[0] = 69230000;
 | |
| 	state->CTFiltMax[1] = 105770000;
 | |
| 	state->CTFiltMax[2] = 140350000;
 | |
| 	state->CTFiltMax[3] = 177110000;
 | |
| 	state->CTFiltMax[4] = 212860000;
 | |
| 	state->CTFiltMax[5] = 241130000;
 | |
| 	state->CTFiltMax[6] = 274370000;
 | |
| 	state->CTFiltMax[7] = 309820000;
 | |
| 	state->CTFiltMax[8] = 342450000;
 | |
| 	state->CTFiltMax[9] = 378870000;
 | |
| 	state->CTFiltMax[10] = 416210000;
 | |
| 	state->CTFiltMax[11] = 456500000;
 | |
| 	state->CTFiltMax[12] = 495790000;
 | |
| 	state->CTFiltMax[13] = 534530000;
 | |
| 	state->CTFiltMax[14] = 572610000;
 | |
| 	state->CTFiltMax[15] = 598970000;
 | |
| 	state->CTFiltMax[16] = 635910000;
 | |
| 	state->CTFiltMax[17] = 672130000;
 | |
| 	state->CTFiltMax[18] = 714840000;
 | |
| 	state->CTFiltMax[19] = 739660000;
 | |
| 	state->CTFiltMax[20] = 770410000;
 | |
| 	state->CTFiltMax[21] = 814660000;
 | |
| 	state->CTFiltMax[22] = 846950000;
 | |
| 	state->CTFiltMax[23] = 867820000;
 | |
| 	state->CTFiltMax[24] = 915980000;
 | |
| 	state->CTFiltMax[25] = 947450000;
 | |
| 	state->CTFiltMax[26] = 983110000;
 | |
| 	state->CTFiltMax[27] = 1021630000;
 | |
| 	state->CTFiltMax[28] = 1061870000;
 | |
| 	state->CTFiltMax[29] = 1098330000;
 | |
| 	state->CTFiltMax[30] = 1138990000;
 | |
| 
 | |
| 	/*
 | |
| 	 **   Fetch the FCU osc value and use it and the fRef value to
 | |
| 	 **   scale all of the Band Max values
 | |
| 	 */
 | |
| 
 | |
| 	state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A;
 | |
| 	status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
 | |
| 			      &state->reg[MT2063_REG_CTUNE_CTRL], 1);
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	/*  Read the ClearTune filter calibration value  */
 | |
| 	status = mt2063_read(state, MT2063_REG_FIFFC,
 | |
| 			     &state->reg[MT2063_REG_FIFFC], 1);
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	fcu_osc = state->reg[MT2063_REG_FIFFC];
 | |
| 
 | |
| 	state->reg[MT2063_REG_CTUNE_CTRL] = 0x00;
 | |
| 	status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
 | |
| 			      &state->reg[MT2063_REG_CTUNE_CTRL], 1);
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	/*  Adjust each of the values in the ClearTune filter cross-over table  */
 | |
| 	for (i = 0; i < 31; i++)
 | |
| 		state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640);
 | |
| 
 | |
| 	status = MT2063_SoftwareShutdown(state, 1);
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 	status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	state->init = true;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status)
 | |
| {
 | |
| 	struct mt2063_state *state = fe->tuner_priv;
 | |
| 	int status;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	if (!state->init)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	*tuner_status = 0;
 | |
| 	status = mt2063_lockStatus(state);
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 	if (status)
 | |
| 		*tuner_status = TUNER_STATUS_LOCKED;
 | |
| 
 | |
| 	dprintk(1, "Tuner status: %d", *tuner_status);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mt2063_release(struct dvb_frontend *fe)
 | |
| {
 | |
| 	struct mt2063_state *state = fe->tuner_priv;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	fe->tuner_priv = NULL;
 | |
| 	kfree(state);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mt2063_set_analog_params(struct dvb_frontend *fe,
 | |
| 				    struct analog_parameters *params)
 | |
| {
 | |
| 	struct mt2063_state *state = fe->tuner_priv;
 | |
| 	s32 pict_car;
 | |
| 	s32 pict2chanb_vsb;
 | |
| 	s32 ch_bw;
 | |
| 	s32 if_mid;
 | |
| 	s32 rcvr_mode;
 | |
| 	int status;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	if (!state->init) {
 | |
| 		status = mt2063_init(fe);
 | |
| 		if (status < 0)
 | |
| 			return status;
 | |
| 	}
 | |
| 
 | |
| 	switch (params->mode) {
 | |
| 	case V4L2_TUNER_RADIO:
 | |
| 		pict_car = 38900000;
 | |
| 		ch_bw = 8000000;
 | |
| 		pict2chanb_vsb = -(ch_bw / 2);
 | |
| 		rcvr_mode = MT2063_OFFAIR_ANALOG;
 | |
| 		break;
 | |
| 	case V4L2_TUNER_ANALOG_TV:
 | |
| 		rcvr_mode = MT2063_CABLE_ANALOG;
 | |
| 		if (params->std & ~V4L2_STD_MN) {
 | |
| 			pict_car = 38900000;
 | |
| 			ch_bw = 6000000;
 | |
| 			pict2chanb_vsb = -1250000;
 | |
| 		} else if (params->std & V4L2_STD_PAL_G) {
 | |
| 			pict_car = 38900000;
 | |
| 			ch_bw = 7000000;
 | |
| 			pict2chanb_vsb = -1250000;
 | |
| 		} else {		/* PAL/SECAM standards */
 | |
| 			pict_car = 38900000;
 | |
| 			ch_bw = 8000000;
 | |
| 			pict2chanb_vsb = -1250000;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
 | |
| 
 | |
| 	state->AS_Data.f_LO2_Step = 125000;	/* FIXME: probably 5000 for FM */
 | |
| 	state->AS_Data.f_out = if_mid;
 | |
| 	state->AS_Data.f_out_bw = ch_bw + 750000;
 | |
| 	status = MT2063_SetReceiverMode(state, rcvr_mode);
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
 | |
| 		params->frequency, ch_bw, pict2chanb_vsb);
 | |
| 
 | |
| 	status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2))));
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	state->frequency = params->frequency;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
 | |
|  * So, the amount of the needed bandwidth is given by:
 | |
|  *	Bw = Symbol_rate * (1 + 0.15)
 | |
|  * As such, the maximum symbol rate supported by 6 MHz is given by:
 | |
|  *	max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
 | |
|  */
 | |
| #define MAX_SYMBOL_RATE_6MHz	5217391
 | |
| 
 | |
| static int mt2063_set_params(struct dvb_frontend *fe)
 | |
| {
 | |
| 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
 | |
| 	struct mt2063_state *state = fe->tuner_priv;
 | |
| 	int status;
 | |
| 	s32 pict_car;
 | |
| 	s32 pict2chanb_vsb;
 | |
| 	s32 ch_bw;
 | |
| 	s32 if_mid;
 | |
| 	s32 rcvr_mode;
 | |
| 
 | |
| 	if (!state->init) {
 | |
| 		status = mt2063_init(fe);
 | |
| 		if (status < 0)
 | |
| 			return status;
 | |
| 	}
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	if (c->bandwidth_hz == 0)
 | |
| 		return -EINVAL;
 | |
| 	if (c->bandwidth_hz <= 6000000)
 | |
| 		ch_bw = 6000000;
 | |
| 	else if (c->bandwidth_hz <= 7000000)
 | |
| 		ch_bw = 7000000;
 | |
| 	else
 | |
| 		ch_bw = 8000000;
 | |
| 
 | |
| 	switch (c->delivery_system) {
 | |
| 	case SYS_DVBT:
 | |
| 		rcvr_mode = MT2063_OFFAIR_COFDM;
 | |
| 		pict_car = 36125000;
 | |
| 		pict2chanb_vsb = -(ch_bw / 2);
 | |
| 		break;
 | |
| 	case SYS_DVBC_ANNEX_A:
 | |
| 	case SYS_DVBC_ANNEX_C:
 | |
| 		rcvr_mode = MT2063_CABLE_QAM;
 | |
| 		pict_car = 36125000;
 | |
| 		pict2chanb_vsb = -(ch_bw / 2);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
 | |
| 
 | |
| 	state->AS_Data.f_LO2_Step = 125000;	/* FIXME: probably 5000 for FM */
 | |
| 	state->AS_Data.f_out = if_mid;
 | |
| 	state->AS_Data.f_out_bw = ch_bw + 750000;
 | |
| 	status = MT2063_SetReceiverMode(state, rcvr_mode);
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
 | |
| 		c->frequency, ch_bw, pict2chanb_vsb);
 | |
| 
 | |
| 	status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2))));
 | |
| 
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	state->frequency = c->frequency;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
 | |
| {
 | |
| 	struct mt2063_state *state = fe->tuner_priv;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	if (!state->init)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	*freq = state->AS_Data.f_out;
 | |
| 
 | |
| 	dprintk(1, "IF frequency: %d\n", *freq);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
 | |
| {
 | |
| 	struct mt2063_state *state = fe->tuner_priv;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	if (!state->init)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	*bw = state->AS_Data.f_out_bw - 750000;
 | |
| 
 | |
| 	dprintk(1, "bandwidth: %d\n", *bw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct dvb_tuner_ops mt2063_ops = {
 | |
| 	.info = {
 | |
| 		 .name = "MT2063 Silicon Tuner",
 | |
| 		 .frequency_min = 45000000,
 | |
| 		 .frequency_max = 865000000,
 | |
| 		 .frequency_step = 0,
 | |
| 		 },
 | |
| 
 | |
| 	.init = mt2063_init,
 | |
| 	.sleep = MT2063_Sleep,
 | |
| 	.get_status = mt2063_get_status,
 | |
| 	.set_analog_params = mt2063_set_analog_params,
 | |
| 	.set_params    = mt2063_set_params,
 | |
| 	.get_if_frequency = mt2063_get_if_frequency,
 | |
| 	.get_bandwidth = mt2063_get_bandwidth,
 | |
| 	.release = mt2063_release,
 | |
| };
 | |
| 
 | |
| struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
 | |
| 				   struct mt2063_config *config,
 | |
| 				   struct i2c_adapter *i2c)
 | |
| {
 | |
| 	struct mt2063_state *state = NULL;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL);
 | |
| 	if (!state)
 | |
| 		return NULL;
 | |
| 
 | |
| 	state->config = config;
 | |
| 	state->i2c = i2c;
 | |
| 	state->frontend = fe;
 | |
| 	state->reference = config->refclock / 1000;	/* kHz */
 | |
| 	fe->tuner_priv = state;
 | |
| 	fe->ops.tuner_ops = mt2063_ops;
 | |
| 
 | |
| 	printk(KERN_INFO "%s: Attaching MT2063\n", __func__);
 | |
| 	return fe;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(mt2063_attach);
 | |
| 
 | |
| #if 0
 | |
| /*
 | |
|  * Ancillary routines visible outside mt2063
 | |
|  * FIXME: Remove them in favor of using standard tuner callbacks
 | |
|  */
 | |
| static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe)
 | |
| {
 | |
| 	struct mt2063_state *state = fe->tuner_priv;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	err = MT2063_SoftwareShutdown(state, 1);
 | |
| 	if (err < 0)
 | |
| 		printk(KERN_ERR "%s: Couldn't shutdown\n", __func__);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe)
 | |
| {
 | |
| 	struct mt2063_state *state = fe->tuner_priv;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	dprintk(2, "\n");
 | |
| 
 | |
| 	err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
 | |
| 	if (err < 0)
 | |
| 		printk(KERN_ERR "%s: Invalid parameter\n", __func__);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| MODULE_AUTHOR("Mauro Carvalho Chehab");
 | |
| MODULE_DESCRIPTION("MT2063 Silicon tuner");
 | |
| MODULE_LICENSE("GPL");
 |