 4132ace8d6
			
		
	
	
	4132ace8d6
	
	
	
		
			
			Embrace uneeded messages in D1(). Signed-off-by: Artem B. Bityuckiy <dedekind@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
		
			
				
	
	
		
			839 lines
		
	
	
	
		
			31 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			839 lines
		
	
	
	
		
			31 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * JFFS2 -- Journalling Flash File System, Version 2.
 | |
|  *
 | |
|  * Copyright (C) 2001-2003 Red Hat, Inc.
 | |
|  *
 | |
|  * Created by David Woodhouse <dwmw2@infradead.org>
 | |
|  *
 | |
|  * For licensing information, see the file 'LICENCE' in this directory.
 | |
|  *
 | |
|  * $Id: nodemgmt.c,v 1.122 2005/05/06 09:30:27 dedekind Exp $
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/sched.h> /* For cond_resched() */
 | |
| #include "nodelist.h"
 | |
| 
 | |
| /**
 | |
|  *	jffs2_reserve_space - request physical space to write nodes to flash
 | |
|  *	@c: superblock info
 | |
|  *	@minsize: Minimum acceptable size of allocation
 | |
|  *	@ofs: Returned value of node offset
 | |
|  *	@len: Returned value of allocation length
 | |
|  *	@prio: Allocation type - ALLOC_{NORMAL,DELETION}
 | |
|  *
 | |
|  *	Requests a block of physical space on the flash. Returns zero for success
 | |
|  *	and puts 'ofs' and 'len' into the appriopriate place, or returns -ENOSPC
 | |
|  *	or other error if appropriate.
 | |
|  *
 | |
|  *	If it returns zero, jffs2_reserve_space() also downs the per-filesystem
 | |
|  *	allocation semaphore, to prevent more than one allocation from being
 | |
|  *	active at any time. The semaphore is later released by jffs2_commit_allocation()
 | |
|  *
 | |
|  *	jffs2_reserve_space() may trigger garbage collection in order to make room
 | |
|  *	for the requested allocation.
 | |
|  */
 | |
| 
 | |
| static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize, uint32_t *ofs, uint32_t *len);
 | |
| 
 | |
| int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio)
 | |
| {
 | |
| 	int ret = -EAGAIN;
 | |
| 	int blocksneeded = c->resv_blocks_write;
 | |
| 	/* align it */
 | |
| 	minsize = PAD(minsize);
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
 | |
| 	down(&c->alloc_sem);
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
 | |
| 
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 	/* this needs a little more thought (true <tglx> :)) */
 | |
| 	while(ret == -EAGAIN) {
 | |
| 		while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
 | |
| 			int ret;
 | |
| 			uint32_t dirty, avail;
 | |
| 
 | |
| 			/* calculate real dirty size
 | |
| 			 * dirty_size contains blocks on erase_pending_list
 | |
| 			 * those blocks are counted in c->nr_erasing_blocks.
 | |
| 			 * If one block is actually erased, it is not longer counted as dirty_space
 | |
| 			 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
 | |
| 			 * with c->nr_erasing_blocks * c->sector_size again.
 | |
| 			 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
 | |
| 			 * This helps us to force gc and pick eventually a clean block to spread the load.
 | |
| 			 * We add unchecked_size here, as we hopefully will find some space to use.
 | |
| 			 * This will affect the sum only once, as gc first finishes checking
 | |
| 			 * of nodes.
 | |
| 			 */
 | |
| 			dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
 | |
| 			if (dirty < c->nospc_dirty_size) {
 | |
| 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
 | |
| 					D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
 | |
| 					break;
 | |
| 				}
 | |
| 				D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
 | |
| 					  dirty, c->unchecked_size, c->sector_size));
 | |
| 
 | |
| 				spin_unlock(&c->erase_completion_lock);
 | |
| 				up(&c->alloc_sem);
 | |
| 				return -ENOSPC;
 | |
| 			}
 | |
| 			
 | |
| 			/* Calc possibly available space. Possibly available means that we
 | |
| 			 * don't know, if unchecked size contains obsoleted nodes, which could give us some
 | |
| 			 * more usable space. This will affect the sum only once, as gc first finishes checking
 | |
| 			 * of nodes.
 | |
| 			 + Return -ENOSPC, if the maximum possibly available space is less or equal than 
 | |
| 			 * blocksneeded * sector_size.
 | |
| 			 * This blocks endless gc looping on a filesystem, which is nearly full, even if
 | |
| 			 * the check above passes.
 | |
| 			 */
 | |
| 			avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
 | |
| 			if ( (avail / c->sector_size) <= blocksneeded) {
 | |
| 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
 | |
| 					D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 				D1(printk(KERN_DEBUG "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
 | |
| 					  avail, blocksneeded * c->sector_size));
 | |
| 				spin_unlock(&c->erase_completion_lock);
 | |
| 				up(&c->alloc_sem);
 | |
| 				return -ENOSPC;
 | |
| 			}
 | |
| 
 | |
| 			up(&c->alloc_sem);
 | |
| 
 | |
| 			D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
 | |
| 				  c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
 | |
| 				  c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
 | |
| 			spin_unlock(&c->erase_completion_lock);
 | |
| 			
 | |
| 			ret = jffs2_garbage_collect_pass(c);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 
 | |
| 			cond_resched();
 | |
| 
 | |
| 			if (signal_pending(current))
 | |
| 				return -EINTR;
 | |
| 
 | |
| 			down(&c->alloc_sem);
 | |
| 			spin_lock(&c->erase_completion_lock);
 | |
| 		}
 | |
| 
 | |
| 		ret = jffs2_do_reserve_space(c, minsize, ofs, len);
 | |
| 		if (ret) {
 | |
| 			D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 	if (ret)
 | |
| 		up(&c->alloc_sem);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len)
 | |
| {
 | |
| 	int ret = -EAGAIN;
 | |
| 	minsize = PAD(minsize);
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
 | |
| 
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 	while(ret == -EAGAIN) {
 | |
| 		ret = jffs2_do_reserve_space(c, minsize, ofs, len);
 | |
| 		if (ret) {
 | |
| 		        D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Called with alloc sem _and_ erase_completion_lock */
 | |
| static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize, uint32_t *ofs, uint32_t *len)
 | |
| {
 | |
| 	struct jffs2_eraseblock *jeb = c->nextblock;
 | |
| 	
 | |
|  restart:
 | |
| 	if (jeb && minsize > jeb->free_size) {
 | |
| 		/* Skip the end of this block and file it as having some dirty space */
 | |
| 		/* If there's a pending write to it, flush now */
 | |
| 		if (jffs2_wbuf_dirty(c)) {
 | |
| 			spin_unlock(&c->erase_completion_lock);
 | |
| 			D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));			    
 | |
| 			jffs2_flush_wbuf_pad(c);
 | |
| 			spin_lock(&c->erase_completion_lock);
 | |
| 			jeb = c->nextblock;
 | |
| 			goto restart;
 | |
| 		}
 | |
| 		c->wasted_size += jeb->free_size;
 | |
| 		c->free_size -= jeb->free_size;
 | |
| 		jeb->wasted_size += jeb->free_size;
 | |
| 		jeb->free_size = 0;
 | |
| 		
 | |
| 		/* Check, if we have a dirty block now, or if it was dirty already */
 | |
| 		if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
 | |
| 			c->dirty_size += jeb->wasted_size;
 | |
| 			c->wasted_size -= jeb->wasted_size;
 | |
| 			jeb->dirty_size += jeb->wasted_size;
 | |
| 			jeb->wasted_size = 0;
 | |
| 			if (VERYDIRTY(c, jeb->dirty_size)) {
 | |
| 				D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
 | |
| 				  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
 | |
| 				list_add_tail(&jeb->list, &c->very_dirty_list);
 | |
| 			} else {
 | |
| 				D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
 | |
| 				  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
 | |
| 				list_add_tail(&jeb->list, &c->dirty_list);
 | |
| 			}
 | |
| 		} else { 
 | |
| 			D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
 | |
| 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
 | |
| 			list_add_tail(&jeb->list, &c->clean_list);
 | |
| 		}
 | |
| 		c->nextblock = jeb = NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if (!jeb) {
 | |
| 		struct list_head *next;
 | |
| 		/* Take the next block off the 'free' list */
 | |
| 
 | |
| 		if (list_empty(&c->free_list)) {
 | |
| 
 | |
| 			if (!c->nr_erasing_blocks && 
 | |
| 			    !list_empty(&c->erasable_list)) {
 | |
| 				struct jffs2_eraseblock *ejeb;
 | |
| 
 | |
| 				ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
 | |
| 				list_del(&ejeb->list);
 | |
| 				list_add_tail(&ejeb->list, &c->erase_pending_list);
 | |
| 				c->nr_erasing_blocks++;
 | |
| 				jffs2_erase_pending_trigger(c);
 | |
| 				D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Triggering erase of erasable block at 0x%08x\n",
 | |
| 					  ejeb->offset));
 | |
| 			}
 | |
| 
 | |
| 			if (!c->nr_erasing_blocks && 
 | |
| 			    !list_empty(&c->erasable_pending_wbuf_list)) {
 | |
| 				D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
 | |
| 				/* c->nextblock is NULL, no update to c->nextblock allowed */			    
 | |
| 				spin_unlock(&c->erase_completion_lock);
 | |
| 				jffs2_flush_wbuf_pad(c);
 | |
| 				spin_lock(&c->erase_completion_lock);
 | |
| 				/* Have another go. It'll be on the erasable_list now */
 | |
| 				return -EAGAIN;
 | |
| 			}
 | |
| 
 | |
| 			if (!c->nr_erasing_blocks) {
 | |
| 				/* Ouch. We're in GC, or we wouldn't have got here.
 | |
| 				   And there's no space left. At all. */
 | |
| 				printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n", 
 | |
| 				       c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no", 
 | |
| 				       list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
 | |
| 				return -ENOSPC;
 | |
| 			}
 | |
| 
 | |
| 			spin_unlock(&c->erase_completion_lock);
 | |
| 			/* Don't wait for it; just erase one right now */
 | |
| 			jffs2_erase_pending_blocks(c, 1);
 | |
| 			spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 			/* An erase may have failed, decreasing the
 | |
| 			   amount of free space available. So we must
 | |
| 			   restart from the beginning */
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 
 | |
| 		next = c->free_list.next;
 | |
| 		list_del(next);
 | |
| 		c->nextblock = jeb = list_entry(next, struct jffs2_eraseblock, list);
 | |
| 		c->nr_free_blocks--;
 | |
| 
 | |
| 		if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
 | |
| 			printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
 | |
| 			goto restart;
 | |
| 		}
 | |
| 	}
 | |
| 	/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
 | |
| 	   enough space */
 | |
| 	*ofs = jeb->offset + (c->sector_size - jeb->free_size);
 | |
| 	*len = jeb->free_size;
 | |
| 
 | |
| 	if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
 | |
| 	    !jeb->first_node->next_in_ino) {
 | |
| 		/* Only node in it beforehand was a CLEANMARKER node (we think). 
 | |
| 		   So mark it obsolete now that there's going to be another node
 | |
| 		   in the block. This will reduce used_size to zero but We've 
 | |
| 		   already set c->nextblock so that jffs2_mark_node_obsolete()
 | |
| 		   won't try to refile it to the dirty_list.
 | |
| 		*/
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 		jffs2_mark_node_obsolete(c, jeb->first_node);
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 	}
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n", *len, *ofs));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	jffs2_add_physical_node_ref - add a physical node reference to the list
 | |
|  *	@c: superblock info
 | |
|  *	@new: new node reference to add
 | |
|  *	@len: length of this physical node
 | |
|  *	@dirty: dirty flag for new node
 | |
|  *
 | |
|  *	Should only be used to report nodes for which space has been allocated 
 | |
|  *	by jffs2_reserve_space.
 | |
|  *
 | |
|  *	Must be called with the alloc_sem held.
 | |
|  */
 | |
|  
 | |
| int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new)
 | |
| {
 | |
| 	struct jffs2_eraseblock *jeb;
 | |
| 	uint32_t len;
 | |
| 
 | |
| 	jeb = &c->blocks[new->flash_offset / c->sector_size];
 | |
| 	len = ref_totlen(c, jeb, new);
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n", ref_offset(new), ref_flags(new), len));
 | |
| #if 1
 | |
| 	/* we could get some obsolete nodes after nextblock was refiled
 | |
| 	   in wbuf.c */
 | |
| 	if ((c->nextblock || !ref_obsolete(new))
 | |
| 	    &&(jeb != c->nextblock || ref_offset(new) != jeb->offset + (c->sector_size - jeb->free_size))) {
 | |
| 		printk(KERN_WARNING "argh. node added in wrong place\n");
 | |
| 		jffs2_free_raw_node_ref(new);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| #endif
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 	if (!jeb->first_node)
 | |
| 		jeb->first_node = new;
 | |
| 	if (jeb->last_node)
 | |
| 		jeb->last_node->next_phys = new;
 | |
| 	jeb->last_node = new;
 | |
| 
 | |
| 	jeb->free_size -= len;
 | |
| 	c->free_size -= len;
 | |
| 	if (ref_obsolete(new)) {
 | |
| 		jeb->dirty_size += len;
 | |
| 		c->dirty_size += len;
 | |
| 	} else {
 | |
| 		jeb->used_size += len;
 | |
| 		c->used_size += len;
 | |
| 	}
 | |
| 
 | |
| 	if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
 | |
| 		/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
 | |
| 		D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
 | |
| 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
 | |
| 		if (jffs2_wbuf_dirty(c)) {
 | |
| 			/* Flush the last write in the block if it's outstanding */
 | |
| 			spin_unlock(&c->erase_completion_lock);
 | |
| 			jffs2_flush_wbuf_pad(c);
 | |
| 			spin_lock(&c->erase_completion_lock);
 | |
| 		}
 | |
| 
 | |
| 		list_add_tail(&jeb->list, &c->clean_list);
 | |
| 		c->nextblock = NULL;
 | |
| 	}
 | |
| 	ACCT_SANITY_CHECK(c,jeb);
 | |
| 	D1(ACCT_PARANOIA_CHECK(jeb));
 | |
| 
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| void jffs2_complete_reservation(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
 | |
| 	jffs2_garbage_collect_trigger(c);
 | |
| 	up(&c->alloc_sem);
 | |
| }
 | |
| 
 | |
| static inline int on_list(struct list_head *obj, struct list_head *head)
 | |
| {
 | |
| 	struct list_head *this;
 | |
| 
 | |
| 	list_for_each(this, head) {
 | |
| 		if (this == obj) {
 | |
| 			D1(printk("%p is on list at %p\n", obj, head));
 | |
| 			return 1;
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
 | |
| {
 | |
| 	struct jffs2_eraseblock *jeb;
 | |
| 	int blocknr;
 | |
| 	struct jffs2_unknown_node n;
 | |
| 	int ret, addedsize;
 | |
| 	size_t retlen;
 | |
| 
 | |
| 	if(!ref) {
 | |
| 		printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	if (ref_obsolete(ref)) {
 | |
| 		D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
 | |
| 		return;
 | |
| 	}
 | |
| 	blocknr = ref->flash_offset / c->sector_size;
 | |
| 	if (blocknr >= c->nr_blocks) {
 | |
| 		printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
 | |
| 		BUG();
 | |
| 	}
 | |
| 	jeb = &c->blocks[blocknr];
 | |
| 
 | |
| 	if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
 | |
| 	    !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
 | |
| 		/* Hm. This may confuse static lock analysis. If any of the above 
 | |
| 		   three conditions is false, we're going to return from this 
 | |
| 		   function without actually obliterating any nodes or freeing
 | |
| 		   any jffs2_raw_node_refs. So we don't need to stop erases from
 | |
| 		   happening, or protect against people holding an obsolete
 | |
| 		   jffs2_raw_node_ref without the erase_completion_lock. */
 | |
| 		down(&c->erase_free_sem);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 	if (ref_flags(ref) == REF_UNCHECKED) {
 | |
| 		D1(if (unlikely(jeb->unchecked_size < ref_totlen(c, jeb, ref))) {
 | |
| 			printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
 | |
| 			       ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size);
 | |
| 			BUG();
 | |
| 		})
 | |
| 		D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref)));
 | |
| 		jeb->unchecked_size -= ref_totlen(c, jeb, ref);
 | |
| 		c->unchecked_size -= ref_totlen(c, jeb, ref);
 | |
| 	} else {
 | |
| 		D1(if (unlikely(jeb->used_size < ref_totlen(c, jeb, ref))) {
 | |
| 			printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
 | |
| 			       ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size);
 | |
| 			BUG();
 | |
| 		})
 | |
| 		D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref)));
 | |
| 		jeb->used_size -= ref_totlen(c, jeb, ref);
 | |
| 		c->used_size -= ref_totlen(c, jeb, ref);
 | |
| 	}
 | |
| 
 | |
| 	// Take care, that wasted size is taken into concern
 | |
| 	if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + ref_totlen(c, jeb, ref))) && jeb != c->nextblock) {
 | |
| 		D1(printk(KERN_DEBUG "Dirtying\n"));
 | |
| 		addedsize = ref_totlen(c, jeb, ref);
 | |
| 		jeb->dirty_size += ref_totlen(c, jeb, ref);
 | |
| 		c->dirty_size += ref_totlen(c, jeb, ref);
 | |
| 
 | |
| 		/* Convert wasted space to dirty, if not a bad block */
 | |
| 		if (jeb->wasted_size) {
 | |
| 			if (on_list(&jeb->list, &c->bad_used_list)) {
 | |
| 				D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
 | |
| 					  jeb->offset));
 | |
| 				addedsize = 0; /* To fool the refiling code later */
 | |
| 			} else {
 | |
| 				D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
 | |
| 					  jeb->wasted_size, jeb->offset));
 | |
| 				addedsize += jeb->wasted_size;
 | |
| 				jeb->dirty_size += jeb->wasted_size;
 | |
| 				c->dirty_size += jeb->wasted_size;
 | |
| 				c->wasted_size -= jeb->wasted_size;
 | |
| 				jeb->wasted_size = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		D1(printk(KERN_DEBUG "Wasting\n"));
 | |
| 		addedsize = 0;
 | |
| 		jeb->wasted_size += ref_totlen(c, jeb, ref);
 | |
| 		c->wasted_size += ref_totlen(c, jeb, ref);	
 | |
| 	}
 | |
| 	ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
 | |
| 	
 | |
| 	ACCT_SANITY_CHECK(c, jeb);
 | |
| 
 | |
| 	D1(ACCT_PARANOIA_CHECK(jeb));
 | |
| 
 | |
| 	if (c->flags & JFFS2_SB_FLAG_SCANNING) {
 | |
| 		/* Flash scanning is in progress. Don't muck about with the block
 | |
| 		   lists because they're not ready yet, and don't actually
 | |
| 		   obliterate nodes that look obsolete. If they weren't 
 | |
| 		   marked obsolete on the flash at the time they _became_
 | |
| 		   obsolete, there was probably a reason for that. */
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 		/* We didn't lock the erase_free_sem */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (jeb == c->nextblock) {
 | |
| 		D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
 | |
| 	} else if (!jeb->used_size && !jeb->unchecked_size) {
 | |
| 		if (jeb == c->gcblock) {
 | |
| 			D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
 | |
| 			c->gcblock = NULL;
 | |
| 		} else {
 | |
| 			D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
 | |
| 			list_del(&jeb->list);
 | |
| 		}
 | |
| 		if (jffs2_wbuf_dirty(c)) {
 | |
| 			D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
 | |
| 			list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
 | |
| 		} else {
 | |
| 			if (jiffies & 127) {
 | |
| 				/* Most of the time, we just erase it immediately. Otherwise we
 | |
| 				   spend ages scanning it on mount, etc. */
 | |
| 				D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
 | |
| 				list_add_tail(&jeb->list, &c->erase_pending_list);
 | |
| 				c->nr_erasing_blocks++;
 | |
| 				jffs2_erase_pending_trigger(c);
 | |
| 			} else {
 | |
| 				/* Sometimes, however, we leave it elsewhere so it doesn't get
 | |
| 				   immediately reused, and we spread the load a bit. */
 | |
| 				D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
 | |
| 				list_add_tail(&jeb->list, &c->erasable_list);
 | |
| 			}				
 | |
| 		}
 | |
| 		D1(printk(KERN_DEBUG "Done OK\n"));
 | |
| 	} else if (jeb == c->gcblock) {
 | |
| 		D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
 | |
| 	} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
 | |
| 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
 | |
| 		list_del(&jeb->list);
 | |
| 		D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
 | |
| 		list_add_tail(&jeb->list, &c->dirty_list);
 | |
| 	} else if (VERYDIRTY(c, jeb->dirty_size) &&
 | |
| 		   !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
 | |
| 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
 | |
| 		list_del(&jeb->list);
 | |
| 		D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
 | |
| 		list_add_tail(&jeb->list, &c->very_dirty_list);
 | |
| 	} else {
 | |
| 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
 | |
| 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); 
 | |
| 	}			  	
 | |
| 
 | |
| 	spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 	if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
 | |
| 		(c->flags & JFFS2_SB_FLAG_BUILDING)) {
 | |
| 		/* We didn't lock the erase_free_sem */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* The erase_free_sem is locked, and has been since before we marked the node obsolete
 | |
| 	   and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
 | |
| 	   the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
 | |
| 	   by jffs2_free_all_node_refs() in erase.c. Which is nice. */
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
 | |
| 	ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
 | |
| 	if (ret) {
 | |
| 		printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 	if (retlen != sizeof(n)) {
 | |
| 		printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 	if (PAD(je32_to_cpu(n.totlen)) != PAD(ref_totlen(c, jeb, ref))) {
 | |
| 		printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), ref_totlen(c, jeb, ref));
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 	if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
 | |
| 		D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 	/* XXX FIXME: This is ugly now */
 | |
| 	n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
 | |
| 	ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
 | |
| 	if (ret) {
 | |
| 		printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 	if (retlen != sizeof(n)) {
 | |
| 		printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
 | |
| 		goto out_erase_sem;
 | |
| 	}
 | |
| 
 | |
| 	/* Nodes which have been marked obsolete no longer need to be
 | |
| 	   associated with any inode. Remove them from the per-inode list.
 | |
| 	   
 | |
| 	   Note we can't do this for NAND at the moment because we need 
 | |
| 	   obsolete dirent nodes to stay on the lists, because of the
 | |
| 	   horridness in jffs2_garbage_collect_deletion_dirent(). Also
 | |
| 	   because we delete the inocache, and on NAND we need that to 
 | |
| 	   stay around until all the nodes are actually erased, in order
 | |
| 	   to stop us from giving the same inode number to another newly
 | |
| 	   created inode. */
 | |
| 	if (ref->next_in_ino) {
 | |
| 		struct jffs2_inode_cache *ic;
 | |
| 		struct jffs2_raw_node_ref **p;
 | |
| 
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 		ic = jffs2_raw_ref_to_ic(ref);
 | |
| 		for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
 | |
| 			;
 | |
| 
 | |
| 		*p = ref->next_in_ino;
 | |
| 		ref->next_in_ino = NULL;
 | |
| 
 | |
| 		if (ic->nodes == (void *)ic && ic->nlink == 0)
 | |
| 			jffs2_del_ino_cache(c, ic);
 | |
| 
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Merge with the next node in the physical list, if there is one
 | |
| 	   and if it's also obsolete and if it doesn't belong to any inode */
 | |
| 	if (ref->next_phys && ref_obsolete(ref->next_phys) &&
 | |
| 	    !ref->next_phys->next_in_ino) {
 | |
| 		struct jffs2_raw_node_ref *n = ref->next_phys;
 | |
| 		
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 		ref->__totlen += n->__totlen;
 | |
| 		ref->next_phys = n->next_phys;
 | |
|                 if (jeb->last_node == n) jeb->last_node = ref;
 | |
| 		if (jeb->gc_node == n) {
 | |
| 			/* gc will be happy continuing gc on this node */
 | |
| 			jeb->gc_node=ref;
 | |
| 		}
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 
 | |
| 		jffs2_free_raw_node_ref(n);
 | |
| 	}
 | |
| 	
 | |
| 	/* Also merge with the previous node in the list, if there is one
 | |
| 	   and that one is obsolete */
 | |
| 	if (ref != jeb->first_node ) {
 | |
| 		struct jffs2_raw_node_ref *p = jeb->first_node;
 | |
| 
 | |
| 		spin_lock(&c->erase_completion_lock);
 | |
| 
 | |
| 		while (p->next_phys != ref)
 | |
| 			p = p->next_phys;
 | |
| 		
 | |
| 		if (ref_obsolete(p) && !ref->next_in_ino) {
 | |
| 			p->__totlen += ref->__totlen;
 | |
| 			if (jeb->last_node == ref) {
 | |
| 				jeb->last_node = p;
 | |
| 			}
 | |
| 			if (jeb->gc_node == ref) {
 | |
| 				/* gc will be happy continuing gc on this node */
 | |
| 				jeb->gc_node=p;
 | |
| 			}
 | |
| 			p->next_phys = ref->next_phys;
 | |
| 			jffs2_free_raw_node_ref(ref);
 | |
| 		}
 | |
| 		spin_unlock(&c->erase_completion_lock);
 | |
| 	}
 | |
|  out_erase_sem:
 | |
| 	up(&c->erase_free_sem);
 | |
| }
 | |
| 
 | |
| #if CONFIG_JFFS2_FS_DEBUG >= 2
 | |
| void jffs2_dump_block_lists(struct jffs2_sb_info *c)
 | |
| {
 | |
| 
 | |
| 
 | |
| 	printk(KERN_DEBUG "jffs2_dump_block_lists:\n");
 | |
| 	printk(KERN_DEBUG "flash_size: %08x\n", c->flash_size);
 | |
| 	printk(KERN_DEBUG "used_size: %08x\n", c->used_size);
 | |
| 	printk(KERN_DEBUG "dirty_size: %08x\n", c->dirty_size);
 | |
| 	printk(KERN_DEBUG "wasted_size: %08x\n", c->wasted_size);
 | |
| 	printk(KERN_DEBUG "unchecked_size: %08x\n", c->unchecked_size);
 | |
| 	printk(KERN_DEBUG "free_size: %08x\n", c->free_size);
 | |
| 	printk(KERN_DEBUG "erasing_size: %08x\n", c->erasing_size);
 | |
| 	printk(KERN_DEBUG "bad_size: %08x\n", c->bad_size);
 | |
| 	printk(KERN_DEBUG "sector_size: %08x\n", c->sector_size);
 | |
| 	printk(KERN_DEBUG "jffs2_reserved_blocks size: %08x\n",c->sector_size * c->resv_blocks_write);
 | |
| 
 | |
| 	if (c->nextblock) {
 | |
| 		printk(KERN_DEBUG "nextblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
 | |
| 		       c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->unchecked_size, c->nextblock->free_size);
 | |
| 	} else {
 | |
| 		printk(KERN_DEBUG "nextblock: NULL\n");
 | |
| 	}
 | |
| 	if (c->gcblock) {
 | |
| 		printk(KERN_DEBUG "gcblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
 | |
| 		       c->gcblock->offset, c->gcblock->used_size, c->gcblock->dirty_size, c->gcblock->wasted_size, c->gcblock->unchecked_size, c->gcblock->free_size);
 | |
| 	} else {
 | |
| 		printk(KERN_DEBUG "gcblock: NULL\n");
 | |
| 	}
 | |
| 	if (list_empty(&c->clean_list)) {
 | |
| 		printk(KERN_DEBUG "clean_list: empty\n");
 | |
| 	} else {
 | |
| 		struct list_head *this;
 | |
| 		int	numblocks = 0;
 | |
| 		uint32_t dirty = 0;
 | |
| 
 | |
| 		list_for_each(this, &c->clean_list) {
 | |
| 			struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
 | |
| 			numblocks ++;
 | |
| 			dirty += jeb->wasted_size;
 | |
| 			printk(KERN_DEBUG "clean_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
 | |
| 		}
 | |
| 		printk (KERN_DEBUG "Contains %d blocks with total wasted size %u, average wasted size: %u\n", numblocks, dirty, dirty / numblocks);
 | |
| 	}
 | |
| 	if (list_empty(&c->very_dirty_list)) {
 | |
| 		printk(KERN_DEBUG "very_dirty_list: empty\n");
 | |
| 	} else {
 | |
| 		struct list_head *this;
 | |
| 		int	numblocks = 0;
 | |
| 		uint32_t dirty = 0;
 | |
| 
 | |
| 		list_for_each(this, &c->very_dirty_list) {
 | |
| 			struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
 | |
| 			numblocks ++;
 | |
| 			dirty += jeb->dirty_size;
 | |
| 			printk(KERN_DEBUG "very_dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
 | |
| 			       jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
 | |
| 		}
 | |
| 		printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n",
 | |
| 			numblocks, dirty, dirty / numblocks);
 | |
| 	}
 | |
| 	if (list_empty(&c->dirty_list)) {
 | |
| 		printk(KERN_DEBUG "dirty_list: empty\n");
 | |
| 	} else {
 | |
| 		struct list_head *this;
 | |
| 		int	numblocks = 0;
 | |
| 		uint32_t dirty = 0;
 | |
| 
 | |
| 		list_for_each(this, &c->dirty_list) {
 | |
| 			struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
 | |
| 			numblocks ++;
 | |
| 			dirty += jeb->dirty_size;
 | |
| 			printk(KERN_DEBUG "dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
 | |
| 			       jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
 | |
| 		}
 | |
| 		printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n",
 | |
| 			numblocks, dirty, dirty / numblocks);
 | |
| 	}
 | |
| 	if (list_empty(&c->erasable_list)) {
 | |
| 		printk(KERN_DEBUG "erasable_list: empty\n");
 | |
| 	} else {
 | |
| 		struct list_head *this;
 | |
| 
 | |
| 		list_for_each(this, &c->erasable_list) {
 | |
| 			struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
 | |
| 			printk(KERN_DEBUG "erasable_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
 | |
| 			       jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
 | |
| 		}
 | |
| 	}
 | |
| 	if (list_empty(&c->erasing_list)) {
 | |
| 		printk(KERN_DEBUG "erasing_list: empty\n");
 | |
| 	} else {
 | |
| 		struct list_head *this;
 | |
| 
 | |
| 		list_for_each(this, &c->erasing_list) {
 | |
| 			struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
 | |
| 			printk(KERN_DEBUG "erasing_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
 | |
| 			       jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
 | |
| 		}
 | |
| 	}
 | |
| 	if (list_empty(&c->erase_pending_list)) {
 | |
| 		printk(KERN_DEBUG "erase_pending_list: empty\n");
 | |
| 	} else {
 | |
| 		struct list_head *this;
 | |
| 
 | |
| 		list_for_each(this, &c->erase_pending_list) {
 | |
| 			struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
 | |
| 			printk(KERN_DEBUG "erase_pending_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
 | |
| 			       jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
 | |
| 		}
 | |
| 	}
 | |
| 	if (list_empty(&c->erasable_pending_wbuf_list)) {
 | |
| 		printk(KERN_DEBUG "erasable_pending_wbuf_list: empty\n");
 | |
| 	} else {
 | |
| 		struct list_head *this;
 | |
| 
 | |
| 		list_for_each(this, &c->erasable_pending_wbuf_list) {
 | |
| 			struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
 | |
| 			printk(KERN_DEBUG "erasable_pending_wbuf_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
 | |
| 			       jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
 | |
| 		}
 | |
| 	}
 | |
| 	if (list_empty(&c->free_list)) {
 | |
| 		printk(KERN_DEBUG "free_list: empty\n");
 | |
| 	} else {
 | |
| 		struct list_head *this;
 | |
| 
 | |
| 		list_for_each(this, &c->free_list) {
 | |
| 			struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
 | |
| 			printk(KERN_DEBUG "free_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
 | |
| 			       jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
 | |
| 		}
 | |
| 	}
 | |
| 	if (list_empty(&c->bad_list)) {
 | |
| 		printk(KERN_DEBUG "bad_list: empty\n");
 | |
| 	} else {
 | |
| 		struct list_head *this;
 | |
| 
 | |
| 		list_for_each(this, &c->bad_list) {
 | |
| 			struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
 | |
| 			printk(KERN_DEBUG "bad_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
 | |
| 			       jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
 | |
| 		}
 | |
| 	}
 | |
| 	if (list_empty(&c->bad_used_list)) {
 | |
| 		printk(KERN_DEBUG "bad_used_list: empty\n");
 | |
| 	} else {
 | |
| 		struct list_head *this;
 | |
| 
 | |
| 		list_for_each(this, &c->bad_used_list) {
 | |
| 			struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
 | |
| 			printk(KERN_DEBUG "bad_used_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
 | |
| 			       jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_JFFS2_FS_DEBUG */
 | |
| 
 | |
| int jffs2_thread_should_wake(struct jffs2_sb_info *c)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	uint32_t dirty;
 | |
| 
 | |
| 	if (c->unchecked_size) {
 | |
| 		D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
 | |
| 			  c->unchecked_size, c->checked_ino));
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* dirty_size contains blocks on erase_pending_list
 | |
| 	 * those blocks are counted in c->nr_erasing_blocks.
 | |
| 	 * If one block is actually erased, it is not longer counted as dirty_space
 | |
| 	 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
 | |
| 	 * with c->nr_erasing_blocks * c->sector_size again.
 | |
| 	 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
 | |
| 	 * This helps us to force gc and pick eventually a clean block to spread the load.
 | |
| 	 */
 | |
| 	dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
 | |
| 
 | |
| 	if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger && 
 | |
| 			(dirty > c->nospc_dirty_size)) 
 | |
| 		ret = 1;
 | |
| 
 | |
| 	D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x: %s\n", 
 | |
| 		  c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, ret?"yes":"no"));
 | |
| 
 | |
| 	return ret;
 | |
| }
 |