 59586e5a26
			
		
	
	
	59586e5a26
	
	
	
		
			
			machine_restart, machine_halt and machine_power_off are machine specific hooks deep into the reboot logic, that modules have no business messing with. Usually code should be calling kernel_restart, kernel_halt, kernel_power_off, or emergency_restart. So don't export machine_restart, machine_halt, and machine_power_off so we can catch buggy users. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			525 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			525 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/alpha/kernel/process.c
 | |
|  *
 | |
|  *  Copyright (C) 1995  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file handles the architecture-dependent parts of process handling.
 | |
|  */
 | |
| 
 | |
| #include <linux/config.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/smp_lock.h>
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/unistd.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/user.h>
 | |
| #include <linux/a.out.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/major.h>
 | |
| #include <linux/stat.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/elfcore.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/tty.h>
 | |
| #include <linux/console.h>
 | |
| 
 | |
| #include <asm/reg.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/hwrpb.h>
 | |
| #include <asm/fpu.h>
 | |
| 
 | |
| #include "proto.h"
 | |
| #include "pci_impl.h"
 | |
| 
 | |
| void default_idle(void)
 | |
| {
 | |
| 	barrier();
 | |
| }
 | |
| 
 | |
| void
 | |
| cpu_idle(void)
 | |
| {
 | |
| 	while (1) {
 | |
| 		void (*idle)(void) = default_idle;
 | |
| 		/* FIXME -- EV6 and LCA45 know how to power down
 | |
| 		   the CPU.  */
 | |
| 
 | |
| 		while (!need_resched())
 | |
| 			idle();
 | |
| 		schedule();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| struct halt_info {
 | |
| 	int mode;
 | |
| 	char *restart_cmd;
 | |
| };
 | |
| 
 | |
| static void
 | |
| common_shutdown_1(void *generic_ptr)
 | |
| {
 | |
| 	struct halt_info *how = (struct halt_info *)generic_ptr;
 | |
| 	struct percpu_struct *cpup;
 | |
| 	unsigned long *pflags, flags;
 | |
| 	int cpuid = smp_processor_id();
 | |
| 
 | |
| 	/* No point in taking interrupts anymore. */
 | |
| 	local_irq_disable();
 | |
| 
 | |
| 	cpup = (struct percpu_struct *)
 | |
| 			((unsigned long)hwrpb + hwrpb->processor_offset
 | |
| 			 + hwrpb->processor_size * cpuid);
 | |
| 	pflags = &cpup->flags;
 | |
| 	flags = *pflags;
 | |
| 
 | |
| 	/* Clear reason to "default"; clear "bootstrap in progress". */
 | |
| 	flags &= ~0x00ff0001UL;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* Secondaries halt here. */
 | |
| 	if (cpuid != boot_cpuid) {
 | |
| 		flags |= 0x00040000UL; /* "remain halted" */
 | |
| 		*pflags = flags;
 | |
| 		clear_bit(cpuid, &cpu_present_mask);
 | |
| 		halt();
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
 | |
| 		if (!how->restart_cmd) {
 | |
| 			flags |= 0x00020000UL; /* "cold bootstrap" */
 | |
| 		} else {
 | |
| 			/* For SRM, we could probably set environment
 | |
| 			   variables to get this to work.  We'd have to
 | |
| 			   delay this until after srm_paging_stop unless
 | |
| 			   we ever got srm_fixup working.
 | |
| 
 | |
| 			   At the moment, SRM will use the last boot device,
 | |
| 			   but the file and flags will be the defaults, when
 | |
| 			   doing a "warm" bootstrap.  */
 | |
| 			flags |= 0x00030000UL; /* "warm bootstrap" */
 | |
| 		}
 | |
| 	} else {
 | |
| 		flags |= 0x00040000UL; /* "remain halted" */
 | |
| 	}
 | |
| 	*pflags = flags;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* Wait for the secondaries to halt. */
 | |
| 	cpu_clear(boot_cpuid, cpu_possible_map);
 | |
| 	while (cpus_weight(cpu_possible_map))
 | |
| 		barrier();
 | |
| #endif
 | |
| 
 | |
| 	/* If booted from SRM, reset some of the original environment. */
 | |
| 	if (alpha_using_srm) {
 | |
| #ifdef CONFIG_DUMMY_CONSOLE
 | |
| 		/* This has the effect of resetting the VGA video origin.  */
 | |
| 		take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
 | |
| #endif
 | |
| 		pci_restore_srm_config();
 | |
| 		set_hae(srm_hae);
 | |
| 	}
 | |
| 
 | |
| 	if (alpha_mv.kill_arch)
 | |
| 		alpha_mv.kill_arch(how->mode);
 | |
| 
 | |
| 	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
 | |
| 		/* Unfortunately, since MILO doesn't currently understand
 | |
| 		   the hwrpb bits above, we can't reliably halt the 
 | |
| 		   processor and keep it halted.  So just loop.  */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (alpha_using_srm)
 | |
| 		srm_paging_stop();
 | |
| 
 | |
| 	halt();
 | |
| }
 | |
| 
 | |
| static void
 | |
| common_shutdown(int mode, char *restart_cmd)
 | |
| {
 | |
| 	struct halt_info args;
 | |
| 	args.mode = mode;
 | |
| 	args.restart_cmd = restart_cmd;
 | |
| 	on_each_cpu(common_shutdown_1, &args, 1, 0);
 | |
| }
 | |
| 
 | |
| void
 | |
| machine_restart(char *restart_cmd)
 | |
| {
 | |
| 	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| machine_halt(void)
 | |
| {
 | |
| 	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| machine_power_off(void)
 | |
| {
 | |
| 	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
 | |
|    saved in the context it's used.  */
 | |
| 
 | |
| void
 | |
| show_regs(struct pt_regs *regs)
 | |
| {
 | |
| 	dik_show_regs(regs, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Re-start a thread when doing execve()
 | |
|  */
 | |
| void
 | |
| start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
 | |
| {
 | |
| 	set_fs(USER_DS);
 | |
| 	regs->pc = pc;
 | |
| 	regs->ps = 8;
 | |
| 	wrusp(sp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free current thread data structures etc..
 | |
|  */
 | |
| void
 | |
| exit_thread(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| void
 | |
| flush_thread(void)
 | |
| {
 | |
| 	/* Arrange for each exec'ed process to start off with a clean slate
 | |
| 	   with respect to the FPU.  This is all exceptions disabled.  */
 | |
| 	current_thread_info()->ieee_state = 0;
 | |
| 	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
 | |
| 
 | |
| 	/* Clean slate for TLS.  */
 | |
| 	current_thread_info()->pcb.unique = 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| release_thread(struct task_struct *dead_task)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * "alpha_clone()".. By the time we get here, the
 | |
|  * non-volatile registers have also been saved on the
 | |
|  * stack. We do some ugly pointer stuff here.. (see
 | |
|  * also copy_thread)
 | |
|  *
 | |
|  * Notice that "fork()" is implemented in terms of clone,
 | |
|  * with parameters (SIGCHLD, 0).
 | |
|  */
 | |
| int
 | |
| alpha_clone(unsigned long clone_flags, unsigned long usp,
 | |
| 	    int __user *parent_tid, int __user *child_tid,
 | |
| 	    unsigned long tls_value, struct pt_regs *regs)
 | |
| {
 | |
| 	if (!usp)
 | |
| 		usp = rdusp();
 | |
| 
 | |
| 	return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid);
 | |
| }
 | |
| 
 | |
| int
 | |
| alpha_vfork(struct pt_regs *regs)
 | |
| {
 | |
| 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
 | |
| 		       regs, 0, NULL, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy an alpha thread..
 | |
|  *
 | |
|  * Note the "stack_offset" stuff: when returning to kernel mode, we need
 | |
|  * to have some extra stack-space for the kernel stack that still exists
 | |
|  * after the "ret_from_fork".  When returning to user mode, we only want
 | |
|  * the space needed by the syscall stack frame (ie "struct pt_regs").
 | |
|  * Use the passed "regs" pointer to determine how much space we need
 | |
|  * for a kernel fork().
 | |
|  */
 | |
| 
 | |
| int
 | |
| copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
 | |
| 	    unsigned long unused,
 | |
| 	    struct task_struct * p, struct pt_regs * regs)
 | |
| {
 | |
| 	extern void ret_from_fork(void);
 | |
| 
 | |
| 	struct thread_info *childti = p->thread_info;
 | |
| 	struct pt_regs * childregs;
 | |
| 	struct switch_stack * childstack, *stack;
 | |
| 	unsigned long stack_offset, settls;
 | |
| 
 | |
| 	stack_offset = PAGE_SIZE - sizeof(struct pt_regs);
 | |
| 	if (!(regs->ps & 8))
 | |
| 		stack_offset = (PAGE_SIZE-1) & (unsigned long) regs;
 | |
| 	childregs = (struct pt_regs *)
 | |
| 	  (stack_offset + PAGE_SIZE + (long) childti);
 | |
| 		
 | |
| 	*childregs = *regs;
 | |
| 	settls = regs->r20;
 | |
| 	childregs->r0 = 0;
 | |
| 	childregs->r19 = 0;
 | |
| 	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
 | |
| 	regs->r20 = 0;
 | |
| 	stack = ((struct switch_stack *) regs) - 1;
 | |
| 	childstack = ((struct switch_stack *) childregs) - 1;
 | |
| 	*childstack = *stack;
 | |
| 	childstack->r26 = (unsigned long) ret_from_fork;
 | |
| 	childti->pcb.usp = usp;
 | |
| 	childti->pcb.ksp = (unsigned long) childstack;
 | |
| 	childti->pcb.flags = 1;	/* set FEN, clear everything else */
 | |
| 
 | |
| 	/* Set a new TLS for the child thread?  Peek back into the
 | |
| 	   syscall arguments that we saved on syscall entry.  Oops,
 | |
| 	   except we'd have clobbered it with the parent/child set
 | |
| 	   of r20.  Read the saved copy.  */
 | |
| 	/* Note: if CLONE_SETTLS is not set, then we must inherit the
 | |
| 	   value from the parent, which will have been set by the block
 | |
| 	   copy in dup_task_struct.  This is non-intuitive, but is
 | |
| 	   required for proper operation in the case of a threaded
 | |
| 	   application calling fork.  */
 | |
| 	if (clone_flags & CLONE_SETTLS)
 | |
| 		childti->pcb.unique = settls;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fill in the user structure for an ECOFF core dump.
 | |
|  */
 | |
| void
 | |
| dump_thread(struct pt_regs * pt, struct user * dump)
 | |
| {
 | |
| 	/* switch stack follows right below pt_regs: */
 | |
| 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
 | |
| 
 | |
| 	dump->magic = CMAGIC;
 | |
| 	dump->start_code  = current->mm->start_code;
 | |
| 	dump->start_data  = current->mm->start_data;
 | |
| 	dump->start_stack = rdusp() & ~(PAGE_SIZE - 1);
 | |
| 	dump->u_tsize = ((current->mm->end_code - dump->start_code)
 | |
| 			 >> PAGE_SHIFT);
 | |
| 	dump->u_dsize = ((current->mm->brk + PAGE_SIZE-1 - dump->start_data)
 | |
| 			 >> PAGE_SHIFT);
 | |
| 	dump->u_ssize = (current->mm->start_stack - dump->start_stack
 | |
| 			 + PAGE_SIZE-1) >> PAGE_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * We store the registers in an order/format that is
 | |
| 	 * compatible with DEC Unix/OSF/1 as this makes life easier
 | |
| 	 * for gdb.
 | |
| 	 */
 | |
| 	dump->regs[EF_V0]  = pt->r0;
 | |
| 	dump->regs[EF_T0]  = pt->r1;
 | |
| 	dump->regs[EF_T1]  = pt->r2;
 | |
| 	dump->regs[EF_T2]  = pt->r3;
 | |
| 	dump->regs[EF_T3]  = pt->r4;
 | |
| 	dump->regs[EF_T4]  = pt->r5;
 | |
| 	dump->regs[EF_T5]  = pt->r6;
 | |
| 	dump->regs[EF_T6]  = pt->r7;
 | |
| 	dump->regs[EF_T7]  = pt->r8;
 | |
| 	dump->regs[EF_S0]  = sw->r9;
 | |
| 	dump->regs[EF_S1]  = sw->r10;
 | |
| 	dump->regs[EF_S2]  = sw->r11;
 | |
| 	dump->regs[EF_S3]  = sw->r12;
 | |
| 	dump->regs[EF_S4]  = sw->r13;
 | |
| 	dump->regs[EF_S5]  = sw->r14;
 | |
| 	dump->regs[EF_S6]  = sw->r15;
 | |
| 	dump->regs[EF_A3]  = pt->r19;
 | |
| 	dump->regs[EF_A4]  = pt->r20;
 | |
| 	dump->regs[EF_A5]  = pt->r21;
 | |
| 	dump->regs[EF_T8]  = pt->r22;
 | |
| 	dump->regs[EF_T9]  = pt->r23;
 | |
| 	dump->regs[EF_T10] = pt->r24;
 | |
| 	dump->regs[EF_T11] = pt->r25;
 | |
| 	dump->regs[EF_RA]  = pt->r26;
 | |
| 	dump->regs[EF_T12] = pt->r27;
 | |
| 	dump->regs[EF_AT]  = pt->r28;
 | |
| 	dump->regs[EF_SP]  = rdusp();
 | |
| 	dump->regs[EF_PS]  = pt->ps;
 | |
| 	dump->regs[EF_PC]  = pt->pc;
 | |
| 	dump->regs[EF_GP]  = pt->gp;
 | |
| 	dump->regs[EF_A0]  = pt->r16;
 | |
| 	dump->regs[EF_A1]  = pt->r17;
 | |
| 	dump->regs[EF_A2]  = pt->r18;
 | |
| 	memcpy((char *)dump->regs + EF_SIZE, sw->fp, 32 * 8);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fill in the user structure for a ELF core dump.
 | |
|  */
 | |
| void
 | |
| dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
 | |
| {
 | |
| 	/* switch stack follows right below pt_regs: */
 | |
| 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
 | |
| 
 | |
| 	dest[ 0] = pt->r0;
 | |
| 	dest[ 1] = pt->r1;
 | |
| 	dest[ 2] = pt->r2;
 | |
| 	dest[ 3] = pt->r3;
 | |
| 	dest[ 4] = pt->r4;
 | |
| 	dest[ 5] = pt->r5;
 | |
| 	dest[ 6] = pt->r6;
 | |
| 	dest[ 7] = pt->r7;
 | |
| 	dest[ 8] = pt->r8;
 | |
| 	dest[ 9] = sw->r9;
 | |
| 	dest[10] = sw->r10;
 | |
| 	dest[11] = sw->r11;
 | |
| 	dest[12] = sw->r12;
 | |
| 	dest[13] = sw->r13;
 | |
| 	dest[14] = sw->r14;
 | |
| 	dest[15] = sw->r15;
 | |
| 	dest[16] = pt->r16;
 | |
| 	dest[17] = pt->r17;
 | |
| 	dest[18] = pt->r18;
 | |
| 	dest[19] = pt->r19;
 | |
| 	dest[20] = pt->r20;
 | |
| 	dest[21] = pt->r21;
 | |
| 	dest[22] = pt->r22;
 | |
| 	dest[23] = pt->r23;
 | |
| 	dest[24] = pt->r24;
 | |
| 	dest[25] = pt->r25;
 | |
| 	dest[26] = pt->r26;
 | |
| 	dest[27] = pt->r27;
 | |
| 	dest[28] = pt->r28;
 | |
| 	dest[29] = pt->gp;
 | |
| 	dest[30] = rdusp();
 | |
| 	dest[31] = pt->pc;
 | |
| 
 | |
| 	/* Once upon a time this was the PS value.  Which is stupid
 | |
| 	   since that is always 8 for usermode.  Usurped for the more
 | |
| 	   useful value of the thread's UNIQUE field.  */
 | |
| 	dest[32] = ti->pcb.unique;
 | |
| }
 | |
| 
 | |
| int
 | |
| dump_elf_task(elf_greg_t *dest, struct task_struct *task)
 | |
| {
 | |
| 	struct thread_info *ti;
 | |
| 	struct pt_regs *pt;
 | |
| 
 | |
| 	ti = task->thread_info;
 | |
| 	pt = (struct pt_regs *)((unsigned long)ti + 2*PAGE_SIZE) - 1;
 | |
| 
 | |
| 	dump_elf_thread(dest, pt, ti);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int
 | |
| dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
 | |
| {
 | |
| 	struct thread_info *ti;
 | |
| 	struct pt_regs *pt;
 | |
| 	struct switch_stack *sw;
 | |
| 
 | |
| 	ti = task->thread_info;
 | |
| 	pt = (struct pt_regs *)((unsigned long)ti + 2*PAGE_SIZE) - 1;
 | |
| 	sw = (struct switch_stack *)pt - 1;
 | |
| 
 | |
| 	memcpy(dest, sw->fp, 32 * 8);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sys_execve() executes a new program.
 | |
|  */
 | |
| asmlinkage int
 | |
| do_sys_execve(char __user *ufilename, char __user * __user *argv,
 | |
| 	      char __user * __user *envp, struct pt_regs *regs)
 | |
| {
 | |
| 	int error;
 | |
| 	char *filename;
 | |
| 
 | |
| 	filename = getname(ufilename);
 | |
| 	error = PTR_ERR(filename);
 | |
| 	if (IS_ERR(filename))
 | |
| 		goto out;
 | |
| 	error = do_execve(filename, argv, envp, regs);
 | |
| 	putname(filename);
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return saved PC of a blocked thread.  This assumes the frame
 | |
|  * pointer is the 6th saved long on the kernel stack and that the
 | |
|  * saved return address is the first long in the frame.  This all
 | |
|  * holds provided the thread blocked through a call to schedule() ($15
 | |
|  * is the frame pointer in schedule() and $15 is saved at offset 48 by
 | |
|  * entry.S:do_switch_stack).
 | |
|  *
 | |
|  * Under heavy swap load I've seen this lose in an ugly way.  So do
 | |
|  * some extra sanity checking on the ranges we expect these pointers
 | |
|  * to be in so that we can fail gracefully.  This is just for ps after
 | |
|  * all.  -- r~
 | |
|  */
 | |
| 
 | |
| unsigned long
 | |
| thread_saved_pc(task_t *t)
 | |
| {
 | |
| 	unsigned long base = (unsigned long)t->thread_info;
 | |
| 	unsigned long fp, sp = t->thread_info->pcb.ksp;
 | |
| 
 | |
| 	if (sp > base && sp+6*8 < base + 16*1024) {
 | |
| 		fp = ((unsigned long*)sp)[6];
 | |
| 		if (fp > sp && fp < base + 16*1024)
 | |
| 			return *(unsigned long *)fp;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| get_wchan(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long schedule_frame;
 | |
| 	unsigned long pc;
 | |
| 	if (!p || p == current || p->state == TASK_RUNNING)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * This one depends on the frame size of schedule().  Do a
 | |
| 	 * "disass schedule" in gdb to find the frame size.  Also, the
 | |
| 	 * code assumes that sleep_on() follows immediately after
 | |
| 	 * interruptible_sleep_on() and that add_timer() follows
 | |
| 	 * immediately after interruptible_sleep().  Ugly, isn't it?
 | |
| 	 * Maybe adding a wchan field to task_struct would be better,
 | |
| 	 * after all...
 | |
| 	 */
 | |
| 
 | |
| 	pc = thread_saved_pc(p);
 | |
| 	if (in_sched_functions(pc)) {
 | |
| 		schedule_frame = ((unsigned long *)p->thread_info->pcb.ksp)[6];
 | |
| 		return ((unsigned long *)schedule_frame)[12];
 | |
| 	}
 | |
| 	return pc;
 | |
| }
 |