 98391cf4dc
			
		
	
	
	98391cf4dc
	
	
	
		
			
			Presently do_execve() turns PF_KTHREAD off before search_binary_handler(). THis has a theorical risk of PF_KTHREAD getting lost. We don't have to turn PF_KTHREAD off in the ENOEXEC case. This patch moves this flag modification to after the finding of the executable file. This is only a theorical issue because kthreads do not call do_execve() directly. But fixing would be better. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Roland McGrath <roland@redhat.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			2095 lines
		
	
	
	
		
			48 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2095 lines
		
	
	
	
		
			48 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/fs/exec.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * #!-checking implemented by tytso.
 | |
|  */
 | |
| /*
 | |
|  * Demand-loading implemented 01.12.91 - no need to read anything but
 | |
|  * the header into memory. The inode of the executable is put into
 | |
|  * "current->executable", and page faults do the actual loading. Clean.
 | |
|  *
 | |
|  * Once more I can proudly say that linux stood up to being changed: it
 | |
|  * was less than 2 hours work to get demand-loading completely implemented.
 | |
|  *
 | |
|  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
 | |
|  * current->executable is only used by the procfs.  This allows a dispatch
 | |
|  * table to check for several different types  of binary formats.  We keep
 | |
|  * trying until we recognize the file or we run out of supported binary
 | |
|  * formats. 
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fdtable.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/stat.h>
 | |
| #include <linux/fcntl.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/key.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/binfmts.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/tsacct_kern.h>
 | |
| #include <linux/cn_proc.h>
 | |
| #include <linux/audit.h>
 | |
| #include <linux/tracehook.h>
 | |
| #include <linux/kmod.h>
 | |
| #include <linux/fsnotify.h>
 | |
| #include <linux/fs_struct.h>
 | |
| #include <linux/pipe_fs_i.h>
 | |
| #include <linux/oom.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/tlb.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| int core_uses_pid;
 | |
| char core_pattern[CORENAME_MAX_SIZE] = "core";
 | |
| unsigned int core_pipe_limit;
 | |
| int suid_dumpable = 0;
 | |
| 
 | |
| struct core_name {
 | |
| 	char *corename;
 | |
| 	int used, size;
 | |
| };
 | |
| static atomic_t call_count = ATOMIC_INIT(1);
 | |
| 
 | |
| /* The maximal length of core_pattern is also specified in sysctl.c */
 | |
| 
 | |
| static LIST_HEAD(formats);
 | |
| static DEFINE_RWLOCK(binfmt_lock);
 | |
| 
 | |
| int __register_binfmt(struct linux_binfmt * fmt, int insert)
 | |
| {
 | |
| 	if (!fmt)
 | |
| 		return -EINVAL;
 | |
| 	write_lock(&binfmt_lock);
 | |
| 	insert ? list_add(&fmt->lh, &formats) :
 | |
| 		 list_add_tail(&fmt->lh, &formats);
 | |
| 	write_unlock(&binfmt_lock);
 | |
| 	return 0;	
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(__register_binfmt);
 | |
| 
 | |
| void unregister_binfmt(struct linux_binfmt * fmt)
 | |
| {
 | |
| 	write_lock(&binfmt_lock);
 | |
| 	list_del(&fmt->lh);
 | |
| 	write_unlock(&binfmt_lock);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(unregister_binfmt);
 | |
| 
 | |
| static inline void put_binfmt(struct linux_binfmt * fmt)
 | |
| {
 | |
| 	module_put(fmt->module);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note that a shared library must be both readable and executable due to
 | |
|  * security reasons.
 | |
|  *
 | |
|  * Also note that we take the address to load from from the file itself.
 | |
|  */
 | |
| SYSCALL_DEFINE1(uselib, const char __user *, library)
 | |
| {
 | |
| 	struct file *file;
 | |
| 	char *tmp = getname(library);
 | |
| 	int error = PTR_ERR(tmp);
 | |
| 
 | |
| 	if (IS_ERR(tmp))
 | |
| 		goto out;
 | |
| 
 | |
| 	file = do_filp_open(AT_FDCWD, tmp,
 | |
| 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
 | |
| 				MAY_READ | MAY_EXEC | MAY_OPEN);
 | |
| 	putname(tmp);
 | |
| 	error = PTR_ERR(file);
 | |
| 	if (IS_ERR(file))
 | |
| 		goto out;
 | |
| 
 | |
| 	error = -EINVAL;
 | |
| 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
 | |
| 		goto exit;
 | |
| 
 | |
| 	error = -EACCES;
 | |
| 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
 | |
| 		goto exit;
 | |
| 
 | |
| 	fsnotify_open(file);
 | |
| 
 | |
| 	error = -ENOEXEC;
 | |
| 	if(file->f_op) {
 | |
| 		struct linux_binfmt * fmt;
 | |
| 
 | |
| 		read_lock(&binfmt_lock);
 | |
| 		list_for_each_entry(fmt, &formats, lh) {
 | |
| 			if (!fmt->load_shlib)
 | |
| 				continue;
 | |
| 			if (!try_module_get(fmt->module))
 | |
| 				continue;
 | |
| 			read_unlock(&binfmt_lock);
 | |
| 			error = fmt->load_shlib(file);
 | |
| 			read_lock(&binfmt_lock);
 | |
| 			put_binfmt(fmt);
 | |
| 			if (error != -ENOEXEC)
 | |
| 				break;
 | |
| 		}
 | |
| 		read_unlock(&binfmt_lock);
 | |
| 	}
 | |
| exit:
 | |
| 	fput(file);
 | |
| out:
 | |
|   	return error;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| 
 | |
| static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 | |
| 		int write)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int ret;
 | |
| 
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| 	if (write) {
 | |
| 		ret = expand_stack_downwards(bprm->vma, pos);
 | |
| 		if (ret < 0)
 | |
| 			return NULL;
 | |
| 	}
 | |
| #endif
 | |
| 	ret = get_user_pages(current, bprm->mm, pos,
 | |
| 			1, write, 1, &page, NULL);
 | |
| 	if (ret <= 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (write) {
 | |
| 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
 | |
| 		struct rlimit *rlim;
 | |
| 
 | |
| 		/*
 | |
| 		 * We've historically supported up to 32 pages (ARG_MAX)
 | |
| 		 * of argument strings even with small stacks
 | |
| 		 */
 | |
| 		if (size <= ARG_MAX)
 | |
| 			return page;
 | |
| 
 | |
| 		/*
 | |
| 		 * Limit to 1/4-th the stack size for the argv+env strings.
 | |
| 		 * This ensures that:
 | |
| 		 *  - the remaining binfmt code will not run out of stack space,
 | |
| 		 *  - the program will have a reasonable amount of stack left
 | |
| 		 *    to work from.
 | |
| 		 */
 | |
| 		rlim = current->signal->rlim;
 | |
| 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
 | |
| 			put_page(page);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static void put_arg_page(struct page *page)
 | |
| {
 | |
| 	put_page(page);
 | |
| }
 | |
| 
 | |
| static void free_arg_page(struct linux_binprm *bprm, int i)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void free_arg_pages(struct linux_binprm *bprm)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 | |
| 		struct page *page)
 | |
| {
 | |
| 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 | |
| }
 | |
| 
 | |
| static int __bprm_mm_init(struct linux_binprm *bprm)
 | |
| {
 | |
| 	int err;
 | |
| 	struct vm_area_struct *vma = NULL;
 | |
| 	struct mm_struct *mm = bprm->mm;
 | |
| 
 | |
| 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 | |
| 	if (!vma)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	down_write(&mm->mmap_sem);
 | |
| 	vma->vm_mm = mm;
 | |
| 
 | |
| 	/*
 | |
| 	 * Place the stack at the largest stack address the architecture
 | |
| 	 * supports. Later, we'll move this to an appropriate place. We don't
 | |
| 	 * use STACK_TOP because that can depend on attributes which aren't
 | |
| 	 * configured yet.
 | |
| 	 */
 | |
| 	BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
 | |
| 	vma->vm_end = STACK_TOP_MAX;
 | |
| 	vma->vm_start = vma->vm_end - PAGE_SIZE;
 | |
| 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
 | |
| 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 | |
| 	INIT_LIST_HEAD(&vma->anon_vma_chain);
 | |
| 	err = insert_vm_struct(mm, vma);
 | |
| 	if (err)
 | |
| 		goto err;
 | |
| 
 | |
| 	mm->stack_vm = mm->total_vm = 1;
 | |
| 	up_write(&mm->mmap_sem);
 | |
| 	bprm->p = vma->vm_end - sizeof(void *);
 | |
| 	return 0;
 | |
| err:
 | |
| 	up_write(&mm->mmap_sem);
 | |
| 	bprm->vma = NULL;
 | |
| 	kmem_cache_free(vm_area_cachep, vma);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static bool valid_arg_len(struct linux_binprm *bprm, long len)
 | |
| {
 | |
| 	return len <= MAX_ARG_STRLEN;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 | |
| 		int write)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = bprm->page[pos / PAGE_SIZE];
 | |
| 	if (!page && write) {
 | |
| 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 | |
| 		if (!page)
 | |
| 			return NULL;
 | |
| 		bprm->page[pos / PAGE_SIZE] = page;
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static void put_arg_page(struct page *page)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void free_arg_page(struct linux_binprm *bprm, int i)
 | |
| {
 | |
| 	if (bprm->page[i]) {
 | |
| 		__free_page(bprm->page[i]);
 | |
| 		bprm->page[i] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void free_arg_pages(struct linux_binprm *bprm)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_ARG_PAGES; i++)
 | |
| 		free_arg_page(bprm, i);
 | |
| }
 | |
| 
 | |
| static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 | |
| 		struct page *page)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int __bprm_mm_init(struct linux_binprm *bprm)
 | |
| {
 | |
| 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool valid_arg_len(struct linux_binprm *bprm, long len)
 | |
| {
 | |
| 	return len <= bprm->p;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| /*
 | |
|  * Create a new mm_struct and populate it with a temporary stack
 | |
|  * vm_area_struct.  We don't have enough context at this point to set the stack
 | |
|  * flags, permissions, and offset, so we use temporary values.  We'll update
 | |
|  * them later in setup_arg_pages().
 | |
|  */
 | |
| int bprm_mm_init(struct linux_binprm *bprm)
 | |
| {
 | |
| 	int err;
 | |
| 	struct mm_struct *mm = NULL;
 | |
| 
 | |
| 	bprm->mm = mm = mm_alloc();
 | |
| 	err = -ENOMEM;
 | |
| 	if (!mm)
 | |
| 		goto err;
 | |
| 
 | |
| 	err = init_new_context(current, mm);
 | |
| 	if (err)
 | |
| 		goto err;
 | |
| 
 | |
| 	err = __bprm_mm_init(bprm);
 | |
| 	if (err)
 | |
| 		goto err;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	if (mm) {
 | |
| 		bprm->mm = NULL;
 | |
| 		mmdrop(mm);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * count() counts the number of strings in array ARGV.
 | |
|  */
 | |
| static int count(const char __user * const __user * argv, int max)
 | |
| {
 | |
| 	int i = 0;
 | |
| 
 | |
| 	if (argv != NULL) {
 | |
| 		for (;;) {
 | |
| 			const char __user * p;
 | |
| 
 | |
| 			if (get_user(p, argv))
 | |
| 				return -EFAULT;
 | |
| 			if (!p)
 | |
| 				break;
 | |
| 			argv++;
 | |
| 			if (i++ >= max)
 | |
| 				return -E2BIG;
 | |
| 
 | |
| 			if (fatal_signal_pending(current))
 | |
| 				return -ERESTARTNOHAND;
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 	}
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 'copy_strings()' copies argument/environment strings from the old
 | |
|  * processes's memory to the new process's stack.  The call to get_user_pages()
 | |
|  * ensures the destination page is created and not swapped out.
 | |
|  */
 | |
| static int copy_strings(int argc, const char __user *const __user *argv,
 | |
| 			struct linux_binprm *bprm)
 | |
| {
 | |
| 	struct page *kmapped_page = NULL;
 | |
| 	char *kaddr = NULL;
 | |
| 	unsigned long kpos = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	while (argc-- > 0) {
 | |
| 		const char __user *str;
 | |
| 		int len;
 | |
| 		unsigned long pos;
 | |
| 
 | |
| 		if (get_user(str, argv+argc) ||
 | |
| 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
 | |
| 			ret = -EFAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (!valid_arg_len(bprm, len)) {
 | |
| 			ret = -E2BIG;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* We're going to work our way backwords. */
 | |
| 		pos = bprm->p;
 | |
| 		str += len;
 | |
| 		bprm->p -= len;
 | |
| 
 | |
| 		while (len > 0) {
 | |
| 			int offset, bytes_to_copy;
 | |
| 
 | |
| 			if (fatal_signal_pending(current)) {
 | |
| 				ret = -ERESTARTNOHAND;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			cond_resched();
 | |
| 
 | |
| 			offset = pos % PAGE_SIZE;
 | |
| 			if (offset == 0)
 | |
| 				offset = PAGE_SIZE;
 | |
| 
 | |
| 			bytes_to_copy = offset;
 | |
| 			if (bytes_to_copy > len)
 | |
| 				bytes_to_copy = len;
 | |
| 
 | |
| 			offset -= bytes_to_copy;
 | |
| 			pos -= bytes_to_copy;
 | |
| 			str -= bytes_to_copy;
 | |
| 			len -= bytes_to_copy;
 | |
| 
 | |
| 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 | |
| 				struct page *page;
 | |
| 
 | |
| 				page = get_arg_page(bprm, pos, 1);
 | |
| 				if (!page) {
 | |
| 					ret = -E2BIG;
 | |
| 					goto out;
 | |
| 				}
 | |
| 
 | |
| 				if (kmapped_page) {
 | |
| 					flush_kernel_dcache_page(kmapped_page);
 | |
| 					kunmap(kmapped_page);
 | |
| 					put_arg_page(kmapped_page);
 | |
| 				}
 | |
| 				kmapped_page = page;
 | |
| 				kaddr = kmap(kmapped_page);
 | |
| 				kpos = pos & PAGE_MASK;
 | |
| 				flush_arg_page(bprm, kpos, kmapped_page);
 | |
| 			}
 | |
| 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 | |
| 				ret = -EFAULT;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	if (kmapped_page) {
 | |
| 		flush_kernel_dcache_page(kmapped_page);
 | |
| 		kunmap(kmapped_page);
 | |
| 		put_arg_page(kmapped_page);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Like copy_strings, but get argv and its values from kernel memory.
 | |
|  */
 | |
| int copy_strings_kernel(int argc, const char *const *argv,
 | |
| 			struct linux_binprm *bprm)
 | |
| {
 | |
| 	int r;
 | |
| 	mm_segment_t oldfs = get_fs();
 | |
| 	set_fs(KERNEL_DS);
 | |
| 	r = copy_strings(argc, (const char __user *const  __user *)argv, bprm);
 | |
| 	set_fs(oldfs);
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL(copy_strings_kernel);
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| 
 | |
| /*
 | |
|  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 | |
|  * the binfmt code determines where the new stack should reside, we shift it to
 | |
|  * its final location.  The process proceeds as follows:
 | |
|  *
 | |
|  * 1) Use shift to calculate the new vma endpoints.
 | |
|  * 2) Extend vma to cover both the old and new ranges.  This ensures the
 | |
|  *    arguments passed to subsequent functions are consistent.
 | |
|  * 3) Move vma's page tables to the new range.
 | |
|  * 4) Free up any cleared pgd range.
 | |
|  * 5) Shrink the vma to cover only the new range.
 | |
|  */
 | |
| static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	unsigned long old_start = vma->vm_start;
 | |
| 	unsigned long old_end = vma->vm_end;
 | |
| 	unsigned long length = old_end - old_start;
 | |
| 	unsigned long new_start = old_start - shift;
 | |
| 	unsigned long new_end = old_end - shift;
 | |
| 	struct mmu_gather *tlb;
 | |
| 
 | |
| 	BUG_ON(new_start > new_end);
 | |
| 
 | |
| 	/*
 | |
| 	 * ensure there are no vmas between where we want to go
 | |
| 	 * and where we are
 | |
| 	 */
 | |
| 	if (vma != find_vma(mm, new_start))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * cover the whole range: [new_start, old_end)
 | |
| 	 */
 | |
| 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * move the page tables downwards, on failure we rely on
 | |
| 	 * process cleanup to remove whatever mess we made.
 | |
| 	 */
 | |
| 	if (length != move_page_tables(vma, old_start,
 | |
| 				       vma, new_start, length))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	lru_add_drain();
 | |
| 	tlb = tlb_gather_mmu(mm, 0);
 | |
| 	if (new_end > old_start) {
 | |
| 		/*
 | |
| 		 * when the old and new regions overlap clear from new_end.
 | |
| 		 */
 | |
| 		free_pgd_range(tlb, new_end, old_end, new_end,
 | |
| 			vma->vm_next ? vma->vm_next->vm_start : 0);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * otherwise, clean from old_start; this is done to not touch
 | |
| 		 * the address space in [new_end, old_start) some architectures
 | |
| 		 * have constraints on va-space that make this illegal (IA64) -
 | |
| 		 * for the others its just a little faster.
 | |
| 		 */
 | |
| 		free_pgd_range(tlb, old_start, old_end, new_end,
 | |
| 			vma->vm_next ? vma->vm_next->vm_start : 0);
 | |
| 	}
 | |
| 	tlb_finish_mmu(tlb, new_end, old_end);
 | |
| 
 | |
| 	/*
 | |
| 	 * Shrink the vma to just the new range.  Always succeeds.
 | |
| 	 */
 | |
| 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 | |
|  * the stack is optionally relocated, and some extra space is added.
 | |
|  */
 | |
| int setup_arg_pages(struct linux_binprm *bprm,
 | |
| 		    unsigned long stack_top,
 | |
| 		    int executable_stack)
 | |
| {
 | |
| 	unsigned long ret;
 | |
| 	unsigned long stack_shift;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct vm_area_struct *vma = bprm->vma;
 | |
| 	struct vm_area_struct *prev = NULL;
 | |
| 	unsigned long vm_flags;
 | |
| 	unsigned long stack_base;
 | |
| 	unsigned long stack_size;
 | |
| 	unsigned long stack_expand;
 | |
| 	unsigned long rlim_stack;
 | |
| 
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| 	/* Limit stack size to 1GB */
 | |
| 	stack_base = rlimit_max(RLIMIT_STACK);
 | |
| 	if (stack_base > (1 << 30))
 | |
| 		stack_base = 1 << 30;
 | |
| 
 | |
| 	/* Make sure we didn't let the argument array grow too large. */
 | |
| 	if (vma->vm_end - vma->vm_start > stack_base)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	stack_base = PAGE_ALIGN(stack_top - stack_base);
 | |
| 
 | |
| 	stack_shift = vma->vm_start - stack_base;
 | |
| 	mm->arg_start = bprm->p - stack_shift;
 | |
| 	bprm->p = vma->vm_end - stack_shift;
 | |
| #else
 | |
| 	stack_top = arch_align_stack(stack_top);
 | |
| 	stack_top = PAGE_ALIGN(stack_top);
 | |
| 
 | |
| 	if (unlikely(stack_top < mmap_min_addr) ||
 | |
| 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	stack_shift = vma->vm_end - stack_top;
 | |
| 
 | |
| 	bprm->p -= stack_shift;
 | |
| 	mm->arg_start = bprm->p;
 | |
| #endif
 | |
| 
 | |
| 	if (bprm->loader)
 | |
| 		bprm->loader -= stack_shift;
 | |
| 	bprm->exec -= stack_shift;
 | |
| 
 | |
| 	down_write(&mm->mmap_sem);
 | |
| 	vm_flags = VM_STACK_FLAGS;
 | |
| 
 | |
| 	/*
 | |
| 	 * Adjust stack execute permissions; explicitly enable for
 | |
| 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 | |
| 	 * (arch default) otherwise.
 | |
| 	 */
 | |
| 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 | |
| 		vm_flags |= VM_EXEC;
 | |
| 	else if (executable_stack == EXSTACK_DISABLE_X)
 | |
| 		vm_flags &= ~VM_EXEC;
 | |
| 	vm_flags |= mm->def_flags;
 | |
| 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
 | |
| 
 | |
| 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
 | |
| 			vm_flags);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 	BUG_ON(prev != vma);
 | |
| 
 | |
| 	/* Move stack pages down in memory. */
 | |
| 	if (stack_shift) {
 | |
| 		ret = shift_arg_pages(vma, stack_shift);
 | |
| 		if (ret)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* mprotect_fixup is overkill to remove the temporary stack flags */
 | |
| 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
 | |
| 
 | |
| 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
 | |
| 	stack_size = vma->vm_end - vma->vm_start;
 | |
| 	/*
 | |
| 	 * Align this down to a page boundary as expand_stack
 | |
| 	 * will align it up.
 | |
| 	 */
 | |
| 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| 	if (stack_size + stack_expand > rlim_stack)
 | |
| 		stack_base = vma->vm_start + rlim_stack;
 | |
| 	else
 | |
| 		stack_base = vma->vm_end + stack_expand;
 | |
| #else
 | |
| 	if (stack_size + stack_expand > rlim_stack)
 | |
| 		stack_base = vma->vm_end - rlim_stack;
 | |
| 	else
 | |
| 		stack_base = vma->vm_start - stack_expand;
 | |
| #endif
 | |
| 	current->mm->start_stack = bprm->p;
 | |
| 	ret = expand_stack(vma, stack_base);
 | |
| 	if (ret)
 | |
| 		ret = -EFAULT;
 | |
| 
 | |
| out_unlock:
 | |
| 	up_write(&mm->mmap_sem);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(setup_arg_pages);
 | |
| 
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| struct file *open_exec(const char *name)
 | |
| {
 | |
| 	struct file *file;
 | |
| 	int err;
 | |
| 
 | |
| 	file = do_filp_open(AT_FDCWD, name,
 | |
| 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
 | |
| 				MAY_EXEC | MAY_OPEN);
 | |
| 	if (IS_ERR(file))
 | |
| 		goto out;
 | |
| 
 | |
| 	err = -EACCES;
 | |
| 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
 | |
| 		goto exit;
 | |
| 
 | |
| 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
 | |
| 		goto exit;
 | |
| 
 | |
| 	fsnotify_open(file);
 | |
| 
 | |
| 	err = deny_write_access(file);
 | |
| 	if (err)
 | |
| 		goto exit;
 | |
| 
 | |
| out:
 | |
| 	return file;
 | |
| 
 | |
| exit:
 | |
| 	fput(file);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| EXPORT_SYMBOL(open_exec);
 | |
| 
 | |
| int kernel_read(struct file *file, loff_t offset,
 | |
| 		char *addr, unsigned long count)
 | |
| {
 | |
| 	mm_segment_t old_fs;
 | |
| 	loff_t pos = offset;
 | |
| 	int result;
 | |
| 
 | |
| 	old_fs = get_fs();
 | |
| 	set_fs(get_ds());
 | |
| 	/* The cast to a user pointer is valid due to the set_fs() */
 | |
| 	result = vfs_read(file, (void __user *)addr, count, &pos);
 | |
| 	set_fs(old_fs);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(kernel_read);
 | |
| 
 | |
| static int exec_mmap(struct mm_struct *mm)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 	struct mm_struct * old_mm, *active_mm;
 | |
| 
 | |
| 	/* Notify parent that we're no longer interested in the old VM */
 | |
| 	tsk = current;
 | |
| 	old_mm = current->mm;
 | |
| 	sync_mm_rss(tsk, old_mm);
 | |
| 	mm_release(tsk, old_mm);
 | |
| 
 | |
| 	if (old_mm) {
 | |
| 		/*
 | |
| 		 * Make sure that if there is a core dump in progress
 | |
| 		 * for the old mm, we get out and die instead of going
 | |
| 		 * through with the exec.  We must hold mmap_sem around
 | |
| 		 * checking core_state and changing tsk->mm.
 | |
| 		 */
 | |
| 		down_read(&old_mm->mmap_sem);
 | |
| 		if (unlikely(old_mm->core_state)) {
 | |
| 			up_read(&old_mm->mmap_sem);
 | |
| 			return -EINTR;
 | |
| 		}
 | |
| 	}
 | |
| 	task_lock(tsk);
 | |
| 	active_mm = tsk->active_mm;
 | |
| 	tsk->mm = mm;
 | |
| 	tsk->active_mm = mm;
 | |
| 	activate_mm(active_mm, mm);
 | |
| 	if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
 | |
| 		atomic_dec(&old_mm->oom_disable_count);
 | |
| 		atomic_inc(&tsk->mm->oom_disable_count);
 | |
| 	}
 | |
| 	task_unlock(tsk);
 | |
| 	arch_pick_mmap_layout(mm);
 | |
| 	if (old_mm) {
 | |
| 		up_read(&old_mm->mmap_sem);
 | |
| 		BUG_ON(active_mm != old_mm);
 | |
| 		mm_update_next_owner(old_mm);
 | |
| 		mmput(old_mm);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	mmdrop(active_mm);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function makes sure the current process has its own signal table,
 | |
|  * so that flush_signal_handlers can later reset the handlers without
 | |
|  * disturbing other processes.  (Other processes might share the signal
 | |
|  * table via the CLONE_SIGHAND option to clone().)
 | |
|  */
 | |
| static int de_thread(struct task_struct *tsk)
 | |
| {
 | |
| 	struct signal_struct *sig = tsk->signal;
 | |
| 	struct sighand_struct *oldsighand = tsk->sighand;
 | |
| 	spinlock_t *lock = &oldsighand->siglock;
 | |
| 
 | |
| 	if (thread_group_empty(tsk))
 | |
| 		goto no_thread_group;
 | |
| 
 | |
| 	/*
 | |
| 	 * Kill all other threads in the thread group.
 | |
| 	 */
 | |
| 	spin_lock_irq(lock);
 | |
| 	if (signal_group_exit(sig)) {
 | |
| 		/*
 | |
| 		 * Another group action in progress, just
 | |
| 		 * return so that the signal is processed.
 | |
| 		 */
 | |
| 		spin_unlock_irq(lock);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	sig->group_exit_task = tsk;
 | |
| 	sig->notify_count = zap_other_threads(tsk);
 | |
| 	if (!thread_group_leader(tsk))
 | |
| 		sig->notify_count--;
 | |
| 
 | |
| 	while (sig->notify_count) {
 | |
| 		__set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 		spin_unlock_irq(lock);
 | |
| 		schedule();
 | |
| 		spin_lock_irq(lock);
 | |
| 	}
 | |
| 	spin_unlock_irq(lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point all other threads have exited, all we have to
 | |
| 	 * do is to wait for the thread group leader to become inactive,
 | |
| 	 * and to assume its PID:
 | |
| 	 */
 | |
| 	if (!thread_group_leader(tsk)) {
 | |
| 		struct task_struct *leader = tsk->group_leader;
 | |
| 
 | |
| 		sig->notify_count = -1;	/* for exit_notify() */
 | |
| 		for (;;) {
 | |
| 			write_lock_irq(&tasklist_lock);
 | |
| 			if (likely(leader->exit_state))
 | |
| 				break;
 | |
| 			__set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 			write_unlock_irq(&tasklist_lock);
 | |
| 			schedule();
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The only record we have of the real-time age of a
 | |
| 		 * process, regardless of execs it's done, is start_time.
 | |
| 		 * All the past CPU time is accumulated in signal_struct
 | |
| 		 * from sister threads now dead.  But in this non-leader
 | |
| 		 * exec, nothing survives from the original leader thread,
 | |
| 		 * whose birth marks the true age of this process now.
 | |
| 		 * When we take on its identity by switching to its PID, we
 | |
| 		 * also take its birthdate (always earlier than our own).
 | |
| 		 */
 | |
| 		tsk->start_time = leader->start_time;
 | |
| 
 | |
| 		BUG_ON(!same_thread_group(leader, tsk));
 | |
| 		BUG_ON(has_group_leader_pid(tsk));
 | |
| 		/*
 | |
| 		 * An exec() starts a new thread group with the
 | |
| 		 * TGID of the previous thread group. Rehash the
 | |
| 		 * two threads with a switched PID, and release
 | |
| 		 * the former thread group leader:
 | |
| 		 */
 | |
| 
 | |
| 		/* Become a process group leader with the old leader's pid.
 | |
| 		 * The old leader becomes a thread of the this thread group.
 | |
| 		 * Note: The old leader also uses this pid until release_task
 | |
| 		 *       is called.  Odd but simple and correct.
 | |
| 		 */
 | |
| 		detach_pid(tsk, PIDTYPE_PID);
 | |
| 		tsk->pid = leader->pid;
 | |
| 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
 | |
| 		transfer_pid(leader, tsk, PIDTYPE_PGID);
 | |
| 		transfer_pid(leader, tsk, PIDTYPE_SID);
 | |
| 
 | |
| 		list_replace_rcu(&leader->tasks, &tsk->tasks);
 | |
| 		list_replace_init(&leader->sibling, &tsk->sibling);
 | |
| 
 | |
| 		tsk->group_leader = tsk;
 | |
| 		leader->group_leader = tsk;
 | |
| 
 | |
| 		tsk->exit_signal = SIGCHLD;
 | |
| 
 | |
| 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
 | |
| 		leader->exit_state = EXIT_DEAD;
 | |
| 		write_unlock_irq(&tasklist_lock);
 | |
| 
 | |
| 		release_task(leader);
 | |
| 	}
 | |
| 
 | |
| 	sig->group_exit_task = NULL;
 | |
| 	sig->notify_count = 0;
 | |
| 
 | |
| no_thread_group:
 | |
| 	if (current->mm)
 | |
| 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
 | |
| 
 | |
| 	exit_itimers(sig);
 | |
| 	flush_itimer_signals();
 | |
| 
 | |
| 	if (atomic_read(&oldsighand->count) != 1) {
 | |
| 		struct sighand_struct *newsighand;
 | |
| 		/*
 | |
| 		 * This ->sighand is shared with the CLONE_SIGHAND
 | |
| 		 * but not CLONE_THREAD task, switch to the new one.
 | |
| 		 */
 | |
| 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
 | |
| 		if (!newsighand)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		atomic_set(&newsighand->count, 1);
 | |
| 		memcpy(newsighand->action, oldsighand->action,
 | |
| 		       sizeof(newsighand->action));
 | |
| 
 | |
| 		write_lock_irq(&tasklist_lock);
 | |
| 		spin_lock(&oldsighand->siglock);
 | |
| 		rcu_assign_pointer(tsk->sighand, newsighand);
 | |
| 		spin_unlock(&oldsighand->siglock);
 | |
| 		write_unlock_irq(&tasklist_lock);
 | |
| 
 | |
| 		__cleanup_sighand(oldsighand);
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(!thread_group_leader(tsk));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These functions flushes out all traces of the currently running executable
 | |
|  * so that a new one can be started
 | |
|  */
 | |
| static void flush_old_files(struct files_struct * files)
 | |
| {
 | |
| 	long j = -1;
 | |
| 	struct fdtable *fdt;
 | |
| 
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	for (;;) {
 | |
| 		unsigned long set, i;
 | |
| 
 | |
| 		j++;
 | |
| 		i = j * __NFDBITS;
 | |
| 		fdt = files_fdtable(files);
 | |
| 		if (i >= fdt->max_fds)
 | |
| 			break;
 | |
| 		set = fdt->close_on_exec->fds_bits[j];
 | |
| 		if (!set)
 | |
| 			continue;
 | |
| 		fdt->close_on_exec->fds_bits[j] = 0;
 | |
| 		spin_unlock(&files->file_lock);
 | |
| 		for ( ; set ; i++,set >>= 1) {
 | |
| 			if (set & 1) {
 | |
| 				sys_close(i);
 | |
| 			}
 | |
| 		}
 | |
| 		spin_lock(&files->file_lock);
 | |
| 
 | |
| 	}
 | |
| 	spin_unlock(&files->file_lock);
 | |
| }
 | |
| 
 | |
| char *get_task_comm(char *buf, struct task_struct *tsk)
 | |
| {
 | |
| 	/* buf must be at least sizeof(tsk->comm) in size */
 | |
| 	task_lock(tsk);
 | |
| 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
 | |
| 	task_unlock(tsk);
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| void set_task_comm(struct task_struct *tsk, char *buf)
 | |
| {
 | |
| 	task_lock(tsk);
 | |
| 
 | |
| 	/*
 | |
| 	 * Threads may access current->comm without holding
 | |
| 	 * the task lock, so write the string carefully.
 | |
| 	 * Readers without a lock may see incomplete new
 | |
| 	 * names but are safe from non-terminating string reads.
 | |
| 	 */
 | |
| 	memset(tsk->comm, 0, TASK_COMM_LEN);
 | |
| 	wmb();
 | |
| 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
 | |
| 	task_unlock(tsk);
 | |
| 	perf_event_comm(tsk);
 | |
| }
 | |
| 
 | |
| int flush_old_exec(struct linux_binprm * bprm)
 | |
| {
 | |
| 	int retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we have a private signal table and that
 | |
| 	 * we are unassociated from the previous thread group.
 | |
| 	 */
 | |
| 	retval = de_thread(current);
 | |
| 	if (retval)
 | |
| 		goto out;
 | |
| 
 | |
| 	set_mm_exe_file(bprm->mm, bprm->file);
 | |
| 
 | |
| 	/*
 | |
| 	 * Release all of the old mmap stuff
 | |
| 	 */
 | |
| 	retval = exec_mmap(bprm->mm);
 | |
| 	if (retval)
 | |
| 		goto out;
 | |
| 
 | |
| 	bprm->mm = NULL;		/* We're using it now */
 | |
| 
 | |
| 	current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
 | |
| 	flush_thread();
 | |
| 	current->personality &= ~bprm->per_clear;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	return retval;
 | |
| }
 | |
| EXPORT_SYMBOL(flush_old_exec);
 | |
| 
 | |
| void setup_new_exec(struct linux_binprm * bprm)
 | |
| {
 | |
| 	int i, ch;
 | |
| 	const char *name;
 | |
| 	char tcomm[sizeof(current->comm)];
 | |
| 
 | |
| 	arch_pick_mmap_layout(current->mm);
 | |
| 
 | |
| 	/* This is the point of no return */
 | |
| 	current->sas_ss_sp = current->sas_ss_size = 0;
 | |
| 
 | |
| 	if (current_euid() == current_uid() && current_egid() == current_gid())
 | |
| 		set_dumpable(current->mm, 1);
 | |
| 	else
 | |
| 		set_dumpable(current->mm, suid_dumpable);
 | |
| 
 | |
| 	name = bprm->filename;
 | |
| 
 | |
| 	/* Copies the binary name from after last slash */
 | |
| 	for (i=0; (ch = *(name++)) != '\0';) {
 | |
| 		if (ch == '/')
 | |
| 			i = 0; /* overwrite what we wrote */
 | |
| 		else
 | |
| 			if (i < (sizeof(tcomm) - 1))
 | |
| 				tcomm[i++] = ch;
 | |
| 	}
 | |
| 	tcomm[i] = '\0';
 | |
| 	set_task_comm(current, tcomm);
 | |
| 
 | |
| 	/* Set the new mm task size. We have to do that late because it may
 | |
| 	 * depend on TIF_32BIT which is only updated in flush_thread() on
 | |
| 	 * some architectures like powerpc
 | |
| 	 */
 | |
| 	current->mm->task_size = TASK_SIZE;
 | |
| 
 | |
| 	/* install the new credentials */
 | |
| 	if (bprm->cred->uid != current_euid() ||
 | |
| 	    bprm->cred->gid != current_egid()) {
 | |
| 		current->pdeath_signal = 0;
 | |
| 	} else if (file_permission(bprm->file, MAY_READ) ||
 | |
| 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
 | |
| 		set_dumpable(current->mm, suid_dumpable);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush performance counters when crossing a
 | |
| 	 * security domain:
 | |
| 	 */
 | |
| 	if (!get_dumpable(current->mm))
 | |
| 		perf_event_exit_task(current);
 | |
| 
 | |
| 	/* An exec changes our domain. We are no longer part of the thread
 | |
| 	   group */
 | |
| 
 | |
| 	current->self_exec_id++;
 | |
| 			
 | |
| 	flush_signal_handlers(current, 0);
 | |
| 	flush_old_files(current->files);
 | |
| }
 | |
| EXPORT_SYMBOL(setup_new_exec);
 | |
| 
 | |
| /*
 | |
|  * Prepare credentials and lock ->cred_guard_mutex.
 | |
|  * install_exec_creds() commits the new creds and drops the lock.
 | |
|  * Or, if exec fails before, free_bprm() should release ->cred and
 | |
|  * and unlock.
 | |
|  */
 | |
| int prepare_bprm_creds(struct linux_binprm *bprm)
 | |
| {
 | |
| 	if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
 | |
| 		return -ERESTARTNOINTR;
 | |
| 
 | |
| 	bprm->cred = prepare_exec_creds();
 | |
| 	if (likely(bprm->cred))
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_unlock(¤t->signal->cred_guard_mutex);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void free_bprm(struct linux_binprm *bprm)
 | |
| {
 | |
| 	free_arg_pages(bprm);
 | |
| 	if (bprm->cred) {
 | |
| 		mutex_unlock(¤t->signal->cred_guard_mutex);
 | |
| 		abort_creds(bprm->cred);
 | |
| 	}
 | |
| 	kfree(bprm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * install the new credentials for this executable
 | |
|  */
 | |
| void install_exec_creds(struct linux_binprm *bprm)
 | |
| {
 | |
| 	security_bprm_committing_creds(bprm);
 | |
| 
 | |
| 	commit_creds(bprm->cred);
 | |
| 	bprm->cred = NULL;
 | |
| 	/*
 | |
| 	 * cred_guard_mutex must be held at least to this point to prevent
 | |
| 	 * ptrace_attach() from altering our determination of the task's
 | |
| 	 * credentials; any time after this it may be unlocked.
 | |
| 	 */
 | |
| 	security_bprm_committed_creds(bprm);
 | |
| 	mutex_unlock(¤t->signal->cred_guard_mutex);
 | |
| }
 | |
| EXPORT_SYMBOL(install_exec_creds);
 | |
| 
 | |
| /*
 | |
|  * determine how safe it is to execute the proposed program
 | |
|  * - the caller must hold ->cred_guard_mutex to protect against
 | |
|  *   PTRACE_ATTACH
 | |
|  */
 | |
| int check_unsafe_exec(struct linux_binprm *bprm)
 | |
| {
 | |
| 	struct task_struct *p = current, *t;
 | |
| 	unsigned n_fs;
 | |
| 	int res = 0;
 | |
| 
 | |
| 	bprm->unsafe = tracehook_unsafe_exec(p);
 | |
| 
 | |
| 	n_fs = 1;
 | |
| 	spin_lock(&p->fs->lock);
 | |
| 	rcu_read_lock();
 | |
| 	for (t = next_thread(p); t != p; t = next_thread(t)) {
 | |
| 		if (t->fs == p->fs)
 | |
| 			n_fs++;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (p->fs->users > n_fs) {
 | |
| 		bprm->unsafe |= LSM_UNSAFE_SHARE;
 | |
| 	} else {
 | |
| 		res = -EAGAIN;
 | |
| 		if (!p->fs->in_exec) {
 | |
| 			p->fs->in_exec = 1;
 | |
| 			res = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&p->fs->lock);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* 
 | |
|  * Fill the binprm structure from the inode. 
 | |
|  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
 | |
|  *
 | |
|  * This may be called multiple times for binary chains (scripts for example).
 | |
|  */
 | |
| int prepare_binprm(struct linux_binprm *bprm)
 | |
| {
 | |
| 	umode_t mode;
 | |
| 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
 | |
| 	int retval;
 | |
| 
 | |
| 	mode = inode->i_mode;
 | |
| 	if (bprm->file->f_op == NULL)
 | |
| 		return -EACCES;
 | |
| 
 | |
| 	/* clear any previous set[ug]id data from a previous binary */
 | |
| 	bprm->cred->euid = current_euid();
 | |
| 	bprm->cred->egid = current_egid();
 | |
| 
 | |
| 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
 | |
| 		/* Set-uid? */
 | |
| 		if (mode & S_ISUID) {
 | |
| 			bprm->per_clear |= PER_CLEAR_ON_SETID;
 | |
| 			bprm->cred->euid = inode->i_uid;
 | |
| 		}
 | |
| 
 | |
| 		/* Set-gid? */
 | |
| 		/*
 | |
| 		 * If setgid is set but no group execute bit then this
 | |
| 		 * is a candidate for mandatory locking, not a setgid
 | |
| 		 * executable.
 | |
| 		 */
 | |
| 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
 | |
| 			bprm->per_clear |= PER_CLEAR_ON_SETID;
 | |
| 			bprm->cred->egid = inode->i_gid;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* fill in binprm security blob */
 | |
| 	retval = security_bprm_set_creds(bprm);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 	bprm->cred_prepared = 1;
 | |
| 
 | |
| 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
 | |
| 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(prepare_binprm);
 | |
| 
 | |
| /*
 | |
|  * Arguments are '\0' separated strings found at the location bprm->p
 | |
|  * points to; chop off the first by relocating brpm->p to right after
 | |
|  * the first '\0' encountered.
 | |
|  */
 | |
| int remove_arg_zero(struct linux_binprm *bprm)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	unsigned long offset;
 | |
| 	char *kaddr;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!bprm->argc)
 | |
| 		return 0;
 | |
| 
 | |
| 	do {
 | |
| 		offset = bprm->p & ~PAGE_MASK;
 | |
| 		page = get_arg_page(bprm, bprm->p, 0);
 | |
| 		if (!page) {
 | |
| 			ret = -EFAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		kaddr = kmap_atomic(page, KM_USER0);
 | |
| 
 | |
| 		for (; offset < PAGE_SIZE && kaddr[offset];
 | |
| 				offset++, bprm->p++)
 | |
| 			;
 | |
| 
 | |
| 		kunmap_atomic(kaddr, KM_USER0);
 | |
| 		put_arg_page(page);
 | |
| 
 | |
| 		if (offset == PAGE_SIZE)
 | |
| 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
 | |
| 	} while (offset == PAGE_SIZE);
 | |
| 
 | |
| 	bprm->p++;
 | |
| 	bprm->argc--;
 | |
| 	ret = 0;
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(remove_arg_zero);
 | |
| 
 | |
| /*
 | |
|  * cycle the list of binary formats handler, until one recognizes the image
 | |
|  */
 | |
| int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned int depth = bprm->recursion_depth;
 | |
| 	int try,retval;
 | |
| 	struct linux_binfmt *fmt;
 | |
| 
 | |
| 	retval = security_bprm_check(bprm);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/* kernel module loader fixup */
 | |
| 	/* so we don't try to load run modprobe in kernel space. */
 | |
| 	set_fs(USER_DS);
 | |
| 
 | |
| 	retval = audit_bprm(bprm);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	retval = -ENOENT;
 | |
| 	for (try=0; try<2; try++) {
 | |
| 		read_lock(&binfmt_lock);
 | |
| 		list_for_each_entry(fmt, &formats, lh) {
 | |
| 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
 | |
| 			if (!fn)
 | |
| 				continue;
 | |
| 			if (!try_module_get(fmt->module))
 | |
| 				continue;
 | |
| 			read_unlock(&binfmt_lock);
 | |
| 			retval = fn(bprm, regs);
 | |
| 			/*
 | |
| 			 * Restore the depth counter to its starting value
 | |
| 			 * in this call, so we don't have to rely on every
 | |
| 			 * load_binary function to restore it on return.
 | |
| 			 */
 | |
| 			bprm->recursion_depth = depth;
 | |
| 			if (retval >= 0) {
 | |
| 				if (depth == 0)
 | |
| 					tracehook_report_exec(fmt, bprm, regs);
 | |
| 				put_binfmt(fmt);
 | |
| 				allow_write_access(bprm->file);
 | |
| 				if (bprm->file)
 | |
| 					fput(bprm->file);
 | |
| 				bprm->file = NULL;
 | |
| 				current->did_exec = 1;
 | |
| 				proc_exec_connector(current);
 | |
| 				return retval;
 | |
| 			}
 | |
| 			read_lock(&binfmt_lock);
 | |
| 			put_binfmt(fmt);
 | |
| 			if (retval != -ENOEXEC || bprm->mm == NULL)
 | |
| 				break;
 | |
| 			if (!bprm->file) {
 | |
| 				read_unlock(&binfmt_lock);
 | |
| 				return retval;
 | |
| 			}
 | |
| 		}
 | |
| 		read_unlock(&binfmt_lock);
 | |
| 		if (retval != -ENOEXEC || bprm->mm == NULL) {
 | |
| 			break;
 | |
| #ifdef CONFIG_MODULES
 | |
| 		} else {
 | |
| #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
 | |
| 			if (printable(bprm->buf[0]) &&
 | |
| 			    printable(bprm->buf[1]) &&
 | |
| 			    printable(bprm->buf[2]) &&
 | |
| 			    printable(bprm->buf[3]))
 | |
| 				break; /* -ENOEXEC */
 | |
| 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(search_binary_handler);
 | |
| 
 | |
| /*
 | |
|  * sys_execve() executes a new program.
 | |
|  */
 | |
| int do_execve(const char * filename,
 | |
| 	const char __user *const __user *argv,
 | |
| 	const char __user *const __user *envp,
 | |
| 	struct pt_regs * regs)
 | |
| {
 | |
| 	struct linux_binprm *bprm;
 | |
| 	struct file *file;
 | |
| 	struct files_struct *displaced;
 | |
| 	bool clear_in_exec;
 | |
| 	int retval;
 | |
| 
 | |
| 	retval = unshare_files(&displaced);
 | |
| 	if (retval)
 | |
| 		goto out_ret;
 | |
| 
 | |
| 	retval = -ENOMEM;
 | |
| 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
 | |
| 	if (!bprm)
 | |
| 		goto out_files;
 | |
| 
 | |
| 	retval = prepare_bprm_creds(bprm);
 | |
| 	if (retval)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	retval = check_unsafe_exec(bprm);
 | |
| 	if (retval < 0)
 | |
| 		goto out_free;
 | |
| 	clear_in_exec = retval;
 | |
| 	current->in_execve = 1;
 | |
| 
 | |
| 	file = open_exec(filename);
 | |
| 	retval = PTR_ERR(file);
 | |
| 	if (IS_ERR(file))
 | |
| 		goto out_unmark;
 | |
| 
 | |
| 	sched_exec();
 | |
| 
 | |
| 	bprm->file = file;
 | |
| 	bprm->filename = filename;
 | |
| 	bprm->interp = filename;
 | |
| 
 | |
| 	retval = bprm_mm_init(bprm);
 | |
| 	if (retval)
 | |
| 		goto out_file;
 | |
| 
 | |
| 	bprm->argc = count(argv, MAX_ARG_STRINGS);
 | |
| 	if ((retval = bprm->argc) < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	bprm->envc = count(envp, MAX_ARG_STRINGS);
 | |
| 	if ((retval = bprm->envc) < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	retval = prepare_binprm(bprm);
 | |
| 	if (retval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
 | |
| 	if (retval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	bprm->exec = bprm->p;
 | |
| 	retval = copy_strings(bprm->envc, envp, bprm);
 | |
| 	if (retval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	retval = copy_strings(bprm->argc, argv, bprm);
 | |
| 	if (retval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	retval = search_binary_handler(bprm,regs);
 | |
| 	if (retval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* execve succeeded */
 | |
| 	current->fs->in_exec = 0;
 | |
| 	current->in_execve = 0;
 | |
| 	acct_update_integrals(current);
 | |
| 	free_bprm(bprm);
 | |
| 	if (displaced)
 | |
| 		put_files_struct(displaced);
 | |
| 	return retval;
 | |
| 
 | |
| out:
 | |
| 	if (bprm->mm)
 | |
| 		mmput (bprm->mm);
 | |
| 
 | |
| out_file:
 | |
| 	if (bprm->file) {
 | |
| 		allow_write_access(bprm->file);
 | |
| 		fput(bprm->file);
 | |
| 	}
 | |
| 
 | |
| out_unmark:
 | |
| 	if (clear_in_exec)
 | |
| 		current->fs->in_exec = 0;
 | |
| 	current->in_execve = 0;
 | |
| 
 | |
| out_free:
 | |
| 	free_bprm(bprm);
 | |
| 
 | |
| out_files:
 | |
| 	if (displaced)
 | |
| 		reset_files_struct(displaced);
 | |
| out_ret:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| void set_binfmt(struct linux_binfmt *new)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 
 | |
| 	if (mm->binfmt)
 | |
| 		module_put(mm->binfmt->module);
 | |
| 
 | |
| 	mm->binfmt = new;
 | |
| 	if (new)
 | |
| 		__module_get(new->module);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(set_binfmt);
 | |
| 
 | |
| static int expand_corename(struct core_name *cn)
 | |
| {
 | |
| 	char *old_corename = cn->corename;
 | |
| 
 | |
| 	cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
 | |
| 	cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
 | |
| 
 | |
| 	if (!cn->corename) {
 | |
| 		kfree(old_corename);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cn_printf(struct core_name *cn, const char *fmt, ...)
 | |
| {
 | |
| 	char *cur;
 | |
| 	int need;
 | |
| 	int ret;
 | |
| 	va_list arg;
 | |
| 
 | |
| 	va_start(arg, fmt);
 | |
| 	need = vsnprintf(NULL, 0, fmt, arg);
 | |
| 	va_end(arg);
 | |
| 
 | |
| 	if (likely(need < cn->size - cn->used - 1))
 | |
| 		goto out_printf;
 | |
| 
 | |
| 	ret = expand_corename(cn);
 | |
| 	if (ret)
 | |
| 		goto expand_fail;
 | |
| 
 | |
| out_printf:
 | |
| 	cur = cn->corename + cn->used;
 | |
| 	va_start(arg, fmt);
 | |
| 	vsnprintf(cur, need + 1, fmt, arg);
 | |
| 	va_end(arg);
 | |
| 	cn->used += need;
 | |
| 	return 0;
 | |
| 
 | |
| expand_fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* format_corename will inspect the pattern parameter, and output a
 | |
|  * name into corename, which must have space for at least
 | |
|  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
 | |
|  */
 | |
| static int format_corename(struct core_name *cn, long signr)
 | |
| {
 | |
| 	const struct cred *cred = current_cred();
 | |
| 	const char *pat_ptr = core_pattern;
 | |
| 	int ispipe = (*pat_ptr == '|');
 | |
| 	int pid_in_pattern = 0;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
 | |
| 	cn->corename = kmalloc(cn->size, GFP_KERNEL);
 | |
| 	cn->used = 0;
 | |
| 
 | |
| 	if (!cn->corename)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Repeat as long as we have more pattern to process and more output
 | |
| 	   space */
 | |
| 	while (*pat_ptr) {
 | |
| 		if (*pat_ptr != '%') {
 | |
| 			if (*pat_ptr == 0)
 | |
| 				goto out;
 | |
| 			err = cn_printf(cn, "%c", *pat_ptr++);
 | |
| 		} else {
 | |
| 			switch (*++pat_ptr) {
 | |
| 			/* single % at the end, drop that */
 | |
| 			case 0:
 | |
| 				goto out;
 | |
| 			/* Double percent, output one percent */
 | |
| 			case '%':
 | |
| 				err = cn_printf(cn, "%c", '%');
 | |
| 				break;
 | |
| 			/* pid */
 | |
| 			case 'p':
 | |
| 				pid_in_pattern = 1;
 | |
| 				err = cn_printf(cn, "%d",
 | |
| 					      task_tgid_vnr(current));
 | |
| 				break;
 | |
| 			/* uid */
 | |
| 			case 'u':
 | |
| 				err = cn_printf(cn, "%d", cred->uid);
 | |
| 				break;
 | |
| 			/* gid */
 | |
| 			case 'g':
 | |
| 				err = cn_printf(cn, "%d", cred->gid);
 | |
| 				break;
 | |
| 			/* signal that caused the coredump */
 | |
| 			case 's':
 | |
| 				err = cn_printf(cn, "%ld", signr);
 | |
| 				break;
 | |
| 			/* UNIX time of coredump */
 | |
| 			case 't': {
 | |
| 				struct timeval tv;
 | |
| 				do_gettimeofday(&tv);
 | |
| 				err = cn_printf(cn, "%lu", tv.tv_sec);
 | |
| 				break;
 | |
| 			}
 | |
| 			/* hostname */
 | |
| 			case 'h':
 | |
| 				down_read(&uts_sem);
 | |
| 				err = cn_printf(cn, "%s",
 | |
| 					      utsname()->nodename);
 | |
| 				up_read(&uts_sem);
 | |
| 				break;
 | |
| 			/* executable */
 | |
| 			case 'e':
 | |
| 				err = cn_printf(cn, "%s", current->comm);
 | |
| 				break;
 | |
| 			/* core limit size */
 | |
| 			case 'c':
 | |
| 				err = cn_printf(cn, "%lu",
 | |
| 					      rlimit(RLIMIT_CORE));
 | |
| 				break;
 | |
| 			default:
 | |
| 				break;
 | |
| 			}
 | |
| 			++pat_ptr;
 | |
| 		}
 | |
| 
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Backward compatibility with core_uses_pid:
 | |
| 	 *
 | |
| 	 * If core_pattern does not include a %p (as is the default)
 | |
| 	 * and core_uses_pid is set, then .%pid will be appended to
 | |
| 	 * the filename. Do not do this for piped commands. */
 | |
| 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
 | |
| 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| out:
 | |
| 	return ispipe;
 | |
| }
 | |
| 
 | |
| static int zap_process(struct task_struct *start, int exit_code)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 	int nr = 0;
 | |
| 
 | |
| 	start->signal->flags = SIGNAL_GROUP_EXIT;
 | |
| 	start->signal->group_exit_code = exit_code;
 | |
| 	start->signal->group_stop_count = 0;
 | |
| 
 | |
| 	t = start;
 | |
| 	do {
 | |
| 		if (t != current && t->mm) {
 | |
| 			sigaddset(&t->pending.signal, SIGKILL);
 | |
| 			signal_wake_up(t, 1);
 | |
| 			nr++;
 | |
| 		}
 | |
| 	} while_each_thread(start, t);
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
 | |
| 				struct core_state *core_state, int exit_code)
 | |
| {
 | |
| 	struct task_struct *g, *p;
 | |
| 	unsigned long flags;
 | |
| 	int nr = -EAGAIN;
 | |
| 
 | |
| 	spin_lock_irq(&tsk->sighand->siglock);
 | |
| 	if (!signal_group_exit(tsk->signal)) {
 | |
| 		mm->core_state = core_state;
 | |
| 		nr = zap_process(tsk, exit_code);
 | |
| 	}
 | |
| 	spin_unlock_irq(&tsk->sighand->siglock);
 | |
| 	if (unlikely(nr < 0))
 | |
| 		return nr;
 | |
| 
 | |
| 	if (atomic_read(&mm->mm_users) == nr + 1)
 | |
| 		goto done;
 | |
| 	/*
 | |
| 	 * We should find and kill all tasks which use this mm, and we should
 | |
| 	 * count them correctly into ->nr_threads. We don't take tasklist
 | |
| 	 * lock, but this is safe wrt:
 | |
| 	 *
 | |
| 	 * fork:
 | |
| 	 *	None of sub-threads can fork after zap_process(leader). All
 | |
| 	 *	processes which were created before this point should be
 | |
| 	 *	visible to zap_threads() because copy_process() adds the new
 | |
| 	 *	process to the tail of init_task.tasks list, and lock/unlock
 | |
| 	 *	of ->siglock provides a memory barrier.
 | |
| 	 *
 | |
| 	 * do_exit:
 | |
| 	 *	The caller holds mm->mmap_sem. This means that the task which
 | |
| 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
 | |
| 	 *	its ->mm.
 | |
| 	 *
 | |
| 	 * de_thread:
 | |
| 	 *	It does list_replace_rcu(&leader->tasks, ¤t->tasks),
 | |
| 	 *	we must see either old or new leader, this does not matter.
 | |
| 	 *	However, it can change p->sighand, so lock_task_sighand(p)
 | |
| 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
 | |
| 	 *	it can't fail.
 | |
| 	 *
 | |
| 	 *	Note also that "g" can be the old leader with ->mm == NULL
 | |
| 	 *	and already unhashed and thus removed from ->thread_group.
 | |
| 	 *	This is OK, __unhash_process()->list_del_rcu() does not
 | |
| 	 *	clear the ->next pointer, we will find the new leader via
 | |
| 	 *	next_thread().
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	for_each_process(g) {
 | |
| 		if (g == tsk->group_leader)
 | |
| 			continue;
 | |
| 		if (g->flags & PF_KTHREAD)
 | |
| 			continue;
 | |
| 		p = g;
 | |
| 		do {
 | |
| 			if (p->mm) {
 | |
| 				if (unlikely(p->mm == mm)) {
 | |
| 					lock_task_sighand(p, &flags);
 | |
| 					nr += zap_process(p, exit_code);
 | |
| 					unlock_task_sighand(p, &flags);
 | |
| 				}
 | |
| 				break;
 | |
| 			}
 | |
| 		} while_each_thread(g, p);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| done:
 | |
| 	atomic_set(&core_state->nr_threads, nr);
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static int coredump_wait(int exit_code, struct core_state *core_state)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct mm_struct *mm = tsk->mm;
 | |
| 	struct completion *vfork_done;
 | |
| 	int core_waiters = -EBUSY;
 | |
| 
 | |
| 	init_completion(&core_state->startup);
 | |
| 	core_state->dumper.task = tsk;
 | |
| 	core_state->dumper.next = NULL;
 | |
| 
 | |
| 	down_write(&mm->mmap_sem);
 | |
| 	if (!mm->core_state)
 | |
| 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
 | |
| 	up_write(&mm->mmap_sem);
 | |
| 
 | |
| 	if (unlikely(core_waiters < 0))
 | |
| 		goto fail;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure nobody is waiting for us to release the VM,
 | |
| 	 * otherwise we can deadlock when we wait on each other
 | |
| 	 */
 | |
| 	vfork_done = tsk->vfork_done;
 | |
| 	if (vfork_done) {
 | |
| 		tsk->vfork_done = NULL;
 | |
| 		complete(vfork_done);
 | |
| 	}
 | |
| 
 | |
| 	if (core_waiters)
 | |
| 		wait_for_completion(&core_state->startup);
 | |
| fail:
 | |
| 	return core_waiters;
 | |
| }
 | |
| 
 | |
| static void coredump_finish(struct mm_struct *mm)
 | |
| {
 | |
| 	struct core_thread *curr, *next;
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	next = mm->core_state->dumper.next;
 | |
| 	while ((curr = next) != NULL) {
 | |
| 		next = curr->next;
 | |
| 		task = curr->task;
 | |
| 		/*
 | |
| 		 * see exit_mm(), curr->task must not see
 | |
| 		 * ->task == NULL before we read ->next.
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 		curr->task = NULL;
 | |
| 		wake_up_process(task);
 | |
| 	}
 | |
| 
 | |
| 	mm->core_state = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * set_dumpable converts traditional three-value dumpable to two flags and
 | |
|  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
 | |
|  * these bits are not changed atomically.  So get_dumpable can observe the
 | |
|  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
 | |
|  * return either old dumpable or new one by paying attention to the order of
 | |
|  * modifying the bits.
 | |
|  *
 | |
|  * dumpable |   mm->flags (binary)
 | |
|  * old  new | initial interim  final
 | |
|  * ---------+-----------------------
 | |
|  *  0    1  |   00      01      01
 | |
|  *  0    2  |   00      10(*)   11
 | |
|  *  1    0  |   01      00      00
 | |
|  *  1    2  |   01      11      11
 | |
|  *  2    0  |   11      10(*)   00
 | |
|  *  2    1  |   11      11      01
 | |
|  *
 | |
|  * (*) get_dumpable regards interim value of 10 as 11.
 | |
|  */
 | |
| void set_dumpable(struct mm_struct *mm, int value)
 | |
| {
 | |
| 	switch (value) {
 | |
| 	case 0:
 | |
| 		clear_bit(MMF_DUMPABLE, &mm->flags);
 | |
| 		smp_wmb();
 | |
| 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		set_bit(MMF_DUMPABLE, &mm->flags);
 | |
| 		smp_wmb();
 | |
| 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
 | |
| 		smp_wmb();
 | |
| 		set_bit(MMF_DUMPABLE, &mm->flags);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __get_dumpable(unsigned long mm_flags)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = mm_flags & MMF_DUMPABLE_MASK;
 | |
| 	return (ret >= 2) ? 2 : ret;
 | |
| }
 | |
| 
 | |
| int get_dumpable(struct mm_struct *mm)
 | |
| {
 | |
| 	return __get_dumpable(mm->flags);
 | |
| }
 | |
| 
 | |
| static void wait_for_dump_helpers(struct file *file)
 | |
| {
 | |
| 	struct pipe_inode_info *pipe;
 | |
| 
 | |
| 	pipe = file->f_path.dentry->d_inode->i_pipe;
 | |
| 
 | |
| 	pipe_lock(pipe);
 | |
| 	pipe->readers++;
 | |
| 	pipe->writers--;
 | |
| 
 | |
| 	while ((pipe->readers > 1) && (!signal_pending(current))) {
 | |
| 		wake_up_interruptible_sync(&pipe->wait);
 | |
| 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 | |
| 		pipe_wait(pipe);
 | |
| 	}
 | |
| 
 | |
| 	pipe->readers--;
 | |
| 	pipe->writers++;
 | |
| 	pipe_unlock(pipe);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * uhm_pipe_setup
 | |
|  * helper function to customize the process used
 | |
|  * to collect the core in userspace.  Specifically
 | |
|  * it sets up a pipe and installs it as fd 0 (stdin)
 | |
|  * for the process.  Returns 0 on success, or
 | |
|  * PTR_ERR on failure.
 | |
|  * Note that it also sets the core limit to 1.  This
 | |
|  * is a special value that we use to trap recursive
 | |
|  * core dumps
 | |
|  */
 | |
| static int umh_pipe_setup(struct subprocess_info *info)
 | |
| {
 | |
| 	struct file *rp, *wp;
 | |
| 	struct fdtable *fdt;
 | |
| 	struct coredump_params *cp = (struct coredump_params *)info->data;
 | |
| 	struct files_struct *cf = current->files;
 | |
| 
 | |
| 	wp = create_write_pipe(0);
 | |
| 	if (IS_ERR(wp))
 | |
| 		return PTR_ERR(wp);
 | |
| 
 | |
| 	rp = create_read_pipe(wp, 0);
 | |
| 	if (IS_ERR(rp)) {
 | |
| 		free_write_pipe(wp);
 | |
| 		return PTR_ERR(rp);
 | |
| 	}
 | |
| 
 | |
| 	cp->file = wp;
 | |
| 
 | |
| 	sys_close(0);
 | |
| 	fd_install(0, rp);
 | |
| 	spin_lock(&cf->file_lock);
 | |
| 	fdt = files_fdtable(cf);
 | |
| 	FD_SET(0, fdt->open_fds);
 | |
| 	FD_CLR(0, fdt->close_on_exec);
 | |
| 	spin_unlock(&cf->file_lock);
 | |
| 
 | |
| 	/* and disallow core files too */
 | |
| 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void do_coredump(long signr, int exit_code, struct pt_regs *regs)
 | |
| {
 | |
| 	struct core_state core_state;
 | |
| 	struct core_name cn;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct linux_binfmt * binfmt;
 | |
| 	const struct cred *old_cred;
 | |
| 	struct cred *cred;
 | |
| 	int retval = 0;
 | |
| 	int flag = 0;
 | |
| 	int ispipe;
 | |
| 	static atomic_t core_dump_count = ATOMIC_INIT(0);
 | |
| 	struct coredump_params cprm = {
 | |
| 		.signr = signr,
 | |
| 		.regs = regs,
 | |
| 		.limit = rlimit(RLIMIT_CORE),
 | |
| 		/*
 | |
| 		 * We must use the same mm->flags while dumping core to avoid
 | |
| 		 * inconsistency of bit flags, since this flag is not protected
 | |
| 		 * by any locks.
 | |
| 		 */
 | |
| 		.mm_flags = mm->flags,
 | |
| 	};
 | |
| 
 | |
| 	audit_core_dumps(signr);
 | |
| 
 | |
| 	binfmt = mm->binfmt;
 | |
| 	if (!binfmt || !binfmt->core_dump)
 | |
| 		goto fail;
 | |
| 	if (!__get_dumpable(cprm.mm_flags))
 | |
| 		goto fail;
 | |
| 
 | |
| 	cred = prepare_creds();
 | |
| 	if (!cred)
 | |
| 		goto fail;
 | |
| 	/*
 | |
| 	 *	We cannot trust fsuid as being the "true" uid of the
 | |
| 	 *	process nor do we know its entire history. We only know it
 | |
| 	 *	was tainted so we dump it as root in mode 2.
 | |
| 	 */
 | |
| 	if (__get_dumpable(cprm.mm_flags) == 2) {
 | |
| 		/* Setuid core dump mode */
 | |
| 		flag = O_EXCL;		/* Stop rewrite attacks */
 | |
| 		cred->fsuid = 0;	/* Dump root private */
 | |
| 	}
 | |
| 
 | |
| 	retval = coredump_wait(exit_code, &core_state);
 | |
| 	if (retval < 0)
 | |
| 		goto fail_creds;
 | |
| 
 | |
| 	old_cred = override_creds(cred);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear any false indication of pending signals that might
 | |
| 	 * be seen by the filesystem code called to write the core file.
 | |
| 	 */
 | |
| 	clear_thread_flag(TIF_SIGPENDING);
 | |
| 
 | |
| 	ispipe = format_corename(&cn, signr);
 | |
| 
 | |
| 	if (ispipe == -ENOMEM) {
 | |
| 		printk(KERN_WARNING "format_corename failed\n");
 | |
| 		printk(KERN_WARNING "Aborting core\n");
 | |
| 		goto fail_corename;
 | |
| 	}
 | |
| 
 | |
|  	if (ispipe) {
 | |
| 		int dump_count;
 | |
| 		char **helper_argv;
 | |
| 
 | |
| 		if (cprm.limit == 1) {
 | |
| 			/*
 | |
| 			 * Normally core limits are irrelevant to pipes, since
 | |
| 			 * we're not writing to the file system, but we use
 | |
| 			 * cprm.limit of 1 here as a speacial value. Any
 | |
| 			 * non-1 limit gets set to RLIM_INFINITY below, but
 | |
| 			 * a limit of 0 skips the dump.  This is a consistent
 | |
| 			 * way to catch recursive crashes.  We can still crash
 | |
| 			 * if the core_pattern binary sets RLIM_CORE =  !1
 | |
| 			 * but it runs as root, and can do lots of stupid things
 | |
| 			 * Note that we use task_tgid_vnr here to grab the pid
 | |
| 			 * of the process group leader.  That way we get the
 | |
| 			 * right pid if a thread in a multi-threaded
 | |
| 			 * core_pattern process dies.
 | |
| 			 */
 | |
| 			printk(KERN_WARNING
 | |
| 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
 | |
| 				task_tgid_vnr(current), current->comm);
 | |
| 			printk(KERN_WARNING "Aborting core\n");
 | |
| 			goto fail_unlock;
 | |
| 		}
 | |
| 		cprm.limit = RLIM_INFINITY;
 | |
| 
 | |
| 		dump_count = atomic_inc_return(&core_dump_count);
 | |
| 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
 | |
| 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
 | |
| 			       task_tgid_vnr(current), current->comm);
 | |
| 			printk(KERN_WARNING "Skipping core dump\n");
 | |
| 			goto fail_dropcount;
 | |
| 		}
 | |
| 
 | |
| 		helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
 | |
| 		if (!helper_argv) {
 | |
| 			printk(KERN_WARNING "%s failed to allocate memory\n",
 | |
| 			       __func__);
 | |
| 			goto fail_dropcount;
 | |
| 		}
 | |
| 
 | |
| 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
 | |
| 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
 | |
| 					NULL, &cprm);
 | |
| 		argv_free(helper_argv);
 | |
| 		if (retval) {
 | |
|  			printk(KERN_INFO "Core dump to %s pipe failed\n",
 | |
| 			       cn.corename);
 | |
| 			goto close_fail;
 | |
|  		}
 | |
| 	} else {
 | |
| 		struct inode *inode;
 | |
| 
 | |
| 		if (cprm.limit < binfmt->min_coredump)
 | |
| 			goto fail_unlock;
 | |
| 
 | |
| 		cprm.file = filp_open(cn.corename,
 | |
| 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
 | |
| 				 0600);
 | |
| 		if (IS_ERR(cprm.file))
 | |
| 			goto fail_unlock;
 | |
| 
 | |
| 		inode = cprm.file->f_path.dentry->d_inode;
 | |
| 		if (inode->i_nlink > 1)
 | |
| 			goto close_fail;
 | |
| 		if (d_unhashed(cprm.file->f_path.dentry))
 | |
| 			goto close_fail;
 | |
| 		/*
 | |
| 		 * AK: actually i see no reason to not allow this for named
 | |
| 		 * pipes etc, but keep the previous behaviour for now.
 | |
| 		 */
 | |
| 		if (!S_ISREG(inode->i_mode))
 | |
| 			goto close_fail;
 | |
| 		/*
 | |
| 		 * Dont allow local users get cute and trick others to coredump
 | |
| 		 * into their pre-created files.
 | |
| 		 */
 | |
| 		if (inode->i_uid != current_fsuid())
 | |
| 			goto close_fail;
 | |
| 		if (!cprm.file->f_op || !cprm.file->f_op->write)
 | |
| 			goto close_fail;
 | |
| 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
 | |
| 			goto close_fail;
 | |
| 	}
 | |
| 
 | |
| 	retval = binfmt->core_dump(&cprm);
 | |
| 	if (retval)
 | |
| 		current->signal->group_exit_code |= 0x80;
 | |
| 
 | |
| 	if (ispipe && core_pipe_limit)
 | |
| 		wait_for_dump_helpers(cprm.file);
 | |
| close_fail:
 | |
| 	if (cprm.file)
 | |
| 		filp_close(cprm.file, NULL);
 | |
| fail_dropcount:
 | |
| 	if (ispipe)
 | |
| 		atomic_dec(&core_dump_count);
 | |
| fail_unlock:
 | |
| 	kfree(cn.corename);
 | |
| fail_corename:
 | |
| 	coredump_finish(mm);
 | |
| 	revert_creds(old_cred);
 | |
| fail_creds:
 | |
| 	put_cred(cred);
 | |
| fail:
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Core dumping helper functions.  These are the only things you should
 | |
|  * do on a core-file: use only these functions to write out all the
 | |
|  * necessary info.
 | |
|  */
 | |
| int dump_write(struct file *file, const void *addr, int nr)
 | |
| {
 | |
| 	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
 | |
| }
 | |
| EXPORT_SYMBOL(dump_write);
 | |
| 
 | |
| int dump_seek(struct file *file, loff_t off)
 | |
| {
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
 | |
| 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
 | |
| 			return 0;
 | |
| 	} else {
 | |
| 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
 | |
| 
 | |
| 		if (!buf)
 | |
| 			return 0;
 | |
| 		while (off > 0) {
 | |
| 			unsigned long n = off;
 | |
| 
 | |
| 			if (n > PAGE_SIZE)
 | |
| 				n = PAGE_SIZE;
 | |
| 			if (!dump_write(file, buf, n)) {
 | |
| 				ret = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			off -= n;
 | |
| 		}
 | |
| 		free_page((unsigned long)buf);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(dump_seek);
 |