 a892e2d7dc
			
		
	
	
	a892e2d7dc
	
	
	
		
			
			Use kmalloc() to allocate fdmem if possible. vmalloc() is used as a fallback solution for fdmem allocation. A new helper function __free_fdtable() is introduced to reduce the lines of code. A potential bug, vfree() a memory allocated by kmalloc(), is fixed. [akpm@linux-foundation.org: use __GFP_NOWARN, uninline alloc_fdmem() and free_fdmem()] Signed-off-by: Changli Gao <xiaosuo@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Jiri Slaby <jslaby@suse.cz> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Avi Kivity <avi@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			482 lines
		
	
	
	
		
			12 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			482 lines
		
	
	
	
		
			12 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/fs/file.c
 | |
|  *
 | |
|  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
 | |
|  *
 | |
|  *  Manage the dynamic fd arrays in the process files_struct.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fdtable.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/workqueue.h>
 | |
| 
 | |
| struct fdtable_defer {
 | |
| 	spinlock_t lock;
 | |
| 	struct work_struct wq;
 | |
| 	struct fdtable *next;
 | |
| };
 | |
| 
 | |
| int sysctl_nr_open __read_mostly = 1024*1024;
 | |
| int sysctl_nr_open_min = BITS_PER_LONG;
 | |
| int sysctl_nr_open_max = 1024 * 1024; /* raised later */
 | |
| 
 | |
| /*
 | |
|  * We use this list to defer free fdtables that have vmalloced
 | |
|  * sets/arrays. By keeping a per-cpu list, we avoid having to embed
 | |
|  * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
 | |
|  * this per-task structure.
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
 | |
| 
 | |
| static inline void *alloc_fdmem(unsigned int size)
 | |
| {
 | |
| 	void *data;
 | |
| 
 | |
| 	data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN);
 | |
| 	if (data != NULL)
 | |
| 		return data;
 | |
| 
 | |
| 	return vmalloc(size);
 | |
| }
 | |
| 
 | |
| static void free_fdmem(void *ptr)
 | |
| {
 | |
| 	is_vmalloc_addr(ptr) ? vfree(ptr) : kfree(ptr);
 | |
| }
 | |
| 
 | |
| static void __free_fdtable(struct fdtable *fdt)
 | |
| {
 | |
| 	free_fdmem(fdt->fd);
 | |
| 	free_fdmem(fdt->open_fds);
 | |
| 	kfree(fdt);
 | |
| }
 | |
| 
 | |
| static void free_fdtable_work(struct work_struct *work)
 | |
| {
 | |
| 	struct fdtable_defer *f =
 | |
| 		container_of(work, struct fdtable_defer, wq);
 | |
| 	struct fdtable *fdt;
 | |
| 
 | |
| 	spin_lock_bh(&f->lock);
 | |
| 	fdt = f->next;
 | |
| 	f->next = NULL;
 | |
| 	spin_unlock_bh(&f->lock);
 | |
| 	while(fdt) {
 | |
| 		struct fdtable *next = fdt->next;
 | |
| 
 | |
| 		__free_fdtable(fdt);
 | |
| 		fdt = next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void free_fdtable_rcu(struct rcu_head *rcu)
 | |
| {
 | |
| 	struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
 | |
| 	struct fdtable_defer *fddef;
 | |
| 
 | |
| 	BUG_ON(!fdt);
 | |
| 
 | |
| 	if (fdt->max_fds <= NR_OPEN_DEFAULT) {
 | |
| 		/*
 | |
| 		 * This fdtable is embedded in the files structure and that
 | |
| 		 * structure itself is getting destroyed.
 | |
| 		 */
 | |
| 		kmem_cache_free(files_cachep,
 | |
| 				container_of(fdt, struct files_struct, fdtab));
 | |
| 		return;
 | |
| 	}
 | |
| 	if (!is_vmalloc_addr(fdt->fd) && !is_vmalloc_addr(fdt->open_fds)) {
 | |
| 		kfree(fdt->fd);
 | |
| 		kfree(fdt->open_fds);
 | |
| 		kfree(fdt);
 | |
| 	} else {
 | |
| 		fddef = &get_cpu_var(fdtable_defer_list);
 | |
| 		spin_lock(&fddef->lock);
 | |
| 		fdt->next = fddef->next;
 | |
| 		fddef->next = fdt;
 | |
| 		/* vmallocs are handled from the workqueue context */
 | |
| 		schedule_work(&fddef->wq);
 | |
| 		spin_unlock(&fddef->lock);
 | |
| 		put_cpu_var(fdtable_defer_list);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Expand the fdset in the files_struct.  Called with the files spinlock
 | |
|  * held for write.
 | |
|  */
 | |
| static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
 | |
| {
 | |
| 	unsigned int cpy, set;
 | |
| 
 | |
| 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
 | |
| 
 | |
| 	cpy = ofdt->max_fds * sizeof(struct file *);
 | |
| 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
 | |
| 	memcpy(nfdt->fd, ofdt->fd, cpy);
 | |
| 	memset((char *)(nfdt->fd) + cpy, 0, set);
 | |
| 
 | |
| 	cpy = ofdt->max_fds / BITS_PER_BYTE;
 | |
| 	set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
 | |
| 	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
 | |
| 	memset((char *)(nfdt->open_fds) + cpy, 0, set);
 | |
| 	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
 | |
| 	memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
 | |
| }
 | |
| 
 | |
| static struct fdtable * alloc_fdtable(unsigned int nr)
 | |
| {
 | |
| 	struct fdtable *fdt;
 | |
| 	char *data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out how many fds we actually want to support in this fdtable.
 | |
| 	 * Allocation steps are keyed to the size of the fdarray, since it
 | |
| 	 * grows far faster than any of the other dynamic data. We try to fit
 | |
| 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
 | |
| 	 * and growing in powers of two from there on.
 | |
| 	 */
 | |
| 	nr /= (1024 / sizeof(struct file *));
 | |
| 	nr = roundup_pow_of_two(nr + 1);
 | |
| 	nr *= (1024 / sizeof(struct file *));
 | |
| 	/*
 | |
| 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
 | |
| 	 * had been set lower between the check in expand_files() and here.  Deal
 | |
| 	 * with that in caller, it's cheaper that way.
 | |
| 	 *
 | |
| 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
 | |
| 	 * bitmaps handling below becomes unpleasant, to put it mildly...
 | |
| 	 */
 | |
| 	if (unlikely(nr > sysctl_nr_open))
 | |
| 		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
 | |
| 
 | |
| 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
 | |
| 	if (!fdt)
 | |
| 		goto out;
 | |
| 	fdt->max_fds = nr;
 | |
| 	data = alloc_fdmem(nr * sizeof(struct file *));
 | |
| 	if (!data)
 | |
| 		goto out_fdt;
 | |
| 	fdt->fd = (struct file **)data;
 | |
| 	data = alloc_fdmem(max_t(unsigned int,
 | |
| 				 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
 | |
| 	if (!data)
 | |
| 		goto out_arr;
 | |
| 	fdt->open_fds = (fd_set *)data;
 | |
| 	data += nr / BITS_PER_BYTE;
 | |
| 	fdt->close_on_exec = (fd_set *)data;
 | |
| 	fdt->next = NULL;
 | |
| 
 | |
| 	return fdt;
 | |
| 
 | |
| out_arr:
 | |
| 	free_fdmem(fdt->fd);
 | |
| out_fdt:
 | |
| 	kfree(fdt);
 | |
| out:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Expand the file descriptor table.
 | |
|  * This function will allocate a new fdtable and both fd array and fdset, of
 | |
|  * the given size.
 | |
|  * Return <0 error code on error; 1 on successful completion.
 | |
|  * The files->file_lock should be held on entry, and will be held on exit.
 | |
|  */
 | |
| static int expand_fdtable(struct files_struct *files, int nr)
 | |
| 	__releases(files->file_lock)
 | |
| 	__acquires(files->file_lock)
 | |
| {
 | |
| 	struct fdtable *new_fdt, *cur_fdt;
 | |
| 
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 	new_fdt = alloc_fdtable(nr);
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	if (!new_fdt)
 | |
| 		return -ENOMEM;
 | |
| 	/*
 | |
| 	 * extremely unlikely race - sysctl_nr_open decreased between the check in
 | |
| 	 * caller and alloc_fdtable().  Cheaper to catch it here...
 | |
| 	 */
 | |
| 	if (unlikely(new_fdt->max_fds <= nr)) {
 | |
| 		__free_fdtable(new_fdt);
 | |
| 		return -EMFILE;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Check again since another task may have expanded the fd table while
 | |
| 	 * we dropped the lock
 | |
| 	 */
 | |
| 	cur_fdt = files_fdtable(files);
 | |
| 	if (nr >= cur_fdt->max_fds) {
 | |
| 		/* Continue as planned */
 | |
| 		copy_fdtable(new_fdt, cur_fdt);
 | |
| 		rcu_assign_pointer(files->fdt, new_fdt);
 | |
| 		if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
 | |
| 			free_fdtable(cur_fdt);
 | |
| 	} else {
 | |
| 		/* Somebody else expanded, so undo our attempt */
 | |
| 		__free_fdtable(new_fdt);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Expand files.
 | |
|  * This function will expand the file structures, if the requested size exceeds
 | |
|  * the current capacity and there is room for expansion.
 | |
|  * Return <0 error code on error; 0 when nothing done; 1 when files were
 | |
|  * expanded and execution may have blocked.
 | |
|  * The files->file_lock should be held on entry, and will be held on exit.
 | |
|  */
 | |
| int expand_files(struct files_struct *files, int nr)
 | |
| {
 | |
| 	struct fdtable *fdt;
 | |
| 
 | |
| 	fdt = files_fdtable(files);
 | |
| 
 | |
| 	/*
 | |
| 	 * N.B. For clone tasks sharing a files structure, this test
 | |
| 	 * will limit the total number of files that can be opened.
 | |
| 	 */
 | |
| 	if (nr >= rlimit(RLIMIT_NOFILE))
 | |
| 		return -EMFILE;
 | |
| 
 | |
| 	/* Do we need to expand? */
 | |
| 	if (nr < fdt->max_fds)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Can we expand? */
 | |
| 	if (nr >= sysctl_nr_open)
 | |
| 		return -EMFILE;
 | |
| 
 | |
| 	/* All good, so we try */
 | |
| 	return expand_fdtable(files, nr);
 | |
| }
 | |
| 
 | |
| static int count_open_files(struct fdtable *fdt)
 | |
| {
 | |
| 	int size = fdt->max_fds;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Find the last open fd */
 | |
| 	for (i = size/(8*sizeof(long)); i > 0; ) {
 | |
| 		if (fdt->open_fds->fds_bits[--i])
 | |
| 			break;
 | |
| 	}
 | |
| 	i = (i+1) * 8 * sizeof(long);
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a new files structure and copy contents from the
 | |
|  * passed in files structure.
 | |
|  * errorp will be valid only when the returned files_struct is NULL.
 | |
|  */
 | |
| struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
 | |
| {
 | |
| 	struct files_struct *newf;
 | |
| 	struct file **old_fds, **new_fds;
 | |
| 	int open_files, size, i;
 | |
| 	struct fdtable *old_fdt, *new_fdt;
 | |
| 
 | |
| 	*errorp = -ENOMEM;
 | |
| 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
 | |
| 	if (!newf)
 | |
| 		goto out;
 | |
| 
 | |
| 	atomic_set(&newf->count, 1);
 | |
| 
 | |
| 	spin_lock_init(&newf->file_lock);
 | |
| 	newf->next_fd = 0;
 | |
| 	new_fdt = &newf->fdtab;
 | |
| 	new_fdt->max_fds = NR_OPEN_DEFAULT;
 | |
| 	new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
 | |
| 	new_fdt->open_fds = (fd_set *)&newf->open_fds_init;
 | |
| 	new_fdt->fd = &newf->fd_array[0];
 | |
| 	new_fdt->next = NULL;
 | |
| 
 | |
| 	spin_lock(&oldf->file_lock);
 | |
| 	old_fdt = files_fdtable(oldf);
 | |
| 	open_files = count_open_files(old_fdt);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether we need to allocate a larger fd array and fd set.
 | |
| 	 */
 | |
| 	while (unlikely(open_files > new_fdt->max_fds)) {
 | |
| 		spin_unlock(&oldf->file_lock);
 | |
| 
 | |
| 		if (new_fdt != &newf->fdtab)
 | |
| 			__free_fdtable(new_fdt);
 | |
| 
 | |
| 		new_fdt = alloc_fdtable(open_files - 1);
 | |
| 		if (!new_fdt) {
 | |
| 			*errorp = -ENOMEM;
 | |
| 			goto out_release;
 | |
| 		}
 | |
| 
 | |
| 		/* beyond sysctl_nr_open; nothing to do */
 | |
| 		if (unlikely(new_fdt->max_fds < open_files)) {
 | |
| 			__free_fdtable(new_fdt);
 | |
| 			*errorp = -EMFILE;
 | |
| 			goto out_release;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Reacquire the oldf lock and a pointer to its fd table
 | |
| 		 * who knows it may have a new bigger fd table. We need
 | |
| 		 * the latest pointer.
 | |
| 		 */
 | |
| 		spin_lock(&oldf->file_lock);
 | |
| 		old_fdt = files_fdtable(oldf);
 | |
| 		open_files = count_open_files(old_fdt);
 | |
| 	}
 | |
| 
 | |
| 	old_fds = old_fdt->fd;
 | |
| 	new_fds = new_fdt->fd;
 | |
| 
 | |
| 	memcpy(new_fdt->open_fds->fds_bits,
 | |
| 		old_fdt->open_fds->fds_bits, open_files/8);
 | |
| 	memcpy(new_fdt->close_on_exec->fds_bits,
 | |
| 		old_fdt->close_on_exec->fds_bits, open_files/8);
 | |
| 
 | |
| 	for (i = open_files; i != 0; i--) {
 | |
| 		struct file *f = *old_fds++;
 | |
| 		if (f) {
 | |
| 			get_file(f);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * The fd may be claimed in the fd bitmap but not yet
 | |
| 			 * instantiated in the files array if a sibling thread
 | |
| 			 * is partway through open().  So make sure that this
 | |
| 			 * fd is available to the new process.
 | |
| 			 */
 | |
| 			FD_CLR(open_files - i, new_fdt->open_fds);
 | |
| 		}
 | |
| 		rcu_assign_pointer(*new_fds++, f);
 | |
| 	}
 | |
| 	spin_unlock(&oldf->file_lock);
 | |
| 
 | |
| 	/* compute the remainder to be cleared */
 | |
| 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
 | |
| 
 | |
| 	/* This is long word aligned thus could use a optimized version */
 | |
| 	memset(new_fds, 0, size);
 | |
| 
 | |
| 	if (new_fdt->max_fds > open_files) {
 | |
| 		int left = (new_fdt->max_fds-open_files)/8;
 | |
| 		int start = open_files / (8 * sizeof(unsigned long));
 | |
| 
 | |
| 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
 | |
| 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
 | |
| 	}
 | |
| 
 | |
| 	rcu_assign_pointer(newf->fdt, new_fdt);
 | |
| 
 | |
| 	return newf;
 | |
| 
 | |
| out_release:
 | |
| 	kmem_cache_free(files_cachep, newf);
 | |
| out:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void __devinit fdtable_defer_list_init(int cpu)
 | |
| {
 | |
| 	struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
 | |
| 	spin_lock_init(&fddef->lock);
 | |
| 	INIT_WORK(&fddef->wq, free_fdtable_work);
 | |
| 	fddef->next = NULL;
 | |
| }
 | |
| 
 | |
| void __init files_defer_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 	for_each_possible_cpu(i)
 | |
| 		fdtable_defer_list_init(i);
 | |
| 	sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
 | |
| 			     -BITS_PER_LONG;
 | |
| }
 | |
| 
 | |
| struct files_struct init_files = {
 | |
| 	.count		= ATOMIC_INIT(1),
 | |
| 	.fdt		= &init_files.fdtab,
 | |
| 	.fdtab		= {
 | |
| 		.max_fds	= NR_OPEN_DEFAULT,
 | |
| 		.fd		= &init_files.fd_array[0],
 | |
| 		.close_on_exec	= (fd_set *)&init_files.close_on_exec_init,
 | |
| 		.open_fds	= (fd_set *)&init_files.open_fds_init,
 | |
| 	},
 | |
| 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_task.file_lock),
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * allocate a file descriptor, mark it busy.
 | |
|  */
 | |
| int alloc_fd(unsigned start, unsigned flags)
 | |
| {
 | |
| 	struct files_struct *files = current->files;
 | |
| 	unsigned int fd;
 | |
| 	int error;
 | |
| 	struct fdtable *fdt;
 | |
| 
 | |
| 	spin_lock(&files->file_lock);
 | |
| repeat:
 | |
| 	fdt = files_fdtable(files);
 | |
| 	fd = start;
 | |
| 	if (fd < files->next_fd)
 | |
| 		fd = files->next_fd;
 | |
| 
 | |
| 	if (fd < fdt->max_fds)
 | |
| 		fd = find_next_zero_bit(fdt->open_fds->fds_bits,
 | |
| 					   fdt->max_fds, fd);
 | |
| 
 | |
| 	error = expand_files(files, fd);
 | |
| 	if (error < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we needed to expand the fs array we
 | |
| 	 * might have blocked - try again.
 | |
| 	 */
 | |
| 	if (error)
 | |
| 		goto repeat;
 | |
| 
 | |
| 	if (start <= files->next_fd)
 | |
| 		files->next_fd = fd + 1;
 | |
| 
 | |
| 	FD_SET(fd, fdt->open_fds);
 | |
| 	if (flags & O_CLOEXEC)
 | |
| 		FD_SET(fd, fdt->close_on_exec);
 | |
| 	else
 | |
| 		FD_CLR(fd, fdt->close_on_exec);
 | |
| 	error = fd;
 | |
| #if 1
 | |
| 	/* Sanity check */
 | |
| 	if (rcu_dereference_raw(fdt->fd[fd]) != NULL) {
 | |
| 		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
 | |
| 		rcu_assign_pointer(fdt->fd[fd], NULL);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int get_unused_fd(void)
 | |
| {
 | |
| 	return alloc_fd(0, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(get_unused_fd);
 |