 db7dedd0de
			
		
	
	
	db7dedd0de
	
	
	
		
			
			When running on a system with a GICv3, we currenly don't allow the guest to access the system register interface of the GICv3. We do this by clearing the ICC_SRE_EL2.Enable, which causes all guest accesses to ICC_SRE_EL1 to trap to EL2 and causes all guest accesses to other ICC_ registers to cause an undefined exception in the guest. However, we currently don't handle the trap of guest accesses to ICC_SRE_EL1 and will spill out a warning. The trap just needs to handle the access as RAZ/WI, and a guest that tries to prod this register and set ICC_SRE_EL1.SRE=1, must read back the value (which Linux already does) to see if it succeeded, and will thus observe that ICC_SRE_EL1.SRE was not set. Add the simple trap handler in the sorted table of the system registers. Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> [ardb: added cp15 handling] Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			1537 lines
		
	
	
	
		
			43 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1537 lines
		
	
	
	
		
			43 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2012,2013 - ARM Ltd
 | |
|  * Author: Marc Zyngier <marc.zyngier@arm.com>
 | |
|  *
 | |
|  * Derived from arch/arm/kvm/coproc.c:
 | |
|  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 | |
|  * Authors: Rusty Russell <rusty@rustcorp.com.au>
 | |
|  *          Christoffer Dall <c.dall@virtualopensystems.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License, version 2, as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/kvm_arm.h>
 | |
| #include <asm/kvm_host.h>
 | |
| #include <asm/kvm_emulate.h>
 | |
| #include <asm/kvm_coproc.h>
 | |
| #include <asm/kvm_mmu.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/cputype.h>
 | |
| #include <asm/debug-monitors.h>
 | |
| #include <trace/events/kvm.h>
 | |
| 
 | |
| #include "sys_regs.h"
 | |
| 
 | |
| /*
 | |
|  * All of this file is extremly similar to the ARM coproc.c, but the
 | |
|  * types are different. My gut feeling is that it should be pretty
 | |
|  * easy to merge, but that would be an ABI breakage -- again. VFP
 | |
|  * would also need to be abstracted.
 | |
|  *
 | |
|  * For AArch32, we only take care of what is being trapped. Anything
 | |
|  * that has to do with init and userspace access has to go via the
 | |
|  * 64bit interface.
 | |
|  */
 | |
| 
 | |
| /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
 | |
| static u32 cache_levels;
 | |
| 
 | |
| /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
 | |
| #define CSSELR_MAX 12
 | |
| 
 | |
| /* Which cache CCSIDR represents depends on CSSELR value. */
 | |
| static u32 get_ccsidr(u32 csselr)
 | |
| {
 | |
| 	u32 ccsidr;
 | |
| 
 | |
| 	/* Make sure noone else changes CSSELR during this! */
 | |
| 	local_irq_disable();
 | |
| 	/* Put value into CSSELR */
 | |
| 	asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
 | |
| 	isb();
 | |
| 	/* Read result out of CCSIDR */
 | |
| 	asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	return ccsidr;
 | |
| }
 | |
| 
 | |
| static void do_dc_cisw(u32 val)
 | |
| {
 | |
| 	asm volatile("dc cisw, %x0" : : "r" (val));
 | |
| 	dsb(ish);
 | |
| }
 | |
| 
 | |
| static void do_dc_csw(u32 val)
 | |
| {
 | |
| 	asm volatile("dc csw, %x0" : : "r" (val));
 | |
| 	dsb(ish);
 | |
| }
 | |
| 
 | |
| /* See note at ARM ARM B1.14.4 */
 | |
| static bool access_dcsw(struct kvm_vcpu *vcpu,
 | |
| 			const struct sys_reg_params *p,
 | |
| 			const struct sys_reg_desc *r)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!p->is_write)
 | |
| 		return read_from_write_only(vcpu, p);
 | |
| 
 | |
| 	cpu = get_cpu();
 | |
| 
 | |
| 	cpumask_setall(&vcpu->arch.require_dcache_flush);
 | |
| 	cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
 | |
| 
 | |
| 	/* If we were already preempted, take the long way around */
 | |
| 	if (cpu != vcpu->arch.last_pcpu) {
 | |
| 		flush_cache_all();
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	val = *vcpu_reg(vcpu, p->Rt);
 | |
| 
 | |
| 	switch (p->CRm) {
 | |
| 	case 6:			/* Upgrade DCISW to DCCISW, as per HCR.SWIO */
 | |
| 	case 14:		/* DCCISW */
 | |
| 		do_dc_cisw(val);
 | |
| 		break;
 | |
| 
 | |
| 	case 10:		/* DCCSW */
 | |
| 		do_dc_csw(val);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	put_cpu();
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic accessor for VM registers. Only called as long as HCR_TVM
 | |
|  * is set.
 | |
|  */
 | |
| static bool access_vm_reg(struct kvm_vcpu *vcpu,
 | |
| 			  const struct sys_reg_params *p,
 | |
| 			  const struct sys_reg_desc *r)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	BUG_ON(!p->is_write);
 | |
| 
 | |
| 	val = *vcpu_reg(vcpu, p->Rt);
 | |
| 	if (!p->is_aarch32) {
 | |
| 		vcpu_sys_reg(vcpu, r->reg) = val;
 | |
| 	} else {
 | |
| 		if (!p->is_32bit)
 | |
| 			vcpu_cp15_64_high(vcpu, r->reg) = val >> 32;
 | |
| 		vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set.  If the
 | |
|  * guest enables the MMU, we stop trapping the VM sys_regs and leave
 | |
|  * it in complete control of the caches.
 | |
|  */
 | |
| static bool access_sctlr(struct kvm_vcpu *vcpu,
 | |
| 			 const struct sys_reg_params *p,
 | |
| 			 const struct sys_reg_desc *r)
 | |
| {
 | |
| 	access_vm_reg(vcpu, p, r);
 | |
| 
 | |
| 	if (vcpu_has_cache_enabled(vcpu)) {	/* MMU+Caches enabled? */
 | |
| 		vcpu->arch.hcr_el2 &= ~HCR_TVM;
 | |
| 		stage2_flush_vm(vcpu->kvm);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool trap_raz_wi(struct kvm_vcpu *vcpu,
 | |
| 			const struct sys_reg_params *p,
 | |
| 			const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (p->is_write)
 | |
| 		return ignore_write(vcpu, p);
 | |
| 	else
 | |
| 		return read_zero(vcpu, p);
 | |
| }
 | |
| 
 | |
| static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
 | |
| 			   const struct sys_reg_params *p,
 | |
| 			   const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (p->is_write) {
 | |
| 		return ignore_write(vcpu, p);
 | |
| 	} else {
 | |
| 		*vcpu_reg(vcpu, p->Rt) = (1 << 3);
 | |
| 		return true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
 | |
| 				   const struct sys_reg_params *p,
 | |
| 				   const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (p->is_write) {
 | |
| 		return ignore_write(vcpu, p);
 | |
| 	} else {
 | |
| 		u32 val;
 | |
| 		asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
 | |
| 		*vcpu_reg(vcpu, p->Rt) = val;
 | |
| 		return true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We want to avoid world-switching all the DBG registers all the
 | |
|  * time:
 | |
|  * 
 | |
|  * - If we've touched any debug register, it is likely that we're
 | |
|  *   going to touch more of them. It then makes sense to disable the
 | |
|  *   traps and start doing the save/restore dance
 | |
|  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 | |
|  *   then mandatory to save/restore the registers, as the guest
 | |
|  *   depends on them.
 | |
|  * 
 | |
|  * For this, we use a DIRTY bit, indicating the guest has modified the
 | |
|  * debug registers, used as follow:
 | |
|  *
 | |
|  * On guest entry:
 | |
|  * - If the dirty bit is set (because we're coming back from trapping),
 | |
|  *   disable the traps, save host registers, restore guest registers.
 | |
|  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 | |
|  *   set the dirty bit, disable the traps, save host registers,
 | |
|  *   restore guest registers.
 | |
|  * - Otherwise, enable the traps
 | |
|  *
 | |
|  * On guest exit:
 | |
|  * - If the dirty bit is set, save guest registers, restore host
 | |
|  *   registers and clear the dirty bit. This ensure that the host can
 | |
|  *   now use the debug registers.
 | |
|  */
 | |
| static bool trap_debug_regs(struct kvm_vcpu *vcpu,
 | |
| 			    const struct sys_reg_params *p,
 | |
| 			    const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (p->is_write) {
 | |
| 		vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
 | |
| 		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
 | |
| 	} else {
 | |
| 		*vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 | |
| {
 | |
| 	u64 amair;
 | |
| 
 | |
| 	asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
 | |
| 	vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
 | |
| }
 | |
| 
 | |
| static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 | |
| {
 | |
| 	/*
 | |
| 	 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
 | |
| 	 */
 | |
| 	vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
 | |
| }
 | |
| 
 | |
| /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
 | |
| #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
 | |
| 	/* DBGBVRn_EL1 */						\
 | |
| 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),	\
 | |
| 	  trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 },		\
 | |
| 	/* DBGBCRn_EL1 */						\
 | |
| 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),	\
 | |
| 	  trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 },		\
 | |
| 	/* DBGWVRn_EL1 */						\
 | |
| 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),	\
 | |
| 	  trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 },		\
 | |
| 	/* DBGWCRn_EL1 */						\
 | |
| 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),	\
 | |
| 	  trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
 | |
| 
 | |
| /*
 | |
|  * Architected system registers.
 | |
|  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
 | |
|  *
 | |
|  * We could trap ID_DFR0 and tell the guest we don't support performance
 | |
|  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
 | |
|  * NAKed, so it will read the PMCR anyway.
 | |
|  *
 | |
|  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
 | |
|  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
 | |
|  * all PM registers, which doesn't crash the guest kernel at least.
 | |
|  *
 | |
|  * Debug handling: We do trap most, if not all debug related system
 | |
|  * registers. The implementation is good enough to ensure that a guest
 | |
|  * can use these with minimal performance degradation. The drawback is
 | |
|  * that we don't implement any of the external debug, none of the
 | |
|  * OSlock protocol. This should be revisited if we ever encounter a
 | |
|  * more demanding guest...
 | |
|  */
 | |
| static const struct sys_reg_desc sys_reg_descs[] = {
 | |
| 	/* DC ISW */
 | |
| 	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
 | |
| 	  access_dcsw },
 | |
| 	/* DC CSW */
 | |
| 	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
 | |
| 	  access_dcsw },
 | |
| 	/* DC CISW */
 | |
| 	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
 | |
| 	  access_dcsw },
 | |
| 
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(0),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(1),
 | |
| 	/* MDCCINT_EL1 */
 | |
| 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
 | |
| 	  trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
 | |
| 	/* MDSCR_EL1 */
 | |
| 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
 | |
| 	  trap_debug_regs, reset_val, MDSCR_EL1, 0 },
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(2),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(3),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(4),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(5),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(6),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(7),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(8),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(9),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(10),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(11),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(12),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(13),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(14),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(15),
 | |
| 
 | |
| 	/* MDRAR_EL1 */
 | |
| 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
 | |
| 	  trap_raz_wi },
 | |
| 	/* OSLAR_EL1 */
 | |
| 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
 | |
| 	  trap_raz_wi },
 | |
| 	/* OSLSR_EL1 */
 | |
| 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
 | |
| 	  trap_oslsr_el1 },
 | |
| 	/* OSDLR_EL1 */
 | |
| 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
 | |
| 	  trap_raz_wi },
 | |
| 	/* DBGPRCR_EL1 */
 | |
| 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
 | |
| 	  trap_raz_wi },
 | |
| 	/* DBGCLAIMSET_EL1 */
 | |
| 	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
 | |
| 	  trap_raz_wi },
 | |
| 	/* DBGCLAIMCLR_EL1 */
 | |
| 	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
 | |
| 	  trap_raz_wi },
 | |
| 	/* DBGAUTHSTATUS_EL1 */
 | |
| 	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
 | |
| 	  trap_dbgauthstatus_el1 },
 | |
| 
 | |
| 	/* TEECR32_EL1 */
 | |
| 	{ Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
 | |
| 	  NULL, reset_val, TEECR32_EL1, 0 },
 | |
| 	/* TEEHBR32_EL1 */
 | |
| 	{ Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
 | |
| 	  NULL, reset_val, TEEHBR32_EL1, 0 },
 | |
| 
 | |
| 	/* MDCCSR_EL1 */
 | |
| 	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
 | |
| 	  trap_raz_wi },
 | |
| 	/* DBGDTR_EL0 */
 | |
| 	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
 | |
| 	  trap_raz_wi },
 | |
| 	/* DBGDTR[TR]X_EL0 */
 | |
| 	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
 | |
| 	  trap_raz_wi },
 | |
| 
 | |
| 	/* DBGVCR32_EL2 */
 | |
| 	{ Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
 | |
| 	  NULL, reset_val, DBGVCR32_EL2, 0 },
 | |
| 
 | |
| 	/* MPIDR_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
 | |
| 	  NULL, reset_mpidr, MPIDR_EL1 },
 | |
| 	/* SCTLR_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
 | |
| 	  access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
 | |
| 	/* CPACR_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
 | |
| 	  NULL, reset_val, CPACR_EL1, 0 },
 | |
| 	/* TTBR0_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
 | |
| 	  access_vm_reg, reset_unknown, TTBR0_EL1 },
 | |
| 	/* TTBR1_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
 | |
| 	  access_vm_reg, reset_unknown, TTBR1_EL1 },
 | |
| 	/* TCR_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
 | |
| 	  access_vm_reg, reset_val, TCR_EL1, 0 },
 | |
| 
 | |
| 	/* AFSR0_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
 | |
| 	  access_vm_reg, reset_unknown, AFSR0_EL1 },
 | |
| 	/* AFSR1_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
 | |
| 	  access_vm_reg, reset_unknown, AFSR1_EL1 },
 | |
| 	/* ESR_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
 | |
| 	  access_vm_reg, reset_unknown, ESR_EL1 },
 | |
| 	/* FAR_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
 | |
| 	  access_vm_reg, reset_unknown, FAR_EL1 },
 | |
| 	/* PAR_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
 | |
| 	  NULL, reset_unknown, PAR_EL1 },
 | |
| 
 | |
| 	/* PMINTENSET_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
 | |
| 	  trap_raz_wi },
 | |
| 	/* PMINTENCLR_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
 | |
| 	  trap_raz_wi },
 | |
| 
 | |
| 	/* MAIR_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
 | |
| 	  access_vm_reg, reset_unknown, MAIR_EL1 },
 | |
| 	/* AMAIR_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
 | |
| 	  access_vm_reg, reset_amair_el1, AMAIR_EL1 },
 | |
| 
 | |
| 	/* VBAR_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
 | |
| 	  NULL, reset_val, VBAR_EL1, 0 },
 | |
| 
 | |
| 	/* ICC_SRE_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
 | |
| 	  trap_raz_wi },
 | |
| 
 | |
| 	/* CONTEXTIDR_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
 | |
| 	  access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
 | |
| 	/* TPIDR_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
 | |
| 	  NULL, reset_unknown, TPIDR_EL1 },
 | |
| 
 | |
| 	/* CNTKCTL_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
 | |
| 	  NULL, reset_val, CNTKCTL_EL1, 0},
 | |
| 
 | |
| 	/* CSSELR_EL1 */
 | |
| 	{ Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
 | |
| 	  NULL, reset_unknown, CSSELR_EL1 },
 | |
| 
 | |
| 	/* PMCR_EL0 */
 | |
| 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
 | |
| 	  trap_raz_wi },
 | |
| 	/* PMCNTENSET_EL0 */
 | |
| 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
 | |
| 	  trap_raz_wi },
 | |
| 	/* PMCNTENCLR_EL0 */
 | |
| 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
 | |
| 	  trap_raz_wi },
 | |
| 	/* PMOVSCLR_EL0 */
 | |
| 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
 | |
| 	  trap_raz_wi },
 | |
| 	/* PMSWINC_EL0 */
 | |
| 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
 | |
| 	  trap_raz_wi },
 | |
| 	/* PMSELR_EL0 */
 | |
| 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
 | |
| 	  trap_raz_wi },
 | |
| 	/* PMCEID0_EL0 */
 | |
| 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
 | |
| 	  trap_raz_wi },
 | |
| 	/* PMCEID1_EL0 */
 | |
| 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
 | |
| 	  trap_raz_wi },
 | |
| 	/* PMCCNTR_EL0 */
 | |
| 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
 | |
| 	  trap_raz_wi },
 | |
| 	/* PMXEVTYPER_EL0 */
 | |
| 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
 | |
| 	  trap_raz_wi },
 | |
| 	/* PMXEVCNTR_EL0 */
 | |
| 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
 | |
| 	  trap_raz_wi },
 | |
| 	/* PMUSERENR_EL0 */
 | |
| 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
 | |
| 	  trap_raz_wi },
 | |
| 	/* PMOVSSET_EL0 */
 | |
| 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
 | |
| 	  trap_raz_wi },
 | |
| 
 | |
| 	/* TPIDR_EL0 */
 | |
| 	{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
 | |
| 	  NULL, reset_unknown, TPIDR_EL0 },
 | |
| 	/* TPIDRRO_EL0 */
 | |
| 	{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
 | |
| 	  NULL, reset_unknown, TPIDRRO_EL0 },
 | |
| 
 | |
| 	/* DACR32_EL2 */
 | |
| 	{ Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
 | |
| 	  NULL, reset_unknown, DACR32_EL2 },
 | |
| 	/* IFSR32_EL2 */
 | |
| 	{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
 | |
| 	  NULL, reset_unknown, IFSR32_EL2 },
 | |
| 	/* FPEXC32_EL2 */
 | |
| 	{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
 | |
| 	  NULL, reset_val, FPEXC32_EL2, 0x70 },
 | |
| };
 | |
| 
 | |
| static bool trap_dbgidr(struct kvm_vcpu *vcpu,
 | |
| 			const struct sys_reg_params *p,
 | |
| 			const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (p->is_write) {
 | |
| 		return ignore_write(vcpu, p);
 | |
| 	} else {
 | |
| 		u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
 | |
| 		u64 pfr = read_cpuid(ID_AA64PFR0_EL1);
 | |
| 		u32 el3 = !!((pfr >> 12) & 0xf);
 | |
| 
 | |
| 		*vcpu_reg(vcpu, p->Rt) = ((((dfr >> 20) & 0xf) << 28) |
 | |
| 					  (((dfr >> 12) & 0xf) << 24) |
 | |
| 					  (((dfr >> 28) & 0xf) << 20) |
 | |
| 					  (6 << 16) | (el3 << 14) | (el3 << 12));
 | |
| 		return true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool trap_debug32(struct kvm_vcpu *vcpu,
 | |
| 			 const struct sys_reg_params *p,
 | |
| 			 const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (p->is_write) {
 | |
| 		vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
 | |
| 		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
 | |
| 	} else {
 | |
| 		*vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #define DBG_BCR_BVR_WCR_WVR(n)					\
 | |
| 	/* DBGBVRn */						\
 | |
| 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_debug32,	\
 | |
| 	  NULL, (cp14_DBGBVR0 + (n) * 2) },			\
 | |
| 	/* DBGBCRn */						\
 | |
| 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_debug32,	\
 | |
| 	  NULL, (cp14_DBGBCR0 + (n) * 2) },			\
 | |
| 	/* DBGWVRn */						\
 | |
| 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_debug32,	\
 | |
| 	  NULL, (cp14_DBGWVR0 + (n) * 2) },			\
 | |
| 	/* DBGWCRn */						\
 | |
| 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_debug32,	\
 | |
| 	  NULL, (cp14_DBGWCR0 + (n) * 2) }
 | |
| 
 | |
| #define DBGBXVR(n)						\
 | |
| 	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_debug32,	\
 | |
| 	  NULL, cp14_DBGBXVR0 + n * 2 }
 | |
| 
 | |
| /*
 | |
|  * Trapped cp14 registers. We generally ignore most of the external
 | |
|  * debug, on the principle that they don't really make sense to a
 | |
|  * guest. Revisit this one day, whould this principle change.
 | |
|  */
 | |
| static const struct sys_reg_desc cp14_regs[] = {
 | |
| 	/* DBGIDR */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
 | |
| 	/* DBGDTRRXext */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
 | |
| 
 | |
| 	DBG_BCR_BVR_WCR_WVR(0),
 | |
| 	/* DBGDSCRint */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
 | |
| 	DBG_BCR_BVR_WCR_WVR(1),
 | |
| 	/* DBGDCCINT */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
 | |
| 	/* DBGDSCRext */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
 | |
| 	DBG_BCR_BVR_WCR_WVR(2),
 | |
| 	/* DBGDTR[RT]Xint */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
 | |
| 	/* DBGDTR[RT]Xext */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
 | |
| 	DBG_BCR_BVR_WCR_WVR(3),
 | |
| 	DBG_BCR_BVR_WCR_WVR(4),
 | |
| 	DBG_BCR_BVR_WCR_WVR(5),
 | |
| 	/* DBGWFAR */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
 | |
| 	/* DBGOSECCR */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
 | |
| 	DBG_BCR_BVR_WCR_WVR(6),
 | |
| 	/* DBGVCR */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
 | |
| 	DBG_BCR_BVR_WCR_WVR(7),
 | |
| 	DBG_BCR_BVR_WCR_WVR(8),
 | |
| 	DBG_BCR_BVR_WCR_WVR(9),
 | |
| 	DBG_BCR_BVR_WCR_WVR(10),
 | |
| 	DBG_BCR_BVR_WCR_WVR(11),
 | |
| 	DBG_BCR_BVR_WCR_WVR(12),
 | |
| 	DBG_BCR_BVR_WCR_WVR(13),
 | |
| 	DBG_BCR_BVR_WCR_WVR(14),
 | |
| 	DBG_BCR_BVR_WCR_WVR(15),
 | |
| 
 | |
| 	/* DBGDRAR (32bit) */
 | |
| 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
 | |
| 
 | |
| 	DBGBXVR(0),
 | |
| 	/* DBGOSLAR */
 | |
| 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
 | |
| 	DBGBXVR(1),
 | |
| 	/* DBGOSLSR */
 | |
| 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
 | |
| 	DBGBXVR(2),
 | |
| 	DBGBXVR(3),
 | |
| 	/* DBGOSDLR */
 | |
| 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
 | |
| 	DBGBXVR(4),
 | |
| 	/* DBGPRCR */
 | |
| 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
 | |
| 	DBGBXVR(5),
 | |
| 	DBGBXVR(6),
 | |
| 	DBGBXVR(7),
 | |
| 	DBGBXVR(8),
 | |
| 	DBGBXVR(9),
 | |
| 	DBGBXVR(10),
 | |
| 	DBGBXVR(11),
 | |
| 	DBGBXVR(12),
 | |
| 	DBGBXVR(13),
 | |
| 	DBGBXVR(14),
 | |
| 	DBGBXVR(15),
 | |
| 
 | |
| 	/* DBGDSAR (32bit) */
 | |
| 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
 | |
| 
 | |
| 	/* DBGDEVID2 */
 | |
| 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
 | |
| 	/* DBGDEVID1 */
 | |
| 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
 | |
| 	/* DBGDEVID */
 | |
| 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
 | |
| 	/* DBGCLAIMSET */
 | |
| 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
 | |
| 	/* DBGCLAIMCLR */
 | |
| 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
 | |
| 	/* DBGAUTHSTATUS */
 | |
| 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
 | |
| };
 | |
| 
 | |
| /* Trapped cp14 64bit registers */
 | |
| static const struct sys_reg_desc cp14_64_regs[] = {
 | |
| 	/* DBGDRAR (64bit) */
 | |
| 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
 | |
| 
 | |
| 	/* DBGDSAR (64bit) */
 | |
| 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
 | |
|  * depending on the way they are accessed (as a 32bit or a 64bit
 | |
|  * register).
 | |
|  */
 | |
| static const struct sys_reg_desc cp15_regs[] = {
 | |
| 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
 | |
| 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
 | |
| 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
 | |
| 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
 | |
| 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
 | |
| 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
 | |
| 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
 | |
| 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
 | |
| 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
 | |
| 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
 | |
| 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
 | |
| 
 | |
| 	/*
 | |
| 	 * DC{C,I,CI}SW operations:
 | |
| 	 */
 | |
| 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
 | |
| 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
 | |
| 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
 | |
| 
 | |
| 	/* PMU */
 | |
| 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
 | |
| 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
 | |
| 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
 | |
| 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
 | |
| 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
 | |
| 	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
 | |
| 	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
 | |
| 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
 | |
| 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
 | |
| 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
 | |
| 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
 | |
| 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
 | |
| 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
 | |
| 
 | |
| 	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
 | |
| 	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
 | |
| 	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
 | |
| 	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
 | |
| 
 | |
| 	/* ICC_SRE */
 | |
| 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
 | |
| 
 | |
| 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
 | |
| };
 | |
| 
 | |
| static const struct sys_reg_desc cp15_64_regs[] = {
 | |
| 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
 | |
| 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
 | |
| };
 | |
| 
 | |
| /* Target specific emulation tables */
 | |
| static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
 | |
| 
 | |
| void kvm_register_target_sys_reg_table(unsigned int target,
 | |
| 				       struct kvm_sys_reg_target_table *table)
 | |
| {
 | |
| 	target_tables[target] = table;
 | |
| }
 | |
| 
 | |
| /* Get specific register table for this target. */
 | |
| static const struct sys_reg_desc *get_target_table(unsigned target,
 | |
| 						   bool mode_is_64,
 | |
| 						   size_t *num)
 | |
| {
 | |
| 	struct kvm_sys_reg_target_table *table;
 | |
| 
 | |
| 	table = target_tables[target];
 | |
| 	if (mode_is_64) {
 | |
| 		*num = table->table64.num;
 | |
| 		return table->table64.table;
 | |
| 	} else {
 | |
| 		*num = table->table32.num;
 | |
| 		return table->table32.table;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
 | |
| 					 const struct sys_reg_desc table[],
 | |
| 					 unsigned int num)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < num; i++) {
 | |
| 		const struct sys_reg_desc *r = &table[i];
 | |
| 
 | |
| 		if (params->Op0 != r->Op0)
 | |
| 			continue;
 | |
| 		if (params->Op1 != r->Op1)
 | |
| 			continue;
 | |
| 		if (params->CRn != r->CRn)
 | |
| 			continue;
 | |
| 		if (params->CRm != r->CRm)
 | |
| 			continue;
 | |
| 		if (params->Op2 != r->Op2)
 | |
| 			continue;
 | |
| 
 | |
| 		return r;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	kvm_inject_undefined(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * emulate_cp --  tries to match a sys_reg access in a handling table, and
 | |
|  *                call the corresponding trap handler.
 | |
|  *
 | |
|  * @params: pointer to the descriptor of the access
 | |
|  * @table: array of trap descriptors
 | |
|  * @num: size of the trap descriptor array
 | |
|  *
 | |
|  * Return 0 if the access has been handled, and -1 if not.
 | |
|  */
 | |
| static int emulate_cp(struct kvm_vcpu *vcpu,
 | |
| 		      const struct sys_reg_params *params,
 | |
| 		      const struct sys_reg_desc *table,
 | |
| 		      size_t num)
 | |
| {
 | |
| 	const struct sys_reg_desc *r;
 | |
| 
 | |
| 	if (!table)
 | |
| 		return -1;	/* Not handled */
 | |
| 
 | |
| 	r = find_reg(params, table, num);
 | |
| 
 | |
| 	if (r) {
 | |
| 		/*
 | |
| 		 * Not having an accessor means that we have
 | |
| 		 * configured a trap that we don't know how to
 | |
| 		 * handle. This certainly qualifies as a gross bug
 | |
| 		 * that should be fixed right away.
 | |
| 		 */
 | |
| 		BUG_ON(!r->access);
 | |
| 
 | |
| 		if (likely(r->access(vcpu, params, r))) {
 | |
| 			/* Skip instruction, since it was emulated */
 | |
| 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
 | |
| 		}
 | |
| 
 | |
| 		/* Handled */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Not handled */
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static void unhandled_cp_access(struct kvm_vcpu *vcpu,
 | |
| 				struct sys_reg_params *params)
 | |
| {
 | |
| 	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
 | |
| 	int cp;
 | |
| 
 | |
| 	switch(hsr_ec) {
 | |
| 	case ESR_EL2_EC_CP15_32:
 | |
| 	case ESR_EL2_EC_CP15_64:
 | |
| 		cp = 15;
 | |
| 		break;
 | |
| 	case ESR_EL2_EC_CP14_MR:
 | |
| 	case ESR_EL2_EC_CP14_64:
 | |
| 		cp = 14;
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ON((cp = -1));
 | |
| 	}
 | |
| 
 | |
| 	kvm_err("Unsupported guest CP%d access at: %08lx\n",
 | |
| 		cp, *vcpu_pc(vcpu));
 | |
| 	print_sys_reg_instr(params);
 | |
| 	kvm_inject_undefined(vcpu);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
 | |
|  * @vcpu: The VCPU pointer
 | |
|  * @run:  The kvm_run struct
 | |
|  */
 | |
| static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
 | |
| 			    const struct sys_reg_desc *global,
 | |
| 			    size_t nr_global,
 | |
| 			    const struct sys_reg_desc *target_specific,
 | |
| 			    size_t nr_specific)
 | |
| {
 | |
| 	struct sys_reg_params params;
 | |
| 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
 | |
| 	int Rt2 = (hsr >> 10) & 0xf;
 | |
| 
 | |
| 	params.is_aarch32 = true;
 | |
| 	params.is_32bit = false;
 | |
| 	params.CRm = (hsr >> 1) & 0xf;
 | |
| 	params.Rt = (hsr >> 5) & 0xf;
 | |
| 	params.is_write = ((hsr & 1) == 0);
 | |
| 
 | |
| 	params.Op0 = 0;
 | |
| 	params.Op1 = (hsr >> 16) & 0xf;
 | |
| 	params.Op2 = 0;
 | |
| 	params.CRn = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Massive hack here. Store Rt2 in the top 32bits so we only
 | |
| 	 * have one register to deal with. As we use the same trap
 | |
| 	 * backends between AArch32 and AArch64, we get away with it.
 | |
| 	 */
 | |
| 	if (params.is_write) {
 | |
| 		u64 val = *vcpu_reg(vcpu, params.Rt);
 | |
| 		val &= 0xffffffff;
 | |
| 		val |= *vcpu_reg(vcpu, Rt2) << 32;
 | |
| 		*vcpu_reg(vcpu, params.Rt) = val;
 | |
| 	}
 | |
| 
 | |
| 	if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific))
 | |
| 		goto out;
 | |
| 	if (!emulate_cp(vcpu, ¶ms, global, nr_global))
 | |
| 		goto out;
 | |
| 
 | |
| 	unhandled_cp_access(vcpu, ¶ms);
 | |
| 
 | |
| out:
 | |
| 	/* Do the opposite hack for the read side */
 | |
| 	if (!params.is_write) {
 | |
| 		u64 val = *vcpu_reg(vcpu, params.Rt);
 | |
| 		val >>= 32;
 | |
| 		*vcpu_reg(vcpu, Rt2) = val;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
 | |
|  * @vcpu: The VCPU pointer
 | |
|  * @run:  The kvm_run struct
 | |
|  */
 | |
| static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
 | |
| 			    const struct sys_reg_desc *global,
 | |
| 			    size_t nr_global,
 | |
| 			    const struct sys_reg_desc *target_specific,
 | |
| 			    size_t nr_specific)
 | |
| {
 | |
| 	struct sys_reg_params params;
 | |
| 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
 | |
| 
 | |
| 	params.is_aarch32 = true;
 | |
| 	params.is_32bit = true;
 | |
| 	params.CRm = (hsr >> 1) & 0xf;
 | |
| 	params.Rt  = (hsr >> 5) & 0xf;
 | |
| 	params.is_write = ((hsr & 1) == 0);
 | |
| 	params.CRn = (hsr >> 10) & 0xf;
 | |
| 	params.Op0 = 0;
 | |
| 	params.Op1 = (hsr >> 14) & 0x7;
 | |
| 	params.Op2 = (hsr >> 17) & 0x7;
 | |
| 
 | |
| 	if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific))
 | |
| 		return 1;
 | |
| 	if (!emulate_cp(vcpu, ¶ms, global, nr_global))
 | |
| 		return 1;
 | |
| 
 | |
| 	unhandled_cp_access(vcpu, ¶ms);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	const struct sys_reg_desc *target_specific;
 | |
| 	size_t num;
 | |
| 
 | |
| 	target_specific = get_target_table(vcpu->arch.target, false, &num);
 | |
| 	return kvm_handle_cp_64(vcpu,
 | |
| 				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
 | |
| 				target_specific, num);
 | |
| }
 | |
| 
 | |
| int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	const struct sys_reg_desc *target_specific;
 | |
| 	size_t num;
 | |
| 
 | |
| 	target_specific = get_target_table(vcpu->arch.target, false, &num);
 | |
| 	return kvm_handle_cp_32(vcpu,
 | |
| 				cp15_regs, ARRAY_SIZE(cp15_regs),
 | |
| 				target_specific, num);
 | |
| }
 | |
| 
 | |
| int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	return kvm_handle_cp_64(vcpu,
 | |
| 				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
 | |
| 				NULL, 0);
 | |
| }
 | |
| 
 | |
| int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	return kvm_handle_cp_32(vcpu,
 | |
| 				cp14_regs, ARRAY_SIZE(cp14_regs),
 | |
| 				NULL, 0);
 | |
| }
 | |
| 
 | |
| static int emulate_sys_reg(struct kvm_vcpu *vcpu,
 | |
| 			   const struct sys_reg_params *params)
 | |
| {
 | |
| 	size_t num;
 | |
| 	const struct sys_reg_desc *table, *r;
 | |
| 
 | |
| 	table = get_target_table(vcpu->arch.target, true, &num);
 | |
| 
 | |
| 	/* Search target-specific then generic table. */
 | |
| 	r = find_reg(params, table, num);
 | |
| 	if (!r)
 | |
| 		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
 | |
| 
 | |
| 	if (likely(r)) {
 | |
| 		/*
 | |
| 		 * Not having an accessor means that we have
 | |
| 		 * configured a trap that we don't know how to
 | |
| 		 * handle. This certainly qualifies as a gross bug
 | |
| 		 * that should be fixed right away.
 | |
| 		 */
 | |
| 		BUG_ON(!r->access);
 | |
| 
 | |
| 		if (likely(r->access(vcpu, params, r))) {
 | |
| 			/* Skip instruction, since it was emulated */
 | |
| 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
 | |
| 			return 1;
 | |
| 		}
 | |
| 		/* If access function fails, it should complain. */
 | |
| 	} else {
 | |
| 		kvm_err("Unsupported guest sys_reg access at: %lx\n",
 | |
| 			*vcpu_pc(vcpu));
 | |
| 		print_sys_reg_instr(params);
 | |
| 	}
 | |
| 	kvm_inject_undefined(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
 | |
| 			      const struct sys_reg_desc *table, size_t num)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	for (i = 0; i < num; i++)
 | |
| 		if (table[i].reset)
 | |
| 			table[i].reset(vcpu, &table[i]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
 | |
|  * @vcpu: The VCPU pointer
 | |
|  * @run:  The kvm_run struct
 | |
|  */
 | |
| int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	struct sys_reg_params params;
 | |
| 	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
 | |
| 
 | |
| 	params.is_aarch32 = false;
 | |
| 	params.is_32bit = false;
 | |
| 	params.Op0 = (esr >> 20) & 3;
 | |
| 	params.Op1 = (esr >> 14) & 0x7;
 | |
| 	params.CRn = (esr >> 10) & 0xf;
 | |
| 	params.CRm = (esr >> 1) & 0xf;
 | |
| 	params.Op2 = (esr >> 17) & 0x7;
 | |
| 	params.Rt = (esr >> 5) & 0x1f;
 | |
| 	params.is_write = !(esr & 1);
 | |
| 
 | |
| 	return emulate_sys_reg(vcpu, ¶ms);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Userspace API
 | |
|  *****************************************************************************/
 | |
| 
 | |
| static bool index_to_params(u64 id, struct sys_reg_params *params)
 | |
| {
 | |
| 	switch (id & KVM_REG_SIZE_MASK) {
 | |
| 	case KVM_REG_SIZE_U64:
 | |
| 		/* Any unused index bits means it's not valid. */
 | |
| 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
 | |
| 			      | KVM_REG_ARM_COPROC_MASK
 | |
| 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
 | |
| 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
 | |
| 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
 | |
| 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
 | |
| 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
 | |
| 			return false;
 | |
| 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
 | |
| 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
 | |
| 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
 | |
| 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
 | |
| 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
 | |
| 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
 | |
| 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
 | |
| 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
 | |
| 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
 | |
| 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Decode an index value, and find the sys_reg_desc entry. */
 | |
| static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
 | |
| 						    u64 id)
 | |
| {
 | |
| 	size_t num;
 | |
| 	const struct sys_reg_desc *table, *r;
 | |
| 	struct sys_reg_params params;
 | |
| 
 | |
| 	/* We only do sys_reg for now. */
 | |
| 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!index_to_params(id, ¶ms))
 | |
| 		return NULL;
 | |
| 
 | |
| 	table = get_target_table(vcpu->arch.target, true, &num);
 | |
| 	r = find_reg(¶ms, table, num);
 | |
| 	if (!r)
 | |
| 		r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
 | |
| 
 | |
| 	/* Not saved in the sys_reg array? */
 | |
| 	if (r && !r->reg)
 | |
| 		r = NULL;
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are the invariant sys_reg registers: we let the guest see the
 | |
|  * host versions of these, so they're part of the guest state.
 | |
|  *
 | |
|  * A future CPU may provide a mechanism to present different values to
 | |
|  * the guest, or a future kvm may trap them.
 | |
|  */
 | |
| 
 | |
| #define FUNCTION_INVARIANT(reg)						\
 | |
| 	static void get_##reg(struct kvm_vcpu *v,			\
 | |
| 			      const struct sys_reg_desc *r)		\
 | |
| 	{								\
 | |
| 		u64 val;						\
 | |
| 									\
 | |
| 		asm volatile("mrs %0, " __stringify(reg) "\n"		\
 | |
| 			     : "=r" (val));				\
 | |
| 		((struct sys_reg_desc *)r)->val = val;			\
 | |
| 	}
 | |
| 
 | |
| FUNCTION_INVARIANT(midr_el1)
 | |
| FUNCTION_INVARIANT(ctr_el0)
 | |
| FUNCTION_INVARIANT(revidr_el1)
 | |
| FUNCTION_INVARIANT(id_pfr0_el1)
 | |
| FUNCTION_INVARIANT(id_pfr1_el1)
 | |
| FUNCTION_INVARIANT(id_dfr0_el1)
 | |
| FUNCTION_INVARIANT(id_afr0_el1)
 | |
| FUNCTION_INVARIANT(id_mmfr0_el1)
 | |
| FUNCTION_INVARIANT(id_mmfr1_el1)
 | |
| FUNCTION_INVARIANT(id_mmfr2_el1)
 | |
| FUNCTION_INVARIANT(id_mmfr3_el1)
 | |
| FUNCTION_INVARIANT(id_isar0_el1)
 | |
| FUNCTION_INVARIANT(id_isar1_el1)
 | |
| FUNCTION_INVARIANT(id_isar2_el1)
 | |
| FUNCTION_INVARIANT(id_isar3_el1)
 | |
| FUNCTION_INVARIANT(id_isar4_el1)
 | |
| FUNCTION_INVARIANT(id_isar5_el1)
 | |
| FUNCTION_INVARIANT(clidr_el1)
 | |
| FUNCTION_INVARIANT(aidr_el1)
 | |
| 
 | |
| /* ->val is filled in by kvm_sys_reg_table_init() */
 | |
| static struct sys_reg_desc invariant_sys_regs[] = {
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
 | |
| 	  NULL, get_midr_el1 },
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
 | |
| 	  NULL, get_revidr_el1 },
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
 | |
| 	  NULL, get_id_pfr0_el1 },
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
 | |
| 	  NULL, get_id_pfr1_el1 },
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
 | |
| 	  NULL, get_id_dfr0_el1 },
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
 | |
| 	  NULL, get_id_afr0_el1 },
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
 | |
| 	  NULL, get_id_mmfr0_el1 },
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
 | |
| 	  NULL, get_id_mmfr1_el1 },
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
 | |
| 	  NULL, get_id_mmfr2_el1 },
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
 | |
| 	  NULL, get_id_mmfr3_el1 },
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
 | |
| 	  NULL, get_id_isar0_el1 },
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
 | |
| 	  NULL, get_id_isar1_el1 },
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
 | |
| 	  NULL, get_id_isar2_el1 },
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
 | |
| 	  NULL, get_id_isar3_el1 },
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
 | |
| 	  NULL, get_id_isar4_el1 },
 | |
| 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
 | |
| 	  NULL, get_id_isar5_el1 },
 | |
| 	{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
 | |
| 	  NULL, get_clidr_el1 },
 | |
| 	{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
 | |
| 	  NULL, get_aidr_el1 },
 | |
| 	{ Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
 | |
| 	  NULL, get_ctr_el0 },
 | |
| };
 | |
| 
 | |
| static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
 | |
| {
 | |
| 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
 | |
| {
 | |
| 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_invariant_sys_reg(u64 id, void __user *uaddr)
 | |
| {
 | |
| 	struct sys_reg_params params;
 | |
| 	const struct sys_reg_desc *r;
 | |
| 
 | |
| 	if (!index_to_params(id, ¶ms))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	r = find_reg(¶ms, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
 | |
| 	if (!r)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	return reg_to_user(uaddr, &r->val, id);
 | |
| }
 | |
| 
 | |
| static int set_invariant_sys_reg(u64 id, void __user *uaddr)
 | |
| {
 | |
| 	struct sys_reg_params params;
 | |
| 	const struct sys_reg_desc *r;
 | |
| 	int err;
 | |
| 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
 | |
| 
 | |
| 	if (!index_to_params(id, ¶ms))
 | |
| 		return -ENOENT;
 | |
| 	r = find_reg(¶ms, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
 | |
| 	if (!r)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	err = reg_from_user(&val, uaddr, id);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* This is what we mean by invariant: you can't change it. */
 | |
| 	if (r->val != val)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool is_valid_cache(u32 val)
 | |
| {
 | |
| 	u32 level, ctype;
 | |
| 
 | |
| 	if (val >= CSSELR_MAX)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
 | |
| 	level = (val >> 1);
 | |
| 	ctype = (cache_levels >> (level * 3)) & 7;
 | |
| 
 | |
| 	switch (ctype) {
 | |
| 	case 0: /* No cache */
 | |
| 		return false;
 | |
| 	case 1: /* Instruction cache only */
 | |
| 		return (val & 1);
 | |
| 	case 2: /* Data cache only */
 | |
| 	case 4: /* Unified cache */
 | |
| 		return !(val & 1);
 | |
| 	case 3: /* Separate instruction and data caches */
 | |
| 		return true;
 | |
| 	default: /* Reserved: we can't know instruction or data. */
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int demux_c15_get(u64 id, void __user *uaddr)
 | |
| {
 | |
| 	u32 val;
 | |
| 	u32 __user *uval = uaddr;
 | |
| 
 | |
| 	/* Fail if we have unknown bits set. */
 | |
| 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
 | |
| 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
 | |
| 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
 | |
| 		if (KVM_REG_SIZE(id) != 4)
 | |
| 			return -ENOENT;
 | |
| 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
 | |
| 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
 | |
| 		if (!is_valid_cache(val))
 | |
| 			return -ENOENT;
 | |
| 
 | |
| 		return put_user(get_ccsidr(val), uval);
 | |
| 	default:
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int demux_c15_set(u64 id, void __user *uaddr)
 | |
| {
 | |
| 	u32 val, newval;
 | |
| 	u32 __user *uval = uaddr;
 | |
| 
 | |
| 	/* Fail if we have unknown bits set. */
 | |
| 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
 | |
| 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
 | |
| 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
 | |
| 		if (KVM_REG_SIZE(id) != 4)
 | |
| 			return -ENOENT;
 | |
| 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
 | |
| 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
 | |
| 		if (!is_valid_cache(val))
 | |
| 			return -ENOENT;
 | |
| 
 | |
| 		if (get_user(newval, uval))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		/* This is also invariant: you can't change it. */
 | |
| 		if (newval != get_ccsidr(val))
 | |
| 			return -EINVAL;
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 | |
| {
 | |
| 	const struct sys_reg_desc *r;
 | |
| 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
 | |
| 
 | |
| 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
 | |
| 		return demux_c15_get(reg->id, uaddr);
 | |
| 
 | |
| 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	r = index_to_sys_reg_desc(vcpu, reg->id);
 | |
| 	if (!r)
 | |
| 		return get_invariant_sys_reg(reg->id, uaddr);
 | |
| 
 | |
| 	return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
 | |
| }
 | |
| 
 | |
| int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 | |
| {
 | |
| 	const struct sys_reg_desc *r;
 | |
| 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
 | |
| 
 | |
| 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
 | |
| 		return demux_c15_set(reg->id, uaddr);
 | |
| 
 | |
| 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	r = index_to_sys_reg_desc(vcpu, reg->id);
 | |
| 	if (!r)
 | |
| 		return set_invariant_sys_reg(reg->id, uaddr);
 | |
| 
 | |
| 	return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
 | |
| }
 | |
| 
 | |
| static unsigned int num_demux_regs(void)
 | |
| {
 | |
| 	unsigned int i, count = 0;
 | |
| 
 | |
| 	for (i = 0; i < CSSELR_MAX; i++)
 | |
| 		if (is_valid_cache(i))
 | |
| 			count++;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int write_demux_regids(u64 __user *uindices)
 | |
| {
 | |
| 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
 | |
| 	for (i = 0; i < CSSELR_MAX; i++) {
 | |
| 		if (!is_valid_cache(i))
 | |
| 			continue;
 | |
| 		if (put_user(val | i, uindices))
 | |
| 			return -EFAULT;
 | |
| 		uindices++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
 | |
| {
 | |
| 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
 | |
| 		KVM_REG_ARM64_SYSREG |
 | |
| 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
 | |
| 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
 | |
| 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
 | |
| 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
 | |
| 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
 | |
| }
 | |
| 
 | |
| static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
 | |
| {
 | |
| 	if (!*uind)
 | |
| 		return true;
 | |
| 
 | |
| 	if (put_user(sys_reg_to_index(reg), *uind))
 | |
| 		return false;
 | |
| 
 | |
| 	(*uind)++;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Assumed ordered tables, see kvm_sys_reg_table_init. */
 | |
| static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
 | |
| {
 | |
| 	const struct sys_reg_desc *i1, *i2, *end1, *end2;
 | |
| 	unsigned int total = 0;
 | |
| 	size_t num;
 | |
| 
 | |
| 	/* We check for duplicates here, to allow arch-specific overrides. */
 | |
| 	i1 = get_target_table(vcpu->arch.target, true, &num);
 | |
| 	end1 = i1 + num;
 | |
| 	i2 = sys_reg_descs;
 | |
| 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
 | |
| 
 | |
| 	BUG_ON(i1 == end1 || i2 == end2);
 | |
| 
 | |
| 	/* Walk carefully, as both tables may refer to the same register. */
 | |
| 	while (i1 || i2) {
 | |
| 		int cmp = cmp_sys_reg(i1, i2);
 | |
| 		/* target-specific overrides generic entry. */
 | |
| 		if (cmp <= 0) {
 | |
| 			/* Ignore registers we trap but don't save. */
 | |
| 			if (i1->reg) {
 | |
| 				if (!copy_reg_to_user(i1, &uind))
 | |
| 					return -EFAULT;
 | |
| 				total++;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* Ignore registers we trap but don't save. */
 | |
| 			if (i2->reg) {
 | |
| 				if (!copy_reg_to_user(i2, &uind))
 | |
| 					return -EFAULT;
 | |
| 				total++;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (cmp <= 0 && ++i1 == end1)
 | |
| 			i1 = NULL;
 | |
| 		if (cmp >= 0 && ++i2 == end2)
 | |
| 			i2 = NULL;
 | |
| 	}
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return ARRAY_SIZE(invariant_sys_regs)
 | |
| 		+ num_demux_regs()
 | |
| 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
 | |
| }
 | |
| 
 | |
| int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Then give them all the invariant registers' indices. */
 | |
| 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
 | |
| 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
 | |
| 			return -EFAULT;
 | |
| 		uindices++;
 | |
| 	}
 | |
| 
 | |
| 	err = walk_sys_regs(vcpu, uindices);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 	uindices += err;
 | |
| 
 | |
| 	return write_demux_regids(uindices);
 | |
| }
 | |
| 
 | |
| static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 1; i < n; i++) {
 | |
| 		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
 | |
| 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_sys_reg_table_init(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	struct sys_reg_desc clidr;
 | |
| 
 | |
| 	/* Make sure tables are unique and in order. */
 | |
| 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
 | |
| 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
 | |
| 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
 | |
| 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
 | |
| 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
 | |
| 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
 | |
| 
 | |
| 	/* We abuse the reset function to overwrite the table itself. */
 | |
| 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
 | |
| 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
 | |
| 
 | |
| 	/*
 | |
| 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
 | |
| 	 *
 | |
| 	 *   If software reads the Cache Type fields from Ctype1
 | |
| 	 *   upwards, once it has seen a value of 0b000, no caches
 | |
| 	 *   exist at further-out levels of the hierarchy. So, for
 | |
| 	 *   example, if Ctype3 is the first Cache Type field with a
 | |
| 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
 | |
| 	 *   ignored.
 | |
| 	 */
 | |
| 	get_clidr_el1(NULL, &clidr); /* Ugly... */
 | |
| 	cache_levels = clidr.val;
 | |
| 	for (i = 0; i < 7; i++)
 | |
| 		if (((cache_levels >> (i*3)) & 7) == 0)
 | |
| 			break;
 | |
| 	/* Clear all higher bits. */
 | |
| 	cache_levels &= (1 << (i*3))-1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_reset_sys_regs - sets system registers to reset value
 | |
|  * @vcpu: The VCPU pointer
 | |
|  *
 | |
|  * This function finds the right table above and sets the registers on the
 | |
|  * virtual CPU struct to their architecturally defined reset values.
 | |
|  */
 | |
| void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	size_t num;
 | |
| 	const struct sys_reg_desc *table;
 | |
| 
 | |
| 	/* Catch someone adding a register without putting in reset entry. */
 | |
| 	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
 | |
| 
 | |
| 	/* Generic chip reset first (so target could override). */
 | |
| 	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
 | |
| 
 | |
| 	table = get_target_table(vcpu->arch.target, true, &num);
 | |
| 	reset_sys_reg_descs(vcpu, table, num);
 | |
| 
 | |
| 	for (num = 1; num < NR_SYS_REGS; num++)
 | |
| 		if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
 | |
| 			panic("Didn't reset vcpu_sys_reg(%zi)", num);
 | |
| }
 |