* git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6: sparc64: Properly truncate pt_regs framepointer in perf callback. arch/sparc/kernel: Use set_cpus_allowed_ptr sparc: Fix use of uid16_t and gid16_t in asm/stat.h
		
			
				
	
	
		
			1381 lines
		
	
	
	
		
			33 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1381 lines
		
	
	
	
		
			33 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/* Performance event support for sparc64.
 | 
						|
 *
 | 
						|
 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
 | 
						|
 *
 | 
						|
 * This code is based almost entirely upon the x86 perf event
 | 
						|
 * code, which is:
 | 
						|
 *
 | 
						|
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 | 
						|
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 | 
						|
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 | 
						|
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 | 
						|
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/perf_event.h>
 | 
						|
#include <linux/kprobes.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/kdebug.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
 | 
						|
#include <asm/stacktrace.h>
 | 
						|
#include <asm/cpudata.h>
 | 
						|
#include <asm/uaccess.h>
 | 
						|
#include <asm/atomic.h>
 | 
						|
#include <asm/nmi.h>
 | 
						|
#include <asm/pcr.h>
 | 
						|
 | 
						|
#include "kstack.h"
 | 
						|
 | 
						|
/* Sparc64 chips have two performance counters, 32-bits each, with
 | 
						|
 * overflow interrupts generated on transition from 0xffffffff to 0.
 | 
						|
 * The counters are accessed in one go using a 64-bit register.
 | 
						|
 *
 | 
						|
 * Both counters are controlled using a single control register.  The
 | 
						|
 * only way to stop all sampling is to clear all of the context (user,
 | 
						|
 * supervisor, hypervisor) sampling enable bits.  But these bits apply
 | 
						|
 * to both counters, thus the two counters can't be enabled/disabled
 | 
						|
 * individually.
 | 
						|
 *
 | 
						|
 * The control register has two event fields, one for each of the two
 | 
						|
 * counters.  It's thus nearly impossible to have one counter going
 | 
						|
 * while keeping the other one stopped.  Therefore it is possible to
 | 
						|
 * get overflow interrupts for counters not currently "in use" and
 | 
						|
 * that condition must be checked in the overflow interrupt handler.
 | 
						|
 *
 | 
						|
 * So we use a hack, in that we program inactive counters with the
 | 
						|
 * "sw_count0" and "sw_count1" events.  These count how many times
 | 
						|
 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
 | 
						|
 * unusual way to encode a NOP and therefore will not trigger in
 | 
						|
 * normal code.
 | 
						|
 */
 | 
						|
 | 
						|
#define MAX_HWEVENTS			2
 | 
						|
#define MAX_PERIOD			((1UL << 32) - 1)
 | 
						|
 | 
						|
#define PIC_UPPER_INDEX			0
 | 
						|
#define PIC_LOWER_INDEX			1
 | 
						|
#define PIC_NO_INDEX			-1
 | 
						|
 | 
						|
struct cpu_hw_events {
 | 
						|
	/* Number of events currently scheduled onto this cpu.
 | 
						|
	 * This tells how many entries in the arrays below
 | 
						|
	 * are valid.
 | 
						|
	 */
 | 
						|
	int			n_events;
 | 
						|
 | 
						|
	/* Number of new events added since the last hw_perf_disable().
 | 
						|
	 * This works because the perf event layer always adds new
 | 
						|
	 * events inside of a perf_{disable,enable}() sequence.
 | 
						|
	 */
 | 
						|
	int			n_added;
 | 
						|
 | 
						|
	/* Array of events current scheduled on this cpu.  */
 | 
						|
	struct perf_event	*event[MAX_HWEVENTS];
 | 
						|
 | 
						|
	/* Array of encoded longs, specifying the %pcr register
 | 
						|
	 * encoding and the mask of PIC counters this even can
 | 
						|
	 * be scheduled on.  See perf_event_encode() et al.
 | 
						|
	 */
 | 
						|
	unsigned long		events[MAX_HWEVENTS];
 | 
						|
 | 
						|
	/* The current counter index assigned to an event.  When the
 | 
						|
	 * event hasn't been programmed into the cpu yet, this will
 | 
						|
	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
 | 
						|
	 * we ought to schedule the event.
 | 
						|
	 */
 | 
						|
	int			current_idx[MAX_HWEVENTS];
 | 
						|
 | 
						|
	/* Software copy of %pcr register on this cpu.  */
 | 
						|
	u64			pcr;
 | 
						|
 | 
						|
	/* Enabled/disable state.  */
 | 
						|
	int			enabled;
 | 
						|
};
 | 
						|
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 | 
						|
 | 
						|
/* An event map describes the characteristics of a performance
 | 
						|
 * counter event.  In particular it gives the encoding as well as
 | 
						|
 * a mask telling which counters the event can be measured on.
 | 
						|
 */
 | 
						|
struct perf_event_map {
 | 
						|
	u16	encoding;
 | 
						|
	u8	pic_mask;
 | 
						|
#define PIC_NONE	0x00
 | 
						|
#define PIC_UPPER	0x01
 | 
						|
#define PIC_LOWER	0x02
 | 
						|
};
 | 
						|
 | 
						|
/* Encode a perf_event_map entry into a long.  */
 | 
						|
static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 | 
						|
{
 | 
						|
	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 | 
						|
}
 | 
						|
 | 
						|
static u8 perf_event_get_msk(unsigned long val)
 | 
						|
{
 | 
						|
	return val & 0xff;
 | 
						|
}
 | 
						|
 | 
						|
static u64 perf_event_get_enc(unsigned long val)
 | 
						|
{
 | 
						|
	return val >> 16;
 | 
						|
}
 | 
						|
 | 
						|
#define C(x) PERF_COUNT_HW_CACHE_##x
 | 
						|
 | 
						|
#define CACHE_OP_UNSUPPORTED	0xfffe
 | 
						|
#define CACHE_OP_NONSENSE	0xffff
 | 
						|
 | 
						|
typedef struct perf_event_map cache_map_t
 | 
						|
				[PERF_COUNT_HW_CACHE_MAX]
 | 
						|
				[PERF_COUNT_HW_CACHE_OP_MAX]
 | 
						|
				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 | 
						|
 | 
						|
struct sparc_pmu {
 | 
						|
	const struct perf_event_map	*(*event_map)(int);
 | 
						|
	const cache_map_t		*cache_map;
 | 
						|
	int				max_events;
 | 
						|
	int				upper_shift;
 | 
						|
	int				lower_shift;
 | 
						|
	int				event_mask;
 | 
						|
	int				hv_bit;
 | 
						|
	int				irq_bit;
 | 
						|
	int				upper_nop;
 | 
						|
	int				lower_nop;
 | 
						|
};
 | 
						|
 | 
						|
static const struct perf_event_map ultra3_perfmon_event_map[] = {
 | 
						|
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 | 
						|
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 | 
						|
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 | 
						|
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 | 
						|
};
 | 
						|
 | 
						|
static const struct perf_event_map *ultra3_event_map(int event_id)
 | 
						|
{
 | 
						|
	return &ultra3_perfmon_event_map[event_id];
 | 
						|
}
 | 
						|
 | 
						|
static const cache_map_t ultra3_cache_map = {
 | 
						|
[C(L1D)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 | 
						|
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 | 
						|
	},
 | 
						|
	[C(OP_WRITE)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 | 
						|
		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 | 
						|
	},
 | 
						|
	[C(OP_PREFETCH)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
[C(L1I)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 | 
						|
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 | 
						|
	},
 | 
						|
	[ C(OP_WRITE) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 | 
						|
	},
 | 
						|
	[ C(OP_PREFETCH) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
[C(LL)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 | 
						|
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 | 
						|
	},
 | 
						|
	[C(OP_WRITE)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 | 
						|
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 | 
						|
	},
 | 
						|
	[C(OP_PREFETCH)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
[C(DTLB)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 | 
						|
	},
 | 
						|
	[ C(OP_WRITE) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
	[ C(OP_PREFETCH) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
[C(ITLB)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 | 
						|
	},
 | 
						|
	[ C(OP_WRITE) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
	[ C(OP_PREFETCH) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
[C(BPU)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
	[ C(OP_WRITE) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
	[ C(OP_PREFETCH) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
};
 | 
						|
 | 
						|
static const struct sparc_pmu ultra3_pmu = {
 | 
						|
	.event_map	= ultra3_event_map,
 | 
						|
	.cache_map	= &ultra3_cache_map,
 | 
						|
	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
 | 
						|
	.upper_shift	= 11,
 | 
						|
	.lower_shift	= 4,
 | 
						|
	.event_mask	= 0x3f,
 | 
						|
	.upper_nop	= 0x1c,
 | 
						|
	.lower_nop	= 0x14,
 | 
						|
};
 | 
						|
 | 
						|
/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 | 
						|
 * only instructions, so it is free running which creates all kinds of
 | 
						|
 * problems.  Some hardware designs make one wonder if the creator
 | 
						|
 * even looked at how this stuff gets used by software.
 | 
						|
 */
 | 
						|
static const struct perf_event_map niagara1_perfmon_event_map[] = {
 | 
						|
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 | 
						|
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 | 
						|
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 | 
						|
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 | 
						|
};
 | 
						|
 | 
						|
static const struct perf_event_map *niagara1_event_map(int event_id)
 | 
						|
{
 | 
						|
	return &niagara1_perfmon_event_map[event_id];
 | 
						|
}
 | 
						|
 | 
						|
static const cache_map_t niagara1_cache_map = {
 | 
						|
[C(L1D)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 | 
						|
	},
 | 
						|
	[C(OP_WRITE)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 | 
						|
	},
 | 
						|
	[C(OP_PREFETCH)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
[C(L1I)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 | 
						|
		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 | 
						|
	},
 | 
						|
	[ C(OP_WRITE) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 | 
						|
	},
 | 
						|
	[ C(OP_PREFETCH) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
[C(LL)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 | 
						|
	},
 | 
						|
	[C(OP_WRITE)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 | 
						|
	},
 | 
						|
	[C(OP_PREFETCH)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
[C(DTLB)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 | 
						|
	},
 | 
						|
	[ C(OP_WRITE) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
	[ C(OP_PREFETCH) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
[C(ITLB)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 | 
						|
	},
 | 
						|
	[ C(OP_WRITE) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
	[ C(OP_PREFETCH) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
[C(BPU)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
	[ C(OP_WRITE) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
	[ C(OP_PREFETCH) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
};
 | 
						|
 | 
						|
static const struct sparc_pmu niagara1_pmu = {
 | 
						|
	.event_map	= niagara1_event_map,
 | 
						|
	.cache_map	= &niagara1_cache_map,
 | 
						|
	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
 | 
						|
	.upper_shift	= 0,
 | 
						|
	.lower_shift	= 4,
 | 
						|
	.event_mask	= 0x7,
 | 
						|
	.upper_nop	= 0x0,
 | 
						|
	.lower_nop	= 0x0,
 | 
						|
};
 | 
						|
 | 
						|
static const struct perf_event_map niagara2_perfmon_event_map[] = {
 | 
						|
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 | 
						|
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 | 
						|
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 | 
						|
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 | 
						|
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 | 
						|
	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 | 
						|
};
 | 
						|
 | 
						|
static const struct perf_event_map *niagara2_event_map(int event_id)
 | 
						|
{
 | 
						|
	return &niagara2_perfmon_event_map[event_id];
 | 
						|
}
 | 
						|
 | 
						|
static const cache_map_t niagara2_cache_map = {
 | 
						|
[C(L1D)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 | 
						|
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 | 
						|
	},
 | 
						|
	[C(OP_WRITE)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 | 
						|
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 | 
						|
	},
 | 
						|
	[C(OP_PREFETCH)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
[C(L1I)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 | 
						|
		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 | 
						|
	},
 | 
						|
	[ C(OP_WRITE) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 | 
						|
	},
 | 
						|
	[ C(OP_PREFETCH) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
[C(LL)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 | 
						|
		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 | 
						|
	},
 | 
						|
	[C(OP_WRITE)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 | 
						|
		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 | 
						|
	},
 | 
						|
	[C(OP_PREFETCH)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
[C(DTLB)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 | 
						|
	},
 | 
						|
	[ C(OP_WRITE) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
	[ C(OP_PREFETCH) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
[C(ITLB)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 | 
						|
	},
 | 
						|
	[ C(OP_WRITE) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
	[ C(OP_PREFETCH) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
[C(BPU)] = {
 | 
						|
	[C(OP_READ)] = {
 | 
						|
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
	[ C(OP_WRITE) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
	[ C(OP_PREFETCH) ] = {
 | 
						|
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | 
						|
	},
 | 
						|
},
 | 
						|
};
 | 
						|
 | 
						|
static const struct sparc_pmu niagara2_pmu = {
 | 
						|
	.event_map	= niagara2_event_map,
 | 
						|
	.cache_map	= &niagara2_cache_map,
 | 
						|
	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
 | 
						|
	.upper_shift	= 19,
 | 
						|
	.lower_shift	= 6,
 | 
						|
	.event_mask	= 0xfff,
 | 
						|
	.hv_bit		= 0x8,
 | 
						|
	.irq_bit	= 0x30,
 | 
						|
	.upper_nop	= 0x220,
 | 
						|
	.lower_nop	= 0x220,
 | 
						|
};
 | 
						|
 | 
						|
static const struct sparc_pmu *sparc_pmu __read_mostly;
 | 
						|
 | 
						|
static u64 event_encoding(u64 event_id, int idx)
 | 
						|
{
 | 
						|
	if (idx == PIC_UPPER_INDEX)
 | 
						|
		event_id <<= sparc_pmu->upper_shift;
 | 
						|
	else
 | 
						|
		event_id <<= sparc_pmu->lower_shift;
 | 
						|
	return event_id;
 | 
						|
}
 | 
						|
 | 
						|
static u64 mask_for_index(int idx)
 | 
						|
{
 | 
						|
	return event_encoding(sparc_pmu->event_mask, idx);
 | 
						|
}
 | 
						|
 | 
						|
static u64 nop_for_index(int idx)
 | 
						|
{
 | 
						|
	return event_encoding(idx == PIC_UPPER_INDEX ?
 | 
						|
			      sparc_pmu->upper_nop :
 | 
						|
			      sparc_pmu->lower_nop, idx);
 | 
						|
}
 | 
						|
 | 
						|
static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 | 
						|
{
 | 
						|
	u64 val, mask = mask_for_index(idx);
 | 
						|
 | 
						|
	val = cpuc->pcr;
 | 
						|
	val &= ~mask;
 | 
						|
	val |= hwc->config;
 | 
						|
	cpuc->pcr = val;
 | 
						|
 | 
						|
	pcr_ops->write(cpuc->pcr);
 | 
						|
}
 | 
						|
 | 
						|
static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 | 
						|
{
 | 
						|
	u64 mask = mask_for_index(idx);
 | 
						|
	u64 nop = nop_for_index(idx);
 | 
						|
	u64 val;
 | 
						|
 | 
						|
	val = cpuc->pcr;
 | 
						|
	val &= ~mask;
 | 
						|
	val |= nop;
 | 
						|
	cpuc->pcr = val;
 | 
						|
 | 
						|
	pcr_ops->write(cpuc->pcr);
 | 
						|
}
 | 
						|
 | 
						|
static u32 read_pmc(int idx)
 | 
						|
{
 | 
						|
	u64 val;
 | 
						|
 | 
						|
	read_pic(val);
 | 
						|
	if (idx == PIC_UPPER_INDEX)
 | 
						|
		val >>= 32;
 | 
						|
 | 
						|
	return val & 0xffffffff;
 | 
						|
}
 | 
						|
 | 
						|
static void write_pmc(int idx, u64 val)
 | 
						|
{
 | 
						|
	u64 shift, mask, pic;
 | 
						|
 | 
						|
	shift = 0;
 | 
						|
	if (idx == PIC_UPPER_INDEX)
 | 
						|
		shift = 32;
 | 
						|
 | 
						|
	mask = ((u64) 0xffffffff) << shift;
 | 
						|
	val <<= shift;
 | 
						|
 | 
						|
	read_pic(pic);
 | 
						|
	pic &= ~mask;
 | 
						|
	pic |= val;
 | 
						|
	write_pic(pic);
 | 
						|
}
 | 
						|
 | 
						|
static u64 sparc_perf_event_update(struct perf_event *event,
 | 
						|
				   struct hw_perf_event *hwc, int idx)
 | 
						|
{
 | 
						|
	int shift = 64 - 32;
 | 
						|
	u64 prev_raw_count, new_raw_count;
 | 
						|
	s64 delta;
 | 
						|
 | 
						|
again:
 | 
						|
	prev_raw_count = atomic64_read(&hwc->prev_count);
 | 
						|
	new_raw_count = read_pmc(idx);
 | 
						|
 | 
						|
	if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
 | 
						|
			     new_raw_count) != prev_raw_count)
 | 
						|
		goto again;
 | 
						|
 | 
						|
	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 | 
						|
	delta >>= shift;
 | 
						|
 | 
						|
	atomic64_add(delta, &event->count);
 | 
						|
	atomic64_sub(delta, &hwc->period_left);
 | 
						|
 | 
						|
	return new_raw_count;
 | 
						|
}
 | 
						|
 | 
						|
static int sparc_perf_event_set_period(struct perf_event *event,
 | 
						|
				       struct hw_perf_event *hwc, int idx)
 | 
						|
{
 | 
						|
	s64 left = atomic64_read(&hwc->period_left);
 | 
						|
	s64 period = hwc->sample_period;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (unlikely(left <= -period)) {
 | 
						|
		left = period;
 | 
						|
		atomic64_set(&hwc->period_left, left);
 | 
						|
		hwc->last_period = period;
 | 
						|
		ret = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(left <= 0)) {
 | 
						|
		left += period;
 | 
						|
		atomic64_set(&hwc->period_left, left);
 | 
						|
		hwc->last_period = period;
 | 
						|
		ret = 1;
 | 
						|
	}
 | 
						|
	if (left > MAX_PERIOD)
 | 
						|
		left = MAX_PERIOD;
 | 
						|
 | 
						|
	atomic64_set(&hwc->prev_count, (u64)-left);
 | 
						|
 | 
						|
	write_pmc(idx, (u64)(-left) & 0xffffffff);
 | 
						|
 | 
						|
	perf_event_update_userpage(event);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* If performance event entries have been added, move existing
 | 
						|
 * events around (if necessary) and then assign new entries to
 | 
						|
 * counters.
 | 
						|
 */
 | 
						|
static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (!cpuc->n_added)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Read in the counters which are moving.  */
 | 
						|
	for (i = 0; i < cpuc->n_events; i++) {
 | 
						|
		struct perf_event *cp = cpuc->event[i];
 | 
						|
 | 
						|
		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 | 
						|
		    cpuc->current_idx[i] != cp->hw.idx) {
 | 
						|
			sparc_perf_event_update(cp, &cp->hw,
 | 
						|
						cpuc->current_idx[i]);
 | 
						|
			cpuc->current_idx[i] = PIC_NO_INDEX;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Assign to counters all unassigned events.  */
 | 
						|
	for (i = 0; i < cpuc->n_events; i++) {
 | 
						|
		struct perf_event *cp = cpuc->event[i];
 | 
						|
		struct hw_perf_event *hwc = &cp->hw;
 | 
						|
		int idx = hwc->idx;
 | 
						|
		u64 enc;
 | 
						|
 | 
						|
		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 | 
						|
			continue;
 | 
						|
 | 
						|
		sparc_perf_event_set_period(cp, hwc, idx);
 | 
						|
		cpuc->current_idx[i] = idx;
 | 
						|
 | 
						|
		enc = perf_event_get_enc(cpuc->events[i]);
 | 
						|
		pcr |= event_encoding(enc, idx);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	return pcr;
 | 
						|
}
 | 
						|
 | 
						|
void hw_perf_enable(void)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | 
						|
	u64 pcr;
 | 
						|
 | 
						|
	if (cpuc->enabled)
 | 
						|
		return;
 | 
						|
 | 
						|
	cpuc->enabled = 1;
 | 
						|
	barrier();
 | 
						|
 | 
						|
	pcr = cpuc->pcr;
 | 
						|
	if (!cpuc->n_events) {
 | 
						|
		pcr = 0;
 | 
						|
	} else {
 | 
						|
		pcr = maybe_change_configuration(cpuc, pcr);
 | 
						|
 | 
						|
		/* We require that all of the events have the same
 | 
						|
		 * configuration, so just fetch the settings from the
 | 
						|
		 * first entry.
 | 
						|
		 */
 | 
						|
		cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
 | 
						|
	}
 | 
						|
 | 
						|
	pcr_ops->write(cpuc->pcr);
 | 
						|
}
 | 
						|
 | 
						|
void hw_perf_disable(void)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | 
						|
	u64 val;
 | 
						|
 | 
						|
	if (!cpuc->enabled)
 | 
						|
		return;
 | 
						|
 | 
						|
	cpuc->enabled = 0;
 | 
						|
	cpuc->n_added = 0;
 | 
						|
 | 
						|
	val = cpuc->pcr;
 | 
						|
	val &= ~(PCR_UTRACE | PCR_STRACE |
 | 
						|
		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
 | 
						|
	cpuc->pcr = val;
 | 
						|
 | 
						|
	pcr_ops->write(cpuc->pcr);
 | 
						|
}
 | 
						|
 | 
						|
static void sparc_pmu_disable(struct perf_event *event)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | 
						|
	struct hw_perf_event *hwc = &event->hw;
 | 
						|
	unsigned long flags;
 | 
						|
	int i;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	perf_disable();
 | 
						|
 | 
						|
	for (i = 0; i < cpuc->n_events; i++) {
 | 
						|
		if (event == cpuc->event[i]) {
 | 
						|
			int idx = cpuc->current_idx[i];
 | 
						|
 | 
						|
			/* Shift remaining entries down into
 | 
						|
			 * the existing slot.
 | 
						|
			 */
 | 
						|
			while (++i < cpuc->n_events) {
 | 
						|
				cpuc->event[i - 1] = cpuc->event[i];
 | 
						|
				cpuc->events[i - 1] = cpuc->events[i];
 | 
						|
				cpuc->current_idx[i - 1] =
 | 
						|
					cpuc->current_idx[i];
 | 
						|
			}
 | 
						|
 | 
						|
			/* Absorb the final count and turn off the
 | 
						|
			 * event.
 | 
						|
			 */
 | 
						|
			sparc_pmu_disable_event(cpuc, hwc, idx);
 | 
						|
			barrier();
 | 
						|
			sparc_perf_event_update(event, hwc, idx);
 | 
						|
 | 
						|
			perf_event_update_userpage(event);
 | 
						|
 | 
						|
			cpuc->n_events--;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	perf_enable();
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
static int active_event_index(struct cpu_hw_events *cpuc,
 | 
						|
			      struct perf_event *event)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < cpuc->n_events; i++) {
 | 
						|
		if (cpuc->event[i] == event)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	BUG_ON(i == cpuc->n_events);
 | 
						|
	return cpuc->current_idx[i];
 | 
						|
}
 | 
						|
 | 
						|
static void sparc_pmu_read(struct perf_event *event)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | 
						|
	int idx = active_event_index(cpuc, event);
 | 
						|
	struct hw_perf_event *hwc = &event->hw;
 | 
						|
 | 
						|
	sparc_perf_event_update(event, hwc, idx);
 | 
						|
}
 | 
						|
 | 
						|
static void sparc_pmu_unthrottle(struct perf_event *event)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | 
						|
	int idx = active_event_index(cpuc, event);
 | 
						|
	struct hw_perf_event *hwc = &event->hw;
 | 
						|
 | 
						|
	sparc_pmu_enable_event(cpuc, hwc, idx);
 | 
						|
}
 | 
						|
 | 
						|
static atomic_t active_events = ATOMIC_INIT(0);
 | 
						|
static DEFINE_MUTEX(pmc_grab_mutex);
 | 
						|
 | 
						|
static void perf_stop_nmi_watchdog(void *unused)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | 
						|
 | 
						|
	stop_nmi_watchdog(NULL);
 | 
						|
	cpuc->pcr = pcr_ops->read();
 | 
						|
}
 | 
						|
 | 
						|
void perf_event_grab_pmc(void)
 | 
						|
{
 | 
						|
	if (atomic_inc_not_zero(&active_events))
 | 
						|
		return;
 | 
						|
 | 
						|
	mutex_lock(&pmc_grab_mutex);
 | 
						|
	if (atomic_read(&active_events) == 0) {
 | 
						|
		if (atomic_read(&nmi_active) > 0) {
 | 
						|
			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
 | 
						|
			BUG_ON(atomic_read(&nmi_active) != 0);
 | 
						|
		}
 | 
						|
		atomic_inc(&active_events);
 | 
						|
	}
 | 
						|
	mutex_unlock(&pmc_grab_mutex);
 | 
						|
}
 | 
						|
 | 
						|
void perf_event_release_pmc(void)
 | 
						|
{
 | 
						|
	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
 | 
						|
		if (atomic_read(&nmi_active) == 0)
 | 
						|
			on_each_cpu(start_nmi_watchdog, NULL, 1);
 | 
						|
		mutex_unlock(&pmc_grab_mutex);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static const struct perf_event_map *sparc_map_cache_event(u64 config)
 | 
						|
{
 | 
						|
	unsigned int cache_type, cache_op, cache_result;
 | 
						|
	const struct perf_event_map *pmap;
 | 
						|
 | 
						|
	if (!sparc_pmu->cache_map)
 | 
						|
		return ERR_PTR(-ENOENT);
 | 
						|
 | 
						|
	cache_type = (config >>  0) & 0xff;
 | 
						|
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	cache_op = (config >>  8) & 0xff;
 | 
						|
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	cache_result = (config >> 16) & 0xff;
 | 
						|
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
 | 
						|
 | 
						|
	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
 | 
						|
		return ERR_PTR(-ENOENT);
 | 
						|
 | 
						|
	if (pmap->encoding == CACHE_OP_NONSENSE)
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	return pmap;
 | 
						|
}
 | 
						|
 | 
						|
static void hw_perf_event_destroy(struct perf_event *event)
 | 
						|
{
 | 
						|
	perf_event_release_pmc();
 | 
						|
}
 | 
						|
 | 
						|
/* Make sure all events can be scheduled into the hardware at
 | 
						|
 * the same time.  This is simplified by the fact that we only
 | 
						|
 * need to support 2 simultaneous HW events.
 | 
						|
 *
 | 
						|
 * As a side effect, the evts[]->hw.idx values will be assigned
 | 
						|
 * on success.  These are pending indexes.  When the events are
 | 
						|
 * actually programmed into the chip, these values will propagate
 | 
						|
 * to the per-cpu cpuc->current_idx[] slots, see the code in
 | 
						|
 * maybe_change_configuration() for details.
 | 
						|
 */
 | 
						|
static int sparc_check_constraints(struct perf_event **evts,
 | 
						|
				   unsigned long *events, int n_ev)
 | 
						|
{
 | 
						|
	u8 msk0 = 0, msk1 = 0;
 | 
						|
	int idx0 = 0;
 | 
						|
 | 
						|
	/* This case is possible when we are invoked from
 | 
						|
	 * hw_perf_group_sched_in().
 | 
						|
	 */
 | 
						|
	if (!n_ev)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (n_ev > perf_max_events)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	msk0 = perf_event_get_msk(events[0]);
 | 
						|
	if (n_ev == 1) {
 | 
						|
		if (msk0 & PIC_LOWER)
 | 
						|
			idx0 = 1;
 | 
						|
		goto success;
 | 
						|
	}
 | 
						|
	BUG_ON(n_ev != 2);
 | 
						|
	msk1 = perf_event_get_msk(events[1]);
 | 
						|
 | 
						|
	/* If both events can go on any counter, OK.  */
 | 
						|
	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
 | 
						|
	    msk1 == (PIC_UPPER | PIC_LOWER))
 | 
						|
		goto success;
 | 
						|
 | 
						|
	/* If one event is limited to a specific counter,
 | 
						|
	 * and the other can go on both, OK.
 | 
						|
	 */
 | 
						|
	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
 | 
						|
	    msk1 == (PIC_UPPER | PIC_LOWER)) {
 | 
						|
		if (msk0 & PIC_LOWER)
 | 
						|
			idx0 = 1;
 | 
						|
		goto success;
 | 
						|
	}
 | 
						|
 | 
						|
	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
 | 
						|
	    msk0 == (PIC_UPPER | PIC_LOWER)) {
 | 
						|
		if (msk1 & PIC_UPPER)
 | 
						|
			idx0 = 1;
 | 
						|
		goto success;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If the events are fixed to different counters, OK.  */
 | 
						|
	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
 | 
						|
	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
 | 
						|
		if (msk0 & PIC_LOWER)
 | 
						|
			idx0 = 1;
 | 
						|
		goto success;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Otherwise, there is a conflict.  */
 | 
						|
	return -1;
 | 
						|
 | 
						|
success:
 | 
						|
	evts[0]->hw.idx = idx0;
 | 
						|
	if (n_ev == 2)
 | 
						|
		evts[1]->hw.idx = idx0 ^ 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
 | 
						|
{
 | 
						|
	int eu = 0, ek = 0, eh = 0;
 | 
						|
	struct perf_event *event;
 | 
						|
	int i, n, first;
 | 
						|
 | 
						|
	n = n_prev + n_new;
 | 
						|
	if (n <= 1)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	first = 1;
 | 
						|
	for (i = 0; i < n; i++) {
 | 
						|
		event = evts[i];
 | 
						|
		if (first) {
 | 
						|
			eu = event->attr.exclude_user;
 | 
						|
			ek = event->attr.exclude_kernel;
 | 
						|
			eh = event->attr.exclude_hv;
 | 
						|
			first = 0;
 | 
						|
		} else if (event->attr.exclude_user != eu ||
 | 
						|
			   event->attr.exclude_kernel != ek ||
 | 
						|
			   event->attr.exclude_hv != eh) {
 | 
						|
			return -EAGAIN;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int collect_events(struct perf_event *group, int max_count,
 | 
						|
			  struct perf_event *evts[], unsigned long *events,
 | 
						|
			  int *current_idx)
 | 
						|
{
 | 
						|
	struct perf_event *event;
 | 
						|
	int n = 0;
 | 
						|
 | 
						|
	if (!is_software_event(group)) {
 | 
						|
		if (n >= max_count)
 | 
						|
			return -1;
 | 
						|
		evts[n] = group;
 | 
						|
		events[n] = group->hw.event_base;
 | 
						|
		current_idx[n++] = PIC_NO_INDEX;
 | 
						|
	}
 | 
						|
	list_for_each_entry(event, &group->sibling_list, group_entry) {
 | 
						|
		if (!is_software_event(event) &&
 | 
						|
		    event->state != PERF_EVENT_STATE_OFF) {
 | 
						|
			if (n >= max_count)
 | 
						|
				return -1;
 | 
						|
			evts[n] = event;
 | 
						|
			events[n] = event->hw.event_base;
 | 
						|
			current_idx[n++] = PIC_NO_INDEX;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return n;
 | 
						|
}
 | 
						|
 | 
						|
static void event_sched_in(struct perf_event *event)
 | 
						|
{
 | 
						|
	event->state = PERF_EVENT_STATE_ACTIVE;
 | 
						|
	event->oncpu = smp_processor_id();
 | 
						|
	event->tstamp_running += event->ctx->time - event->tstamp_stopped;
 | 
						|
	if (is_software_event(event))
 | 
						|
		event->pmu->enable(event);
 | 
						|
}
 | 
						|
 | 
						|
int hw_perf_group_sched_in(struct perf_event *group_leader,
 | 
						|
			   struct perf_cpu_context *cpuctx,
 | 
						|
			   struct perf_event_context *ctx)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | 
						|
	struct perf_event *sub;
 | 
						|
	int n0, n;
 | 
						|
 | 
						|
	if (!sparc_pmu)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	n0 = cpuc->n_events;
 | 
						|
	n = collect_events(group_leader, perf_max_events - n0,
 | 
						|
			   &cpuc->event[n0], &cpuc->events[n0],
 | 
						|
			   &cpuc->current_idx[n0]);
 | 
						|
	if (n < 0)
 | 
						|
		return -EAGAIN;
 | 
						|
	if (check_excludes(cpuc->event, n0, n))
 | 
						|
		return -EINVAL;
 | 
						|
	if (sparc_check_constraints(cpuc->event, cpuc->events, n + n0))
 | 
						|
		return -EAGAIN;
 | 
						|
	cpuc->n_events = n0 + n;
 | 
						|
	cpuc->n_added += n;
 | 
						|
 | 
						|
	cpuctx->active_oncpu += n;
 | 
						|
	n = 1;
 | 
						|
	event_sched_in(group_leader);
 | 
						|
	list_for_each_entry(sub, &group_leader->sibling_list, group_entry) {
 | 
						|
		if (sub->state != PERF_EVENT_STATE_OFF) {
 | 
						|
			event_sched_in(sub);
 | 
						|
			n++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	ctx->nr_active += n;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static int sparc_pmu_enable(struct perf_event *event)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | 
						|
	int n0, ret = -EAGAIN;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	perf_disable();
 | 
						|
 | 
						|
	n0 = cpuc->n_events;
 | 
						|
	if (n0 >= perf_max_events)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	cpuc->event[n0] = event;
 | 
						|
	cpuc->events[n0] = event->hw.event_base;
 | 
						|
	cpuc->current_idx[n0] = PIC_NO_INDEX;
 | 
						|
 | 
						|
	if (check_excludes(cpuc->event, n0, 1))
 | 
						|
		goto out;
 | 
						|
	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	cpuc->n_events++;
 | 
						|
	cpuc->n_added++;
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	perf_enable();
 | 
						|
	local_irq_restore(flags);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int __hw_perf_event_init(struct perf_event *event)
 | 
						|
{
 | 
						|
	struct perf_event_attr *attr = &event->attr;
 | 
						|
	struct perf_event *evts[MAX_HWEVENTS];
 | 
						|
	struct hw_perf_event *hwc = &event->hw;
 | 
						|
	unsigned long events[MAX_HWEVENTS];
 | 
						|
	int current_idx_dmy[MAX_HWEVENTS];
 | 
						|
	const struct perf_event_map *pmap;
 | 
						|
	int n;
 | 
						|
 | 
						|
	if (atomic_read(&nmi_active) < 0)
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	if (attr->type == PERF_TYPE_HARDWARE) {
 | 
						|
		if (attr->config >= sparc_pmu->max_events)
 | 
						|
			return -EINVAL;
 | 
						|
		pmap = sparc_pmu->event_map(attr->config);
 | 
						|
	} else if (attr->type == PERF_TYPE_HW_CACHE) {
 | 
						|
		pmap = sparc_map_cache_event(attr->config);
 | 
						|
		if (IS_ERR(pmap))
 | 
						|
			return PTR_ERR(pmap);
 | 
						|
	} else
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	/* We save the enable bits in the config_base.  */
 | 
						|
	hwc->config_base = sparc_pmu->irq_bit;
 | 
						|
	if (!attr->exclude_user)
 | 
						|
		hwc->config_base |= PCR_UTRACE;
 | 
						|
	if (!attr->exclude_kernel)
 | 
						|
		hwc->config_base |= PCR_STRACE;
 | 
						|
	if (!attr->exclude_hv)
 | 
						|
		hwc->config_base |= sparc_pmu->hv_bit;
 | 
						|
 | 
						|
	hwc->event_base = perf_event_encode(pmap);
 | 
						|
 | 
						|
	n = 0;
 | 
						|
	if (event->group_leader != event) {
 | 
						|
		n = collect_events(event->group_leader,
 | 
						|
				   perf_max_events - 1,
 | 
						|
				   evts, events, current_idx_dmy);
 | 
						|
		if (n < 0)
 | 
						|
			return -EINVAL;
 | 
						|
	}
 | 
						|
	events[n] = hwc->event_base;
 | 
						|
	evts[n] = event;
 | 
						|
 | 
						|
	if (check_excludes(evts, n, 1))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (sparc_check_constraints(evts, events, n + 1))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	hwc->idx = PIC_NO_INDEX;
 | 
						|
 | 
						|
	/* Try to do all error checking before this point, as unwinding
 | 
						|
	 * state after grabbing the PMC is difficult.
 | 
						|
	 */
 | 
						|
	perf_event_grab_pmc();
 | 
						|
	event->destroy = hw_perf_event_destroy;
 | 
						|
 | 
						|
	if (!hwc->sample_period) {
 | 
						|
		hwc->sample_period = MAX_PERIOD;
 | 
						|
		hwc->last_period = hwc->sample_period;
 | 
						|
		atomic64_set(&hwc->period_left, hwc->sample_period);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const struct pmu pmu = {
 | 
						|
	.enable		= sparc_pmu_enable,
 | 
						|
	.disable	= sparc_pmu_disable,
 | 
						|
	.read		= sparc_pmu_read,
 | 
						|
	.unthrottle	= sparc_pmu_unthrottle,
 | 
						|
};
 | 
						|
 | 
						|
const struct pmu *hw_perf_event_init(struct perf_event *event)
 | 
						|
{
 | 
						|
	int err = __hw_perf_event_init(event);
 | 
						|
 | 
						|
	if (err)
 | 
						|
		return ERR_PTR(err);
 | 
						|
	return &pmu;
 | 
						|
}
 | 
						|
 | 
						|
void perf_event_print_debug(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	u64 pcr, pic;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	if (!sparc_pmu)
 | 
						|
		return;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
 | 
						|
	cpu = smp_processor_id();
 | 
						|
 | 
						|
	pcr = pcr_ops->read();
 | 
						|
	read_pic(pic);
 | 
						|
 | 
						|
	pr_info("\n");
 | 
						|
	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
 | 
						|
		cpu, pcr, pic);
 | 
						|
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
 | 
						|
					    unsigned long cmd, void *__args)
 | 
						|
{
 | 
						|
	struct die_args *args = __args;
 | 
						|
	struct perf_sample_data data;
 | 
						|
	struct cpu_hw_events *cpuc;
 | 
						|
	struct pt_regs *regs;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (!atomic_read(&active_events))
 | 
						|
		return NOTIFY_DONE;
 | 
						|
 | 
						|
	switch (cmd) {
 | 
						|
	case DIE_NMI:
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		return NOTIFY_DONE;
 | 
						|
	}
 | 
						|
 | 
						|
	regs = args->regs;
 | 
						|
 | 
						|
	perf_sample_data_init(&data, 0);
 | 
						|
 | 
						|
	cpuc = &__get_cpu_var(cpu_hw_events);
 | 
						|
 | 
						|
	/* If the PMU has the TOE IRQ enable bits, we need to do a
 | 
						|
	 * dummy write to the %pcr to clear the overflow bits and thus
 | 
						|
	 * the interrupt.
 | 
						|
	 *
 | 
						|
	 * Do this before we peek at the counters to determine
 | 
						|
	 * overflow so we don't lose any events.
 | 
						|
	 */
 | 
						|
	if (sparc_pmu->irq_bit)
 | 
						|
		pcr_ops->write(cpuc->pcr);
 | 
						|
 | 
						|
	for (i = 0; i < cpuc->n_events; i++) {
 | 
						|
		struct perf_event *event = cpuc->event[i];
 | 
						|
		int idx = cpuc->current_idx[i];
 | 
						|
		struct hw_perf_event *hwc;
 | 
						|
		u64 val;
 | 
						|
 | 
						|
		hwc = &event->hw;
 | 
						|
		val = sparc_perf_event_update(event, hwc, idx);
 | 
						|
		if (val & (1ULL << 31))
 | 
						|
			continue;
 | 
						|
 | 
						|
		data.period = event->hw.last_period;
 | 
						|
		if (!sparc_perf_event_set_period(event, hwc, idx))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (perf_event_overflow(event, 1, &data, regs))
 | 
						|
			sparc_pmu_disable_event(cpuc, hwc, idx);
 | 
						|
	}
 | 
						|
 | 
						|
	return NOTIFY_STOP;
 | 
						|
}
 | 
						|
 | 
						|
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
 | 
						|
	.notifier_call		= perf_event_nmi_handler,
 | 
						|
};
 | 
						|
 | 
						|
static bool __init supported_pmu(void)
 | 
						|
{
 | 
						|
	if (!strcmp(sparc_pmu_type, "ultra3") ||
 | 
						|
	    !strcmp(sparc_pmu_type, "ultra3+") ||
 | 
						|
	    !strcmp(sparc_pmu_type, "ultra3i") ||
 | 
						|
	    !strcmp(sparc_pmu_type, "ultra4+")) {
 | 
						|
		sparc_pmu = &ultra3_pmu;
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	if (!strcmp(sparc_pmu_type, "niagara")) {
 | 
						|
		sparc_pmu = &niagara1_pmu;
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	if (!strcmp(sparc_pmu_type, "niagara2")) {
 | 
						|
		sparc_pmu = &niagara2_pmu;
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
void __init init_hw_perf_events(void)
 | 
						|
{
 | 
						|
	pr_info("Performance events: ");
 | 
						|
 | 
						|
	if (!supported_pmu()) {
 | 
						|
		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
 | 
						|
 | 
						|
	/* All sparc64 PMUs currently have 2 events.  */
 | 
						|
	perf_max_events = 2;
 | 
						|
 | 
						|
	register_die_notifier(&perf_event_nmi_notifier);
 | 
						|
}
 | 
						|
 | 
						|
static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
 | 
						|
{
 | 
						|
	if (entry->nr < PERF_MAX_STACK_DEPTH)
 | 
						|
		entry->ip[entry->nr++] = ip;
 | 
						|
}
 | 
						|
 | 
						|
static void perf_callchain_kernel(struct pt_regs *regs,
 | 
						|
				  struct perf_callchain_entry *entry)
 | 
						|
{
 | 
						|
	unsigned long ksp, fp;
 | 
						|
 | 
						|
	callchain_store(entry, PERF_CONTEXT_KERNEL);
 | 
						|
	callchain_store(entry, regs->tpc);
 | 
						|
 | 
						|
	ksp = regs->u_regs[UREG_I6];
 | 
						|
	fp = ksp + STACK_BIAS;
 | 
						|
	do {
 | 
						|
		struct sparc_stackf *sf;
 | 
						|
		struct pt_regs *regs;
 | 
						|
		unsigned long pc;
 | 
						|
 | 
						|
		if (!kstack_valid(current_thread_info(), fp))
 | 
						|
			break;
 | 
						|
 | 
						|
		sf = (struct sparc_stackf *) fp;
 | 
						|
		regs = (struct pt_regs *) (sf + 1);
 | 
						|
 | 
						|
		if (kstack_is_trap_frame(current_thread_info(), regs)) {
 | 
						|
			if (user_mode(regs))
 | 
						|
				break;
 | 
						|
			pc = regs->tpc;
 | 
						|
			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
 | 
						|
		} else {
 | 
						|
			pc = sf->callers_pc;
 | 
						|
			fp = (unsigned long)sf->fp + STACK_BIAS;
 | 
						|
		}
 | 
						|
		callchain_store(entry, pc);
 | 
						|
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
 | 
						|
}
 | 
						|
 | 
						|
static void perf_callchain_user_64(struct pt_regs *regs,
 | 
						|
				   struct perf_callchain_entry *entry)
 | 
						|
{
 | 
						|
	unsigned long ufp;
 | 
						|
 | 
						|
	callchain_store(entry, PERF_CONTEXT_USER);
 | 
						|
	callchain_store(entry, regs->tpc);
 | 
						|
 | 
						|
	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
 | 
						|
	do {
 | 
						|
		struct sparc_stackf *usf, sf;
 | 
						|
		unsigned long pc;
 | 
						|
 | 
						|
		usf = (struct sparc_stackf *) ufp;
 | 
						|
		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
 | 
						|
			break;
 | 
						|
 | 
						|
		pc = sf.callers_pc;
 | 
						|
		ufp = (unsigned long)sf.fp + STACK_BIAS;
 | 
						|
		callchain_store(entry, pc);
 | 
						|
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
 | 
						|
}
 | 
						|
 | 
						|
static void perf_callchain_user_32(struct pt_regs *regs,
 | 
						|
				   struct perf_callchain_entry *entry)
 | 
						|
{
 | 
						|
	unsigned long ufp;
 | 
						|
 | 
						|
	callchain_store(entry, PERF_CONTEXT_USER);
 | 
						|
	callchain_store(entry, regs->tpc);
 | 
						|
 | 
						|
	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
 | 
						|
	do {
 | 
						|
		struct sparc_stackf32 *usf, sf;
 | 
						|
		unsigned long pc;
 | 
						|
 | 
						|
		usf = (struct sparc_stackf32 *) ufp;
 | 
						|
		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
 | 
						|
			break;
 | 
						|
 | 
						|
		pc = sf.callers_pc;
 | 
						|
		ufp = (unsigned long)sf.fp;
 | 
						|
		callchain_store(entry, pc);
 | 
						|
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
 | 
						|
}
 | 
						|
 | 
						|
/* Like powerpc we can't get PMU interrupts within the PMU handler,
 | 
						|
 * so no need for separate NMI and IRQ chains as on x86.
 | 
						|
 */
 | 
						|
static DEFINE_PER_CPU(struct perf_callchain_entry, callchain);
 | 
						|
 | 
						|
struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	struct perf_callchain_entry *entry = &__get_cpu_var(callchain);
 | 
						|
 | 
						|
	entry->nr = 0;
 | 
						|
	if (!user_mode(regs)) {
 | 
						|
		stack_trace_flush();
 | 
						|
		perf_callchain_kernel(regs, entry);
 | 
						|
		if (current->mm)
 | 
						|
			regs = task_pt_regs(current);
 | 
						|
		else
 | 
						|
			regs = NULL;
 | 
						|
	}
 | 
						|
	if (regs) {
 | 
						|
		flushw_user();
 | 
						|
		if (test_thread_flag(TIF_32BIT))
 | 
						|
			perf_callchain_user_32(regs, entry);
 | 
						|
		else
 | 
						|
			perf_callchain_user_64(regs, entry);
 | 
						|
	}
 | 
						|
	return entry;
 | 
						|
}
 |