 744627e91c
			
		
	
	
	744627e91c
	
	
	
		
			
			Correct spelling typo in multiple drivers. Signed-off-by: Masanari Iida <standby24x7@gmail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
		
			
				
	
	
		
			897 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			897 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SRAM allocator for Blackfin on-chip memory
 | |
|  *
 | |
|  * Copyright 2004-2009 Analog Devices Inc.
 | |
|  *
 | |
|  * Licensed under the GPL-2 or later.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/miscdevice.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/fcntl.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/rtc.h>
 | |
| #include <linux/slab.h>
 | |
| #include <asm/blackfin.h>
 | |
| #include <asm/mem_map.h>
 | |
| #include "blackfin_sram.h"
 | |
| 
 | |
| /* the data structure for L1 scratchpad and DATA SRAM */
 | |
| struct sram_piece {
 | |
| 	void *paddr;
 | |
| 	int size;
 | |
| 	pid_t pid;
 | |
| 	struct sram_piece *next;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
 | |
| static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
 | |
| static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
 | |
| 
 | |
| #if L1_DATA_A_LENGTH != 0
 | |
| static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
 | |
| static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
 | |
| #endif
 | |
| 
 | |
| #if L1_DATA_B_LENGTH != 0
 | |
| static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
 | |
| static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
 | |
| #endif
 | |
| 
 | |
| #if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
 | |
| static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
 | |
| #endif
 | |
| 
 | |
| #if L1_CODE_LENGTH != 0
 | |
| static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
 | |
| static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
 | |
| static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
 | |
| #endif
 | |
| 
 | |
| #if L2_LENGTH != 0
 | |
| static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
 | |
| static struct sram_piece free_l2_sram_head, used_l2_sram_head;
 | |
| #endif
 | |
| 
 | |
| static struct kmem_cache *sram_piece_cache;
 | |
| 
 | |
| /* L1 Scratchpad SRAM initialization function */
 | |
| static void __init l1sram_init(void)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 	unsigned long reserve;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	reserve = 0;
 | |
| #else
 | |
| 	reserve = sizeof(struct l1_scratch_task_info);
 | |
| #endif
 | |
| 
 | |
| 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 | |
| 		per_cpu(free_l1_ssram_head, cpu).next =
 | |
| 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 | |
| 		if (!per_cpu(free_l1_ssram_head, cpu).next) {
 | |
| 			printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
 | |
| 		per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
 | |
| 		per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
 | |
| 		per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
 | |
| 
 | |
| 		per_cpu(used_l1_ssram_head, cpu).next = NULL;
 | |
| 
 | |
| 		/* mutex initialize */
 | |
| 		spin_lock_init(&per_cpu(l1sram_lock, cpu));
 | |
| 		printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
 | |
| 			L1_SCRATCH_LENGTH >> 10);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init l1_data_sram_init(void)
 | |
| {
 | |
| #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
 | |
| 	unsigned int cpu;
 | |
| #endif
 | |
| #if L1_DATA_A_LENGTH != 0
 | |
| 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 | |
| 		per_cpu(free_l1_data_A_sram_head, cpu).next =
 | |
| 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 | |
| 		if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
 | |
| 			printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
 | |
| 			(void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
 | |
| 		per_cpu(free_l1_data_A_sram_head, cpu).next->size =
 | |
| 			L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
 | |
| 		per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
 | |
| 		per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
 | |
| 
 | |
| 		per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
 | |
| 
 | |
| 		printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
 | |
| 			L1_DATA_A_LENGTH >> 10,
 | |
| 			per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
 | |
| 	}
 | |
| #endif
 | |
| #if L1_DATA_B_LENGTH != 0
 | |
| 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 | |
| 		per_cpu(free_l1_data_B_sram_head, cpu).next =
 | |
| 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 | |
| 		if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
 | |
| 			printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
 | |
| 			(void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
 | |
| 		per_cpu(free_l1_data_B_sram_head, cpu).next->size =
 | |
| 			L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
 | |
| 		per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
 | |
| 		per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
 | |
| 
 | |
| 		per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
 | |
| 
 | |
| 		printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
 | |
| 			L1_DATA_B_LENGTH >> 10,
 | |
| 			per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
 | |
| 		/* mutex initialize */
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
 | |
| 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
 | |
| 		spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __init l1_inst_sram_init(void)
 | |
| {
 | |
| #if L1_CODE_LENGTH != 0
 | |
| 	unsigned int cpu;
 | |
| 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 | |
| 		per_cpu(free_l1_inst_sram_head, cpu).next =
 | |
| 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 | |
| 		if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
 | |
| 			printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
 | |
| 			(void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
 | |
| 		per_cpu(free_l1_inst_sram_head, cpu).next->size =
 | |
| 			L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
 | |
| 		per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
 | |
| 		per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
 | |
| 
 | |
| 		per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
 | |
| 
 | |
| 		printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
 | |
| 			L1_CODE_LENGTH >> 10,
 | |
| 			per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
 | |
| 
 | |
| 		/* mutex initialize */
 | |
| 		spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef __ADSPBF60x__
 | |
| static irqreturn_t l2_ecc_err(int irq, void *dev_id)
 | |
| {
 | |
| 	int status;
 | |
| 
 | |
| 	printk(KERN_ERR "L2 ecc error happened\n");
 | |
| 	status = bfin_read32(L2CTL0_STAT);
 | |
| 	if (status & 0x1)
 | |
| 		printk(KERN_ERR "Core channel error type:0x%x, addr:0x%x\n",
 | |
| 			bfin_read32(L2CTL0_ET0), bfin_read32(L2CTL0_EADDR0));
 | |
| 	if (status & 0x2)
 | |
| 		printk(KERN_ERR "System channel error type:0x%x, addr:0x%x\n",
 | |
| 			bfin_read32(L2CTL0_ET1), bfin_read32(L2CTL0_EADDR1));
 | |
| 
 | |
| 	status = status >> 8;
 | |
| 	if (status)
 | |
| 		printk(KERN_ERR "L2 Bank%d error, addr:0x%x\n",
 | |
| 			status, bfin_read32(L2CTL0_ERRADDR0 + status));
 | |
| 
 | |
| 	panic("L2 Ecc error");
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void __init l2_sram_init(void)
 | |
| {
 | |
| #if L2_LENGTH != 0
 | |
| 
 | |
| #ifdef __ADSPBF60x__
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = request_irq(IRQ_L2CTL0_ECC_ERR, l2_ecc_err, 0, "l2-ecc-err",
 | |
| 			NULL);
 | |
| 	if (unlikely(ret < 0)) {
 | |
| 		printk(KERN_INFO "Fail to request l2 ecc error interrupt");
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	free_l2_sram_head.next =
 | |
| 		kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 | |
| 	if (!free_l2_sram_head.next) {
 | |
| 		printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	free_l2_sram_head.next->paddr =
 | |
| 		(void *)L2_START + (_ebss_l2 - _stext_l2);
 | |
| 	free_l2_sram_head.next->size =
 | |
| 		L2_LENGTH - (_ebss_l2 - _stext_l2);
 | |
| 	free_l2_sram_head.next->pid = 0;
 | |
| 	free_l2_sram_head.next->next = NULL;
 | |
| 
 | |
| 	used_l2_sram_head.next = NULL;
 | |
| 
 | |
| 	printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
 | |
| 		L2_LENGTH >> 10,
 | |
| 		free_l2_sram_head.next->size >> 10);
 | |
| 
 | |
| 	/* mutex initialize */
 | |
| 	spin_lock_init(&l2_sram_lock);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int __init bfin_sram_init(void)
 | |
| {
 | |
| 	sram_piece_cache = kmem_cache_create("sram_piece_cache",
 | |
| 				sizeof(struct sram_piece),
 | |
| 				0, SLAB_PANIC, NULL);
 | |
| 
 | |
| 	l1sram_init();
 | |
| 	l1_data_sram_init();
 | |
| 	l1_inst_sram_init();
 | |
| 	l2_sram_init();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| pure_initcall(bfin_sram_init);
 | |
| 
 | |
| /* SRAM allocate function */
 | |
| static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
 | |
| 		struct sram_piece *pused_head)
 | |
| {
 | |
| 	struct sram_piece *pslot, *plast, *pavail;
 | |
| 
 | |
| 	if (size <= 0 || !pfree_head || !pused_head)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Align the size */
 | |
| 	size = (size + 3) & ~3;
 | |
| 
 | |
| 	pslot = pfree_head->next;
 | |
| 	plast = pfree_head;
 | |
| 
 | |
| 	/* search an available piece slot */
 | |
| 	while (pslot != NULL && size > pslot->size) {
 | |
| 		plast = pslot;
 | |
| 		pslot = pslot->next;
 | |
| 	}
 | |
| 
 | |
| 	if (!pslot)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (pslot->size == size) {
 | |
| 		plast->next = pslot->next;
 | |
| 		pavail = pslot;
 | |
| 	} else {
 | |
| 		/* use atomic so our L1 allocator can be used atomically */
 | |
| 		pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
 | |
| 
 | |
| 		if (!pavail)
 | |
| 			return NULL;
 | |
| 
 | |
| 		pavail->paddr = pslot->paddr;
 | |
| 		pavail->size = size;
 | |
| 		pslot->paddr += size;
 | |
| 		pslot->size -= size;
 | |
| 	}
 | |
| 
 | |
| 	pavail->pid = current->pid;
 | |
| 
 | |
| 	pslot = pused_head->next;
 | |
| 	plast = pused_head;
 | |
| 
 | |
| 	/* insert new piece into used piece list !!! */
 | |
| 	while (pslot != NULL && pavail->paddr < pslot->paddr) {
 | |
| 		plast = pslot;
 | |
| 		pslot = pslot->next;
 | |
| 	}
 | |
| 
 | |
| 	pavail->next = pslot;
 | |
| 	plast->next = pavail;
 | |
| 
 | |
| 	return pavail->paddr;
 | |
| }
 | |
| 
 | |
| /* Allocate the largest available block.  */
 | |
| static void *_sram_alloc_max(struct sram_piece *pfree_head,
 | |
| 				struct sram_piece *pused_head,
 | |
| 				unsigned long *psize)
 | |
| {
 | |
| 	struct sram_piece *pslot, *pmax;
 | |
| 
 | |
| 	if (!pfree_head || !pused_head)
 | |
| 		return NULL;
 | |
| 
 | |
| 	pmax = pslot = pfree_head->next;
 | |
| 
 | |
| 	/* search an available piece slot */
 | |
| 	while (pslot != NULL) {
 | |
| 		if (pslot->size > pmax->size)
 | |
| 			pmax = pslot;
 | |
| 		pslot = pslot->next;
 | |
| 	}
 | |
| 
 | |
| 	if (!pmax)
 | |
| 		return NULL;
 | |
| 
 | |
| 	*psize = pmax->size;
 | |
| 
 | |
| 	return _sram_alloc(*psize, pfree_head, pused_head);
 | |
| }
 | |
| 
 | |
| /* SRAM free function */
 | |
| static int _sram_free(const void *addr,
 | |
| 			struct sram_piece *pfree_head,
 | |
| 			struct sram_piece *pused_head)
 | |
| {
 | |
| 	struct sram_piece *pslot, *plast, *pavail;
 | |
| 
 | |
| 	if (!pfree_head || !pused_head)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* search the relevant memory slot */
 | |
| 	pslot = pused_head->next;
 | |
| 	plast = pused_head;
 | |
| 
 | |
| 	/* search an available piece slot */
 | |
| 	while (pslot != NULL && pslot->paddr != addr) {
 | |
| 		plast = pslot;
 | |
| 		pslot = pslot->next;
 | |
| 	}
 | |
| 
 | |
| 	if (!pslot)
 | |
| 		return -1;
 | |
| 
 | |
| 	plast->next = pslot->next;
 | |
| 	pavail = pslot;
 | |
| 	pavail->pid = 0;
 | |
| 
 | |
| 	/* insert free pieces back to the free list */
 | |
| 	pslot = pfree_head->next;
 | |
| 	plast = pfree_head;
 | |
| 
 | |
| 	while (pslot != NULL && addr > pslot->paddr) {
 | |
| 		plast = pslot;
 | |
| 		pslot = pslot->next;
 | |
| 	}
 | |
| 
 | |
| 	if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
 | |
| 		plast->size += pavail->size;
 | |
| 		kmem_cache_free(sram_piece_cache, pavail);
 | |
| 	} else {
 | |
| 		pavail->next = plast->next;
 | |
| 		plast->next = pavail;
 | |
| 		plast = pavail;
 | |
| 	}
 | |
| 
 | |
| 	if (pslot && plast->paddr + plast->size == pslot->paddr) {
 | |
| 		plast->size += pslot->size;
 | |
| 		plast->next = pslot->next;
 | |
| 		kmem_cache_free(sram_piece_cache, pslot);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int sram_free(const void *addr)
 | |
| {
 | |
| 
 | |
| #if L1_CODE_LENGTH != 0
 | |
| 	if (addr >= (void *)get_l1_code_start()
 | |
| 		 && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
 | |
| 		return l1_inst_sram_free(addr);
 | |
| 	else
 | |
| #endif
 | |
| #if L1_DATA_A_LENGTH != 0
 | |
| 	if (addr >= (void *)get_l1_data_a_start()
 | |
| 		 && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
 | |
| 		return l1_data_A_sram_free(addr);
 | |
| 	else
 | |
| #endif
 | |
| #if L1_DATA_B_LENGTH != 0
 | |
| 	if (addr >= (void *)get_l1_data_b_start()
 | |
| 		 && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
 | |
| 		return l1_data_B_sram_free(addr);
 | |
| 	else
 | |
| #endif
 | |
| #if L2_LENGTH != 0
 | |
| 	if (addr >= (void *)L2_START
 | |
| 		 && addr < (void *)(L2_START + L2_LENGTH))
 | |
| 		return l2_sram_free(addr);
 | |
| 	else
 | |
| #endif
 | |
| 		return -1;
 | |
| }
 | |
| EXPORT_SYMBOL(sram_free);
 | |
| 
 | |
| void *l1_data_A_sram_alloc(size_t size)
 | |
| {
 | |
| #if L1_DATA_A_LENGTH != 0
 | |
| 	unsigned long flags;
 | |
| 	void *addr;
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 	/* add mutex operation */
 | |
| 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
 | |
| 
 | |
| 	addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
 | |
| 			&per_cpu(used_l1_data_A_sram_head, cpu));
 | |
| 
 | |
| 	/* add mutex operation */
 | |
| 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
 | |
| 
 | |
| 	pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
 | |
| 		 (long unsigned int)addr, size);
 | |
| 
 | |
| 	return addr;
 | |
| #else
 | |
| 	return NULL;
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(l1_data_A_sram_alloc);
 | |
| 
 | |
| int l1_data_A_sram_free(const void *addr)
 | |
| {
 | |
| #if L1_DATA_A_LENGTH != 0
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 	/* add mutex operation */
 | |
| 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
 | |
| 
 | |
| 	ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
 | |
| 			&per_cpu(used_l1_data_A_sram_head, cpu));
 | |
| 
 | |
| 	/* add mutex operation */
 | |
| 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
 | |
| 
 | |
| 	return ret;
 | |
| #else
 | |
| 	return -1;
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(l1_data_A_sram_free);
 | |
| 
 | |
| void *l1_data_B_sram_alloc(size_t size)
 | |
| {
 | |
| #if L1_DATA_B_LENGTH != 0
 | |
| 	unsigned long flags;
 | |
| 	void *addr;
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 	/* add mutex operation */
 | |
| 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
 | |
| 
 | |
| 	addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
 | |
| 			&per_cpu(used_l1_data_B_sram_head, cpu));
 | |
| 
 | |
| 	/* add mutex operation */
 | |
| 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
 | |
| 
 | |
| 	pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
 | |
| 		 (long unsigned int)addr, size);
 | |
| 
 | |
| 	return addr;
 | |
| #else
 | |
| 	return NULL;
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(l1_data_B_sram_alloc);
 | |
| 
 | |
| int l1_data_B_sram_free(const void *addr)
 | |
| {
 | |
| #if L1_DATA_B_LENGTH != 0
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 	/* add mutex operation */
 | |
| 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
 | |
| 
 | |
| 	ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
 | |
| 			&per_cpu(used_l1_data_B_sram_head, cpu));
 | |
| 
 | |
| 	/* add mutex operation */
 | |
| 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
 | |
| 
 | |
| 	return ret;
 | |
| #else
 | |
| 	return -1;
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(l1_data_B_sram_free);
 | |
| 
 | |
| void *l1_data_sram_alloc(size_t size)
 | |
| {
 | |
| 	void *addr = l1_data_A_sram_alloc(size);
 | |
| 
 | |
| 	if (!addr)
 | |
| 		addr = l1_data_B_sram_alloc(size);
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| EXPORT_SYMBOL(l1_data_sram_alloc);
 | |
| 
 | |
| void *l1_data_sram_zalloc(size_t size)
 | |
| {
 | |
| 	void *addr = l1_data_sram_alloc(size);
 | |
| 
 | |
| 	if (addr)
 | |
| 		memset(addr, 0x00, size);
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| EXPORT_SYMBOL(l1_data_sram_zalloc);
 | |
| 
 | |
| int l1_data_sram_free(const void *addr)
 | |
| {
 | |
| 	int ret;
 | |
| 	ret = l1_data_A_sram_free(addr);
 | |
| 	if (ret == -1)
 | |
| 		ret = l1_data_B_sram_free(addr);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(l1_data_sram_free);
 | |
| 
 | |
| void *l1_inst_sram_alloc(size_t size)
 | |
| {
 | |
| #if L1_CODE_LENGTH != 0
 | |
| 	unsigned long flags;
 | |
| 	void *addr;
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 	/* add mutex operation */
 | |
| 	spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
 | |
| 
 | |
| 	addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
 | |
| 			&per_cpu(used_l1_inst_sram_head, cpu));
 | |
| 
 | |
| 	/* add mutex operation */
 | |
| 	spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
 | |
| 
 | |
| 	pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
 | |
| 		 (long unsigned int)addr, size);
 | |
| 
 | |
| 	return addr;
 | |
| #else
 | |
| 	return NULL;
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(l1_inst_sram_alloc);
 | |
| 
 | |
| int l1_inst_sram_free(const void *addr)
 | |
| {
 | |
| #if L1_CODE_LENGTH != 0
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 	/* add mutex operation */
 | |
| 	spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
 | |
| 
 | |
| 	ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
 | |
| 			&per_cpu(used_l1_inst_sram_head, cpu));
 | |
| 
 | |
| 	/* add mutex operation */
 | |
| 	spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
 | |
| 
 | |
| 	return ret;
 | |
| #else
 | |
| 	return -1;
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(l1_inst_sram_free);
 | |
| 
 | |
| /* L1 Scratchpad memory allocate function */
 | |
| void *l1sram_alloc(size_t size)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	void *addr;
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 	/* add mutex operation */
 | |
| 	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
 | |
| 
 | |
| 	addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
 | |
| 			&per_cpu(used_l1_ssram_head, cpu));
 | |
| 
 | |
| 	/* add mutex operation */
 | |
| 	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| /* L1 Scratchpad memory allocate function */
 | |
| void *l1sram_alloc_max(size_t *psize)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	void *addr;
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 	/* add mutex operation */
 | |
| 	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
 | |
| 
 | |
| 	addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
 | |
| 			&per_cpu(used_l1_ssram_head, cpu), psize);
 | |
| 
 | |
| 	/* add mutex operation */
 | |
| 	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| /* L1 Scratchpad memory free function */
 | |
| int l1sram_free(const void *addr)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 	/* add mutex operation */
 | |
| 	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
 | |
| 
 | |
| 	ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
 | |
| 			&per_cpu(used_l1_ssram_head, cpu));
 | |
| 
 | |
| 	/* add mutex operation */
 | |
| 	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void *l2_sram_alloc(size_t size)
 | |
| {
 | |
| #if L2_LENGTH != 0
 | |
| 	unsigned long flags;
 | |
| 	void *addr;
 | |
| 
 | |
| 	/* add mutex operation */
 | |
| 	spin_lock_irqsave(&l2_sram_lock, flags);
 | |
| 
 | |
| 	addr = _sram_alloc(size, &free_l2_sram_head,
 | |
| 			&used_l2_sram_head);
 | |
| 
 | |
| 	/* add mutex operation */
 | |
| 	spin_unlock_irqrestore(&l2_sram_lock, flags);
 | |
| 
 | |
| 	pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
 | |
| 		 (long unsigned int)addr, size);
 | |
| 
 | |
| 	return addr;
 | |
| #else
 | |
| 	return NULL;
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(l2_sram_alloc);
 | |
| 
 | |
| void *l2_sram_zalloc(size_t size)
 | |
| {
 | |
| 	void *addr = l2_sram_alloc(size);
 | |
| 
 | |
| 	if (addr)
 | |
| 		memset(addr, 0x00, size);
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| EXPORT_SYMBOL(l2_sram_zalloc);
 | |
| 
 | |
| int l2_sram_free(const void *addr)
 | |
| {
 | |
| #if L2_LENGTH != 0
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* add mutex operation */
 | |
| 	spin_lock_irqsave(&l2_sram_lock, flags);
 | |
| 
 | |
| 	ret = _sram_free(addr, &free_l2_sram_head,
 | |
| 			&used_l2_sram_head);
 | |
| 
 | |
| 	/* add mutex operation */
 | |
| 	spin_unlock_irqrestore(&l2_sram_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| #else
 | |
| 	return -1;
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(l2_sram_free);
 | |
| 
 | |
| int sram_free_with_lsl(const void *addr)
 | |
| {
 | |
| 	struct sram_list_struct *lsl, **tmp;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	int ret = -1;
 | |
| 
 | |
| 	for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
 | |
| 		if ((*tmp)->addr == addr) {
 | |
| 			lsl = *tmp;
 | |
| 			ret = sram_free(addr);
 | |
| 			*tmp = lsl->next;
 | |
| 			kfree(lsl);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(sram_free_with_lsl);
 | |
| 
 | |
| /* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
 | |
|  * tracked.  These are designed for userspace so that when a process exits,
 | |
|  * we can safely reap their resources.
 | |
|  */
 | |
| void *sram_alloc_with_lsl(size_t size, unsigned long flags)
 | |
| {
 | |
| 	void *addr = NULL;
 | |
| 	struct sram_list_struct *lsl = NULL;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 
 | |
| 	lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
 | |
| 	if (!lsl)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (flags & L1_INST_SRAM)
 | |
| 		addr = l1_inst_sram_alloc(size);
 | |
| 
 | |
| 	if (addr == NULL && (flags & L1_DATA_A_SRAM))
 | |
| 		addr = l1_data_A_sram_alloc(size);
 | |
| 
 | |
| 	if (addr == NULL && (flags & L1_DATA_B_SRAM))
 | |
| 		addr = l1_data_B_sram_alloc(size);
 | |
| 
 | |
| 	if (addr == NULL && (flags & L2_SRAM))
 | |
| 		addr = l2_sram_alloc(size);
 | |
| 
 | |
| 	if (addr == NULL) {
 | |
| 		kfree(lsl);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	lsl->addr = addr;
 | |
| 	lsl->length = size;
 | |
| 	lsl->next = mm->context.sram_list;
 | |
| 	mm->context.sram_list = lsl;
 | |
| 	return addr;
 | |
| }
 | |
| EXPORT_SYMBOL(sram_alloc_with_lsl);
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| /* Once we get a real allocator, we'll throw all of this away.
 | |
|  * Until then, we need some sort of visibility into the L1 alloc.
 | |
|  */
 | |
| /* Need to keep line of output the same.  Currently, that is 44 bytes
 | |
|  * (including newline).
 | |
|  */
 | |
| static int _sram_proc_show(struct seq_file *m, const char *desc,
 | |
| 		struct sram_piece *pfree_head,
 | |
| 		struct sram_piece *pused_head)
 | |
| {
 | |
| 	struct sram_piece *pslot;
 | |
| 
 | |
| 	if (!pfree_head || !pused_head)
 | |
| 		return -1;
 | |
| 
 | |
| 	seq_printf(m, "--- SRAM %-14s Size   PID State     \n", desc);
 | |
| 
 | |
| 	/* search the relevant memory slot */
 | |
| 	pslot = pused_head->next;
 | |
| 
 | |
| 	while (pslot != NULL) {
 | |
| 		seq_printf(m, "%p-%p %10i %5i %-10s\n",
 | |
| 			pslot->paddr, pslot->paddr + pslot->size,
 | |
| 			pslot->size, pslot->pid, "ALLOCATED");
 | |
| 
 | |
| 		pslot = pslot->next;
 | |
| 	}
 | |
| 
 | |
| 	pslot = pfree_head->next;
 | |
| 
 | |
| 	while (pslot != NULL) {
 | |
| 		seq_printf(m, "%p-%p %10i %5i %-10s\n",
 | |
| 			pslot->paddr, pslot->paddr + pslot->size,
 | |
| 			pslot->size, pslot->pid, "FREE");
 | |
| 
 | |
| 		pslot = pslot->next;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| static int sram_proc_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 | |
| 		if (_sram_proc_show(m, "Scratchpad",
 | |
| 			&per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
 | |
| 			goto not_done;
 | |
| #if L1_DATA_A_LENGTH != 0
 | |
| 		if (_sram_proc_show(m, "L1 Data A",
 | |
| 			&per_cpu(free_l1_data_A_sram_head, cpu),
 | |
| 			&per_cpu(used_l1_data_A_sram_head, cpu)))
 | |
| 			goto not_done;
 | |
| #endif
 | |
| #if L1_DATA_B_LENGTH != 0
 | |
| 		if (_sram_proc_show(m, "L1 Data B",
 | |
| 			&per_cpu(free_l1_data_B_sram_head, cpu),
 | |
| 			&per_cpu(used_l1_data_B_sram_head, cpu)))
 | |
| 			goto not_done;
 | |
| #endif
 | |
| #if L1_CODE_LENGTH != 0
 | |
| 		if (_sram_proc_show(m, "L1 Instruction",
 | |
| 			&per_cpu(free_l1_inst_sram_head, cpu),
 | |
| 			&per_cpu(used_l1_inst_sram_head, cpu)))
 | |
| 			goto not_done;
 | |
| #endif
 | |
| 	}
 | |
| #if L2_LENGTH != 0
 | |
| 	if (_sram_proc_show(m, "L2", &free_l2_sram_head, &used_l2_sram_head))
 | |
| 		goto not_done;
 | |
| #endif
 | |
|  not_done:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sram_proc_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, sram_proc_show, NULL);
 | |
| }
 | |
| 
 | |
| static const struct file_operations sram_proc_ops = {
 | |
| 	.open		= sram_proc_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= single_release,
 | |
| };
 | |
| 
 | |
| static int __init sram_proc_init(void)
 | |
| {
 | |
| 	struct proc_dir_entry *ptr;
 | |
| 
 | |
| 	ptr = proc_create("sram", S_IRUGO, NULL, &sram_proc_ops);
 | |
| 	if (!ptr) {
 | |
| 		printk(KERN_WARNING "unable to create /proc/sram\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(sram_proc_init);
 | |
| #endif
 |