 25985edced
			
		
	
	
	25985edced
	
	
	
		
			
			Fixes generated by 'codespell' and manually reviewed. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
		
			
				
	
	
		
			2655 lines
		
	
	
	
		
			78 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2655 lines
		
	
	
	
		
			78 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Linux/PA-RISC Project (http://www.parisc-linux.org/)
 | |
|  *
 | |
|  * Floating-point emulation code
 | |
|  *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
 | |
|  *
 | |
|  *    This program is free software; you can redistribute it and/or modify
 | |
|  *    it under the terms of the GNU General Public License as published by
 | |
|  *    the Free Software Foundation; either version 2, or (at your option)
 | |
|  *    any later version.
 | |
|  *
 | |
|  *    This program is distributed in the hope that it will be useful,
 | |
|  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  *    GNU General Public License for more details.
 | |
|  *
 | |
|  *    You should have received a copy of the GNU General Public License
 | |
|  *    along with this program; if not, write to the Free Software
 | |
|  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|  */
 | |
| /*
 | |
|  * BEGIN_DESC
 | |
|  *
 | |
|  *  File:
 | |
|  *	@(#)	pa/spmath/fmpyfadd.c		$Revision: 1.1 $
 | |
|  *
 | |
|  *  Purpose:
 | |
|  *	Double Floating-point Multiply Fused Add
 | |
|  *	Double Floating-point Multiply Negate Fused Add
 | |
|  *	Single Floating-point Multiply Fused Add
 | |
|  *	Single Floating-point Multiply Negate Fused Add
 | |
|  *
 | |
|  *  External Interfaces:
 | |
|  *	dbl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
 | |
|  *	dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
 | |
|  *	sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
 | |
|  *	sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
 | |
|  *
 | |
|  *  Internal Interfaces:
 | |
|  *
 | |
|  *  Theory:
 | |
|  *	<<please update with a overview of the operation of this file>>
 | |
|  *
 | |
|  * END_DESC
 | |
| */
 | |
| 
 | |
| 
 | |
| #include "float.h"
 | |
| #include "sgl_float.h"
 | |
| #include "dbl_float.h"
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  Double Floating-point Multiply Fused Add
 | |
|  */
 | |
| 
 | |
| int
 | |
| dbl_fmpyfadd(
 | |
| 	    dbl_floating_point *src1ptr,
 | |
| 	    dbl_floating_point *src2ptr,
 | |
| 	    dbl_floating_point *src3ptr,
 | |
| 	    unsigned int *status,
 | |
| 	    dbl_floating_point *dstptr)
 | |
| {
 | |
| 	unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2;
 | |
| 	register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4;
 | |
| 	unsigned int rightp1, rightp2, rightp3, rightp4;
 | |
| 	unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0;
 | |
| 	register int mpy_exponent, add_exponent, count;
 | |
| 	boolean inexact = FALSE, is_tiny = FALSE;
 | |
| 
 | |
| 	unsigned int signlessleft1, signlessright1, save;
 | |
| 	register int result_exponent, diff_exponent;
 | |
| 	int sign_save, jumpsize;
 | |
| 	
 | |
| 	Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2);
 | |
| 	Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2);
 | |
| 	Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2);
 | |
| 
 | |
| 	/* 
 | |
| 	 * set sign bit of result of multiply
 | |
| 	 */
 | |
| 	if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1)) 
 | |
| 		Dbl_setnegativezerop1(resultp1); 
 | |
| 	else Dbl_setzerop1(resultp1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Generate multiply exponent 
 | |
| 	 */
 | |
| 	mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS;
 | |
| 
 | |
| 	/*
 | |
| 	 * check first operand for NaN's or infinity
 | |
| 	 */
 | |
| 	if (Dbl_isinfinity_exponent(opnd1p1)) {
 | |
| 		if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) {
 | |
| 			if (Dbl_isnotnan(opnd2p1,opnd2p2) &&
 | |
| 			    Dbl_isnotnan(opnd3p1,opnd3p2)) {
 | |
| 				if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) {
 | |
| 					/* 
 | |
| 					 * invalid since operands are infinity 
 | |
| 					 * and zero 
 | |
| 					 */
 | |
| 					if (Is_invalidtrap_enabled())
 | |
| 						return(OPC_2E_INVALIDEXCEPTION);
 | |
| 					Set_invalidflag();
 | |
| 					Dbl_makequietnan(resultp1,resultp2);
 | |
| 					Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
| 					return(NOEXCEPTION);
 | |
| 				}
 | |
| 				/*
 | |
| 				 * Check third operand for infinity with a
 | |
| 				 *  sign opposite of the multiply result
 | |
| 				 */
 | |
| 				if (Dbl_isinfinity(opnd3p1,opnd3p2) &&
 | |
| 				    (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) {
 | |
| 					/* 
 | |
| 					 * invalid since attempting a magnitude
 | |
| 					 * subtraction of infinities
 | |
| 					 */
 | |
| 					if (Is_invalidtrap_enabled())
 | |
| 						return(OPC_2E_INVALIDEXCEPTION);
 | |
| 					Set_invalidflag();
 | |
| 					Dbl_makequietnan(resultp1,resultp2);
 | |
| 					Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
| 					return(NOEXCEPTION);
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 			 	 * return infinity
 | |
| 			 	 */
 | |
| 				Dbl_setinfinity_exponentmantissa(resultp1,resultp2);
 | |
| 				Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			/*
 | |
| 		 	 * is NaN; signaling or quiet?
 | |
| 		 	 */
 | |
| 			if (Dbl_isone_signaling(opnd1p1)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled()) 
 | |
| 			    		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Dbl_set_quiet(opnd1p1);
 | |
| 			}
 | |
| 			/* 
 | |
| 			 * is second operand a signaling NaN? 
 | |
| 			 */
 | |
| 			else if (Dbl_is_signalingnan(opnd2p1)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled())
 | |
| 			    		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Dbl_set_quiet(opnd2p1);
 | |
| 				Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 			/* 
 | |
| 			 * is third operand a signaling NaN? 
 | |
| 			 */
 | |
| 			else if (Dbl_is_signalingnan(opnd3p1)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled())
 | |
| 			    		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Dbl_set_quiet(opnd3p1);
 | |
| 				Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 			/*
 | |
| 		 	 * return quiet NaN
 | |
| 		 	 */
 | |
| 			Dbl_copytoptr(opnd1p1,opnd1p2,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * check second operand for NaN's or infinity
 | |
| 	 */
 | |
| 	if (Dbl_isinfinity_exponent(opnd2p1)) {
 | |
| 		if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) {
 | |
| 			if (Dbl_isnotnan(opnd3p1,opnd3p2)) {
 | |
| 				if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) {
 | |
| 					/* 
 | |
| 					 * invalid since multiply operands are
 | |
| 					 * zero & infinity
 | |
| 					 */
 | |
| 					if (Is_invalidtrap_enabled())
 | |
| 						return(OPC_2E_INVALIDEXCEPTION);
 | |
| 					Set_invalidflag();
 | |
| 					Dbl_makequietnan(opnd2p1,opnd2p2);
 | |
| 					Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
 | |
| 					return(NOEXCEPTION);
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				 * Check third operand for infinity with a
 | |
| 				 *  sign opposite of the multiply result
 | |
| 				 */
 | |
| 				if (Dbl_isinfinity(opnd3p1,opnd3p2) &&
 | |
| 				    (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) {
 | |
| 					/* 
 | |
| 					 * invalid since attempting a magnitude
 | |
| 					 * subtraction of infinities
 | |
| 					 */
 | |
| 					if (Is_invalidtrap_enabled())
 | |
| 				       		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				       	Set_invalidflag();
 | |
| 				       	Dbl_makequietnan(resultp1,resultp2);
 | |
| 					Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
| 					return(NOEXCEPTION);
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				 * return infinity
 | |
| 				 */
 | |
| 				Dbl_setinfinity_exponentmantissa(resultp1,resultp2);
 | |
| 				Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * is NaN; signaling or quiet?
 | |
| 			 */
 | |
| 			if (Dbl_isone_signaling(opnd2p1)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled())
 | |
| 					return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Dbl_set_quiet(opnd2p1);
 | |
| 			}
 | |
| 			/* 
 | |
| 			 * is third operand a signaling NaN? 
 | |
| 			 */
 | |
| 			else if (Dbl_is_signalingnan(opnd3p1)) {
 | |
| 			       	/* trap if INVALIDTRAP enabled */
 | |
| 			       	if (Is_invalidtrap_enabled())
 | |
| 				   		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 			       	/* make NaN quiet */
 | |
| 			       	Set_invalidflag();
 | |
| 			       	Dbl_set_quiet(opnd3p1);
 | |
| 				Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
 | |
| 		       		return(NOEXCEPTION);
 | |
| 			}
 | |
| 			/*
 | |
| 			 * return quiet NaN
 | |
| 			 */
 | |
| 			Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * check third operand for NaN's or infinity
 | |
| 	 */
 | |
| 	if (Dbl_isinfinity_exponent(opnd3p1)) {
 | |
| 		if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) {
 | |
| 			/* return infinity */
 | |
| 			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * is NaN; signaling or quiet?
 | |
| 			 */
 | |
| 			if (Dbl_isone_signaling(opnd3p1)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled())
 | |
| 					return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Dbl_set_quiet(opnd3p1);
 | |
| 			}
 | |
| 			/*
 | |
| 			 * return quiet NaN
 | |
|  			 */
 | |
| 			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
|     	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Generate multiply mantissa
 | |
| 	 */
 | |
| 	if (Dbl_isnotzero_exponent(opnd1p1)) {
 | |
| 		/* set hidden bit */
 | |
| 		Dbl_clear_signexponent_set_hidden(opnd1p1);
 | |
| 	}
 | |
| 	else {
 | |
| 		/* check for zero */
 | |
| 		if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) {
 | |
| 			/*
 | |
| 			 * Perform the add opnd3 with zero here.
 | |
| 			 */
 | |
| 			if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) {
 | |
| 				if (Is_rounding_mode(ROUNDMINUS)) {
 | |
| 					Dbl_or_signs(opnd3p1,resultp1);
 | |
| 				} else {
 | |
| 					Dbl_and_signs(opnd3p1,resultp1);
 | |
| 				}
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Now let's check for trapped underflow case.
 | |
| 			 */
 | |
| 			else if (Dbl_iszero_exponent(opnd3p1) &&
 | |
| 			         Is_underflowtrap_enabled()) {
 | |
|                     		/* need to normalize results mantissa */
 | |
|                     		sign_save = Dbl_signextendedsign(opnd3p1);
 | |
| 				result_exponent = 0;
 | |
|                     		Dbl_leftshiftby1(opnd3p1,opnd3p2);
 | |
|                     		Dbl_normalize(opnd3p1,opnd3p2,result_exponent);
 | |
|                     		Dbl_set_sign(opnd3p1,/*using*/sign_save);
 | |
|                     		Dbl_setwrapped_exponent(opnd3p1,result_exponent,
 | |
| 							unfl);
 | |
|                     		Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
 | |
|                     		/* inexact = FALSE */
 | |
|                     		return(OPC_2E_UNDERFLOWEXCEPTION);
 | |
| 			}
 | |
| 			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
| 		/* is denormalized, adjust exponent */
 | |
| 		Dbl_clear_signexponent(opnd1p1);
 | |
| 		Dbl_leftshiftby1(opnd1p1,opnd1p2);
 | |
| 		Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent);
 | |
| 	}
 | |
| 	/* opnd2 needs to have hidden bit set with msb in hidden bit */
 | |
| 	if (Dbl_isnotzero_exponent(opnd2p1)) {
 | |
| 		Dbl_clear_signexponent_set_hidden(opnd2p1);
 | |
| 	}
 | |
| 	else {
 | |
| 		/* check for zero */
 | |
| 		if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) {
 | |
| 			/*
 | |
| 			 * Perform the add opnd3 with zero here.
 | |
| 			 */
 | |
| 			if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) {
 | |
| 				if (Is_rounding_mode(ROUNDMINUS)) {
 | |
| 					Dbl_or_signs(opnd3p1,resultp1);
 | |
| 				} else {
 | |
| 					Dbl_and_signs(opnd3p1,resultp1);
 | |
| 				}
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Now let's check for trapped underflow case.
 | |
| 			 */
 | |
| 			else if (Dbl_iszero_exponent(opnd3p1) &&
 | |
| 			    Is_underflowtrap_enabled()) {
 | |
|                     		/* need to normalize results mantissa */
 | |
|                     		sign_save = Dbl_signextendedsign(opnd3p1);
 | |
| 				result_exponent = 0;
 | |
|                     		Dbl_leftshiftby1(opnd3p1,opnd3p2);
 | |
|                     		Dbl_normalize(opnd3p1,opnd3p2,result_exponent);
 | |
|                     		Dbl_set_sign(opnd3p1,/*using*/sign_save);
 | |
|                     		Dbl_setwrapped_exponent(opnd3p1,result_exponent,
 | |
| 							unfl);
 | |
|                     		Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
 | |
|                     		/* inexact = FALSE */
 | |
| 				return(OPC_2E_UNDERFLOWEXCEPTION);
 | |
| 			}
 | |
| 			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
| 		/* is denormalized; want to normalize */
 | |
| 		Dbl_clear_signexponent(opnd2p1);
 | |
| 		Dbl_leftshiftby1(opnd2p1,opnd2p2);
 | |
| 		Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent);
 | |
| 	}
 | |
| 
 | |
| 	/* Multiply the first two source mantissas together */
 | |
| 
 | |
| 	/* 
 | |
| 	 * The intermediate result will be kept in tmpres,
 | |
| 	 * which needs enough room for 106 bits of mantissa,
 | |
| 	 * so lets call it a Double extended.
 | |
| 	 */
 | |
| 	Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
 | |
| 
 | |
| 	/* 
 | |
| 	 * Four bits at a time are inspected in each loop, and a 
 | |
| 	 * simple shift and add multiply algorithm is used. 
 | |
| 	 */ 
 | |
| 	for (count = DBL_P-1; count >= 0; count -= 4) {
 | |
| 		Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
 | |
| 		if (Dbit28p2(opnd1p2)) {
 | |
| 	 		/* Fourword_add should be an ADD followed by 3 ADDC's */
 | |
| 			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, 
 | |
| 			 opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0);
 | |
| 		}
 | |
| 		if (Dbit29p2(opnd1p2)) {
 | |
| 			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
 | |
| 			 opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0);
 | |
| 		}
 | |
| 		if (Dbit30p2(opnd1p2)) {
 | |
| 			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
 | |
| 			 opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0);
 | |
| 		}
 | |
| 		if (Dbit31p2(opnd1p2)) {
 | |
| 			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
 | |
| 			 opnd2p1, opnd2p2, 0, 0);
 | |
| 		}
 | |
| 		Dbl_rightshiftby4(opnd1p1,opnd1p2);
 | |
| 	}
 | |
| 	if (Is_dexthiddenoverflow(tmpresp1)) {
 | |
| 		/* result mantissa >= 2 (mantissa overflow) */
 | |
| 		mpy_exponent++;
 | |
| 		Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore the sign of the mpy result which was saved in resultp1.
 | |
| 	 * The exponent will continue to be kept in mpy_exponent.
 | |
| 	 */
 | |
| 	Dblext_set_sign(tmpresp1,Dbl_sign(resultp1));
 | |
| 
 | |
| 	/* 
 | |
| 	 * No rounding is required, since the result of the multiply
 | |
| 	 * is exact in the extended format.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we are ready to perform the add portion of the operation.
 | |
| 	 *
 | |
| 	 * The exponents need to be kept as integers for now, since the
 | |
| 	 * multiply result might not fit into the exponent field.  We
 | |
| 	 * can't overflow or underflow because of this yet, since the
 | |
| 	 * add could bring the final result back into range.
 | |
| 	 */
 | |
| 	add_exponent = Dbl_exponent(opnd3p1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for denormalized or zero add operand.
 | |
| 	 */
 | |
| 	if (add_exponent == 0) {
 | |
| 		/* check for zero */
 | |
| 		if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) {
 | |
| 			/* right is zero */
 | |
| 			/* Left can't be zero and must be result.
 | |
| 			 *
 | |
| 			 * The final result is now in tmpres and mpy_exponent,
 | |
| 			 * and needs to be rounded and squeezed back into
 | |
| 			 * double precision format from double extended.
 | |
| 			 */
 | |
| 			result_exponent = mpy_exponent;
 | |
| 			Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
 | |
| 				resultp1,resultp2,resultp3,resultp4);
 | |
| 			sign_save = Dbl_signextendedsign(resultp1);/*save sign*/
 | |
| 			goto round;
 | |
| 		}
 | |
| 
 | |
| 		/* 
 | |
| 		 * Neither are zeroes.  
 | |
| 		 * Adjust exponent and normalize add operand.
 | |
| 		 */
 | |
| 		sign_save = Dbl_signextendedsign(opnd3p1);	/* save sign */
 | |
| 		Dbl_clear_signexponent(opnd3p1);
 | |
| 		Dbl_leftshiftby1(opnd3p1,opnd3p2);
 | |
| 		Dbl_normalize(opnd3p1,opnd3p2,add_exponent);
 | |
| 		Dbl_set_sign(opnd3p1,sign_save);	/* restore sign */
 | |
| 	} else {
 | |
| 		Dbl_clear_exponent_set_hidden(opnd3p1);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Copy opnd3 to the double extended variable called right.
 | |
| 	 */
 | |
| 	Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4);
 | |
| 
 | |
| 	/*
 | |
| 	 * A zero "save" helps discover equal operands (for later),
 | |
| 	 * and is used in swapping operands (if needed).
 | |
| 	 */
 | |
| 	Dblext_xortointp1(tmpresp1,rightp1,/*to*/save);
 | |
| 
 | |
| 	/*
 | |
| 	 * Compare magnitude of operands.
 | |
| 	 */
 | |
| 	Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1);
 | |
| 	Dblext_copytoint_exponentmantissap1(rightp1,signlessright1);
 | |
| 	if (mpy_exponent < add_exponent || mpy_exponent == add_exponent &&
 | |
| 	    Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){
 | |
| 		/*
 | |
| 		 * Set the left operand to the larger one by XOR swap.
 | |
| 		 * First finish the first word "save".
 | |
| 		 */
 | |
| 		Dblext_xorfromintp1(save,rightp1,/*to*/rightp1);
 | |
| 		Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1);
 | |
| 		Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4,
 | |
| 			rightp2,rightp3,rightp4);
 | |
| 		/* also setup exponents used in rest of routine */
 | |
| 		diff_exponent = add_exponent - mpy_exponent;
 | |
| 		result_exponent = add_exponent;
 | |
| 	} else {
 | |
| 		/* also setup exponents used in rest of routine */
 | |
| 		diff_exponent = mpy_exponent - add_exponent;
 | |
| 		result_exponent = mpy_exponent;
 | |
| 	}
 | |
| 	/* Invariant: left is not smaller than right. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Special case alignment of operands that would force alignment
 | |
| 	 * beyond the extent of the extension.  A further optimization
 | |
| 	 * could special case this but only reduces the path length for
 | |
| 	 * this infrequent case.
 | |
| 	 */
 | |
| 	if (diff_exponent > DBLEXT_THRESHOLD) {
 | |
| 		diff_exponent = DBLEXT_THRESHOLD;
 | |
| 	}
 | |
| 
 | |
| 	/* Align right operand by shifting it to the right */
 | |
| 	Dblext_clear_sign(rightp1);
 | |
| 	Dblext_right_align(rightp1,rightp2,rightp3,rightp4,
 | |
| 		/*shifted by*/diff_exponent);
 | |
| 	
 | |
| 	/* Treat sum and difference of the operands separately. */
 | |
| 	if ((int)save < 0) {
 | |
| 		/*
 | |
| 		 * Difference of the two operands.  Overflow can occur if the
 | |
| 		 * multiply overflowed.  A borrow can occur out of the hidden
 | |
| 		 * bit and force a post normalization phase.
 | |
| 		 */
 | |
| 		Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
 | |
| 			rightp1,rightp2,rightp3,rightp4,
 | |
| 			resultp1,resultp2,resultp3,resultp4);
 | |
| 		sign_save = Dbl_signextendedsign(resultp1);
 | |
| 		if (Dbl_iszero_hidden(resultp1)) {
 | |
| 			/* Handle normalization */
 | |
| 		/* A straightforward algorithm would now shift the
 | |
| 		 * result and extension left until the hidden bit
 | |
| 		 * becomes one.  Not all of the extension bits need
 | |
| 		 * participate in the shift.  Only the two most 
 | |
| 		 * significant bits (round and guard) are needed.
 | |
| 		 * If only a single shift is needed then the guard
 | |
| 		 * bit becomes a significant low order bit and the
 | |
| 		 * extension must participate in the rounding.
 | |
| 		 * If more than a single shift is needed, then all
 | |
| 		 * bits to the right of the guard bit are zeros, 
 | |
| 		 * and the guard bit may or may not be zero. */
 | |
| 			Dblext_leftshiftby1(resultp1,resultp2,resultp3,
 | |
| 				resultp4);
 | |
| 
 | |
| 			/* Need to check for a zero result.  The sign and
 | |
| 			 * exponent fields have already been zeroed.  The more
 | |
| 			 * efficient test of the full object can be used.
 | |
| 			 */
 | |
| 			 if(Dblext_iszero(resultp1,resultp2,resultp3,resultp4)){
 | |
| 				/* Must have been "x-x" or "x+(-x)". */
 | |
| 				if (Is_rounding_mode(ROUNDMINUS))
 | |
| 					Dbl_setone_sign(resultp1);
 | |
| 				Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 			result_exponent--;
 | |
| 
 | |
| 			/* Look to see if normalization is finished. */
 | |
| 			if (Dbl_isone_hidden(resultp1)) {
 | |
| 				/* No further normalization is needed */
 | |
| 				goto round;
 | |
| 			}
 | |
| 
 | |
| 			/* Discover first one bit to determine shift amount.
 | |
| 			 * Use a modified binary search.  We have already
 | |
| 			 * shifted the result one position right and still
 | |
| 			 * not found a one so the remainder of the extension
 | |
| 			 * must be zero and simplifies rounding. */
 | |
| 			/* Scan bytes */
 | |
| 			while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) {
 | |
| 				Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4);
 | |
| 				result_exponent -= 8;
 | |
| 			}
 | |
| 			/* Now narrow it down to the nibble */
 | |
| 			if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) {
 | |
| 				/* The lower nibble contains the
 | |
| 				 * normalizing one */
 | |
| 				Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4);
 | |
| 				result_exponent -= 4;
 | |
| 			}
 | |
| 			/* Select case where first bit is set (already
 | |
| 			 * normalized) otherwise select the proper shift. */
 | |
| 			jumpsize = Dbl_hiddenhigh3mantissa(resultp1);
 | |
| 			if (jumpsize <= 7) switch(jumpsize) {
 | |
| 			case 1:
 | |
| 				Dblext_leftshiftby3(resultp1,resultp2,resultp3,
 | |
| 					resultp4);
 | |
| 				result_exponent -= 3;
 | |
| 				break;
 | |
| 			case 2:
 | |
| 			case 3:
 | |
| 				Dblext_leftshiftby2(resultp1,resultp2,resultp3,
 | |
| 					resultp4);
 | |
| 				result_exponent -= 2;
 | |
| 				break;
 | |
| 			case 4:
 | |
| 			case 5:
 | |
| 			case 6:
 | |
| 			case 7:
 | |
| 				Dblext_leftshiftby1(resultp1,resultp2,resultp3,
 | |
| 					resultp4);
 | |
| 				result_exponent -= 1;
 | |
| 				break;
 | |
| 			}
 | |
| 		} /* end if (hidden...)... */
 | |
| 	/* Fall through and round */
 | |
| 	} /* end if (save < 0)... */
 | |
| 	else {
 | |
| 		/* Add magnitudes */
 | |
| 		Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
 | |
| 			rightp1,rightp2,rightp3,rightp4,
 | |
| 			/*to*/resultp1,resultp2,resultp3,resultp4);
 | |
| 		sign_save = Dbl_signextendedsign(resultp1);
 | |
| 		if (Dbl_isone_hiddenoverflow(resultp1)) {
 | |
| 	    		/* Prenormalization required. */
 | |
| 	    		Dblext_arithrightshiftby1(resultp1,resultp2,resultp3,
 | |
| 				resultp4);
 | |
| 	    		result_exponent++;
 | |
| 		} /* end if hiddenoverflow... */
 | |
| 	} /* end else ...add magnitudes... */
 | |
| 
 | |
| 	/* Round the result.  If the extension and lower two words are
 | |
| 	 * all zeros, then the result is exact.  Otherwise round in the
 | |
| 	 * correct direction.  Underflow is possible. If a postnormalization
 | |
| 	 * is necessary, then the mantissa is all zeros so no shift is needed.
 | |
| 	 */
 | |
|   round:
 | |
| 	if (result_exponent <= 0 && !Is_underflowtrap_enabled()) {
 | |
| 		Dblext_denormalize(resultp1,resultp2,resultp3,resultp4,
 | |
| 			result_exponent,is_tiny);
 | |
| 	}
 | |
| 	Dbl_set_sign(resultp1,/*using*/sign_save);
 | |
| 	if (Dblext_isnotzero_mantissap3(resultp3) || 
 | |
| 	    Dblext_isnotzero_mantissap4(resultp4)) {
 | |
| 		inexact = TRUE;
 | |
| 		switch(Rounding_mode()) {
 | |
| 		case ROUNDNEAREST: /* The default. */
 | |
| 			if (Dblext_isone_highp3(resultp3)) {
 | |
| 				/* at least 1/2 ulp */
 | |
| 				if (Dblext_isnotzero_low31p3(resultp3) ||
 | |
| 				    Dblext_isnotzero_mantissap4(resultp4) ||
 | |
| 				    Dblext_isone_lowp2(resultp2)) {
 | |
| 					/* either exactly half way and odd or
 | |
| 					 * more than 1/2ulp */
 | |
| 					Dbl_increment(resultp1,resultp2);
 | |
| 				}
 | |
| 			}
 | |
| 	    		break;
 | |
| 
 | |
| 		case ROUNDPLUS:
 | |
| 	    		if (Dbl_iszero_sign(resultp1)) {
 | |
| 				/* Round up positive results */
 | |
| 				Dbl_increment(resultp1,resultp2);
 | |
| 			}
 | |
| 			break;
 | |
| 	    
 | |
| 		case ROUNDMINUS:
 | |
| 	    		if (Dbl_isone_sign(resultp1)) {
 | |
| 				/* Round down negative results */
 | |
| 				Dbl_increment(resultp1,resultp2);
 | |
| 			}
 | |
| 	    
 | |
| 		case ROUNDZERO:;
 | |
| 			/* truncate is simple */
 | |
| 		} /* end switch... */
 | |
| 		if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++;
 | |
| 	}
 | |
| 	if (result_exponent >= DBL_INFINITY_EXPONENT) {
 | |
|                 /* trap if OVERFLOWTRAP enabled */
 | |
|                 if (Is_overflowtrap_enabled()) {
 | |
|                         /*
 | |
|                          * Adjust bias of result
 | |
|                          */
 | |
|                         Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl);
 | |
|                         Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
|                         if (inexact)
 | |
|                             if (Is_inexacttrap_enabled())
 | |
|                                 return (OPC_2E_OVERFLOWEXCEPTION |
 | |
| 					OPC_2E_INEXACTEXCEPTION);
 | |
|                             else Set_inexactflag();
 | |
|                         return (OPC_2E_OVERFLOWEXCEPTION);
 | |
|                 }
 | |
|                 inexact = TRUE;
 | |
|                 Set_overflowflag();
 | |
|                 /* set result to infinity or largest number */
 | |
|                 Dbl_setoverflow(resultp1,resultp2);
 | |
| 
 | |
| 	} else if (result_exponent <= 0) {	/* underflow case */
 | |
| 		if (Is_underflowtrap_enabled()) {
 | |
|                         /*
 | |
|                          * Adjust bias of result
 | |
|                          */
 | |
|                 	Dbl_setwrapped_exponent(resultp1,result_exponent,unfl);
 | |
| 			Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
|                         if (inexact)
 | |
|                             if (Is_inexacttrap_enabled())
 | |
|                                 return (OPC_2E_UNDERFLOWEXCEPTION |
 | |
| 					OPC_2E_INEXACTEXCEPTION);
 | |
|                             else Set_inexactflag();
 | |
| 	    		return(OPC_2E_UNDERFLOWEXCEPTION);
 | |
| 		}
 | |
| 		else if (inexact && is_tiny) Set_underflowflag();
 | |
| 	}
 | |
| 	else Dbl_set_exponent(resultp1,result_exponent);
 | |
| 	Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
| 	if (inexact) 
 | |
| 		if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION);
 | |
| 		else Set_inexactflag();
 | |
|     	return(NOEXCEPTION);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Double Floating-point Multiply Negate Fused Add
 | |
|  */
 | |
| 
 | |
| dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
 | |
| 
 | |
| dbl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr;
 | |
| unsigned int *status;
 | |
| {
 | |
| 	unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2;
 | |
| 	register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4;
 | |
| 	unsigned int rightp1, rightp2, rightp3, rightp4;
 | |
| 	unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0;
 | |
| 	register int mpy_exponent, add_exponent, count;
 | |
| 	boolean inexact = FALSE, is_tiny = FALSE;
 | |
| 
 | |
| 	unsigned int signlessleft1, signlessright1, save;
 | |
| 	register int result_exponent, diff_exponent;
 | |
| 	int sign_save, jumpsize;
 | |
| 	
 | |
| 	Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2);
 | |
| 	Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2);
 | |
| 	Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2);
 | |
| 
 | |
| 	/* 
 | |
| 	 * set sign bit of result of multiply
 | |
| 	 */
 | |
| 	if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1)) 
 | |
| 		Dbl_setzerop1(resultp1);
 | |
| 	else
 | |
| 		Dbl_setnegativezerop1(resultp1); 
 | |
| 
 | |
| 	/*
 | |
| 	 * Generate multiply exponent 
 | |
| 	 */
 | |
| 	mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS;
 | |
| 
 | |
| 	/*
 | |
| 	 * check first operand for NaN's or infinity
 | |
| 	 */
 | |
| 	if (Dbl_isinfinity_exponent(opnd1p1)) {
 | |
| 		if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) {
 | |
| 			if (Dbl_isnotnan(opnd2p1,opnd2p2) &&
 | |
| 			    Dbl_isnotnan(opnd3p1,opnd3p2)) {
 | |
| 				if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) {
 | |
| 					/* 
 | |
| 					 * invalid since operands are infinity 
 | |
| 					 * and zero 
 | |
| 					 */
 | |
| 					if (Is_invalidtrap_enabled())
 | |
| 						return(OPC_2E_INVALIDEXCEPTION);
 | |
| 					Set_invalidflag();
 | |
| 					Dbl_makequietnan(resultp1,resultp2);
 | |
| 					Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
| 					return(NOEXCEPTION);
 | |
| 				}
 | |
| 				/*
 | |
| 				 * Check third operand for infinity with a
 | |
| 				 *  sign opposite of the multiply result
 | |
| 				 */
 | |
| 				if (Dbl_isinfinity(opnd3p1,opnd3p2) &&
 | |
| 				    (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) {
 | |
| 					/* 
 | |
| 					 * invalid since attempting a magnitude
 | |
| 					 * subtraction of infinities
 | |
| 					 */
 | |
| 					if (Is_invalidtrap_enabled())
 | |
| 						return(OPC_2E_INVALIDEXCEPTION);
 | |
| 					Set_invalidflag();
 | |
| 					Dbl_makequietnan(resultp1,resultp2);
 | |
| 					Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
| 					return(NOEXCEPTION);
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 			 	 * return infinity
 | |
| 			 	 */
 | |
| 				Dbl_setinfinity_exponentmantissa(resultp1,resultp2);
 | |
| 				Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			/*
 | |
| 		 	 * is NaN; signaling or quiet?
 | |
| 		 	 */
 | |
| 			if (Dbl_isone_signaling(opnd1p1)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled()) 
 | |
| 			    		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Dbl_set_quiet(opnd1p1);
 | |
| 			}
 | |
| 			/* 
 | |
| 			 * is second operand a signaling NaN? 
 | |
| 			 */
 | |
| 			else if (Dbl_is_signalingnan(opnd2p1)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled())
 | |
| 			    		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Dbl_set_quiet(opnd2p1);
 | |
| 				Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 			/* 
 | |
| 			 * is third operand a signaling NaN? 
 | |
| 			 */
 | |
| 			else if (Dbl_is_signalingnan(opnd3p1)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled())
 | |
| 			    		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Dbl_set_quiet(opnd3p1);
 | |
| 				Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 			/*
 | |
| 		 	 * return quiet NaN
 | |
| 		 	 */
 | |
| 			Dbl_copytoptr(opnd1p1,opnd1p2,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * check second operand for NaN's or infinity
 | |
| 	 */
 | |
| 	if (Dbl_isinfinity_exponent(opnd2p1)) {
 | |
| 		if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) {
 | |
| 			if (Dbl_isnotnan(opnd3p1,opnd3p2)) {
 | |
| 				if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) {
 | |
| 					/* 
 | |
| 					 * invalid since multiply operands are
 | |
| 					 * zero & infinity
 | |
| 					 */
 | |
| 					if (Is_invalidtrap_enabled())
 | |
| 						return(OPC_2E_INVALIDEXCEPTION);
 | |
| 					Set_invalidflag();
 | |
| 					Dbl_makequietnan(opnd2p1,opnd2p2);
 | |
| 					Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
 | |
| 					return(NOEXCEPTION);
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				 * Check third operand for infinity with a
 | |
| 				 *  sign opposite of the multiply result
 | |
| 				 */
 | |
| 				if (Dbl_isinfinity(opnd3p1,opnd3p2) &&
 | |
| 				    (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) {
 | |
| 					/* 
 | |
| 					 * invalid since attempting a magnitude
 | |
| 					 * subtraction of infinities
 | |
| 					 */
 | |
| 					if (Is_invalidtrap_enabled())
 | |
| 				       		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				       	Set_invalidflag();
 | |
| 				       	Dbl_makequietnan(resultp1,resultp2);
 | |
| 					Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
| 					return(NOEXCEPTION);
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				 * return infinity
 | |
| 				 */
 | |
| 				Dbl_setinfinity_exponentmantissa(resultp1,resultp2);
 | |
| 				Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * is NaN; signaling or quiet?
 | |
| 			 */
 | |
| 			if (Dbl_isone_signaling(opnd2p1)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled())
 | |
| 					return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Dbl_set_quiet(opnd2p1);
 | |
| 			}
 | |
| 			/* 
 | |
| 			 * is third operand a signaling NaN? 
 | |
| 			 */
 | |
| 			else if (Dbl_is_signalingnan(opnd3p1)) {
 | |
| 			       	/* trap if INVALIDTRAP enabled */
 | |
| 			       	if (Is_invalidtrap_enabled())
 | |
| 				   		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 			       	/* make NaN quiet */
 | |
| 			       	Set_invalidflag();
 | |
| 			       	Dbl_set_quiet(opnd3p1);
 | |
| 				Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
 | |
| 		       		return(NOEXCEPTION);
 | |
| 			}
 | |
| 			/*
 | |
| 			 * return quiet NaN
 | |
| 			 */
 | |
| 			Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * check third operand for NaN's or infinity
 | |
| 	 */
 | |
| 	if (Dbl_isinfinity_exponent(opnd3p1)) {
 | |
| 		if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) {
 | |
| 			/* return infinity */
 | |
| 			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * is NaN; signaling or quiet?
 | |
| 			 */
 | |
| 			if (Dbl_isone_signaling(opnd3p1)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled())
 | |
| 					return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Dbl_set_quiet(opnd3p1);
 | |
| 			}
 | |
| 			/*
 | |
| 			 * return quiet NaN
 | |
|  			 */
 | |
| 			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
|     	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Generate multiply mantissa
 | |
| 	 */
 | |
| 	if (Dbl_isnotzero_exponent(opnd1p1)) {
 | |
| 		/* set hidden bit */
 | |
| 		Dbl_clear_signexponent_set_hidden(opnd1p1);
 | |
| 	}
 | |
| 	else {
 | |
| 		/* check for zero */
 | |
| 		if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) {
 | |
| 			/*
 | |
| 			 * Perform the add opnd3 with zero here.
 | |
| 			 */
 | |
| 			if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) {
 | |
| 				if (Is_rounding_mode(ROUNDMINUS)) {
 | |
| 					Dbl_or_signs(opnd3p1,resultp1);
 | |
| 				} else {
 | |
| 					Dbl_and_signs(opnd3p1,resultp1);
 | |
| 				}
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Now let's check for trapped underflow case.
 | |
| 			 */
 | |
| 			else if (Dbl_iszero_exponent(opnd3p1) &&
 | |
| 			         Is_underflowtrap_enabled()) {
 | |
|                     		/* need to normalize results mantissa */
 | |
|                     		sign_save = Dbl_signextendedsign(opnd3p1);
 | |
| 				result_exponent = 0;
 | |
|                     		Dbl_leftshiftby1(opnd3p1,opnd3p2);
 | |
|                     		Dbl_normalize(opnd3p1,opnd3p2,result_exponent);
 | |
|                     		Dbl_set_sign(opnd3p1,/*using*/sign_save);
 | |
|                     		Dbl_setwrapped_exponent(opnd3p1,result_exponent,
 | |
| 							unfl);
 | |
|                     		Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
 | |
|                     		/* inexact = FALSE */
 | |
|                     		return(OPC_2E_UNDERFLOWEXCEPTION);
 | |
| 			}
 | |
| 			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
| 		/* is denormalized, adjust exponent */
 | |
| 		Dbl_clear_signexponent(opnd1p1);
 | |
| 		Dbl_leftshiftby1(opnd1p1,opnd1p2);
 | |
| 		Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent);
 | |
| 	}
 | |
| 	/* opnd2 needs to have hidden bit set with msb in hidden bit */
 | |
| 	if (Dbl_isnotzero_exponent(opnd2p1)) {
 | |
| 		Dbl_clear_signexponent_set_hidden(opnd2p1);
 | |
| 	}
 | |
| 	else {
 | |
| 		/* check for zero */
 | |
| 		if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) {
 | |
| 			/*
 | |
| 			 * Perform the add opnd3 with zero here.
 | |
| 			 */
 | |
| 			if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) {
 | |
| 				if (Is_rounding_mode(ROUNDMINUS)) {
 | |
| 					Dbl_or_signs(opnd3p1,resultp1);
 | |
| 				} else {
 | |
| 					Dbl_and_signs(opnd3p1,resultp1);
 | |
| 				}
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Now let's check for trapped underflow case.
 | |
| 			 */
 | |
| 			else if (Dbl_iszero_exponent(opnd3p1) &&
 | |
| 			    Is_underflowtrap_enabled()) {
 | |
|                     		/* need to normalize results mantissa */
 | |
|                     		sign_save = Dbl_signextendedsign(opnd3p1);
 | |
| 				result_exponent = 0;
 | |
|                     		Dbl_leftshiftby1(opnd3p1,opnd3p2);
 | |
|                     		Dbl_normalize(opnd3p1,opnd3p2,result_exponent);
 | |
|                     		Dbl_set_sign(opnd3p1,/*using*/sign_save);
 | |
|                     		Dbl_setwrapped_exponent(opnd3p1,result_exponent,
 | |
| 							unfl);
 | |
|                     		Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
 | |
|                     		/* inexact = FALSE */
 | |
|                     		return(OPC_2E_UNDERFLOWEXCEPTION);
 | |
| 			}
 | |
| 			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
| 		/* is denormalized; want to normalize */
 | |
| 		Dbl_clear_signexponent(opnd2p1);
 | |
| 		Dbl_leftshiftby1(opnd2p1,opnd2p2);
 | |
| 		Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent);
 | |
| 	}
 | |
| 
 | |
| 	/* Multiply the first two source mantissas together */
 | |
| 
 | |
| 	/* 
 | |
| 	 * The intermediate result will be kept in tmpres,
 | |
| 	 * which needs enough room for 106 bits of mantissa,
 | |
| 	 * so lets call it a Double extended.
 | |
| 	 */
 | |
| 	Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
 | |
| 
 | |
| 	/* 
 | |
| 	 * Four bits at a time are inspected in each loop, and a 
 | |
| 	 * simple shift and add multiply algorithm is used. 
 | |
| 	 */ 
 | |
| 	for (count = DBL_P-1; count >= 0; count -= 4) {
 | |
| 		Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
 | |
| 		if (Dbit28p2(opnd1p2)) {
 | |
| 	 		/* Fourword_add should be an ADD followed by 3 ADDC's */
 | |
| 			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, 
 | |
| 			 opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0);
 | |
| 		}
 | |
| 		if (Dbit29p2(opnd1p2)) {
 | |
| 			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
 | |
| 			 opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0);
 | |
| 		}
 | |
| 		if (Dbit30p2(opnd1p2)) {
 | |
| 			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
 | |
| 			 opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0);
 | |
| 		}
 | |
| 		if (Dbit31p2(opnd1p2)) {
 | |
| 			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
 | |
| 			 opnd2p1, opnd2p2, 0, 0);
 | |
| 		}
 | |
| 		Dbl_rightshiftby4(opnd1p1,opnd1p2);
 | |
| 	}
 | |
| 	if (Is_dexthiddenoverflow(tmpresp1)) {
 | |
| 		/* result mantissa >= 2 (mantissa overflow) */
 | |
| 		mpy_exponent++;
 | |
| 		Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore the sign of the mpy result which was saved in resultp1.
 | |
| 	 * The exponent will continue to be kept in mpy_exponent.
 | |
| 	 */
 | |
| 	Dblext_set_sign(tmpresp1,Dbl_sign(resultp1));
 | |
| 
 | |
| 	/* 
 | |
| 	 * No rounding is required, since the result of the multiply
 | |
| 	 * is exact in the extended format.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we are ready to perform the add portion of the operation.
 | |
| 	 *
 | |
| 	 * The exponents need to be kept as integers for now, since the
 | |
| 	 * multiply result might not fit into the exponent field.  We
 | |
| 	 * can't overflow or underflow because of this yet, since the
 | |
| 	 * add could bring the final result back into range.
 | |
| 	 */
 | |
| 	add_exponent = Dbl_exponent(opnd3p1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for denormalized or zero add operand.
 | |
| 	 */
 | |
| 	if (add_exponent == 0) {
 | |
| 		/* check for zero */
 | |
| 		if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) {
 | |
| 			/* right is zero */
 | |
| 			/* Left can't be zero and must be result.
 | |
| 			 *
 | |
| 			 * The final result is now in tmpres and mpy_exponent,
 | |
| 			 * and needs to be rounded and squeezed back into
 | |
| 			 * double precision format from double extended.
 | |
| 			 */
 | |
| 			result_exponent = mpy_exponent;
 | |
| 			Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
 | |
| 				resultp1,resultp2,resultp3,resultp4);
 | |
| 			sign_save = Dbl_signextendedsign(resultp1);/*save sign*/
 | |
| 			goto round;
 | |
| 		}
 | |
| 
 | |
| 		/* 
 | |
| 		 * Neither are zeroes.  
 | |
| 		 * Adjust exponent and normalize add operand.
 | |
| 		 */
 | |
| 		sign_save = Dbl_signextendedsign(opnd3p1);	/* save sign */
 | |
| 		Dbl_clear_signexponent(opnd3p1);
 | |
| 		Dbl_leftshiftby1(opnd3p1,opnd3p2);
 | |
| 		Dbl_normalize(opnd3p1,opnd3p2,add_exponent);
 | |
| 		Dbl_set_sign(opnd3p1,sign_save);	/* restore sign */
 | |
| 	} else {
 | |
| 		Dbl_clear_exponent_set_hidden(opnd3p1);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Copy opnd3 to the double extended variable called right.
 | |
| 	 */
 | |
| 	Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4);
 | |
| 
 | |
| 	/*
 | |
| 	 * A zero "save" helps discover equal operands (for later),
 | |
| 	 * and is used in swapping operands (if needed).
 | |
| 	 */
 | |
| 	Dblext_xortointp1(tmpresp1,rightp1,/*to*/save);
 | |
| 
 | |
| 	/*
 | |
| 	 * Compare magnitude of operands.
 | |
| 	 */
 | |
| 	Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1);
 | |
| 	Dblext_copytoint_exponentmantissap1(rightp1,signlessright1);
 | |
| 	if (mpy_exponent < add_exponent || mpy_exponent == add_exponent &&
 | |
| 	    Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){
 | |
| 		/*
 | |
| 		 * Set the left operand to the larger one by XOR swap.
 | |
| 		 * First finish the first word "save".
 | |
| 		 */
 | |
| 		Dblext_xorfromintp1(save,rightp1,/*to*/rightp1);
 | |
| 		Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1);
 | |
| 		Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4,
 | |
| 			rightp2,rightp3,rightp4);
 | |
| 		/* also setup exponents used in rest of routine */
 | |
| 		diff_exponent = add_exponent - mpy_exponent;
 | |
| 		result_exponent = add_exponent;
 | |
| 	} else {
 | |
| 		/* also setup exponents used in rest of routine */
 | |
| 		diff_exponent = mpy_exponent - add_exponent;
 | |
| 		result_exponent = mpy_exponent;
 | |
| 	}
 | |
| 	/* Invariant: left is not smaller than right. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Special case alignment of operands that would force alignment
 | |
| 	 * beyond the extent of the extension.  A further optimization
 | |
| 	 * could special case this but only reduces the path length for
 | |
| 	 * this infrequent case.
 | |
| 	 */
 | |
| 	if (diff_exponent > DBLEXT_THRESHOLD) {
 | |
| 		diff_exponent = DBLEXT_THRESHOLD;
 | |
| 	}
 | |
| 
 | |
| 	/* Align right operand by shifting it to the right */
 | |
| 	Dblext_clear_sign(rightp1);
 | |
| 	Dblext_right_align(rightp1,rightp2,rightp3,rightp4,
 | |
| 		/*shifted by*/diff_exponent);
 | |
| 	
 | |
| 	/* Treat sum and difference of the operands separately. */
 | |
| 	if ((int)save < 0) {
 | |
| 		/*
 | |
| 		 * Difference of the two operands.  Overflow can occur if the
 | |
| 		 * multiply overflowed.  A borrow can occur out of the hidden
 | |
| 		 * bit and force a post normalization phase.
 | |
| 		 */
 | |
| 		Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
 | |
| 			rightp1,rightp2,rightp3,rightp4,
 | |
| 			resultp1,resultp2,resultp3,resultp4);
 | |
| 		sign_save = Dbl_signextendedsign(resultp1);
 | |
| 		if (Dbl_iszero_hidden(resultp1)) {
 | |
| 			/* Handle normalization */
 | |
| 		/* A straightforward algorithm would now shift the
 | |
| 		 * result and extension left until the hidden bit
 | |
| 		 * becomes one.  Not all of the extension bits need
 | |
| 		 * participate in the shift.  Only the two most 
 | |
| 		 * significant bits (round and guard) are needed.
 | |
| 		 * If only a single shift is needed then the guard
 | |
| 		 * bit becomes a significant low order bit and the
 | |
| 		 * extension must participate in the rounding.
 | |
| 		 * If more than a single shift is needed, then all
 | |
| 		 * bits to the right of the guard bit are zeros, 
 | |
| 		 * and the guard bit may or may not be zero. */
 | |
| 			Dblext_leftshiftby1(resultp1,resultp2,resultp3,
 | |
| 				resultp4);
 | |
| 
 | |
| 			/* Need to check for a zero result.  The sign and
 | |
| 			 * exponent fields have already been zeroed.  The more
 | |
| 			 * efficient test of the full object can be used.
 | |
| 			 */
 | |
| 			 if (Dblext_iszero(resultp1,resultp2,resultp3,resultp4)) {
 | |
| 				/* Must have been "x-x" or "x+(-x)". */
 | |
| 				if (Is_rounding_mode(ROUNDMINUS))
 | |
| 					Dbl_setone_sign(resultp1);
 | |
| 				Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 			result_exponent--;
 | |
| 
 | |
| 			/* Look to see if normalization is finished. */
 | |
| 			if (Dbl_isone_hidden(resultp1)) {
 | |
| 				/* No further normalization is needed */
 | |
| 				goto round;
 | |
| 			}
 | |
| 
 | |
| 			/* Discover first one bit to determine shift amount.
 | |
| 			 * Use a modified binary search.  We have already
 | |
| 			 * shifted the result one position right and still
 | |
| 			 * not found a one so the remainder of the extension
 | |
| 			 * must be zero and simplifies rounding. */
 | |
| 			/* Scan bytes */
 | |
| 			while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) {
 | |
| 				Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4);
 | |
| 				result_exponent -= 8;
 | |
| 			}
 | |
| 			/* Now narrow it down to the nibble */
 | |
| 			if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) {
 | |
| 				/* The lower nibble contains the
 | |
| 				 * normalizing one */
 | |
| 				Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4);
 | |
| 				result_exponent -= 4;
 | |
| 			}
 | |
| 			/* Select case where first bit is set (already
 | |
| 			 * normalized) otherwise select the proper shift. */
 | |
| 			jumpsize = Dbl_hiddenhigh3mantissa(resultp1);
 | |
| 			if (jumpsize <= 7) switch(jumpsize) {
 | |
| 			case 1:
 | |
| 				Dblext_leftshiftby3(resultp1,resultp2,resultp3,
 | |
| 					resultp4);
 | |
| 				result_exponent -= 3;
 | |
| 				break;
 | |
| 			case 2:
 | |
| 			case 3:
 | |
| 				Dblext_leftshiftby2(resultp1,resultp2,resultp3,
 | |
| 					resultp4);
 | |
| 				result_exponent -= 2;
 | |
| 				break;
 | |
| 			case 4:
 | |
| 			case 5:
 | |
| 			case 6:
 | |
| 			case 7:
 | |
| 				Dblext_leftshiftby1(resultp1,resultp2,resultp3,
 | |
| 					resultp4);
 | |
| 				result_exponent -= 1;
 | |
| 				break;
 | |
| 			}
 | |
| 		} /* end if (hidden...)... */
 | |
| 	/* Fall through and round */
 | |
| 	} /* end if (save < 0)... */
 | |
| 	else {
 | |
| 		/* Add magnitudes */
 | |
| 		Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
 | |
| 			rightp1,rightp2,rightp3,rightp4,
 | |
| 			/*to*/resultp1,resultp2,resultp3,resultp4);
 | |
| 		sign_save = Dbl_signextendedsign(resultp1);
 | |
| 		if (Dbl_isone_hiddenoverflow(resultp1)) {
 | |
| 	    		/* Prenormalization required. */
 | |
| 	    		Dblext_arithrightshiftby1(resultp1,resultp2,resultp3,
 | |
| 				resultp4);
 | |
| 	    		result_exponent++;
 | |
| 		} /* end if hiddenoverflow... */
 | |
| 	} /* end else ...add magnitudes... */
 | |
| 
 | |
| 	/* Round the result.  If the extension and lower two words are
 | |
| 	 * all zeros, then the result is exact.  Otherwise round in the
 | |
| 	 * correct direction.  Underflow is possible. If a postnormalization
 | |
| 	 * is necessary, then the mantissa is all zeros so no shift is needed.
 | |
| 	 */
 | |
|   round:
 | |
| 	if (result_exponent <= 0 && !Is_underflowtrap_enabled()) {
 | |
| 		Dblext_denormalize(resultp1,resultp2,resultp3,resultp4,
 | |
| 			result_exponent,is_tiny);
 | |
| 	}
 | |
| 	Dbl_set_sign(resultp1,/*using*/sign_save);
 | |
| 	if (Dblext_isnotzero_mantissap3(resultp3) || 
 | |
| 	    Dblext_isnotzero_mantissap4(resultp4)) {
 | |
| 		inexact = TRUE;
 | |
| 		switch(Rounding_mode()) {
 | |
| 		case ROUNDNEAREST: /* The default. */
 | |
| 			if (Dblext_isone_highp3(resultp3)) {
 | |
| 				/* at least 1/2 ulp */
 | |
| 				if (Dblext_isnotzero_low31p3(resultp3) ||
 | |
| 				    Dblext_isnotzero_mantissap4(resultp4) ||
 | |
| 				    Dblext_isone_lowp2(resultp2)) {
 | |
| 					/* either exactly half way and odd or
 | |
| 					 * more than 1/2ulp */
 | |
| 					Dbl_increment(resultp1,resultp2);
 | |
| 				}
 | |
| 			}
 | |
| 	    		break;
 | |
| 
 | |
| 		case ROUNDPLUS:
 | |
| 	    		if (Dbl_iszero_sign(resultp1)) {
 | |
| 				/* Round up positive results */
 | |
| 				Dbl_increment(resultp1,resultp2);
 | |
| 			}
 | |
| 			break;
 | |
| 	    
 | |
| 		case ROUNDMINUS:
 | |
| 	    		if (Dbl_isone_sign(resultp1)) {
 | |
| 				/* Round down negative results */
 | |
| 				Dbl_increment(resultp1,resultp2);
 | |
| 			}
 | |
| 	    
 | |
| 		case ROUNDZERO:;
 | |
| 			/* truncate is simple */
 | |
| 		} /* end switch... */
 | |
| 		if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++;
 | |
| 	}
 | |
| 	if (result_exponent >= DBL_INFINITY_EXPONENT) {
 | |
| 		/* Overflow */
 | |
| 		if (Is_overflowtrap_enabled()) {
 | |
|                         /*
 | |
|                          * Adjust bias of result
 | |
|                          */
 | |
|                         Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl);
 | |
|                         Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
|                         if (inexact)
 | |
|                             if (Is_inexacttrap_enabled())
 | |
|                                 return (OPC_2E_OVERFLOWEXCEPTION |
 | |
| 					OPC_2E_INEXACTEXCEPTION);
 | |
|                             else Set_inexactflag();
 | |
|                         return (OPC_2E_OVERFLOWEXCEPTION);
 | |
| 		}
 | |
| 		inexact = TRUE;
 | |
| 		Set_overflowflag();
 | |
| 		Dbl_setoverflow(resultp1,resultp2);
 | |
| 	} else if (result_exponent <= 0) {	/* underflow case */
 | |
| 		if (Is_underflowtrap_enabled()) {
 | |
|                         /*
 | |
|                          * Adjust bias of result
 | |
|                          */
 | |
|                 	Dbl_setwrapped_exponent(resultp1,result_exponent,unfl);
 | |
| 			Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
|                         if (inexact)
 | |
|                             if (Is_inexacttrap_enabled())
 | |
|                                 return (OPC_2E_UNDERFLOWEXCEPTION |
 | |
| 					OPC_2E_INEXACTEXCEPTION);
 | |
|                             else Set_inexactflag();
 | |
| 	    		return(OPC_2E_UNDERFLOWEXCEPTION);
 | |
| 		}
 | |
| 		else if (inexact && is_tiny) Set_underflowflag();
 | |
| 	}
 | |
| 	else Dbl_set_exponent(resultp1,result_exponent);
 | |
| 	Dbl_copytoptr(resultp1,resultp2,dstptr);
 | |
| 	if (inexact) 
 | |
| 		if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION);
 | |
| 		else Set_inexactflag();
 | |
|     	return(NOEXCEPTION);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Single Floating-point Multiply Fused Add
 | |
|  */
 | |
| 
 | |
| sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
 | |
| 
 | |
| sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr;
 | |
| unsigned int *status;
 | |
| {
 | |
| 	unsigned int opnd1, opnd2, opnd3;
 | |
| 	register unsigned int tmpresp1, tmpresp2;
 | |
| 	unsigned int rightp1, rightp2;
 | |
| 	unsigned int resultp1, resultp2 = 0;
 | |
| 	register int mpy_exponent, add_exponent, count;
 | |
| 	boolean inexact = FALSE, is_tiny = FALSE;
 | |
| 
 | |
| 	unsigned int signlessleft1, signlessright1, save;
 | |
| 	register int result_exponent, diff_exponent;
 | |
| 	int sign_save, jumpsize;
 | |
| 	
 | |
| 	Sgl_copyfromptr(src1ptr,opnd1);
 | |
| 	Sgl_copyfromptr(src2ptr,opnd2);
 | |
| 	Sgl_copyfromptr(src3ptr,opnd3);
 | |
| 
 | |
| 	/* 
 | |
| 	 * set sign bit of result of multiply
 | |
| 	 */
 | |
| 	if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) 
 | |
| 		Sgl_setnegativezero(resultp1); 
 | |
| 	else Sgl_setzero(resultp1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Generate multiply exponent 
 | |
| 	 */
 | |
| 	mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS;
 | |
| 
 | |
| 	/*
 | |
| 	 * check first operand for NaN's or infinity
 | |
| 	 */
 | |
| 	if (Sgl_isinfinity_exponent(opnd1)) {
 | |
| 		if (Sgl_iszero_mantissa(opnd1)) {
 | |
| 			if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) {
 | |
| 				if (Sgl_iszero_exponentmantissa(opnd2)) {
 | |
| 					/* 
 | |
| 					 * invalid since operands are infinity 
 | |
| 					 * and zero 
 | |
| 					 */
 | |
| 					if (Is_invalidtrap_enabled())
 | |
| 						return(OPC_2E_INVALIDEXCEPTION);
 | |
| 					Set_invalidflag();
 | |
| 					Sgl_makequietnan(resultp1);
 | |
| 					Sgl_copytoptr(resultp1,dstptr);
 | |
| 					return(NOEXCEPTION);
 | |
| 				}
 | |
| 				/*
 | |
| 				 * Check third operand for infinity with a
 | |
| 				 *  sign opposite of the multiply result
 | |
| 				 */
 | |
| 				if (Sgl_isinfinity(opnd3) &&
 | |
| 				    (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) {
 | |
| 					/* 
 | |
| 					 * invalid since attempting a magnitude
 | |
| 					 * subtraction of infinities
 | |
| 					 */
 | |
| 					if (Is_invalidtrap_enabled())
 | |
| 						return(OPC_2E_INVALIDEXCEPTION);
 | |
| 					Set_invalidflag();
 | |
| 					Sgl_makequietnan(resultp1);
 | |
| 					Sgl_copytoptr(resultp1,dstptr);
 | |
| 					return(NOEXCEPTION);
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 			 	 * return infinity
 | |
| 			 	 */
 | |
| 				Sgl_setinfinity_exponentmantissa(resultp1);
 | |
| 				Sgl_copytoptr(resultp1,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			/*
 | |
| 		 	 * is NaN; signaling or quiet?
 | |
| 		 	 */
 | |
| 			if (Sgl_isone_signaling(opnd1)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled()) 
 | |
| 			    		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Sgl_set_quiet(opnd1);
 | |
| 			}
 | |
| 			/* 
 | |
| 			 * is second operand a signaling NaN? 
 | |
| 			 */
 | |
| 			else if (Sgl_is_signalingnan(opnd2)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled())
 | |
| 			    		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Sgl_set_quiet(opnd2);
 | |
| 				Sgl_copytoptr(opnd2,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 			/* 
 | |
| 			 * is third operand a signaling NaN? 
 | |
| 			 */
 | |
| 			else if (Sgl_is_signalingnan(opnd3)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled())
 | |
| 			    		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Sgl_set_quiet(opnd3);
 | |
| 				Sgl_copytoptr(opnd3,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 			/*
 | |
| 		 	 * return quiet NaN
 | |
| 		 	 */
 | |
| 			Sgl_copytoptr(opnd1,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * check second operand for NaN's or infinity
 | |
| 	 */
 | |
| 	if (Sgl_isinfinity_exponent(opnd2)) {
 | |
| 		if (Sgl_iszero_mantissa(opnd2)) {
 | |
| 			if (Sgl_isnotnan(opnd3)) {
 | |
| 				if (Sgl_iszero_exponentmantissa(opnd1)) {
 | |
| 					/* 
 | |
| 					 * invalid since multiply operands are
 | |
| 					 * zero & infinity
 | |
| 					 */
 | |
| 					if (Is_invalidtrap_enabled())
 | |
| 						return(OPC_2E_INVALIDEXCEPTION);
 | |
| 					Set_invalidflag();
 | |
| 					Sgl_makequietnan(opnd2);
 | |
| 					Sgl_copytoptr(opnd2,dstptr);
 | |
| 					return(NOEXCEPTION);
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				 * Check third operand for infinity with a
 | |
| 				 *  sign opposite of the multiply result
 | |
| 				 */
 | |
| 				if (Sgl_isinfinity(opnd3) &&
 | |
| 				    (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) {
 | |
| 					/* 
 | |
| 					 * invalid since attempting a magnitude
 | |
| 					 * subtraction of infinities
 | |
| 					 */
 | |
| 					if (Is_invalidtrap_enabled())
 | |
| 				       		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				       	Set_invalidflag();
 | |
| 				       	Sgl_makequietnan(resultp1);
 | |
| 					Sgl_copytoptr(resultp1,dstptr);
 | |
| 					return(NOEXCEPTION);
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				 * return infinity
 | |
| 				 */
 | |
| 				Sgl_setinfinity_exponentmantissa(resultp1);
 | |
| 				Sgl_copytoptr(resultp1,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * is NaN; signaling or quiet?
 | |
| 			 */
 | |
| 			if (Sgl_isone_signaling(opnd2)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled())
 | |
| 					return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Sgl_set_quiet(opnd2);
 | |
| 			}
 | |
| 			/* 
 | |
| 			 * is third operand a signaling NaN? 
 | |
| 			 */
 | |
| 			else if (Sgl_is_signalingnan(opnd3)) {
 | |
| 			       	/* trap if INVALIDTRAP enabled */
 | |
| 			       	if (Is_invalidtrap_enabled())
 | |
| 				   		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 			       	/* make NaN quiet */
 | |
| 			       	Set_invalidflag();
 | |
| 			       	Sgl_set_quiet(opnd3);
 | |
| 				Sgl_copytoptr(opnd3,dstptr);
 | |
| 		       		return(NOEXCEPTION);
 | |
| 			}
 | |
| 			/*
 | |
| 			 * return quiet NaN
 | |
| 			 */
 | |
| 			Sgl_copytoptr(opnd2,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * check third operand for NaN's or infinity
 | |
| 	 */
 | |
| 	if (Sgl_isinfinity_exponent(opnd3)) {
 | |
| 		if (Sgl_iszero_mantissa(opnd3)) {
 | |
| 			/* return infinity */
 | |
| 			Sgl_copytoptr(opnd3,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * is NaN; signaling or quiet?
 | |
| 			 */
 | |
| 			if (Sgl_isone_signaling(opnd3)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled())
 | |
| 					return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Sgl_set_quiet(opnd3);
 | |
| 			}
 | |
| 			/*
 | |
| 			 * return quiet NaN
 | |
|  			 */
 | |
| 			Sgl_copytoptr(opnd3,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
|     	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Generate multiply mantissa
 | |
| 	 */
 | |
| 	if (Sgl_isnotzero_exponent(opnd1)) {
 | |
| 		/* set hidden bit */
 | |
| 		Sgl_clear_signexponent_set_hidden(opnd1);
 | |
| 	}
 | |
| 	else {
 | |
| 		/* check for zero */
 | |
| 		if (Sgl_iszero_mantissa(opnd1)) {
 | |
| 			/*
 | |
| 			 * Perform the add opnd3 with zero here.
 | |
| 			 */
 | |
| 			if (Sgl_iszero_exponentmantissa(opnd3)) {
 | |
| 				if (Is_rounding_mode(ROUNDMINUS)) {
 | |
| 					Sgl_or_signs(opnd3,resultp1);
 | |
| 				} else {
 | |
| 					Sgl_and_signs(opnd3,resultp1);
 | |
| 				}
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Now let's check for trapped underflow case.
 | |
| 			 */
 | |
| 			else if (Sgl_iszero_exponent(opnd3) &&
 | |
| 			         Is_underflowtrap_enabled()) {
 | |
|                     		/* need to normalize results mantissa */
 | |
|                     		sign_save = Sgl_signextendedsign(opnd3);
 | |
| 				result_exponent = 0;
 | |
|                     		Sgl_leftshiftby1(opnd3);
 | |
|                     		Sgl_normalize(opnd3,result_exponent);
 | |
|                     		Sgl_set_sign(opnd3,/*using*/sign_save);
 | |
|                     		Sgl_setwrapped_exponent(opnd3,result_exponent,
 | |
| 							unfl);
 | |
|                     		Sgl_copytoptr(opnd3,dstptr);
 | |
|                     		/* inexact = FALSE */
 | |
|                     		return(OPC_2E_UNDERFLOWEXCEPTION);
 | |
| 			}
 | |
| 			Sgl_copytoptr(opnd3,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
| 		/* is denormalized, adjust exponent */
 | |
| 		Sgl_clear_signexponent(opnd1);
 | |
| 		Sgl_leftshiftby1(opnd1);
 | |
| 		Sgl_normalize(opnd1,mpy_exponent);
 | |
| 	}
 | |
| 	/* opnd2 needs to have hidden bit set with msb in hidden bit */
 | |
| 	if (Sgl_isnotzero_exponent(opnd2)) {
 | |
| 		Sgl_clear_signexponent_set_hidden(opnd2);
 | |
| 	}
 | |
| 	else {
 | |
| 		/* check for zero */
 | |
| 		if (Sgl_iszero_mantissa(opnd2)) {
 | |
| 			/*
 | |
| 			 * Perform the add opnd3 with zero here.
 | |
| 			 */
 | |
| 			if (Sgl_iszero_exponentmantissa(opnd3)) {
 | |
| 				if (Is_rounding_mode(ROUNDMINUS)) {
 | |
| 					Sgl_or_signs(opnd3,resultp1);
 | |
| 				} else {
 | |
| 					Sgl_and_signs(opnd3,resultp1);
 | |
| 				}
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Now let's check for trapped underflow case.
 | |
| 			 */
 | |
| 			else if (Sgl_iszero_exponent(opnd3) &&
 | |
| 			    Is_underflowtrap_enabled()) {
 | |
|                     		/* need to normalize results mantissa */
 | |
|                     		sign_save = Sgl_signextendedsign(opnd3);
 | |
| 				result_exponent = 0;
 | |
|                     		Sgl_leftshiftby1(opnd3);
 | |
|                     		Sgl_normalize(opnd3,result_exponent);
 | |
|                     		Sgl_set_sign(opnd3,/*using*/sign_save);
 | |
|                     		Sgl_setwrapped_exponent(opnd3,result_exponent,
 | |
| 							unfl);
 | |
|                     		Sgl_copytoptr(opnd3,dstptr);
 | |
|                     		/* inexact = FALSE */
 | |
|                     		return(OPC_2E_UNDERFLOWEXCEPTION);
 | |
| 			}
 | |
| 			Sgl_copytoptr(opnd3,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
| 		/* is denormalized; want to normalize */
 | |
| 		Sgl_clear_signexponent(opnd2);
 | |
| 		Sgl_leftshiftby1(opnd2);
 | |
| 		Sgl_normalize(opnd2,mpy_exponent);
 | |
| 	}
 | |
| 
 | |
| 	/* Multiply the first two source mantissas together */
 | |
| 
 | |
| 	/* 
 | |
| 	 * The intermediate result will be kept in tmpres,
 | |
| 	 * which needs enough room for 106 bits of mantissa,
 | |
| 	 * so lets call it a Double extended.
 | |
| 	 */
 | |
| 	Sglext_setzero(tmpresp1,tmpresp2);
 | |
| 
 | |
| 	/* 
 | |
| 	 * Four bits at a time are inspected in each loop, and a 
 | |
| 	 * simple shift and add multiply algorithm is used. 
 | |
| 	 */ 
 | |
| 	for (count = SGL_P-1; count >= 0; count -= 4) {
 | |
| 		Sglext_rightshiftby4(tmpresp1,tmpresp2);
 | |
| 		if (Sbit28(opnd1)) {
 | |
| 	 		/* Twoword_add should be an ADD followed by 2 ADDC's */
 | |
| 			Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0);
 | |
| 		}
 | |
| 		if (Sbit29(opnd1)) {
 | |
| 			Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0);
 | |
| 		}
 | |
| 		if (Sbit30(opnd1)) {
 | |
| 			Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0);
 | |
| 		}
 | |
| 		if (Sbit31(opnd1)) {
 | |
| 			Twoword_add(tmpresp1, tmpresp2, opnd2, 0);
 | |
| 		}
 | |
| 		Sgl_rightshiftby4(opnd1);
 | |
| 	}
 | |
| 	if (Is_sexthiddenoverflow(tmpresp1)) {
 | |
| 		/* result mantissa >= 2 (mantissa overflow) */
 | |
| 		mpy_exponent++;
 | |
| 		Sglext_rightshiftby4(tmpresp1,tmpresp2);
 | |
| 	} else {
 | |
| 		Sglext_rightshiftby3(tmpresp1,tmpresp2);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore the sign of the mpy result which was saved in resultp1.
 | |
| 	 * The exponent will continue to be kept in mpy_exponent.
 | |
| 	 */
 | |
| 	Sglext_set_sign(tmpresp1,Sgl_sign(resultp1));
 | |
| 
 | |
| 	/* 
 | |
| 	 * No rounding is required, since the result of the multiply
 | |
| 	 * is exact in the extended format.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we are ready to perform the add portion of the operation.
 | |
| 	 *
 | |
| 	 * The exponents need to be kept as integers for now, since the
 | |
| 	 * multiply result might not fit into the exponent field.  We
 | |
| 	 * can't overflow or underflow because of this yet, since the
 | |
| 	 * add could bring the final result back into range.
 | |
| 	 */
 | |
| 	add_exponent = Sgl_exponent(opnd3);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for denormalized or zero add operand.
 | |
| 	 */
 | |
| 	if (add_exponent == 0) {
 | |
| 		/* check for zero */
 | |
| 		if (Sgl_iszero_mantissa(opnd3)) {
 | |
| 			/* right is zero */
 | |
| 			/* Left can't be zero and must be result.
 | |
| 			 *
 | |
| 			 * The final result is now in tmpres and mpy_exponent,
 | |
| 			 * and needs to be rounded and squeezed back into
 | |
| 			 * double precision format from double extended.
 | |
| 			 */
 | |
| 			result_exponent = mpy_exponent;
 | |
| 			Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2);
 | |
| 			sign_save = Sgl_signextendedsign(resultp1);/*save sign*/
 | |
| 			goto round;
 | |
| 		}
 | |
| 
 | |
| 		/* 
 | |
| 		 * Neither are zeroes.  
 | |
| 		 * Adjust exponent and normalize add operand.
 | |
| 		 */
 | |
| 		sign_save = Sgl_signextendedsign(opnd3);	/* save sign */
 | |
| 		Sgl_clear_signexponent(opnd3);
 | |
| 		Sgl_leftshiftby1(opnd3);
 | |
| 		Sgl_normalize(opnd3,add_exponent);
 | |
| 		Sgl_set_sign(opnd3,sign_save);		/* restore sign */
 | |
| 	} else {
 | |
| 		Sgl_clear_exponent_set_hidden(opnd3);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Copy opnd3 to the double extended variable called right.
 | |
| 	 */
 | |
| 	Sgl_copyto_sglext(opnd3,rightp1,rightp2);
 | |
| 
 | |
| 	/*
 | |
| 	 * A zero "save" helps discover equal operands (for later),
 | |
| 	 * and is used in swapping operands (if needed).
 | |
| 	 */
 | |
| 	Sglext_xortointp1(tmpresp1,rightp1,/*to*/save);
 | |
| 
 | |
| 	/*
 | |
| 	 * Compare magnitude of operands.
 | |
| 	 */
 | |
| 	Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1);
 | |
| 	Sglext_copytoint_exponentmantissa(rightp1,signlessright1);
 | |
| 	if (mpy_exponent < add_exponent || mpy_exponent == add_exponent &&
 | |
| 	    Sglext_ismagnitudeless(signlessleft1,signlessright1)) {
 | |
| 		/*
 | |
| 		 * Set the left operand to the larger one by XOR swap.
 | |
| 		 * First finish the first word "save".
 | |
| 		 */
 | |
| 		Sglext_xorfromintp1(save,rightp1,/*to*/rightp1);
 | |
| 		Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1);
 | |
| 		Sglext_swap_lower(tmpresp2,rightp2);
 | |
| 		/* also setup exponents used in rest of routine */
 | |
| 		diff_exponent = add_exponent - mpy_exponent;
 | |
| 		result_exponent = add_exponent;
 | |
| 	} else {
 | |
| 		/* also setup exponents used in rest of routine */
 | |
| 		diff_exponent = mpy_exponent - add_exponent;
 | |
| 		result_exponent = mpy_exponent;
 | |
| 	}
 | |
| 	/* Invariant: left is not smaller than right. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Special case alignment of operands that would force alignment
 | |
| 	 * beyond the extent of the extension.  A further optimization
 | |
| 	 * could special case this but only reduces the path length for
 | |
| 	 * this infrequent case.
 | |
| 	 */
 | |
| 	if (diff_exponent > SGLEXT_THRESHOLD) {
 | |
| 		diff_exponent = SGLEXT_THRESHOLD;
 | |
| 	}
 | |
| 
 | |
| 	/* Align right operand by shifting it to the right */
 | |
| 	Sglext_clear_sign(rightp1);
 | |
| 	Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent);
 | |
| 	
 | |
| 	/* Treat sum and difference of the operands separately. */
 | |
| 	if ((int)save < 0) {
 | |
| 		/*
 | |
| 		 * Difference of the two operands.  Overflow can occur if the
 | |
| 		 * multiply overflowed.  A borrow can occur out of the hidden
 | |
| 		 * bit and force a post normalization phase.
 | |
| 		 */
 | |
| 		Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2,
 | |
| 			resultp1,resultp2);
 | |
| 		sign_save = Sgl_signextendedsign(resultp1);
 | |
| 		if (Sgl_iszero_hidden(resultp1)) {
 | |
| 			/* Handle normalization */
 | |
| 		/* A straightforward algorithm would now shift the
 | |
| 		 * result and extension left until the hidden bit
 | |
| 		 * becomes one.  Not all of the extension bits need
 | |
| 		 * participate in the shift.  Only the two most 
 | |
| 		 * significant bits (round and guard) are needed.
 | |
| 		 * If only a single shift is needed then the guard
 | |
| 		 * bit becomes a significant low order bit and the
 | |
| 		 * extension must participate in the rounding.
 | |
| 		 * If more than a single shift is needed, then all
 | |
| 		 * bits to the right of the guard bit are zeros, 
 | |
| 		 * and the guard bit may or may not be zero. */
 | |
| 			Sglext_leftshiftby1(resultp1,resultp2);
 | |
| 
 | |
| 			/* Need to check for a zero result.  The sign and
 | |
| 			 * exponent fields have already been zeroed.  The more
 | |
| 			 * efficient test of the full object can be used.
 | |
| 			 */
 | |
| 			 if (Sglext_iszero(resultp1,resultp2)) {
 | |
| 				/* Must have been "x-x" or "x+(-x)". */
 | |
| 				if (Is_rounding_mode(ROUNDMINUS))
 | |
| 					Sgl_setone_sign(resultp1);
 | |
| 				Sgl_copytoptr(resultp1,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 			result_exponent--;
 | |
| 
 | |
| 			/* Look to see if normalization is finished. */
 | |
| 			if (Sgl_isone_hidden(resultp1)) {
 | |
| 				/* No further normalization is needed */
 | |
| 				goto round;
 | |
| 			}
 | |
| 
 | |
| 			/* Discover first one bit to determine shift amount.
 | |
| 			 * Use a modified binary search.  We have already
 | |
| 			 * shifted the result one position right and still
 | |
| 			 * not found a one so the remainder of the extension
 | |
| 			 * must be zero and simplifies rounding. */
 | |
| 			/* Scan bytes */
 | |
| 			while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) {
 | |
| 				Sglext_leftshiftby8(resultp1,resultp2);
 | |
| 				result_exponent -= 8;
 | |
| 			}
 | |
| 			/* Now narrow it down to the nibble */
 | |
| 			if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) {
 | |
| 				/* The lower nibble contains the
 | |
| 				 * normalizing one */
 | |
| 				Sglext_leftshiftby4(resultp1,resultp2);
 | |
| 				result_exponent -= 4;
 | |
| 			}
 | |
| 			/* Select case where first bit is set (already
 | |
| 			 * normalized) otherwise select the proper shift. */
 | |
| 			jumpsize = Sgl_hiddenhigh3mantissa(resultp1);
 | |
| 			if (jumpsize <= 7) switch(jumpsize) {
 | |
| 			case 1:
 | |
| 				Sglext_leftshiftby3(resultp1,resultp2);
 | |
| 				result_exponent -= 3;
 | |
| 				break;
 | |
| 			case 2:
 | |
| 			case 3:
 | |
| 				Sglext_leftshiftby2(resultp1,resultp2);
 | |
| 				result_exponent -= 2;
 | |
| 				break;
 | |
| 			case 4:
 | |
| 			case 5:
 | |
| 			case 6:
 | |
| 			case 7:
 | |
| 				Sglext_leftshiftby1(resultp1,resultp2);
 | |
| 				result_exponent -= 1;
 | |
| 				break;
 | |
| 			}
 | |
| 		} /* end if (hidden...)... */
 | |
| 	/* Fall through and round */
 | |
| 	} /* end if (save < 0)... */
 | |
| 	else {
 | |
| 		/* Add magnitudes */
 | |
| 		Sglext_addition(tmpresp1,tmpresp2,
 | |
| 			rightp1,rightp2, /*to*/resultp1,resultp2);
 | |
| 		sign_save = Sgl_signextendedsign(resultp1);
 | |
| 		if (Sgl_isone_hiddenoverflow(resultp1)) {
 | |
| 	    		/* Prenormalization required. */
 | |
| 	    		Sglext_arithrightshiftby1(resultp1,resultp2);
 | |
| 	    		result_exponent++;
 | |
| 		} /* end if hiddenoverflow... */
 | |
| 	} /* end else ...add magnitudes... */
 | |
| 
 | |
| 	/* Round the result.  If the extension and lower two words are
 | |
| 	 * all zeros, then the result is exact.  Otherwise round in the
 | |
| 	 * correct direction.  Underflow is possible. If a postnormalization
 | |
| 	 * is necessary, then the mantissa is all zeros so no shift is needed.
 | |
| 	 */
 | |
|   round:
 | |
| 	if (result_exponent <= 0 && !Is_underflowtrap_enabled()) {
 | |
| 		Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny);
 | |
| 	}
 | |
| 	Sgl_set_sign(resultp1,/*using*/sign_save);
 | |
| 	if (Sglext_isnotzero_mantissap2(resultp2)) {
 | |
| 		inexact = TRUE;
 | |
| 		switch(Rounding_mode()) {
 | |
| 		case ROUNDNEAREST: /* The default. */
 | |
| 			if (Sglext_isone_highp2(resultp2)) {
 | |
| 				/* at least 1/2 ulp */
 | |
| 				if (Sglext_isnotzero_low31p2(resultp2) ||
 | |
| 				    Sglext_isone_lowp1(resultp1)) {
 | |
| 					/* either exactly half way and odd or
 | |
| 					 * more than 1/2ulp */
 | |
| 					Sgl_increment(resultp1);
 | |
| 				}
 | |
| 			}
 | |
| 	    		break;
 | |
| 
 | |
| 		case ROUNDPLUS:
 | |
| 	    		if (Sgl_iszero_sign(resultp1)) {
 | |
| 				/* Round up positive results */
 | |
| 				Sgl_increment(resultp1);
 | |
| 			}
 | |
| 			break;
 | |
| 	    
 | |
| 		case ROUNDMINUS:
 | |
| 	    		if (Sgl_isone_sign(resultp1)) {
 | |
| 				/* Round down negative results */
 | |
| 				Sgl_increment(resultp1);
 | |
| 			}
 | |
| 	    
 | |
| 		case ROUNDZERO:;
 | |
| 			/* truncate is simple */
 | |
| 		} /* end switch... */
 | |
| 		if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++;
 | |
| 	}
 | |
| 	if (result_exponent >= SGL_INFINITY_EXPONENT) {
 | |
| 		/* Overflow */
 | |
| 		if (Is_overflowtrap_enabled()) {
 | |
|                         /*
 | |
|                          * Adjust bias of result
 | |
|                          */
 | |
|                         Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl);
 | |
|                         Sgl_copytoptr(resultp1,dstptr);
 | |
|                         if (inexact)
 | |
|                             if (Is_inexacttrap_enabled())
 | |
|                                 return (OPC_2E_OVERFLOWEXCEPTION |
 | |
| 					OPC_2E_INEXACTEXCEPTION);
 | |
|                             else Set_inexactflag();
 | |
|                         return (OPC_2E_OVERFLOWEXCEPTION);
 | |
| 		}
 | |
| 		inexact = TRUE;
 | |
| 		Set_overflowflag();
 | |
| 		Sgl_setoverflow(resultp1);
 | |
| 	} else if (result_exponent <= 0) {	/* underflow case */
 | |
| 		if (Is_underflowtrap_enabled()) {
 | |
|                         /*
 | |
|                          * Adjust bias of result
 | |
|                          */
 | |
|                 	Sgl_setwrapped_exponent(resultp1,result_exponent,unfl);
 | |
| 			Sgl_copytoptr(resultp1,dstptr);
 | |
|                         if (inexact)
 | |
|                             if (Is_inexacttrap_enabled())
 | |
|                                 return (OPC_2E_UNDERFLOWEXCEPTION |
 | |
| 					OPC_2E_INEXACTEXCEPTION);
 | |
|                             else Set_inexactflag();
 | |
| 	    		return(OPC_2E_UNDERFLOWEXCEPTION);
 | |
| 		}
 | |
| 		else if (inexact && is_tiny) Set_underflowflag();
 | |
| 	}
 | |
| 	else Sgl_set_exponent(resultp1,result_exponent);
 | |
| 	Sgl_copytoptr(resultp1,dstptr);
 | |
| 	if (inexact) 
 | |
| 		if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION);
 | |
| 		else Set_inexactflag();
 | |
|     	return(NOEXCEPTION);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Single Floating-point Multiply Negate Fused Add
 | |
|  */
 | |
| 
 | |
| sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
 | |
| 
 | |
| sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr;
 | |
| unsigned int *status;
 | |
| {
 | |
| 	unsigned int opnd1, opnd2, opnd3;
 | |
| 	register unsigned int tmpresp1, tmpresp2;
 | |
| 	unsigned int rightp1, rightp2;
 | |
| 	unsigned int resultp1, resultp2 = 0;
 | |
| 	register int mpy_exponent, add_exponent, count;
 | |
| 	boolean inexact = FALSE, is_tiny = FALSE;
 | |
| 
 | |
| 	unsigned int signlessleft1, signlessright1, save;
 | |
| 	register int result_exponent, diff_exponent;
 | |
| 	int sign_save, jumpsize;
 | |
| 	
 | |
| 	Sgl_copyfromptr(src1ptr,opnd1);
 | |
| 	Sgl_copyfromptr(src2ptr,opnd2);
 | |
| 	Sgl_copyfromptr(src3ptr,opnd3);
 | |
| 
 | |
| 	/* 
 | |
| 	 * set sign bit of result of multiply
 | |
| 	 */
 | |
| 	if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) 
 | |
| 		Sgl_setzero(resultp1);
 | |
| 	else 
 | |
| 		Sgl_setnegativezero(resultp1); 
 | |
| 
 | |
| 	/*
 | |
| 	 * Generate multiply exponent 
 | |
| 	 */
 | |
| 	mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS;
 | |
| 
 | |
| 	/*
 | |
| 	 * check first operand for NaN's or infinity
 | |
| 	 */
 | |
| 	if (Sgl_isinfinity_exponent(opnd1)) {
 | |
| 		if (Sgl_iszero_mantissa(opnd1)) {
 | |
| 			if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) {
 | |
| 				if (Sgl_iszero_exponentmantissa(opnd2)) {
 | |
| 					/* 
 | |
| 					 * invalid since operands are infinity 
 | |
| 					 * and zero 
 | |
| 					 */
 | |
| 					if (Is_invalidtrap_enabled())
 | |
| 						return(OPC_2E_INVALIDEXCEPTION);
 | |
| 					Set_invalidflag();
 | |
| 					Sgl_makequietnan(resultp1);
 | |
| 					Sgl_copytoptr(resultp1,dstptr);
 | |
| 					return(NOEXCEPTION);
 | |
| 				}
 | |
| 				/*
 | |
| 				 * Check third operand for infinity with a
 | |
| 				 *  sign opposite of the multiply result
 | |
| 				 */
 | |
| 				if (Sgl_isinfinity(opnd3) &&
 | |
| 				    (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) {
 | |
| 					/* 
 | |
| 					 * invalid since attempting a magnitude
 | |
| 					 * subtraction of infinities
 | |
| 					 */
 | |
| 					if (Is_invalidtrap_enabled())
 | |
| 						return(OPC_2E_INVALIDEXCEPTION);
 | |
| 					Set_invalidflag();
 | |
| 					Sgl_makequietnan(resultp1);
 | |
| 					Sgl_copytoptr(resultp1,dstptr);
 | |
| 					return(NOEXCEPTION);
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 			 	 * return infinity
 | |
| 			 	 */
 | |
| 				Sgl_setinfinity_exponentmantissa(resultp1);
 | |
| 				Sgl_copytoptr(resultp1,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			/*
 | |
| 		 	 * is NaN; signaling or quiet?
 | |
| 		 	 */
 | |
| 			if (Sgl_isone_signaling(opnd1)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled()) 
 | |
| 			    		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Sgl_set_quiet(opnd1);
 | |
| 			}
 | |
| 			/* 
 | |
| 			 * is second operand a signaling NaN? 
 | |
| 			 */
 | |
| 			else if (Sgl_is_signalingnan(opnd2)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled())
 | |
| 			    		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Sgl_set_quiet(opnd2);
 | |
| 				Sgl_copytoptr(opnd2,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 			/* 
 | |
| 			 * is third operand a signaling NaN? 
 | |
| 			 */
 | |
| 			else if (Sgl_is_signalingnan(opnd3)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled())
 | |
| 			    		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Sgl_set_quiet(opnd3);
 | |
| 				Sgl_copytoptr(opnd3,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 			/*
 | |
| 		 	 * return quiet NaN
 | |
| 		 	 */
 | |
| 			Sgl_copytoptr(opnd1,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * check second operand for NaN's or infinity
 | |
| 	 */
 | |
| 	if (Sgl_isinfinity_exponent(opnd2)) {
 | |
| 		if (Sgl_iszero_mantissa(opnd2)) {
 | |
| 			if (Sgl_isnotnan(opnd3)) {
 | |
| 				if (Sgl_iszero_exponentmantissa(opnd1)) {
 | |
| 					/* 
 | |
| 					 * invalid since multiply operands are
 | |
| 					 * zero & infinity
 | |
| 					 */
 | |
| 					if (Is_invalidtrap_enabled())
 | |
| 						return(OPC_2E_INVALIDEXCEPTION);
 | |
| 					Set_invalidflag();
 | |
| 					Sgl_makequietnan(opnd2);
 | |
| 					Sgl_copytoptr(opnd2,dstptr);
 | |
| 					return(NOEXCEPTION);
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				 * Check third operand for infinity with a
 | |
| 				 *  sign opposite of the multiply result
 | |
| 				 */
 | |
| 				if (Sgl_isinfinity(opnd3) &&
 | |
| 				    (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) {
 | |
| 					/* 
 | |
| 					 * invalid since attempting a magnitude
 | |
| 					 * subtraction of infinities
 | |
| 					 */
 | |
| 					if (Is_invalidtrap_enabled())
 | |
| 				       		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				       	Set_invalidflag();
 | |
| 				       	Sgl_makequietnan(resultp1);
 | |
| 					Sgl_copytoptr(resultp1,dstptr);
 | |
| 					return(NOEXCEPTION);
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				 * return infinity
 | |
| 				 */
 | |
| 				Sgl_setinfinity_exponentmantissa(resultp1);
 | |
| 				Sgl_copytoptr(resultp1,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * is NaN; signaling or quiet?
 | |
| 			 */
 | |
| 			if (Sgl_isone_signaling(opnd2)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled())
 | |
| 					return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Sgl_set_quiet(opnd2);
 | |
| 			}
 | |
| 			/* 
 | |
| 			 * is third operand a signaling NaN? 
 | |
| 			 */
 | |
| 			else if (Sgl_is_signalingnan(opnd3)) {
 | |
| 			       	/* trap if INVALIDTRAP enabled */
 | |
| 			       	if (Is_invalidtrap_enabled())
 | |
| 				   		return(OPC_2E_INVALIDEXCEPTION);
 | |
| 			       	/* make NaN quiet */
 | |
| 			       	Set_invalidflag();
 | |
| 			       	Sgl_set_quiet(opnd3);
 | |
| 				Sgl_copytoptr(opnd3,dstptr);
 | |
| 		       		return(NOEXCEPTION);
 | |
| 			}
 | |
| 			/*
 | |
| 			 * return quiet NaN
 | |
| 			 */
 | |
| 			Sgl_copytoptr(opnd2,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * check third operand for NaN's or infinity
 | |
| 	 */
 | |
| 	if (Sgl_isinfinity_exponent(opnd3)) {
 | |
| 		if (Sgl_iszero_mantissa(opnd3)) {
 | |
| 			/* return infinity */
 | |
| 			Sgl_copytoptr(opnd3,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * is NaN; signaling or quiet?
 | |
| 			 */
 | |
| 			if (Sgl_isone_signaling(opnd3)) {
 | |
| 				/* trap if INVALIDTRAP enabled */
 | |
| 				if (Is_invalidtrap_enabled())
 | |
| 					return(OPC_2E_INVALIDEXCEPTION);
 | |
| 				/* make NaN quiet */
 | |
| 				Set_invalidflag();
 | |
| 				Sgl_set_quiet(opnd3);
 | |
| 			}
 | |
| 			/*
 | |
| 			 * return quiet NaN
 | |
|  			 */
 | |
| 			Sgl_copytoptr(opnd3,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
|     	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Generate multiply mantissa
 | |
| 	 */
 | |
| 	if (Sgl_isnotzero_exponent(opnd1)) {
 | |
| 		/* set hidden bit */
 | |
| 		Sgl_clear_signexponent_set_hidden(opnd1);
 | |
| 	}
 | |
| 	else {
 | |
| 		/* check for zero */
 | |
| 		if (Sgl_iszero_mantissa(opnd1)) {
 | |
| 			/*
 | |
| 			 * Perform the add opnd3 with zero here.
 | |
| 			 */
 | |
| 			if (Sgl_iszero_exponentmantissa(opnd3)) {
 | |
| 				if (Is_rounding_mode(ROUNDMINUS)) {
 | |
| 					Sgl_or_signs(opnd3,resultp1);
 | |
| 				} else {
 | |
| 					Sgl_and_signs(opnd3,resultp1);
 | |
| 				}
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Now let's check for trapped underflow case.
 | |
| 			 */
 | |
| 			else if (Sgl_iszero_exponent(opnd3) &&
 | |
| 			         Is_underflowtrap_enabled()) {
 | |
|                     		/* need to normalize results mantissa */
 | |
|                     		sign_save = Sgl_signextendedsign(opnd3);
 | |
| 				result_exponent = 0;
 | |
|                     		Sgl_leftshiftby1(opnd3);
 | |
|                     		Sgl_normalize(opnd3,result_exponent);
 | |
|                     		Sgl_set_sign(opnd3,/*using*/sign_save);
 | |
|                     		Sgl_setwrapped_exponent(opnd3,result_exponent,
 | |
| 							unfl);
 | |
|                     		Sgl_copytoptr(opnd3,dstptr);
 | |
|                     		/* inexact = FALSE */
 | |
|                     		return(OPC_2E_UNDERFLOWEXCEPTION);
 | |
| 			}
 | |
| 			Sgl_copytoptr(opnd3,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
| 		/* is denormalized, adjust exponent */
 | |
| 		Sgl_clear_signexponent(opnd1);
 | |
| 		Sgl_leftshiftby1(opnd1);
 | |
| 		Sgl_normalize(opnd1,mpy_exponent);
 | |
| 	}
 | |
| 	/* opnd2 needs to have hidden bit set with msb in hidden bit */
 | |
| 	if (Sgl_isnotzero_exponent(opnd2)) {
 | |
| 		Sgl_clear_signexponent_set_hidden(opnd2);
 | |
| 	}
 | |
| 	else {
 | |
| 		/* check for zero */
 | |
| 		if (Sgl_iszero_mantissa(opnd2)) {
 | |
| 			/*
 | |
| 			 * Perform the add opnd3 with zero here.
 | |
| 			 */
 | |
| 			if (Sgl_iszero_exponentmantissa(opnd3)) {
 | |
| 				if (Is_rounding_mode(ROUNDMINUS)) {
 | |
| 					Sgl_or_signs(opnd3,resultp1);
 | |
| 				} else {
 | |
| 					Sgl_and_signs(opnd3,resultp1);
 | |
| 				}
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Now let's check for trapped underflow case.
 | |
| 			 */
 | |
| 			else if (Sgl_iszero_exponent(opnd3) &&
 | |
| 			    Is_underflowtrap_enabled()) {
 | |
|                     		/* need to normalize results mantissa */
 | |
|                     		sign_save = Sgl_signextendedsign(opnd3);
 | |
| 				result_exponent = 0;
 | |
|                     		Sgl_leftshiftby1(opnd3);
 | |
|                     		Sgl_normalize(opnd3,result_exponent);
 | |
|                     		Sgl_set_sign(opnd3,/*using*/sign_save);
 | |
|                     		Sgl_setwrapped_exponent(opnd3,result_exponent,
 | |
| 							unfl);
 | |
|                     		Sgl_copytoptr(opnd3,dstptr);
 | |
|                     		/* inexact = FALSE */
 | |
|                     		return(OPC_2E_UNDERFLOWEXCEPTION);
 | |
| 			}
 | |
| 			Sgl_copytoptr(opnd3,dstptr);
 | |
| 			return(NOEXCEPTION);
 | |
| 		}
 | |
| 		/* is denormalized; want to normalize */
 | |
| 		Sgl_clear_signexponent(opnd2);
 | |
| 		Sgl_leftshiftby1(opnd2);
 | |
| 		Sgl_normalize(opnd2,mpy_exponent);
 | |
| 	}
 | |
| 
 | |
| 	/* Multiply the first two source mantissas together */
 | |
| 
 | |
| 	/* 
 | |
| 	 * The intermediate result will be kept in tmpres,
 | |
| 	 * which needs enough room for 106 bits of mantissa,
 | |
| 	 * so lets call it a Double extended.
 | |
| 	 */
 | |
| 	Sglext_setzero(tmpresp1,tmpresp2);
 | |
| 
 | |
| 	/* 
 | |
| 	 * Four bits at a time are inspected in each loop, and a 
 | |
| 	 * simple shift and add multiply algorithm is used. 
 | |
| 	 */ 
 | |
| 	for (count = SGL_P-1; count >= 0; count -= 4) {
 | |
| 		Sglext_rightshiftby4(tmpresp1,tmpresp2);
 | |
| 		if (Sbit28(opnd1)) {
 | |
| 	 		/* Twoword_add should be an ADD followed by 2 ADDC's */
 | |
| 			Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0);
 | |
| 		}
 | |
| 		if (Sbit29(opnd1)) {
 | |
| 			Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0);
 | |
| 		}
 | |
| 		if (Sbit30(opnd1)) {
 | |
| 			Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0);
 | |
| 		}
 | |
| 		if (Sbit31(opnd1)) {
 | |
| 			Twoword_add(tmpresp1, tmpresp2, opnd2, 0);
 | |
| 		}
 | |
| 		Sgl_rightshiftby4(opnd1);
 | |
| 	}
 | |
| 	if (Is_sexthiddenoverflow(tmpresp1)) {
 | |
| 		/* result mantissa >= 2 (mantissa overflow) */
 | |
| 		mpy_exponent++;
 | |
| 		Sglext_rightshiftby4(tmpresp1,tmpresp2);
 | |
| 	} else {
 | |
| 		Sglext_rightshiftby3(tmpresp1,tmpresp2);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore the sign of the mpy result which was saved in resultp1.
 | |
| 	 * The exponent will continue to be kept in mpy_exponent.
 | |
| 	 */
 | |
| 	Sglext_set_sign(tmpresp1,Sgl_sign(resultp1));
 | |
| 
 | |
| 	/* 
 | |
| 	 * No rounding is required, since the result of the multiply
 | |
| 	 * is exact in the extended format.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we are ready to perform the add portion of the operation.
 | |
| 	 *
 | |
| 	 * The exponents need to be kept as integers for now, since the
 | |
| 	 * multiply result might not fit into the exponent field.  We
 | |
| 	 * can't overflow or underflow because of this yet, since the
 | |
| 	 * add could bring the final result back into range.
 | |
| 	 */
 | |
| 	add_exponent = Sgl_exponent(opnd3);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for denormalized or zero add operand.
 | |
| 	 */
 | |
| 	if (add_exponent == 0) {
 | |
| 		/* check for zero */
 | |
| 		if (Sgl_iszero_mantissa(opnd3)) {
 | |
| 			/* right is zero */
 | |
| 			/* Left can't be zero and must be result.
 | |
| 			 *
 | |
| 			 * The final result is now in tmpres and mpy_exponent,
 | |
| 			 * and needs to be rounded and squeezed back into
 | |
| 			 * double precision format from double extended.
 | |
| 			 */
 | |
| 			result_exponent = mpy_exponent;
 | |
| 			Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2);
 | |
| 			sign_save = Sgl_signextendedsign(resultp1);/*save sign*/
 | |
| 			goto round;
 | |
| 		}
 | |
| 
 | |
| 		/* 
 | |
| 		 * Neither are zeroes.  
 | |
| 		 * Adjust exponent and normalize add operand.
 | |
| 		 */
 | |
| 		sign_save = Sgl_signextendedsign(opnd3);	/* save sign */
 | |
| 		Sgl_clear_signexponent(opnd3);
 | |
| 		Sgl_leftshiftby1(opnd3);
 | |
| 		Sgl_normalize(opnd3,add_exponent);
 | |
| 		Sgl_set_sign(opnd3,sign_save);		/* restore sign */
 | |
| 	} else {
 | |
| 		Sgl_clear_exponent_set_hidden(opnd3);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Copy opnd3 to the double extended variable called right.
 | |
| 	 */
 | |
| 	Sgl_copyto_sglext(opnd3,rightp1,rightp2);
 | |
| 
 | |
| 	/*
 | |
| 	 * A zero "save" helps discover equal operands (for later),
 | |
| 	 * and is used in swapping operands (if needed).
 | |
| 	 */
 | |
| 	Sglext_xortointp1(tmpresp1,rightp1,/*to*/save);
 | |
| 
 | |
| 	/*
 | |
| 	 * Compare magnitude of operands.
 | |
| 	 */
 | |
| 	Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1);
 | |
| 	Sglext_copytoint_exponentmantissa(rightp1,signlessright1);
 | |
| 	if (mpy_exponent < add_exponent || mpy_exponent == add_exponent &&
 | |
| 	    Sglext_ismagnitudeless(signlessleft1,signlessright1)) {
 | |
| 		/*
 | |
| 		 * Set the left operand to the larger one by XOR swap.
 | |
| 		 * First finish the first word "save".
 | |
| 		 */
 | |
| 		Sglext_xorfromintp1(save,rightp1,/*to*/rightp1);
 | |
| 		Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1);
 | |
| 		Sglext_swap_lower(tmpresp2,rightp2);
 | |
| 		/* also setup exponents used in rest of routine */
 | |
| 		diff_exponent = add_exponent - mpy_exponent;
 | |
| 		result_exponent = add_exponent;
 | |
| 	} else {
 | |
| 		/* also setup exponents used in rest of routine */
 | |
| 		diff_exponent = mpy_exponent - add_exponent;
 | |
| 		result_exponent = mpy_exponent;
 | |
| 	}
 | |
| 	/* Invariant: left is not smaller than right. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Special case alignment of operands that would force alignment
 | |
| 	 * beyond the extent of the extension.  A further optimization
 | |
| 	 * could special case this but only reduces the path length for
 | |
| 	 * this infrequent case.
 | |
| 	 */
 | |
| 	if (diff_exponent > SGLEXT_THRESHOLD) {
 | |
| 		diff_exponent = SGLEXT_THRESHOLD;
 | |
| 	}
 | |
| 
 | |
| 	/* Align right operand by shifting it to the right */
 | |
| 	Sglext_clear_sign(rightp1);
 | |
| 	Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent);
 | |
| 	
 | |
| 	/* Treat sum and difference of the operands separately. */
 | |
| 	if ((int)save < 0) {
 | |
| 		/*
 | |
| 		 * Difference of the two operands.  Overflow can occur if the
 | |
| 		 * multiply overflowed.  A borrow can occur out of the hidden
 | |
| 		 * bit and force a post normalization phase.
 | |
| 		 */
 | |
| 		Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2,
 | |
| 			resultp1,resultp2);
 | |
| 		sign_save = Sgl_signextendedsign(resultp1);
 | |
| 		if (Sgl_iszero_hidden(resultp1)) {
 | |
| 			/* Handle normalization */
 | |
| 		/* A straightforward algorithm would now shift the
 | |
| 		 * result and extension left until the hidden bit
 | |
| 		 * becomes one.  Not all of the extension bits need
 | |
| 		 * participate in the shift.  Only the two most 
 | |
| 		 * significant bits (round and guard) are needed.
 | |
| 		 * If only a single shift is needed then the guard
 | |
| 		 * bit becomes a significant low order bit and the
 | |
| 		 * extension must participate in the rounding.
 | |
| 		 * If more than a single shift is needed, then all
 | |
| 		 * bits to the right of the guard bit are zeros, 
 | |
| 		 * and the guard bit may or may not be zero. */
 | |
| 			Sglext_leftshiftby1(resultp1,resultp2);
 | |
| 
 | |
| 			/* Need to check for a zero result.  The sign and
 | |
| 			 * exponent fields have already been zeroed.  The more
 | |
| 			 * efficient test of the full object can be used.
 | |
| 			 */
 | |
| 			 if (Sglext_iszero(resultp1,resultp2)) {
 | |
| 				/* Must have been "x-x" or "x+(-x)". */
 | |
| 				if (Is_rounding_mode(ROUNDMINUS))
 | |
| 					Sgl_setone_sign(resultp1);
 | |
| 				Sgl_copytoptr(resultp1,dstptr);
 | |
| 				return(NOEXCEPTION);
 | |
| 			}
 | |
| 			result_exponent--;
 | |
| 
 | |
| 			/* Look to see if normalization is finished. */
 | |
| 			if (Sgl_isone_hidden(resultp1)) {
 | |
| 				/* No further normalization is needed */
 | |
| 				goto round;
 | |
| 			}
 | |
| 
 | |
| 			/* Discover first one bit to determine shift amount.
 | |
| 			 * Use a modified binary search.  We have already
 | |
| 			 * shifted the result one position right and still
 | |
| 			 * not found a one so the remainder of the extension
 | |
| 			 * must be zero and simplifies rounding. */
 | |
| 			/* Scan bytes */
 | |
| 			while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) {
 | |
| 				Sglext_leftshiftby8(resultp1,resultp2);
 | |
| 				result_exponent -= 8;
 | |
| 			}
 | |
| 			/* Now narrow it down to the nibble */
 | |
| 			if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) {
 | |
| 				/* The lower nibble contains the
 | |
| 				 * normalizing one */
 | |
| 				Sglext_leftshiftby4(resultp1,resultp2);
 | |
| 				result_exponent -= 4;
 | |
| 			}
 | |
| 			/* Select case where first bit is set (already
 | |
| 			 * normalized) otherwise select the proper shift. */
 | |
| 			jumpsize = Sgl_hiddenhigh3mantissa(resultp1);
 | |
| 			if (jumpsize <= 7) switch(jumpsize) {
 | |
| 			case 1:
 | |
| 				Sglext_leftshiftby3(resultp1,resultp2);
 | |
| 				result_exponent -= 3;
 | |
| 				break;
 | |
| 			case 2:
 | |
| 			case 3:
 | |
| 				Sglext_leftshiftby2(resultp1,resultp2);
 | |
| 				result_exponent -= 2;
 | |
| 				break;
 | |
| 			case 4:
 | |
| 			case 5:
 | |
| 			case 6:
 | |
| 			case 7:
 | |
| 				Sglext_leftshiftby1(resultp1,resultp2);
 | |
| 				result_exponent -= 1;
 | |
| 				break;
 | |
| 			}
 | |
| 		} /* end if (hidden...)... */
 | |
| 	/* Fall through and round */
 | |
| 	} /* end if (save < 0)... */
 | |
| 	else {
 | |
| 		/* Add magnitudes */
 | |
| 		Sglext_addition(tmpresp1,tmpresp2,
 | |
| 			rightp1,rightp2, /*to*/resultp1,resultp2);
 | |
| 		sign_save = Sgl_signextendedsign(resultp1);
 | |
| 		if (Sgl_isone_hiddenoverflow(resultp1)) {
 | |
| 	    		/* Prenormalization required. */
 | |
| 	    		Sglext_arithrightshiftby1(resultp1,resultp2);
 | |
| 	    		result_exponent++;
 | |
| 		} /* end if hiddenoverflow... */
 | |
| 	} /* end else ...add magnitudes... */
 | |
| 
 | |
| 	/* Round the result.  If the extension and lower two words are
 | |
| 	 * all zeros, then the result is exact.  Otherwise round in the
 | |
| 	 * correct direction.  Underflow is possible. If a postnormalization
 | |
| 	 * is necessary, then the mantissa is all zeros so no shift is needed.
 | |
| 	 */
 | |
|   round:
 | |
| 	if (result_exponent <= 0 && !Is_underflowtrap_enabled()) {
 | |
| 		Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny);
 | |
| 	}
 | |
| 	Sgl_set_sign(resultp1,/*using*/sign_save);
 | |
| 	if (Sglext_isnotzero_mantissap2(resultp2)) {
 | |
| 		inexact = TRUE;
 | |
| 		switch(Rounding_mode()) {
 | |
| 		case ROUNDNEAREST: /* The default. */
 | |
| 			if (Sglext_isone_highp2(resultp2)) {
 | |
| 				/* at least 1/2 ulp */
 | |
| 				if (Sglext_isnotzero_low31p2(resultp2) ||
 | |
| 				    Sglext_isone_lowp1(resultp1)) {
 | |
| 					/* either exactly half way and odd or
 | |
| 					 * more than 1/2ulp */
 | |
| 					Sgl_increment(resultp1);
 | |
| 				}
 | |
| 			}
 | |
| 	    		break;
 | |
| 
 | |
| 		case ROUNDPLUS:
 | |
| 	    		if (Sgl_iszero_sign(resultp1)) {
 | |
| 				/* Round up positive results */
 | |
| 				Sgl_increment(resultp1);
 | |
| 			}
 | |
| 			break;
 | |
| 	    
 | |
| 		case ROUNDMINUS:
 | |
| 	    		if (Sgl_isone_sign(resultp1)) {
 | |
| 				/* Round down negative results */
 | |
| 				Sgl_increment(resultp1);
 | |
| 			}
 | |
| 	    
 | |
| 		case ROUNDZERO:;
 | |
| 			/* truncate is simple */
 | |
| 		} /* end switch... */
 | |
| 		if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++;
 | |
| 	}
 | |
| 	if (result_exponent >= SGL_INFINITY_EXPONENT) {
 | |
| 		/* Overflow */
 | |
| 		if (Is_overflowtrap_enabled()) {
 | |
|                         /*
 | |
|                          * Adjust bias of result
 | |
|                          */
 | |
|                         Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl);
 | |
|                         Sgl_copytoptr(resultp1,dstptr);
 | |
|                         if (inexact)
 | |
|                             if (Is_inexacttrap_enabled())
 | |
|                                 return (OPC_2E_OVERFLOWEXCEPTION |
 | |
| 					OPC_2E_INEXACTEXCEPTION);
 | |
|                             else Set_inexactflag();
 | |
|                         return (OPC_2E_OVERFLOWEXCEPTION);
 | |
| 		}
 | |
| 		inexact = TRUE;
 | |
| 		Set_overflowflag();
 | |
| 		Sgl_setoverflow(resultp1);
 | |
| 	} else if (result_exponent <= 0) {	/* underflow case */
 | |
| 		if (Is_underflowtrap_enabled()) {
 | |
|                         /*
 | |
|                          * Adjust bias of result
 | |
|                          */
 | |
|                 	Sgl_setwrapped_exponent(resultp1,result_exponent,unfl);
 | |
| 			Sgl_copytoptr(resultp1,dstptr);
 | |
|                         if (inexact)
 | |
|                             if (Is_inexacttrap_enabled())
 | |
|                                 return (OPC_2E_UNDERFLOWEXCEPTION |
 | |
| 					OPC_2E_INEXACTEXCEPTION);
 | |
|                             else Set_inexactflag();
 | |
| 	    		return(OPC_2E_UNDERFLOWEXCEPTION);
 | |
| 		}
 | |
| 		else if (inexact && is_tiny) Set_underflowflag();
 | |
| 	}
 | |
| 	else Sgl_set_exponent(resultp1,result_exponent);
 | |
| 	Sgl_copytoptr(resultp1,dstptr);
 | |
| 	if (inexact) 
 | |
| 		if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION);
 | |
| 		else Set_inexactflag();
 | |
|     	return(NOEXCEPTION);
 | |
| }
 | |
| 
 |