If irq2ctlr() fails return IRQ_NONE. Also as it can fail make 'ctlr' signed. The semantic patch that finds this problem (many false-positive results): (http://coccinelle.lip6.fr/) // <smpl> @ r1 @ identifier f; @@ int f(...) { ... } @@ identifier r1.f; type T; unsigned T x; @@ *x = f(...) ... *x > 0 Signed-off-by: Kulikov Vasiliy <segooon@gmail.com> Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
		
			
				
	
	
		
			1596 lines
		
	
	
	
		
			45 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1596 lines
		
	
	
	
		
			45 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * EDMA3 support for DaVinci
 | 
						|
 *
 | 
						|
 * Copyright (C) 2006-2009 Texas Instruments.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | 
						|
 */
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/platform_device.h>
 | 
						|
#include <linux/io.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
 | 
						|
#include <mach/edma.h>
 | 
						|
 | 
						|
/* Offsets matching "struct edmacc_param" */
 | 
						|
#define PARM_OPT		0x00
 | 
						|
#define PARM_SRC		0x04
 | 
						|
#define PARM_A_B_CNT		0x08
 | 
						|
#define PARM_DST		0x0c
 | 
						|
#define PARM_SRC_DST_BIDX	0x10
 | 
						|
#define PARM_LINK_BCNTRLD	0x14
 | 
						|
#define PARM_SRC_DST_CIDX	0x18
 | 
						|
#define PARM_CCNT		0x1c
 | 
						|
 | 
						|
#define PARM_SIZE		0x20
 | 
						|
 | 
						|
/* Offsets for EDMA CC global channel registers and their shadows */
 | 
						|
#define SH_ER		0x00	/* 64 bits */
 | 
						|
#define SH_ECR		0x08	/* 64 bits */
 | 
						|
#define SH_ESR		0x10	/* 64 bits */
 | 
						|
#define SH_CER		0x18	/* 64 bits */
 | 
						|
#define SH_EER		0x20	/* 64 bits */
 | 
						|
#define SH_EECR		0x28	/* 64 bits */
 | 
						|
#define SH_EESR		0x30	/* 64 bits */
 | 
						|
#define SH_SER		0x38	/* 64 bits */
 | 
						|
#define SH_SECR		0x40	/* 64 bits */
 | 
						|
#define SH_IER		0x50	/* 64 bits */
 | 
						|
#define SH_IECR		0x58	/* 64 bits */
 | 
						|
#define SH_IESR		0x60	/* 64 bits */
 | 
						|
#define SH_IPR		0x68	/* 64 bits */
 | 
						|
#define SH_ICR		0x70	/* 64 bits */
 | 
						|
#define SH_IEVAL	0x78
 | 
						|
#define SH_QER		0x80
 | 
						|
#define SH_QEER		0x84
 | 
						|
#define SH_QEECR	0x88
 | 
						|
#define SH_QEESR	0x8c
 | 
						|
#define SH_QSER		0x90
 | 
						|
#define SH_QSECR	0x94
 | 
						|
#define SH_SIZE		0x200
 | 
						|
 | 
						|
/* Offsets for EDMA CC global registers */
 | 
						|
#define EDMA_REV	0x0000
 | 
						|
#define EDMA_CCCFG	0x0004
 | 
						|
#define EDMA_QCHMAP	0x0200	/* 8 registers */
 | 
						|
#define EDMA_DMAQNUM	0x0240	/* 8 registers (4 on OMAP-L1xx) */
 | 
						|
#define EDMA_QDMAQNUM	0x0260
 | 
						|
#define EDMA_QUETCMAP	0x0280
 | 
						|
#define EDMA_QUEPRI	0x0284
 | 
						|
#define EDMA_EMR	0x0300	/* 64 bits */
 | 
						|
#define EDMA_EMCR	0x0308	/* 64 bits */
 | 
						|
#define EDMA_QEMR	0x0310
 | 
						|
#define EDMA_QEMCR	0x0314
 | 
						|
#define EDMA_CCERR	0x0318
 | 
						|
#define EDMA_CCERRCLR	0x031c
 | 
						|
#define EDMA_EEVAL	0x0320
 | 
						|
#define EDMA_DRAE	0x0340	/* 4 x 64 bits*/
 | 
						|
#define EDMA_QRAE	0x0380	/* 4 registers */
 | 
						|
#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
 | 
						|
#define EDMA_QSTAT	0x0600	/* 2 registers */
 | 
						|
#define EDMA_QWMTHRA	0x0620
 | 
						|
#define EDMA_QWMTHRB	0x0624
 | 
						|
#define EDMA_CCSTAT	0x0640
 | 
						|
 | 
						|
#define EDMA_M		0x1000	/* global channel registers */
 | 
						|
#define EDMA_ECR	0x1008
 | 
						|
#define EDMA_ECRH	0x100C
 | 
						|
#define EDMA_SHADOW0	0x2000	/* 4 regions shadowing global channels */
 | 
						|
#define EDMA_PARM	0x4000	/* 128 param entries */
 | 
						|
 | 
						|
#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
 | 
						|
 | 
						|
#define EDMA_DCHMAP	0x0100  /* 64 registers */
 | 
						|
#define CHMAP_EXIST	BIT(24)
 | 
						|
 | 
						|
#define EDMA_MAX_DMACH           64
 | 
						|
#define EDMA_MAX_PARAMENTRY     512
 | 
						|
 | 
						|
/*****************************************************************************/
 | 
						|
 | 
						|
static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
 | 
						|
 | 
						|
static inline unsigned int edma_read(unsigned ctlr, int offset)
 | 
						|
{
 | 
						|
	return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
 | 
						|
}
 | 
						|
 | 
						|
static inline void edma_write(unsigned ctlr, int offset, int val)
 | 
						|
{
 | 
						|
	__raw_writel(val, edmacc_regs_base[ctlr] + offset);
 | 
						|
}
 | 
						|
static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
 | 
						|
		unsigned or)
 | 
						|
{
 | 
						|
	unsigned val = edma_read(ctlr, offset);
 | 
						|
	val &= and;
 | 
						|
	val |= or;
 | 
						|
	edma_write(ctlr, offset, val);
 | 
						|
}
 | 
						|
static inline void edma_and(unsigned ctlr, int offset, unsigned and)
 | 
						|
{
 | 
						|
	unsigned val = edma_read(ctlr, offset);
 | 
						|
	val &= and;
 | 
						|
	edma_write(ctlr, offset, val);
 | 
						|
}
 | 
						|
static inline void edma_or(unsigned ctlr, int offset, unsigned or)
 | 
						|
{
 | 
						|
	unsigned val = edma_read(ctlr, offset);
 | 
						|
	val |= or;
 | 
						|
	edma_write(ctlr, offset, val);
 | 
						|
}
 | 
						|
static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
 | 
						|
{
 | 
						|
	return edma_read(ctlr, offset + (i << 2));
 | 
						|
}
 | 
						|
static inline void edma_write_array(unsigned ctlr, int offset, int i,
 | 
						|
		unsigned val)
 | 
						|
{
 | 
						|
	edma_write(ctlr, offset + (i << 2), val);
 | 
						|
}
 | 
						|
static inline void edma_modify_array(unsigned ctlr, int offset, int i,
 | 
						|
		unsigned and, unsigned or)
 | 
						|
{
 | 
						|
	edma_modify(ctlr, offset + (i << 2), and, or);
 | 
						|
}
 | 
						|
static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
 | 
						|
{
 | 
						|
	edma_or(ctlr, offset + (i << 2), or);
 | 
						|
}
 | 
						|
static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
 | 
						|
		unsigned or)
 | 
						|
{
 | 
						|
	edma_or(ctlr, offset + ((i*2 + j) << 2), or);
 | 
						|
}
 | 
						|
static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
 | 
						|
		unsigned val)
 | 
						|
{
 | 
						|
	edma_write(ctlr, offset + ((i*2 + j) << 2), val);
 | 
						|
}
 | 
						|
static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
 | 
						|
{
 | 
						|
	return edma_read(ctlr, EDMA_SHADOW0 + offset);
 | 
						|
}
 | 
						|
static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
 | 
						|
		int i)
 | 
						|
{
 | 
						|
	return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
 | 
						|
}
 | 
						|
static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
 | 
						|
{
 | 
						|
	edma_write(ctlr, EDMA_SHADOW0 + offset, val);
 | 
						|
}
 | 
						|
static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
 | 
						|
		unsigned val)
 | 
						|
{
 | 
						|
	edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
 | 
						|
}
 | 
						|
static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
 | 
						|
		int param_no)
 | 
						|
{
 | 
						|
	return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
 | 
						|
}
 | 
						|
static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
 | 
						|
		unsigned val)
 | 
						|
{
 | 
						|
	edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
 | 
						|
}
 | 
						|
static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
 | 
						|
		unsigned and, unsigned or)
 | 
						|
{
 | 
						|
	edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
 | 
						|
}
 | 
						|
static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
 | 
						|
		unsigned and)
 | 
						|
{
 | 
						|
	edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
 | 
						|
}
 | 
						|
static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
 | 
						|
		unsigned or)
 | 
						|
{
 | 
						|
	edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
 | 
						|
}
 | 
						|
 | 
						|
static inline void set_bits(int offset, int len, unsigned long *p)
 | 
						|
{
 | 
						|
	for (; len > 0; len--)
 | 
						|
		set_bit(offset + (len - 1), p);
 | 
						|
}
 | 
						|
 | 
						|
static inline void clear_bits(int offset, int len, unsigned long *p)
 | 
						|
{
 | 
						|
	for (; len > 0; len--)
 | 
						|
		clear_bit(offset + (len - 1), p);
 | 
						|
}
 | 
						|
 | 
						|
/*****************************************************************************/
 | 
						|
 | 
						|
/* actual number of DMA channels and slots on this silicon */
 | 
						|
struct edma {
 | 
						|
	/* how many dma resources of each type */
 | 
						|
	unsigned	num_channels;
 | 
						|
	unsigned	num_region;
 | 
						|
	unsigned	num_slots;
 | 
						|
	unsigned	num_tc;
 | 
						|
	unsigned	num_cc;
 | 
						|
	enum dma_event_q 	default_queue;
 | 
						|
 | 
						|
	/* list of channels with no even trigger; terminated by "-1" */
 | 
						|
	const s8	*noevent;
 | 
						|
 | 
						|
	/* The edma_inuse bit for each PaRAM slot is clear unless the
 | 
						|
	 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
 | 
						|
	 */
 | 
						|
	DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
 | 
						|
 | 
						|
	/* The edma_unused bit for each channel is clear unless
 | 
						|
	 * it is not being used on this platform. It uses a bit
 | 
						|
	 * of SOC-specific initialization code.
 | 
						|
	 */
 | 
						|
	DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
 | 
						|
 | 
						|
	unsigned	irq_res_start;
 | 
						|
	unsigned	irq_res_end;
 | 
						|
 | 
						|
	struct dma_interrupt_data {
 | 
						|
		void (*callback)(unsigned channel, unsigned short ch_status,
 | 
						|
				void *data);
 | 
						|
		void *data;
 | 
						|
	} intr_data[EDMA_MAX_DMACH];
 | 
						|
};
 | 
						|
 | 
						|
static struct edma *edma_cc[EDMA_MAX_CC];
 | 
						|
static int arch_num_cc;
 | 
						|
 | 
						|
/* dummy param set used to (re)initialize parameter RAM slots */
 | 
						|
static const struct edmacc_param dummy_paramset = {
 | 
						|
	.link_bcntrld = 0xffff,
 | 
						|
	.ccnt = 1,
 | 
						|
};
 | 
						|
 | 
						|
/*****************************************************************************/
 | 
						|
 | 
						|
static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
 | 
						|
		enum dma_event_q queue_no)
 | 
						|
{
 | 
						|
	int bit = (ch_no & 0x7) * 4;
 | 
						|
 | 
						|
	/* default to low priority queue */
 | 
						|
	if (queue_no == EVENTQ_DEFAULT)
 | 
						|
		queue_no = edma_cc[ctlr]->default_queue;
 | 
						|
 | 
						|
	queue_no &= 7;
 | 
						|
	edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
 | 
						|
			~(0x7 << bit), queue_no << bit);
 | 
						|
}
 | 
						|
 | 
						|
static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
 | 
						|
{
 | 
						|
	int bit = queue_no * 4;
 | 
						|
	edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
 | 
						|
}
 | 
						|
 | 
						|
static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
 | 
						|
		int priority)
 | 
						|
{
 | 
						|
	int bit = queue_no * 4;
 | 
						|
	edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
 | 
						|
			((priority & 0x7) << bit));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * map_dmach_param - Maps channel number to param entry number
 | 
						|
 *
 | 
						|
 * This maps the dma channel number to param entry numberter. In
 | 
						|
 * other words using the DMA channel mapping registers a param entry
 | 
						|
 * can be mapped to any channel
 | 
						|
 *
 | 
						|
 * Callers are responsible for ensuring the channel mapping logic is
 | 
						|
 * included in that particular EDMA variant (Eg : dm646x)
 | 
						|
 *
 | 
						|
 */
 | 
						|
static void __init map_dmach_param(unsigned ctlr)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	for (i = 0; i < EDMA_MAX_DMACH; i++)
 | 
						|
		edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
setup_dma_interrupt(unsigned lch,
 | 
						|
	void (*callback)(unsigned channel, u16 ch_status, void *data),
 | 
						|
	void *data)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(lch);
 | 
						|
	lch = EDMA_CHAN_SLOT(lch);
 | 
						|
 | 
						|
	if (!callback)
 | 
						|
		edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
 | 
						|
				BIT(lch & 0x1f));
 | 
						|
 | 
						|
	edma_cc[ctlr]->intr_data[lch].callback = callback;
 | 
						|
	edma_cc[ctlr]->intr_data[lch].data = data;
 | 
						|
 | 
						|
	if (callback) {
 | 
						|
		edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
 | 
						|
				BIT(lch & 0x1f));
 | 
						|
		edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
 | 
						|
				BIT(lch & 0x1f));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int irq2ctlr(int irq)
 | 
						|
{
 | 
						|
	if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
 | 
						|
		return 0;
 | 
						|
	else if (irq >= edma_cc[1]->irq_res_start &&
 | 
						|
		irq <= edma_cc[1]->irq_res_end)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/******************************************************************************
 | 
						|
 *
 | 
						|
 * DMA interrupt handler
 | 
						|
 *
 | 
						|
 *****************************************************************************/
 | 
						|
static irqreturn_t dma_irq_handler(int irq, void *data)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int ctlr;
 | 
						|
	unsigned int cnt = 0;
 | 
						|
 | 
						|
	ctlr = irq2ctlr(irq);
 | 
						|
	if (ctlr < 0)
 | 
						|
		return IRQ_NONE;
 | 
						|
 | 
						|
	dev_dbg(data, "dma_irq_handler\n");
 | 
						|
 | 
						|
	if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0) &&
 | 
						|
	    (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
 | 
						|
		return IRQ_NONE;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		int j;
 | 
						|
		if (edma_shadow0_read_array(ctlr, SH_IPR, 0) &
 | 
						|
				edma_shadow0_read_array(ctlr, SH_IER, 0))
 | 
						|
			j = 0;
 | 
						|
		else if (edma_shadow0_read_array(ctlr, SH_IPR, 1) &
 | 
						|
				edma_shadow0_read_array(ctlr, SH_IER, 1))
 | 
						|
			j = 1;
 | 
						|
		else
 | 
						|
			break;
 | 
						|
		dev_dbg(data, "IPR%d %08x\n", j,
 | 
						|
				edma_shadow0_read_array(ctlr, SH_IPR, j));
 | 
						|
		for (i = 0; i < 32; i++) {
 | 
						|
			int k = (j << 5) + i;
 | 
						|
			if ((edma_shadow0_read_array(ctlr, SH_IPR, j) & BIT(i))
 | 
						|
					&& (edma_shadow0_read_array(ctlr,
 | 
						|
							SH_IER, j) & BIT(i))) {
 | 
						|
				/* Clear the corresponding IPR bits */
 | 
						|
				edma_shadow0_write_array(ctlr, SH_ICR, j,
 | 
						|
							BIT(i));
 | 
						|
				if (edma_cc[ctlr]->intr_data[k].callback)
 | 
						|
					edma_cc[ctlr]->intr_data[k].callback(
 | 
						|
						k, DMA_COMPLETE,
 | 
						|
						edma_cc[ctlr]->intr_data[k].
 | 
						|
						data);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		cnt++;
 | 
						|
		if (cnt > 10)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	edma_shadow0_write(ctlr, SH_IEVAL, 1);
 | 
						|
	return IRQ_HANDLED;
 | 
						|
}
 | 
						|
 | 
						|
/******************************************************************************
 | 
						|
 *
 | 
						|
 * DMA error interrupt handler
 | 
						|
 *
 | 
						|
 *****************************************************************************/
 | 
						|
static irqreturn_t dma_ccerr_handler(int irq, void *data)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int ctlr;
 | 
						|
	unsigned int cnt = 0;
 | 
						|
 | 
						|
	ctlr = irq2ctlr(irq);
 | 
						|
	if (ctlr < 0)
 | 
						|
		return IRQ_NONE;
 | 
						|
 | 
						|
	dev_dbg(data, "dma_ccerr_handler\n");
 | 
						|
 | 
						|
	if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
 | 
						|
	    (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
 | 
						|
	    (edma_read(ctlr, EDMA_QEMR) == 0) &&
 | 
						|
	    (edma_read(ctlr, EDMA_CCERR) == 0))
 | 
						|
		return IRQ_NONE;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		int j = -1;
 | 
						|
		if (edma_read_array(ctlr, EDMA_EMR, 0))
 | 
						|
			j = 0;
 | 
						|
		else if (edma_read_array(ctlr, EDMA_EMR, 1))
 | 
						|
			j = 1;
 | 
						|
		if (j >= 0) {
 | 
						|
			dev_dbg(data, "EMR%d %08x\n", j,
 | 
						|
					edma_read_array(ctlr, EDMA_EMR, j));
 | 
						|
			for (i = 0; i < 32; i++) {
 | 
						|
				int k = (j << 5) + i;
 | 
						|
				if (edma_read_array(ctlr, EDMA_EMR, j) &
 | 
						|
							BIT(i)) {
 | 
						|
					/* Clear the corresponding EMR bits */
 | 
						|
					edma_write_array(ctlr, EDMA_EMCR, j,
 | 
						|
							BIT(i));
 | 
						|
					/* Clear any SER */
 | 
						|
					edma_shadow0_write_array(ctlr, SH_SECR,
 | 
						|
								j, BIT(i));
 | 
						|
					if (edma_cc[ctlr]->intr_data[k].
 | 
						|
								callback) {
 | 
						|
						edma_cc[ctlr]->intr_data[k].
 | 
						|
						callback(k,
 | 
						|
						DMA_CC_ERROR,
 | 
						|
						edma_cc[ctlr]->intr_data
 | 
						|
						[k].data);
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		} else if (edma_read(ctlr, EDMA_QEMR)) {
 | 
						|
			dev_dbg(data, "QEMR %02x\n",
 | 
						|
				edma_read(ctlr, EDMA_QEMR));
 | 
						|
			for (i = 0; i < 8; i++) {
 | 
						|
				if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
 | 
						|
					/* Clear the corresponding IPR bits */
 | 
						|
					edma_write(ctlr, EDMA_QEMCR, BIT(i));
 | 
						|
					edma_shadow0_write(ctlr, SH_QSECR,
 | 
						|
								BIT(i));
 | 
						|
 | 
						|
					/* NOTE:  not reported!! */
 | 
						|
				}
 | 
						|
			}
 | 
						|
		} else if (edma_read(ctlr, EDMA_CCERR)) {
 | 
						|
			dev_dbg(data, "CCERR %08x\n",
 | 
						|
				edma_read(ctlr, EDMA_CCERR));
 | 
						|
			/* FIXME:  CCERR.BIT(16) ignored!  much better
 | 
						|
			 * to just write CCERRCLR with CCERR value...
 | 
						|
			 */
 | 
						|
			for (i = 0; i < 8; i++) {
 | 
						|
				if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
 | 
						|
					/* Clear the corresponding IPR bits */
 | 
						|
					edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
 | 
						|
 | 
						|
					/* NOTE:  not reported!! */
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
 | 
						|
		    (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
 | 
						|
		    (edma_read(ctlr, EDMA_QEMR) == 0) &&
 | 
						|
		    (edma_read(ctlr, EDMA_CCERR) == 0))
 | 
						|
			break;
 | 
						|
		cnt++;
 | 
						|
		if (cnt > 10)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	edma_write(ctlr, EDMA_EEVAL, 1);
 | 
						|
	return IRQ_HANDLED;
 | 
						|
}
 | 
						|
 | 
						|
/******************************************************************************
 | 
						|
 *
 | 
						|
 * Transfer controller error interrupt handlers
 | 
						|
 *
 | 
						|
 *****************************************************************************/
 | 
						|
 | 
						|
#define tc_errs_handled	false	/* disabled as long as they're NOPs */
 | 
						|
 | 
						|
static irqreturn_t dma_tc0err_handler(int irq, void *data)
 | 
						|
{
 | 
						|
	dev_dbg(data, "dma_tc0err_handler\n");
 | 
						|
	return IRQ_HANDLED;
 | 
						|
}
 | 
						|
 | 
						|
static irqreturn_t dma_tc1err_handler(int irq, void *data)
 | 
						|
{
 | 
						|
	dev_dbg(data, "dma_tc1err_handler\n");
 | 
						|
	return IRQ_HANDLED;
 | 
						|
}
 | 
						|
 | 
						|
static int reserve_contiguous_slots(int ctlr, unsigned int id,
 | 
						|
				     unsigned int num_slots,
 | 
						|
				     unsigned int start_slot)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
	unsigned int count = num_slots;
 | 
						|
	int stop_slot = start_slot;
 | 
						|
	DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
 | 
						|
 | 
						|
	for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
 | 
						|
		j = EDMA_CHAN_SLOT(i);
 | 
						|
		if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
 | 
						|
			/* Record our current beginning slot */
 | 
						|
			if (count == num_slots)
 | 
						|
				stop_slot = i;
 | 
						|
 | 
						|
			count--;
 | 
						|
			set_bit(j, tmp_inuse);
 | 
						|
 | 
						|
			if (count == 0)
 | 
						|
				break;
 | 
						|
		} else {
 | 
						|
			clear_bit(j, tmp_inuse);
 | 
						|
 | 
						|
			if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
 | 
						|
				stop_slot = i;
 | 
						|
				break;
 | 
						|
			} else {
 | 
						|
				count = num_slots;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We have to clear any bits that we set
 | 
						|
	 * if we run out parameter RAM slots, i.e we do find a set
 | 
						|
	 * of contiguous parameter RAM slots but do not find the exact number
 | 
						|
	 * requested as we may reach the total number of parameter RAM slots
 | 
						|
	 */
 | 
						|
	if (i == edma_cc[ctlr]->num_slots)
 | 
						|
		stop_slot = i;
 | 
						|
 | 
						|
	for (j = start_slot; j < stop_slot; j++)
 | 
						|
		if (test_bit(j, tmp_inuse))
 | 
						|
			clear_bit(j, edma_cc[ctlr]->edma_inuse);
 | 
						|
 | 
						|
	if (count)
 | 
						|
		return -EBUSY;
 | 
						|
 | 
						|
	for (j = i - num_slots + 1; j <= i; ++j)
 | 
						|
		memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
 | 
						|
			&dummy_paramset, PARM_SIZE);
 | 
						|
 | 
						|
	return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
 | 
						|
}
 | 
						|
 | 
						|
static int prepare_unused_channel_list(struct device *dev, void *data)
 | 
						|
{
 | 
						|
	struct platform_device *pdev = to_platform_device(dev);
 | 
						|
	int i, ctlr;
 | 
						|
 | 
						|
	for (i = 0; i < pdev->num_resources; i++) {
 | 
						|
		if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
 | 
						|
				(int)pdev->resource[i].start >= 0) {
 | 
						|
			ctlr = EDMA_CTLR(pdev->resource[i].start);
 | 
						|
			clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
 | 
						|
					edma_cc[ctlr]->edma_unused);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*-----------------------------------------------------------------------*/
 | 
						|
 | 
						|
static bool unused_chan_list_done;
 | 
						|
 | 
						|
/* Resource alloc/free:  dma channels, parameter RAM slots */
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
 | 
						|
 * @channel: specific channel to allocate; negative for "any unmapped channel"
 | 
						|
 * @callback: optional; to be issued on DMA completion or errors
 | 
						|
 * @data: passed to callback
 | 
						|
 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
 | 
						|
 *	Controller (TC) executes requests using this channel.  Use
 | 
						|
 *	EVENTQ_DEFAULT unless you really need a high priority queue.
 | 
						|
 *
 | 
						|
 * This allocates a DMA channel and its associated parameter RAM slot.
 | 
						|
 * The parameter RAM is initialized to hold a dummy transfer.
 | 
						|
 *
 | 
						|
 * Normal use is to pass a specific channel number as @channel, to make
 | 
						|
 * use of hardware events mapped to that channel.  When the channel will
 | 
						|
 * be used only for software triggering or event chaining, channels not
 | 
						|
 * mapped to hardware events (or mapped to unused events) are preferable.
 | 
						|
 *
 | 
						|
 * DMA transfers start from a channel using edma_start(), or by
 | 
						|
 * chaining.  When the transfer described in that channel's parameter RAM
 | 
						|
 * slot completes, that slot's data may be reloaded through a link.
 | 
						|
 *
 | 
						|
 * DMA errors are only reported to the @callback associated with the
 | 
						|
 * channel driving that transfer, but transfer completion callbacks can
 | 
						|
 * be sent to another channel under control of the TCC field in
 | 
						|
 * the option word of the transfer's parameter RAM set.  Drivers must not
 | 
						|
 * use DMA transfer completion callbacks for channels they did not allocate.
 | 
						|
 * (The same applies to TCC codes used in transfer chaining.)
 | 
						|
 *
 | 
						|
 * Returns the number of the channel, else negative errno.
 | 
						|
 */
 | 
						|
int edma_alloc_channel(int channel,
 | 
						|
		void (*callback)(unsigned channel, u16 ch_status, void *data),
 | 
						|
		void *data,
 | 
						|
		enum dma_event_q eventq_no)
 | 
						|
{
 | 
						|
	unsigned i, done = 0, ctlr = 0;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (!unused_chan_list_done) {
 | 
						|
		/*
 | 
						|
		 * Scan all the platform devices to find out the EDMA channels
 | 
						|
		 * used and clear them in the unused list, making the rest
 | 
						|
		 * available for ARM usage.
 | 
						|
		 */
 | 
						|
		ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
 | 
						|
				prepare_unused_channel_list);
 | 
						|
		if (ret < 0)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		unused_chan_list_done = true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (channel >= 0) {
 | 
						|
		ctlr = EDMA_CTLR(channel);
 | 
						|
		channel = EDMA_CHAN_SLOT(channel);
 | 
						|
	}
 | 
						|
 | 
						|
	if (channel < 0) {
 | 
						|
		for (i = 0; i < arch_num_cc; i++) {
 | 
						|
			channel = 0;
 | 
						|
			for (;;) {
 | 
						|
				channel = find_next_bit(edma_cc[i]->edma_unused,
 | 
						|
						edma_cc[i]->num_channels,
 | 
						|
						channel);
 | 
						|
				if (channel == edma_cc[i]->num_channels)
 | 
						|
					break;
 | 
						|
				if (!test_and_set_bit(channel,
 | 
						|
						edma_cc[i]->edma_inuse)) {
 | 
						|
					done = 1;
 | 
						|
					ctlr = i;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
				channel++;
 | 
						|
			}
 | 
						|
			if (done)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		if (!done)
 | 
						|
			return -ENOMEM;
 | 
						|
	} else if (channel >= edma_cc[ctlr]->num_channels) {
 | 
						|
		return -EINVAL;
 | 
						|
	} else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
 | 
						|
		return -EBUSY;
 | 
						|
	}
 | 
						|
 | 
						|
	/* ensure access through shadow region 0 */
 | 
						|
	edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
 | 
						|
 | 
						|
	/* ensure no events are pending */
 | 
						|
	edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
 | 
						|
	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
 | 
						|
			&dummy_paramset, PARM_SIZE);
 | 
						|
 | 
						|
	if (callback)
 | 
						|
		setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
 | 
						|
					callback, data);
 | 
						|
 | 
						|
	map_dmach_queue(ctlr, channel, eventq_no);
 | 
						|
 | 
						|
	return EDMA_CTLR_CHAN(ctlr, channel);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_alloc_channel);
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_free_channel - deallocate DMA channel
 | 
						|
 * @channel: dma channel returned from edma_alloc_channel()
 | 
						|
 *
 | 
						|
 * This deallocates the DMA channel and associated parameter RAM slot
 | 
						|
 * allocated by edma_alloc_channel().
 | 
						|
 *
 | 
						|
 * Callers are responsible for ensuring the channel is inactive, and
 | 
						|
 * will not be reactivated by linking, chaining, or software calls to
 | 
						|
 * edma_start().
 | 
						|
 */
 | 
						|
void edma_free_channel(unsigned channel)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(channel);
 | 
						|
	channel = EDMA_CHAN_SLOT(channel);
 | 
						|
 | 
						|
	if (channel >= edma_cc[ctlr]->num_channels)
 | 
						|
		return;
 | 
						|
 | 
						|
	setup_dma_interrupt(channel, NULL, NULL);
 | 
						|
	/* REVISIT should probably take out of shadow region 0 */
 | 
						|
 | 
						|
	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
 | 
						|
			&dummy_paramset, PARM_SIZE);
 | 
						|
	clear_bit(channel, edma_cc[ctlr]->edma_inuse);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_free_channel);
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_alloc_slot - allocate DMA parameter RAM
 | 
						|
 * @slot: specific slot to allocate; negative for "any unused slot"
 | 
						|
 *
 | 
						|
 * This allocates a parameter RAM slot, initializing it to hold a
 | 
						|
 * dummy transfer.  Slots allocated using this routine have not been
 | 
						|
 * mapped to a hardware DMA channel, and will normally be used by
 | 
						|
 * linking to them from a slot associated with a DMA channel.
 | 
						|
 *
 | 
						|
 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 | 
						|
 * slots may be allocated on behalf of DSP firmware.
 | 
						|
 *
 | 
						|
 * Returns the number of the slot, else negative errno.
 | 
						|
 */
 | 
						|
int edma_alloc_slot(unsigned ctlr, int slot)
 | 
						|
{
 | 
						|
	if (slot >= 0)
 | 
						|
		slot = EDMA_CHAN_SLOT(slot);
 | 
						|
 | 
						|
	if (slot < 0) {
 | 
						|
		slot = edma_cc[ctlr]->num_channels;
 | 
						|
		for (;;) {
 | 
						|
			slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
 | 
						|
					edma_cc[ctlr]->num_slots, slot);
 | 
						|
			if (slot == edma_cc[ctlr]->num_slots)
 | 
						|
				return -ENOMEM;
 | 
						|
			if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
 | 
						|
				break;
 | 
						|
		}
 | 
						|
	} else if (slot < edma_cc[ctlr]->num_channels ||
 | 
						|
			slot >= edma_cc[ctlr]->num_slots) {
 | 
						|
		return -EINVAL;
 | 
						|
	} else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
 | 
						|
		return -EBUSY;
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
 | 
						|
			&dummy_paramset, PARM_SIZE);
 | 
						|
 | 
						|
	return EDMA_CTLR_CHAN(ctlr, slot);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_alloc_slot);
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_free_slot - deallocate DMA parameter RAM
 | 
						|
 * @slot: parameter RAM slot returned from edma_alloc_slot()
 | 
						|
 *
 | 
						|
 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
 | 
						|
 * Callers are responsible for ensuring the slot is inactive, and will
 | 
						|
 * not be activated.
 | 
						|
 */
 | 
						|
void edma_free_slot(unsigned slot)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(slot);
 | 
						|
	slot = EDMA_CHAN_SLOT(slot);
 | 
						|
 | 
						|
	if (slot < edma_cc[ctlr]->num_channels ||
 | 
						|
		slot >= edma_cc[ctlr]->num_slots)
 | 
						|
		return;
 | 
						|
 | 
						|
	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
 | 
						|
			&dummy_paramset, PARM_SIZE);
 | 
						|
	clear_bit(slot, edma_cc[ctlr]->edma_inuse);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_free_slot);
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
 | 
						|
 * The API will return the starting point of a set of
 | 
						|
 * contiguous parameter RAM slots that have been requested
 | 
						|
 *
 | 
						|
 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
 | 
						|
 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
 | 
						|
 * @count: number of contiguous Paramter RAM slots
 | 
						|
 * @slot  - the start value of Parameter RAM slot that should be passed if id
 | 
						|
 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
 | 
						|
 *
 | 
						|
 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
 | 
						|
 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
 | 
						|
 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
 | 
						|
 *
 | 
						|
 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
 | 
						|
 * set of contiguous parameter RAM slots from the "slot" that is passed as an
 | 
						|
 * argument to the API.
 | 
						|
 *
 | 
						|
 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
 | 
						|
 * starts looking for a set of contiguous parameter RAMs from the "slot"
 | 
						|
 * that is passed as an argument to the API. On failure the API will try to
 | 
						|
 * find a set of contiguous Parameter RAM slots from the remaining Parameter
 | 
						|
 * RAM slots
 | 
						|
 */
 | 
						|
int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * The start slot requested should be greater than
 | 
						|
	 * the number of channels and lesser than the total number
 | 
						|
	 * of slots
 | 
						|
	 */
 | 
						|
	if ((id != EDMA_CONT_PARAMS_ANY) &&
 | 
						|
		(slot < edma_cc[ctlr]->num_channels ||
 | 
						|
		slot >= edma_cc[ctlr]->num_slots))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The number of parameter RAM slots requested cannot be less than 1
 | 
						|
	 * and cannot be more than the number of slots minus the number of
 | 
						|
	 * channels
 | 
						|
	 */
 | 
						|
	if (count < 1 || count >
 | 
						|
		(edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	switch (id) {
 | 
						|
	case EDMA_CONT_PARAMS_ANY:
 | 
						|
		return reserve_contiguous_slots(ctlr, id, count,
 | 
						|
						 edma_cc[ctlr]->num_channels);
 | 
						|
	case EDMA_CONT_PARAMS_FIXED_EXACT:
 | 
						|
	case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
 | 
						|
		return reserve_contiguous_slots(ctlr, id, count, slot);
 | 
						|
	default:
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_alloc_cont_slots);
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_free_cont_slots - deallocate DMA parameter RAM slots
 | 
						|
 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
 | 
						|
 * @count: the number of contiguous parameter RAM slots to be freed
 | 
						|
 *
 | 
						|
 * This deallocates the parameter RAM slots allocated by
 | 
						|
 * edma_alloc_cont_slots.
 | 
						|
 * Callers/applications need to keep track of sets of contiguous
 | 
						|
 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
 | 
						|
 * API.
 | 
						|
 * Callers are responsible for ensuring the slots are inactive, and will
 | 
						|
 * not be activated.
 | 
						|
 */
 | 
						|
int edma_free_cont_slots(unsigned slot, int count)
 | 
						|
{
 | 
						|
	unsigned ctlr, slot_to_free;
 | 
						|
	int i;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(slot);
 | 
						|
	slot = EDMA_CHAN_SLOT(slot);
 | 
						|
 | 
						|
	if (slot < edma_cc[ctlr]->num_channels ||
 | 
						|
		slot >= edma_cc[ctlr]->num_slots ||
 | 
						|
		count < 1)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	for (i = slot; i < slot + count; ++i) {
 | 
						|
		ctlr = EDMA_CTLR(i);
 | 
						|
		slot_to_free = EDMA_CHAN_SLOT(i);
 | 
						|
 | 
						|
		memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
 | 
						|
			&dummy_paramset, PARM_SIZE);
 | 
						|
		clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_free_cont_slots);
 | 
						|
 | 
						|
/*-----------------------------------------------------------------------*/
 | 
						|
 | 
						|
/* Parameter RAM operations (i) -- read/write partial slots */
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_set_src - set initial DMA source address in parameter RAM slot
 | 
						|
 * @slot: parameter RAM slot being configured
 | 
						|
 * @src_port: physical address of source (memory, controller FIFO, etc)
 | 
						|
 * @addressMode: INCR, except in very rare cases
 | 
						|
 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
 | 
						|
 *	width to use when addressing the fifo (e.g. W8BIT, W32BIT)
 | 
						|
 *
 | 
						|
 * Note that the source address is modified during the DMA transfer
 | 
						|
 * according to edma_set_src_index().
 | 
						|
 */
 | 
						|
void edma_set_src(unsigned slot, dma_addr_t src_port,
 | 
						|
				enum address_mode mode, enum fifo_width width)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(slot);
 | 
						|
	slot = EDMA_CHAN_SLOT(slot);
 | 
						|
 | 
						|
	if (slot < edma_cc[ctlr]->num_slots) {
 | 
						|
		unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
 | 
						|
 | 
						|
		if (mode) {
 | 
						|
			/* set SAM and program FWID */
 | 
						|
			i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
 | 
						|
		} else {
 | 
						|
			/* clear SAM */
 | 
						|
			i &= ~SAM;
 | 
						|
		}
 | 
						|
		edma_parm_write(ctlr, PARM_OPT, slot, i);
 | 
						|
 | 
						|
		/* set the source port address
 | 
						|
		   in source register of param structure */
 | 
						|
		edma_parm_write(ctlr, PARM_SRC, slot, src_port);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_set_src);
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_set_dest - set initial DMA destination address in parameter RAM slot
 | 
						|
 * @slot: parameter RAM slot being configured
 | 
						|
 * @dest_port: physical address of destination (memory, controller FIFO, etc)
 | 
						|
 * @addressMode: INCR, except in very rare cases
 | 
						|
 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
 | 
						|
 *	width to use when addressing the fifo (e.g. W8BIT, W32BIT)
 | 
						|
 *
 | 
						|
 * Note that the destination address is modified during the DMA transfer
 | 
						|
 * according to edma_set_dest_index().
 | 
						|
 */
 | 
						|
void edma_set_dest(unsigned slot, dma_addr_t dest_port,
 | 
						|
				 enum address_mode mode, enum fifo_width width)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(slot);
 | 
						|
	slot = EDMA_CHAN_SLOT(slot);
 | 
						|
 | 
						|
	if (slot < edma_cc[ctlr]->num_slots) {
 | 
						|
		unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
 | 
						|
 | 
						|
		if (mode) {
 | 
						|
			/* set DAM and program FWID */
 | 
						|
			i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
 | 
						|
		} else {
 | 
						|
			/* clear DAM */
 | 
						|
			i &= ~DAM;
 | 
						|
		}
 | 
						|
		edma_parm_write(ctlr, PARM_OPT, slot, i);
 | 
						|
		/* set the destination port address
 | 
						|
		   in dest register of param structure */
 | 
						|
		edma_parm_write(ctlr, PARM_DST, slot, dest_port);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_set_dest);
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_get_position - returns the current transfer points
 | 
						|
 * @slot: parameter RAM slot being examined
 | 
						|
 * @src: pointer to source port position
 | 
						|
 * @dst: pointer to destination port position
 | 
						|
 *
 | 
						|
 * Returns current source and destination addresses for a particular
 | 
						|
 * parameter RAM slot.  Its channel should not be active when this is called.
 | 
						|
 */
 | 
						|
void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
 | 
						|
{
 | 
						|
	struct edmacc_param temp;
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(slot);
 | 
						|
	slot = EDMA_CHAN_SLOT(slot);
 | 
						|
 | 
						|
	edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
 | 
						|
	if (src != NULL)
 | 
						|
		*src = temp.src;
 | 
						|
	if (dst != NULL)
 | 
						|
		*dst = temp.dst;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_get_position);
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_set_src_index - configure DMA source address indexing
 | 
						|
 * @slot: parameter RAM slot being configured
 | 
						|
 * @src_bidx: byte offset between source arrays in a frame
 | 
						|
 * @src_cidx: byte offset between source frames in a block
 | 
						|
 *
 | 
						|
 * Offsets are specified to support either contiguous or discontiguous
 | 
						|
 * memory transfers, or repeated access to a hardware register, as needed.
 | 
						|
 * When accessing hardware registers, both offsets are normally zero.
 | 
						|
 */
 | 
						|
void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(slot);
 | 
						|
	slot = EDMA_CHAN_SLOT(slot);
 | 
						|
 | 
						|
	if (slot < edma_cc[ctlr]->num_slots) {
 | 
						|
		edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
 | 
						|
				0xffff0000, src_bidx);
 | 
						|
		edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
 | 
						|
				0xffff0000, src_cidx);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_set_src_index);
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_set_dest_index - configure DMA destination address indexing
 | 
						|
 * @slot: parameter RAM slot being configured
 | 
						|
 * @dest_bidx: byte offset between destination arrays in a frame
 | 
						|
 * @dest_cidx: byte offset between destination frames in a block
 | 
						|
 *
 | 
						|
 * Offsets are specified to support either contiguous or discontiguous
 | 
						|
 * memory transfers, or repeated access to a hardware register, as needed.
 | 
						|
 * When accessing hardware registers, both offsets are normally zero.
 | 
						|
 */
 | 
						|
void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(slot);
 | 
						|
	slot = EDMA_CHAN_SLOT(slot);
 | 
						|
 | 
						|
	if (slot < edma_cc[ctlr]->num_slots) {
 | 
						|
		edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
 | 
						|
				0x0000ffff, dest_bidx << 16);
 | 
						|
		edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
 | 
						|
				0x0000ffff, dest_cidx << 16);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_set_dest_index);
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_set_transfer_params - configure DMA transfer parameters
 | 
						|
 * @slot: parameter RAM slot being configured
 | 
						|
 * @acnt: how many bytes per array (at least one)
 | 
						|
 * @bcnt: how many arrays per frame (at least one)
 | 
						|
 * @ccnt: how many frames per block (at least one)
 | 
						|
 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
 | 
						|
 *	the value to reload into bcnt when it decrements to zero
 | 
						|
 * @sync_mode: ASYNC or ABSYNC
 | 
						|
 *
 | 
						|
 * See the EDMA3 documentation to understand how to configure and link
 | 
						|
 * transfers using the fields in PaRAM slots.  If you are not doing it
 | 
						|
 * all at once with edma_write_slot(), you will use this routine
 | 
						|
 * plus two calls each for source and destination, setting the initial
 | 
						|
 * address and saying how to index that address.
 | 
						|
 *
 | 
						|
 * An example of an A-Synchronized transfer is a serial link using a
 | 
						|
 * single word shift register.  In that case, @acnt would be equal to
 | 
						|
 * that word size; the serial controller issues a DMA synchronization
 | 
						|
 * event to transfer each word, and memory access by the DMA transfer
 | 
						|
 * controller will be word-at-a-time.
 | 
						|
 *
 | 
						|
 * An example of an AB-Synchronized transfer is a device using a FIFO.
 | 
						|
 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
 | 
						|
 * The controller with the FIFO issues DMA synchronization events when
 | 
						|
 * the FIFO threshold is reached, and the DMA transfer controller will
 | 
						|
 * transfer one frame to (or from) the FIFO.  It will probably use
 | 
						|
 * efficient burst modes to access memory.
 | 
						|
 */
 | 
						|
void edma_set_transfer_params(unsigned slot,
 | 
						|
		u16 acnt, u16 bcnt, u16 ccnt,
 | 
						|
		u16 bcnt_rld, enum sync_dimension sync_mode)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(slot);
 | 
						|
	slot = EDMA_CHAN_SLOT(slot);
 | 
						|
 | 
						|
	if (slot < edma_cc[ctlr]->num_slots) {
 | 
						|
		edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
 | 
						|
				0x0000ffff, bcnt_rld << 16);
 | 
						|
		if (sync_mode == ASYNC)
 | 
						|
			edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
 | 
						|
		else
 | 
						|
			edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
 | 
						|
		/* Set the acount, bcount, ccount registers */
 | 
						|
		edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
 | 
						|
		edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_set_transfer_params);
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_link - link one parameter RAM slot to another
 | 
						|
 * @from: parameter RAM slot originating the link
 | 
						|
 * @to: parameter RAM slot which is the link target
 | 
						|
 *
 | 
						|
 * The originating slot should not be part of any active DMA transfer.
 | 
						|
 */
 | 
						|
void edma_link(unsigned from, unsigned to)
 | 
						|
{
 | 
						|
	unsigned ctlr_from, ctlr_to;
 | 
						|
 | 
						|
	ctlr_from = EDMA_CTLR(from);
 | 
						|
	from = EDMA_CHAN_SLOT(from);
 | 
						|
	ctlr_to = EDMA_CTLR(to);
 | 
						|
	to = EDMA_CHAN_SLOT(to);
 | 
						|
 | 
						|
	if (from >= edma_cc[ctlr_from]->num_slots)
 | 
						|
		return;
 | 
						|
	if (to >= edma_cc[ctlr_to]->num_slots)
 | 
						|
		return;
 | 
						|
	edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
 | 
						|
				PARM_OFFSET(to));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_link);
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_unlink - cut link from one parameter RAM slot
 | 
						|
 * @from: parameter RAM slot originating the link
 | 
						|
 *
 | 
						|
 * The originating slot should not be part of any active DMA transfer.
 | 
						|
 * Its link is set to 0xffff.
 | 
						|
 */
 | 
						|
void edma_unlink(unsigned from)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(from);
 | 
						|
	from = EDMA_CHAN_SLOT(from);
 | 
						|
 | 
						|
	if (from >= edma_cc[ctlr]->num_slots)
 | 
						|
		return;
 | 
						|
	edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_unlink);
 | 
						|
 | 
						|
/*-----------------------------------------------------------------------*/
 | 
						|
 | 
						|
/* Parameter RAM operations (ii) -- read/write whole parameter sets */
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_write_slot - write parameter RAM data for slot
 | 
						|
 * @slot: number of parameter RAM slot being modified
 | 
						|
 * @param: data to be written into parameter RAM slot
 | 
						|
 *
 | 
						|
 * Use this to assign all parameters of a transfer at once.  This
 | 
						|
 * allows more efficient setup of transfers than issuing multiple
 | 
						|
 * calls to set up those parameters in small pieces, and provides
 | 
						|
 * complete control over all transfer options.
 | 
						|
 */
 | 
						|
void edma_write_slot(unsigned slot, const struct edmacc_param *param)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(slot);
 | 
						|
	slot = EDMA_CHAN_SLOT(slot);
 | 
						|
 | 
						|
	if (slot >= edma_cc[ctlr]->num_slots)
 | 
						|
		return;
 | 
						|
	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
 | 
						|
			PARM_SIZE);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_write_slot);
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_read_slot - read parameter RAM data from slot
 | 
						|
 * @slot: number of parameter RAM slot being copied
 | 
						|
 * @param: where to store copy of parameter RAM data
 | 
						|
 *
 | 
						|
 * Use this to read data from a parameter RAM slot, perhaps to
 | 
						|
 * save them as a template for later reuse.
 | 
						|
 */
 | 
						|
void edma_read_slot(unsigned slot, struct edmacc_param *param)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(slot);
 | 
						|
	slot = EDMA_CHAN_SLOT(slot);
 | 
						|
 | 
						|
	if (slot >= edma_cc[ctlr]->num_slots)
 | 
						|
		return;
 | 
						|
	memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
 | 
						|
			PARM_SIZE);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_read_slot);
 | 
						|
 | 
						|
/*-----------------------------------------------------------------------*/
 | 
						|
 | 
						|
/* Various EDMA channel control operations */
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_pause - pause dma on a channel
 | 
						|
 * @channel: on which edma_start() has been called
 | 
						|
 *
 | 
						|
 * This temporarily disables EDMA hardware events on the specified channel,
 | 
						|
 * preventing them from triggering new transfers on its behalf
 | 
						|
 */
 | 
						|
void edma_pause(unsigned channel)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(channel);
 | 
						|
	channel = EDMA_CHAN_SLOT(channel);
 | 
						|
 | 
						|
	if (channel < edma_cc[ctlr]->num_channels) {
 | 
						|
		unsigned int mask = BIT(channel & 0x1f);
 | 
						|
 | 
						|
		edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_pause);
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_resume - resumes dma on a paused channel
 | 
						|
 * @channel: on which edma_pause() has been called
 | 
						|
 *
 | 
						|
 * This re-enables EDMA hardware events on the specified channel.
 | 
						|
 */
 | 
						|
void edma_resume(unsigned channel)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(channel);
 | 
						|
	channel = EDMA_CHAN_SLOT(channel);
 | 
						|
 | 
						|
	if (channel < edma_cc[ctlr]->num_channels) {
 | 
						|
		unsigned int mask = BIT(channel & 0x1f);
 | 
						|
 | 
						|
		edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_resume);
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_start - start dma on a channel
 | 
						|
 * @channel: channel being activated
 | 
						|
 *
 | 
						|
 * Channels with event associations will be triggered by their hardware
 | 
						|
 * events, and channels without such associations will be triggered by
 | 
						|
 * software.  (At this writing there is no interface for using software
 | 
						|
 * triggers except with channels that don't support hardware triggers.)
 | 
						|
 *
 | 
						|
 * Returns zero on success, else negative errno.
 | 
						|
 */
 | 
						|
int edma_start(unsigned channel)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(channel);
 | 
						|
	channel = EDMA_CHAN_SLOT(channel);
 | 
						|
 | 
						|
	if (channel < edma_cc[ctlr]->num_channels) {
 | 
						|
		int j = channel >> 5;
 | 
						|
		unsigned int mask = BIT(channel & 0x1f);
 | 
						|
 | 
						|
		/* EDMA channels without event association */
 | 
						|
		if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
 | 
						|
			pr_debug("EDMA: ESR%d %08x\n", j,
 | 
						|
				edma_shadow0_read_array(ctlr, SH_ESR, j));
 | 
						|
			edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
 | 
						|
		/* EDMA channel with event association */
 | 
						|
		pr_debug("EDMA: ER%d %08x\n", j,
 | 
						|
			edma_shadow0_read_array(ctlr, SH_ER, j));
 | 
						|
		/* Clear any pending event or error */
 | 
						|
		edma_write_array(ctlr, EDMA_ECR, j, mask);
 | 
						|
		edma_write_array(ctlr, EDMA_EMCR, j, mask);
 | 
						|
		/* Clear any SER */
 | 
						|
		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
 | 
						|
		edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
 | 
						|
		pr_debug("EDMA: EER%d %08x\n", j,
 | 
						|
			edma_shadow0_read_array(ctlr, SH_EER, j));
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_start);
 | 
						|
 | 
						|
/**
 | 
						|
 * edma_stop - stops dma on the channel passed
 | 
						|
 * @channel: channel being deactivated
 | 
						|
 *
 | 
						|
 * When @lch is a channel, any active transfer is paused and
 | 
						|
 * all pending hardware events are cleared.  The current transfer
 | 
						|
 * may not be resumed, and the channel's Parameter RAM should be
 | 
						|
 * reinitialized before being reused.
 | 
						|
 */
 | 
						|
void edma_stop(unsigned channel)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(channel);
 | 
						|
	channel = EDMA_CHAN_SLOT(channel);
 | 
						|
 | 
						|
	if (channel < edma_cc[ctlr]->num_channels) {
 | 
						|
		int j = channel >> 5;
 | 
						|
		unsigned int mask = BIT(channel & 0x1f);
 | 
						|
 | 
						|
		edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
 | 
						|
		edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
 | 
						|
		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
 | 
						|
		edma_write_array(ctlr, EDMA_EMCR, j, mask);
 | 
						|
 | 
						|
		pr_debug("EDMA: EER%d %08x\n", j,
 | 
						|
				edma_shadow0_read_array(ctlr, SH_EER, j));
 | 
						|
 | 
						|
		/* REVISIT:  consider guarding against inappropriate event
 | 
						|
		 * chaining by overwriting with dummy_paramset.
 | 
						|
		 */
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_stop);
 | 
						|
 | 
						|
/******************************************************************************
 | 
						|
 *
 | 
						|
 * It cleans ParamEntry qand bring back EDMA to initial state if media has
 | 
						|
 * been removed before EDMA has finished.It is usedful for removable media.
 | 
						|
 * Arguments:
 | 
						|
 *      ch_no     - channel no
 | 
						|
 *
 | 
						|
 * Return: zero on success, or corresponding error no on failure
 | 
						|
 *
 | 
						|
 * FIXME this should not be needed ... edma_stop() should suffice.
 | 
						|
 *
 | 
						|
 *****************************************************************************/
 | 
						|
 | 
						|
void edma_clean_channel(unsigned channel)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(channel);
 | 
						|
	channel = EDMA_CHAN_SLOT(channel);
 | 
						|
 | 
						|
	if (channel < edma_cc[ctlr]->num_channels) {
 | 
						|
		int j = (channel >> 5);
 | 
						|
		unsigned int mask = BIT(channel & 0x1f);
 | 
						|
 | 
						|
		pr_debug("EDMA: EMR%d %08x\n", j,
 | 
						|
				edma_read_array(ctlr, EDMA_EMR, j));
 | 
						|
		edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
 | 
						|
		/* Clear the corresponding EMR bits */
 | 
						|
		edma_write_array(ctlr, EDMA_EMCR, j, mask);
 | 
						|
		/* Clear any SER */
 | 
						|
		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
 | 
						|
		edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_clean_channel);
 | 
						|
 | 
						|
/*
 | 
						|
 * edma_clear_event - clear an outstanding event on the DMA channel
 | 
						|
 * Arguments:
 | 
						|
 *	channel - channel number
 | 
						|
 */
 | 
						|
void edma_clear_event(unsigned channel)
 | 
						|
{
 | 
						|
	unsigned ctlr;
 | 
						|
 | 
						|
	ctlr = EDMA_CTLR(channel);
 | 
						|
	channel = EDMA_CHAN_SLOT(channel);
 | 
						|
 | 
						|
	if (channel >= edma_cc[ctlr]->num_channels)
 | 
						|
		return;
 | 
						|
	if (channel < 32)
 | 
						|
		edma_write(ctlr, EDMA_ECR, BIT(channel));
 | 
						|
	else
 | 
						|
		edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edma_clear_event);
 | 
						|
 | 
						|
/*-----------------------------------------------------------------------*/
 | 
						|
 | 
						|
static int __init edma_probe(struct platform_device *pdev)
 | 
						|
{
 | 
						|
	struct edma_soc_info	**info = pdev->dev.platform_data;
 | 
						|
	const s8		(*queue_priority_mapping)[2];
 | 
						|
	const s8		(*queue_tc_mapping)[2];
 | 
						|
	int			i, j, off, ln, found = 0;
 | 
						|
	int			status = -1;
 | 
						|
	const s16		(*rsv_chans)[2];
 | 
						|
	const s16		(*rsv_slots)[2];
 | 
						|
	int			irq[EDMA_MAX_CC] = {0, 0};
 | 
						|
	int			err_irq[EDMA_MAX_CC] = {0, 0};
 | 
						|
	struct resource		*r[EDMA_MAX_CC] = {NULL};
 | 
						|
	resource_size_t		len[EDMA_MAX_CC];
 | 
						|
	char			res_name[10];
 | 
						|
	char			irq_name[10];
 | 
						|
 | 
						|
	if (!info)
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	for (j = 0; j < EDMA_MAX_CC; j++) {
 | 
						|
		sprintf(res_name, "edma_cc%d", j);
 | 
						|
		r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
 | 
						|
						res_name);
 | 
						|
		if (!r[j] || !info[j]) {
 | 
						|
			if (found)
 | 
						|
				break;
 | 
						|
			else
 | 
						|
				return -ENODEV;
 | 
						|
		} else {
 | 
						|
			found = 1;
 | 
						|
		}
 | 
						|
 | 
						|
		len[j] = resource_size(r[j]);
 | 
						|
 | 
						|
		r[j] = request_mem_region(r[j]->start, len[j],
 | 
						|
			dev_name(&pdev->dev));
 | 
						|
		if (!r[j]) {
 | 
						|
			status = -EBUSY;
 | 
						|
			goto fail1;
 | 
						|
		}
 | 
						|
 | 
						|
		edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
 | 
						|
		if (!edmacc_regs_base[j]) {
 | 
						|
			status = -EBUSY;
 | 
						|
			goto fail1;
 | 
						|
		}
 | 
						|
 | 
						|
		edma_cc[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
 | 
						|
		if (!edma_cc[j]) {
 | 
						|
			status = -ENOMEM;
 | 
						|
			goto fail1;
 | 
						|
		}
 | 
						|
		memset(edma_cc[j], 0, sizeof(struct edma));
 | 
						|
 | 
						|
		edma_cc[j]->num_channels = min_t(unsigned, info[j]->n_channel,
 | 
						|
							EDMA_MAX_DMACH);
 | 
						|
		edma_cc[j]->num_slots = min_t(unsigned, info[j]->n_slot,
 | 
						|
							EDMA_MAX_PARAMENTRY);
 | 
						|
		edma_cc[j]->num_cc = min_t(unsigned, info[j]->n_cc,
 | 
						|
							EDMA_MAX_CC);
 | 
						|
 | 
						|
		edma_cc[j]->default_queue = info[j]->default_queue;
 | 
						|
		if (!edma_cc[j]->default_queue)
 | 
						|
			edma_cc[j]->default_queue = EVENTQ_1;
 | 
						|
 | 
						|
		dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
 | 
						|
			edmacc_regs_base[j]);
 | 
						|
 | 
						|
		for (i = 0; i < edma_cc[j]->num_slots; i++)
 | 
						|
			memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
 | 
						|
					&dummy_paramset, PARM_SIZE);
 | 
						|
 | 
						|
		/* Mark all channels as unused */
 | 
						|
		memset(edma_cc[j]->edma_unused, 0xff,
 | 
						|
			sizeof(edma_cc[j]->edma_unused));
 | 
						|
 | 
						|
		if (info[j]->rsv) {
 | 
						|
 | 
						|
			/* Clear the reserved channels in unused list */
 | 
						|
			rsv_chans = info[j]->rsv->rsv_chans;
 | 
						|
			if (rsv_chans) {
 | 
						|
				for (i = 0; rsv_chans[i][0] != -1; i++) {
 | 
						|
					off = rsv_chans[i][0];
 | 
						|
					ln = rsv_chans[i][1];
 | 
						|
					clear_bits(off, ln,
 | 
						|
						edma_cc[j]->edma_unused);
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			/* Set the reserved slots in inuse list */
 | 
						|
			rsv_slots = info[j]->rsv->rsv_slots;
 | 
						|
			if (rsv_slots) {
 | 
						|
				for (i = 0; rsv_slots[i][0] != -1; i++) {
 | 
						|
					off = rsv_slots[i][0];
 | 
						|
					ln = rsv_slots[i][1];
 | 
						|
					set_bits(off, ln,
 | 
						|
						edma_cc[j]->edma_inuse);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		sprintf(irq_name, "edma%d", j);
 | 
						|
		irq[j] = platform_get_irq_byname(pdev, irq_name);
 | 
						|
		edma_cc[j]->irq_res_start = irq[j];
 | 
						|
		status = request_irq(irq[j], dma_irq_handler, 0, "edma",
 | 
						|
					&pdev->dev);
 | 
						|
		if (status < 0) {
 | 
						|
			dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
 | 
						|
				irq[j], status);
 | 
						|
			goto fail;
 | 
						|
		}
 | 
						|
 | 
						|
		sprintf(irq_name, "edma%d_err", j);
 | 
						|
		err_irq[j] = platform_get_irq_byname(pdev, irq_name);
 | 
						|
		edma_cc[j]->irq_res_end = err_irq[j];
 | 
						|
		status = request_irq(err_irq[j], dma_ccerr_handler, 0,
 | 
						|
					"edma_error", &pdev->dev);
 | 
						|
		if (status < 0) {
 | 
						|
			dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
 | 
						|
				err_irq[j], status);
 | 
						|
			goto fail;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Everything lives on transfer controller 1 until otherwise
 | 
						|
		 * specified. This way, long transfers on the low priority queue
 | 
						|
		 * started by the codec engine will not cause audio defects.
 | 
						|
		 */
 | 
						|
		for (i = 0; i < edma_cc[j]->num_channels; i++)
 | 
						|
			map_dmach_queue(j, i, EVENTQ_1);
 | 
						|
 | 
						|
		queue_tc_mapping = info[j]->queue_tc_mapping;
 | 
						|
		queue_priority_mapping = info[j]->queue_priority_mapping;
 | 
						|
 | 
						|
		/* Event queue to TC mapping */
 | 
						|
		for (i = 0; queue_tc_mapping[i][0] != -1; i++)
 | 
						|
			map_queue_tc(j, queue_tc_mapping[i][0],
 | 
						|
					queue_tc_mapping[i][1]);
 | 
						|
 | 
						|
		/* Event queue priority mapping */
 | 
						|
		for (i = 0; queue_priority_mapping[i][0] != -1; i++)
 | 
						|
			assign_priority_to_queue(j,
 | 
						|
						queue_priority_mapping[i][0],
 | 
						|
						queue_priority_mapping[i][1]);
 | 
						|
 | 
						|
		/* Map the channel to param entry if channel mapping logic
 | 
						|
		 * exist
 | 
						|
		 */
 | 
						|
		if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
 | 
						|
			map_dmach_param(j);
 | 
						|
 | 
						|
		for (i = 0; i < info[j]->n_region; i++) {
 | 
						|
			edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
 | 
						|
			edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
 | 
						|
			edma_write_array(j, EDMA_QRAE, i, 0x0);
 | 
						|
		}
 | 
						|
		arch_num_cc++;
 | 
						|
	}
 | 
						|
 | 
						|
	if (tc_errs_handled) {
 | 
						|
		status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
 | 
						|
					"edma_tc0", &pdev->dev);
 | 
						|
		if (status < 0) {
 | 
						|
			dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
 | 
						|
				IRQ_TCERRINT0, status);
 | 
						|
			return status;
 | 
						|
		}
 | 
						|
		status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
 | 
						|
					"edma_tc1", &pdev->dev);
 | 
						|
		if (status < 0) {
 | 
						|
			dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
 | 
						|
				IRQ_TCERRINT, status);
 | 
						|
			return status;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
fail:
 | 
						|
	for (i = 0; i < EDMA_MAX_CC; i++) {
 | 
						|
		if (err_irq[i])
 | 
						|
			free_irq(err_irq[i], &pdev->dev);
 | 
						|
		if (irq[i])
 | 
						|
			free_irq(irq[i], &pdev->dev);
 | 
						|
	}
 | 
						|
fail1:
 | 
						|
	for (i = 0; i < EDMA_MAX_CC; i++) {
 | 
						|
		if (r[i])
 | 
						|
			release_mem_region(r[i]->start, len[i]);
 | 
						|
		if (edmacc_regs_base[i])
 | 
						|
			iounmap(edmacc_regs_base[i]);
 | 
						|
		kfree(edma_cc[i]);
 | 
						|
	}
 | 
						|
	return status;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static struct platform_driver edma_driver = {
 | 
						|
	.driver.name	= "edma",
 | 
						|
};
 | 
						|
 | 
						|
static int __init edma_init(void)
 | 
						|
{
 | 
						|
	return platform_driver_probe(&edma_driver, edma_probe);
 | 
						|
}
 | 
						|
arch_initcall(edma_init);
 | 
						|
 |