505 lines
		
	
	
	
		
			18 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			505 lines
		
	
	
	
		
			18 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef __ASM_SH64_PGTABLE_H
 | |
| #define __ASM_SH64_PGTABLE_H
 | |
| 
 | |
| #include <asm-generic/4level-fixup.h>
 | |
| 
 | |
| /*
 | |
|  * This file is subject to the terms and conditions of the GNU General Public
 | |
|  * License.  See the file "COPYING" in the main directory of this archive
 | |
|  * for more details.
 | |
|  *
 | |
|  * include/asm-sh64/pgtable.h
 | |
|  *
 | |
|  * Copyright (C) 2000, 2001  Paolo Alberelli
 | |
|  * Copyright (C) 2003, 2004  Paul Mundt
 | |
|  * Copyright (C) 2003, 2004  Richard Curnow
 | |
|  *
 | |
|  * This file contains the functions and defines necessary to modify and use
 | |
|  * the SuperH page table tree.
 | |
|  */
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| #include <asm/processor.h>
 | |
| #include <asm/page.h>
 | |
| #include <linux/threads.h>
 | |
| 
 | |
| struct vm_area_struct;
 | |
| 
 | |
| extern void paging_init(void);
 | |
| 
 | |
| /* We provide our own get_unmapped_area to avoid cache synonym issue */
 | |
| #define HAVE_ARCH_UNMAPPED_AREA
 | |
| 
 | |
| /*
 | |
|  * Basically we have the same two-level (which is the logical three level
 | |
|  * Linux page table layout folded) page tables as the i386.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * ZERO_PAGE is a global shared page that is always zero: used
 | |
|  * for zero-mapped memory areas etc..
 | |
|  */
 | |
| extern unsigned char empty_zero_page[PAGE_SIZE];
 | |
| #define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
 | |
| 
 | |
| #endif /* !__ASSEMBLY__ */
 | |
| 
 | |
| /*
 | |
|  * NEFF and NPHYS related defines.
 | |
|  * FIXME : These need to be model-dependent.  For now this is OK, SH5-101 and SH5-103
 | |
|  * implement 32 bits effective and 32 bits physical.  But future implementations may
 | |
|  * extend beyond this.
 | |
|  */
 | |
| #define NEFF		32
 | |
| #define	NEFF_SIGN	(1LL << (NEFF - 1))
 | |
| #define	NEFF_MASK	(-1LL << NEFF)
 | |
| 
 | |
| #define NPHYS		32
 | |
| #define	NPHYS_SIGN	(1LL << (NPHYS - 1))
 | |
| #define	NPHYS_MASK	(-1LL << NPHYS)
 | |
| 
 | |
| /* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond
 | |
|    that 3-level would be appropriate. */
 | |
| #if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
 | |
| /* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */
 | |
| #define PTRS_PER_PTE	((1<<PAGE_SHIFT)/sizeof(unsigned long long))
 | |
| #define PTE_MAGNITUDE	3	      /* sizeof(unsigned long long) magnit. */
 | |
| #define PTE_SHIFT	PAGE_SHIFT
 | |
| #define PTE_BITS	(PAGE_SHIFT - PTE_MAGNITUDE)
 | |
| 
 | |
| /* top level: PMD. */
 | |
| #define PGDIR_SHIFT	(PTE_SHIFT + PTE_BITS)
 | |
| #define PGD_BITS	(NEFF - PGDIR_SHIFT)
 | |
| #define PTRS_PER_PGD	(1<<PGD_BITS)
 | |
| 
 | |
| /* middle level: PMD. This doesn't do anything for the 2-level case. */
 | |
| #define PTRS_PER_PMD	(1)
 | |
| 
 | |
| #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
 | |
| #define PGDIR_MASK	(~(PGDIR_SIZE-1))
 | |
| #define PMD_SHIFT	PGDIR_SHIFT
 | |
| #define PMD_SIZE	PGDIR_SIZE
 | |
| #define PMD_MASK	PGDIR_MASK
 | |
| 
 | |
| #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
 | |
| /*
 | |
|  * three-level asymmetric paging structure: PGD is top level.
 | |
|  * The asymmetry comes from 32-bit pointers and 64-bit PTEs.
 | |
|  */
 | |
| /* bottom level: PTE. It's 9 bits = 512 pointers */
 | |
| #define PTRS_PER_PTE	((1<<PAGE_SHIFT)/sizeof(unsigned long long))
 | |
| #define PTE_MAGNITUDE	3	      /* sizeof(unsigned long long) magnit. */
 | |
| #define PTE_SHIFT	PAGE_SHIFT
 | |
| #define PTE_BITS	(PAGE_SHIFT - PTE_MAGNITUDE)
 | |
| 
 | |
| /* middle level: PMD. It's 10 bits = 1024 pointers */
 | |
| #define PTRS_PER_PMD	((1<<PAGE_SHIFT)/sizeof(unsigned long long *))
 | |
| #define PMD_MAGNITUDE	2	      /* sizeof(unsigned long long *) magnit. */
 | |
| #define PMD_SHIFT	(PTE_SHIFT + PTE_BITS)
 | |
| #define PMD_BITS	(PAGE_SHIFT - PMD_MAGNITUDE)
 | |
| 
 | |
| /* top level: PMD. It's 1 bit = 2 pointers */
 | |
| #define PGDIR_SHIFT	(PMD_SHIFT + PMD_BITS)
 | |
| #define PGD_BITS	(NEFF - PGDIR_SHIFT)
 | |
| #define PTRS_PER_PGD	(1<<PGD_BITS)
 | |
| 
 | |
| #define PMD_SIZE	(1UL << PMD_SHIFT)
 | |
| #define PMD_MASK	(~(PMD_SIZE-1))
 | |
| #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
 | |
| #define PGDIR_MASK	(~(PGDIR_SIZE-1))
 | |
| 
 | |
| #else
 | |
| #error "No defined number of page table levels"
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Error outputs.
 | |
|  */
 | |
| #define pte_ERROR(e) \
 | |
| 	printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e))
 | |
| #define pmd_ERROR(e) \
 | |
| 	printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
 | |
| #define pgd_ERROR(e) \
 | |
| 	printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
 | |
| 
 | |
| /*
 | |
|  * Table setting routines. Used within arch/mm only.
 | |
|  */
 | |
| #define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)
 | |
| #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
 | |
| 
 | |
| static __inline__ void set_pte(pte_t *pteptr, pte_t pteval)
 | |
| {
 | |
| 	unsigned long long x = ((unsigned long long) pteval.pte);
 | |
| 	unsigned long long *xp = (unsigned long long *) pteptr;
 | |
| 	/*
 | |
| 	 * Sign-extend based on NPHYS.
 | |
| 	 */
 | |
| 	*(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x;
 | |
| }
 | |
| #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
 | |
| 
 | |
| static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep)
 | |
| {
 | |
| 	pmd_val(*pmdp) = (unsigned long) ptep;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * PGD defines. Top level.
 | |
|  */
 | |
| 
 | |
| /* To find an entry in a generic PGD. */
 | |
| #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
 | |
| #define __pgd_offset(address) pgd_index(address)
 | |
| #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
 | |
| 
 | |
| /* To find an entry in a kernel PGD. */
 | |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address)
 | |
| 
 | |
| /*
 | |
|  * PGD level access routines.
 | |
|  *
 | |
|  * Note1:
 | |
|  * There's no need to use physical addresses since the tree walk is all
 | |
|  * in performed in software, until the PTE translation.
 | |
|  *
 | |
|  * Note 2:
 | |
|  * A PGD entry can be uninitialized (_PGD_UNUSED), generically bad,
 | |
|  * clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain
 | |
|  * _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must
 | |
|  * be 1. Assuming an arbitrary clear value of bit 31 set to 0 and
 | |
|  * lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a
 | |
|  * bad pgd that must be notified via printk().
 | |
|  *
 | |
|  */
 | |
| #define _PGD_EMPTY		0x0
 | |
| 
 | |
| #if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
 | |
| static inline int pgd_none(pgd_t pgd)		{ return 0; }
 | |
| static inline int pgd_bad(pgd_t pgd)		{ return 0; }
 | |
| #define pgd_present(pgd) ((pgd_val(pgd) & _PAGE_PRESENT) ? 1 : 0)
 | |
| #define pgd_clear(xx)				do { } while(0)
 | |
| 
 | |
| #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
 | |
| #define pgd_present(pgd_entry)	(1)
 | |
| #define pgd_none(pgd_entry)	(pgd_val((pgd_entry)) == _PGD_EMPTY)
 | |
| /* TODO: Think later about what a useful definition of 'bad' would be now. */
 | |
| #define pgd_bad(pgd_entry)	(0)
 | |
| #define pgd_clear(pgd_entry_p)	(set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY)))
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #define pgd_page(pgd_entry)	((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK))
 | |
| 
 | |
| /*
 | |
|  * PMD defines. Middle level.
 | |
|  */
 | |
| 
 | |
| /* PGD to PMD dereferencing */
 | |
| #if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
 | |
| static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
 | |
| {
 | |
| 	return (pmd_t *) dir;
 | |
| }
 | |
| #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
 | |
| #define __pmd_offset(address) \
 | |
| 		(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
 | |
| #define pmd_offset(dir, addr) \
 | |
| 		((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr)))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * PMD level access routines. Same notes as above.
 | |
|  */
 | |
| #define _PMD_EMPTY		0x0
 | |
| /* Either the PMD is empty or present, it's not paged out */
 | |
| #define pmd_present(pmd_entry)	(pmd_val(pmd_entry) & _PAGE_PRESENT)
 | |
| #define pmd_clear(pmd_entry_p)	(set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY)))
 | |
| #define pmd_none(pmd_entry)	(pmd_val((pmd_entry)) == _PMD_EMPTY)
 | |
| #define pmd_bad(pmd_entry)	((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
 | |
| 
 | |
| #define pmd_page_kernel(pmd_entry) \
 | |
| 	((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK))
 | |
| 
 | |
| #define pmd_page(pmd) \
 | |
| 	(virt_to_page(pmd_val(pmd)))
 | |
| 
 | |
| /* PMD to PTE dereferencing */
 | |
| #define pte_index(address) \
 | |
| 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 | |
| 
 | |
| #define pte_offset_kernel(dir, addr) \
 | |
| 		((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr)))
 | |
| 
 | |
| #define pte_offset_map(dir,addr)	pte_offset_kernel(dir, addr)
 | |
| #define pte_offset_map_nested(dir,addr)	pte_offset_kernel(dir, addr)
 | |
| #define pte_unmap(pte)		do { } while (0)
 | |
| #define pte_unmap_nested(pte)	do { } while (0)
 | |
| 
 | |
| /* Round it up ! */
 | |
| #define USER_PTRS_PER_PGD	((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE)
 | |
| #define FIRST_USER_ADDRESS	0
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| #define VMALLOC_END	0xff000000
 | |
| #define VMALLOC_START	0xf0000000
 | |
| #define VMALLOC_VMADDR(x) ((unsigned long)(x))
 | |
| 
 | |
| #define IOBASE_VADDR	0xff000000
 | |
| #define IOBASE_END	0xffffffff
 | |
| 
 | |
| /*
 | |
|  * PTEL coherent flags.
 | |
|  * See Chapter 17 ST50 CPU Core Volume 1, Architecture.
 | |
|  */
 | |
| /* The bits that are required in the SH-5 TLB are placed in the h/w-defined
 | |
|    positions, to avoid expensive bit shuffling on every refill.  The remaining
 | |
|    bits are used for s/w purposes and masked out on each refill.
 | |
| 
 | |
|    Note, the PTE slots are used to hold data of type swp_entry_t when a page is
 | |
|    swapped out.  Only the _PAGE_PRESENT flag is significant when the page is
 | |
|    swapped out, and it must be placed so that it doesn't overlap either the
 | |
|    type or offset fields of swp_entry_t.  For x86, offset is at [31:8] and type
 | |
|    at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t.  This
 | |
|    scheme doesn't map to SH-5 because bit [0] controls cacheability.  So bit
 | |
|    [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split
 | |
|    into 2 pieces.  That is handled by SWP_ENTRY and SWP_TYPE below. */
 | |
| #define _PAGE_WT	0x001  /* CB0: if cacheable, 1->write-thru, 0->write-back */
 | |
| #define _PAGE_DEVICE	0x001  /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */
 | |
| #define _PAGE_CACHABLE	0x002  /* CB1: uncachable/cachable */
 | |
| #define _PAGE_PRESENT	0x004  /* software: page referenced */
 | |
| #define _PAGE_FILE	0x004  /* software: only when !present */
 | |
| #define _PAGE_SIZE0	0x008  /* SZ0-bit : size of page */
 | |
| #define _PAGE_SIZE1	0x010  /* SZ1-bit : size of page */
 | |
| #define _PAGE_SHARED	0x020  /* software: reflects PTEH's SH */
 | |
| #define _PAGE_READ	0x040  /* PR0-bit : read access allowed */
 | |
| #define _PAGE_EXECUTE	0x080  /* PR1-bit : execute access allowed */
 | |
| #define _PAGE_WRITE	0x100  /* PR2-bit : write access allowed */
 | |
| #define _PAGE_USER	0x200  /* PR3-bit : user space access allowed */
 | |
| #define _PAGE_DIRTY	0x400  /* software: page accessed in write */
 | |
| #define _PAGE_ACCESSED	0x800  /* software: page referenced */
 | |
| 
 | |
| /* Mask which drops software flags */
 | |
| #define _PAGE_FLAGS_HARDWARE_MASK	0xfffffffffffff3dbLL
 | |
| 
 | |
| /*
 | |
|  * HugeTLB support
 | |
|  */
 | |
| #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
 | |
| #define _PAGE_SZHUGE	(_PAGE_SIZE0)
 | |
| #elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB)
 | |
| #define _PAGE_SZHUGE	(_PAGE_SIZE1)
 | |
| #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB)
 | |
| #define _PAGE_SZHUGE	(_PAGE_SIZE0 | _PAGE_SIZE1)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Default flags for a Kernel page.
 | |
|  * This is fundametally also SHARED because the main use of this define
 | |
|  * (other than for PGD/PMD entries) is for the VMALLOC pool which is
 | |
|  * contextless.
 | |
|  *
 | |
|  * _PAGE_EXECUTE is required for modules
 | |
|  *
 | |
|  */
 | |
| #define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 | |
| 			 _PAGE_EXECUTE | \
 | |
| 			 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \
 | |
| 			 _PAGE_SHARED)
 | |
| 
 | |
| /* Default flags for a User page */
 | |
| #define _PAGE_TABLE	(_KERNPG_TABLE | _PAGE_USER)
 | |
| 
 | |
| #define _PAGE_CHG_MASK	(PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 | |
| 
 | |
| #define PAGE_NONE	__pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED)
 | |
| #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 | |
| 				 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \
 | |
| 				 _PAGE_SHARED)
 | |
| /* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default
 | |
|  * protection mode for the stack. */
 | |
| #define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
 | |
| 				 _PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE)
 | |
| #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
 | |
| 				 _PAGE_ACCESSED | _PAGE_USER)
 | |
| #define PAGE_KERNEL	__pgprot(_KERNPG_TABLE)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * In ST50 we have full permissions (Read/Write/Execute/Shared).
 | |
|  * Just match'em all. These are for mmap(), therefore all at least
 | |
|  * User/Cachable/Present/Accessed. No point in making Fault on Write.
 | |
|  */
 | |
| #define __MMAP_COMMON	(_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED)
 | |
|        /* sxwr */
 | |
| #define __P000	__pgprot(__MMAP_COMMON)
 | |
| #define __P001	__pgprot(__MMAP_COMMON | _PAGE_READ)
 | |
| #define __P010	__pgprot(__MMAP_COMMON)
 | |
| #define __P011	__pgprot(__MMAP_COMMON | _PAGE_READ)
 | |
| #define __P100	__pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
 | |
| #define __P101	__pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
 | |
| #define __P110	__pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
 | |
| #define __P111	__pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
 | |
| 
 | |
| #define __S000	__pgprot(__MMAP_COMMON | _PAGE_SHARED)
 | |
| #define __S001	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ)
 | |
| #define __S010	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE)
 | |
| #define __S011	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE)
 | |
| #define __S100	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE)
 | |
| #define __S101	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ)
 | |
| #define __S110	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE)
 | |
| #define __S111	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE)
 | |
| 
 | |
| /* Make it a device mapping for maximum safety (e.g. for mapping device
 | |
|    registers into user-space via /dev/map).  */
 | |
| #define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE)
 | |
| #define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE)
 | |
| 
 | |
| /*
 | |
|  * Handling allocation failures during page table setup.
 | |
|  */
 | |
| extern void __handle_bad_pmd_kernel(pmd_t * pmd);
 | |
| #define __handle_bad_pmd(x)	__handle_bad_pmd_kernel(x)
 | |
| 
 | |
| /*
 | |
|  * PTE level access routines.
 | |
|  *
 | |
|  * Note1:
 | |
|  * It's the tree walk leaf. This is physical address to be stored.
 | |
|  *
 | |
|  * Note 2:
 | |
|  * Regarding the choice of _PTE_EMPTY:
 | |
| 
 | |
|    We must choose a bit pattern that cannot be valid, whether or not the page
 | |
|    is present.  bit[2]==1 => present, bit[2]==0 => swapped out.  If swapped
 | |
|    out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is
 | |
|    left for us to select.  If we force bit[7]==0 when swapped out, we could use
 | |
|    the combination bit[7,2]=2'b10 to indicate an empty PTE.  Alternatively, if
 | |
|    we force bit[7]==1 when swapped out, we can use all zeroes to indicate
 | |
|    empty.  This is convenient, because the page tables get cleared to zero
 | |
|    when they are allocated.
 | |
| 
 | |
|  */
 | |
| #define _PTE_EMPTY	0x0
 | |
| #define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
 | |
| #define pte_clear(mm,addr,xp)	(set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY)))
 | |
| #define pte_none(x)	(pte_val(x) == _PTE_EMPTY)
 | |
| 
 | |
| /*
 | |
|  * Some definitions to translate between mem_map, PTEs, and page
 | |
|  * addresses:
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Given a PTE, return the index of the mem_map[] entry corresponding
 | |
|  * to the page frame the PTE. Get the absolute physical address, make
 | |
|  * a relative physical address and translate it to an index.
 | |
|  */
 | |
| #define pte_pagenr(x)		(((unsigned long) (pte_val(x)) - \
 | |
| 				 __MEMORY_START) >> PAGE_SHIFT)
 | |
| 
 | |
| /*
 | |
|  * Given a PTE, return the "struct page *".
 | |
|  */
 | |
| #define pte_page(x)		(mem_map + pte_pagenr(x))
 | |
| 
 | |
| /*
 | |
|  * Return number of (down rounded) MB corresponding to x pages.
 | |
|  */
 | |
| #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The following have defined behavior only work if pte_present() is true.
 | |
|  */
 | |
| static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
 | |
| static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXECUTE; }
 | |
| static inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; }
 | |
| static inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; }
 | |
| static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
 | |
| static inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; }
 | |
| 
 | |
| static inline pte_t pte_rdprotect(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_READ)); return pte; }
 | |
| static inline pte_t pte_wrprotect(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; }
 | |
| static inline pte_t pte_exprotect(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_EXECUTE)); return pte; }
 | |
| static inline pte_t pte_mkclean(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
 | |
| static inline pte_t pte_mkold(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
 | |
| 
 | |
| static inline pte_t pte_mkread(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_READ)); return pte; }
 | |
| static inline pte_t pte_mkwrite(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; }
 | |
| static inline pte_t pte_mkexec(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_EXECUTE)); return pte; }
 | |
| static inline pte_t pte_mkdirty(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
 | |
| static inline pte_t pte_mkyoung(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
 | |
| static inline pte_t pte_mkhuge(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_SZHUGE)); return pte; }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Conversion functions: convert a page and protection to a page entry.
 | |
|  *
 | |
|  * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
 | |
|  */
 | |
| #define mk_pte(page,pgprot)							\
 | |
| ({										\
 | |
| 	pte_t __pte;								\
 | |
| 										\
 | |
| 	set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | 		\
 | |
| 		__MEMORY_START | pgprot_val((pgprot))));			\
 | |
| 	__pte;									\
 | |
| })
 | |
| 
 | |
| /*
 | |
|  * This takes a (absolute) physical page address that is used
 | |
|  * by the remapping functions
 | |
|  */
 | |
| #define mk_pte_phys(physpage, pgprot) \
 | |
| ({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; })
 | |
| 
 | |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 | |
| { set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; }
 | |
| 
 | |
| typedef pte_t *pte_addr_t;
 | |
| #define pgtable_cache_init()	do { } while (0)
 | |
| 
 | |
| extern void update_mmu_cache(struct vm_area_struct * vma,
 | |
| 			     unsigned long address, pte_t pte);
 | |
| 
 | |
| /* Encode and decode a swap entry */
 | |
| #define __swp_type(x)			(((x).val & 3) + (((x).val >> 1) & 0x3c))
 | |
| #define __swp_offset(x)			((x).val >> 8)
 | |
| #define __swp_entry(type, offset)	((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) })
 | |
| #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
 | |
| #define __swp_entry_to_pte(x)		((pte_t) { (x).val })
 | |
| 
 | |
| /* Encode and decode a nonlinear file mapping entry */
 | |
| #define PTE_FILE_MAX_BITS		29
 | |
| #define pte_to_pgoff(pte)		(pte_val(pte))
 | |
| #define pgoff_to_pte(off)		((pte_t) { (off) | _PAGE_FILE })
 | |
| 
 | |
| /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
 | |
| #define PageSkip(page)		(0)
 | |
| #define kern_addr_valid(addr)	(1)
 | |
| 
 | |
| #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
 | |
| 		remap_pfn_range(vma, vaddr, pfn, size, prot)
 | |
| 
 | |
| #define MK_IOSPACE_PFN(space, pfn)	(pfn)
 | |
| #define GET_IOSPACE(pfn)		0
 | |
| #define GET_PFN(pfn)			(pfn)
 | |
| 
 | |
| #endif /* !__ASSEMBLY__ */
 | |
| 
 | |
| /*
 | |
|  * No page table caches to initialise
 | |
|  */
 | |
| #define pgtable_cache_init()    do { } while (0)
 | |
| 
 | |
| #define pte_pfn(x)		(((unsigned long)((x).pte)) >> PAGE_SHIFT)
 | |
| #define pfn_pte(pfn, prot)	__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
 | |
| #define pfn_pmd(pfn, prot)	__pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
 | |
| 
 | |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
 | |
| 
 | |
| #include <asm-generic/pgtable.h>
 | |
| 
 | |
| #endif /* __ASM_SH64_PGTABLE_H */
 | 
