345 lines
		
	
	
	
		
			10 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			345 lines
		
	
	
	
		
			10 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef __ASM_SH_IO_H
 | |
| #define __ASM_SH_IO_H
 | |
| 
 | |
| /*
 | |
|  * Convention:
 | |
|  *    read{b,w,l}/write{b,w,l} are for PCI,
 | |
|  *    while in{b,w,l}/out{b,w,l} are for ISA
 | |
|  * These may (will) be platform specific function.
 | |
|  * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
 | |
|  * and 'string' versions: ins{b,w,l}/outs{b,w,l}
 | |
|  * For read{b,w,l} and write{b,w,l} there are also __raw versions, which
 | |
|  * do not have a memory barrier after them.
 | |
|  *
 | |
|  * In addition, we have
 | |
|  *   ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O.
 | |
|  *   which are processor specific.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * We follow the Alpha convention here:
 | |
|  *  __inb expands to an inline function call (which calls via the mv)
 | |
|  *  _inb  is a real function call (note ___raw fns are _ version of __raw)
 | |
|  *  inb   by default expands to _inb, but the machine specific code may
 | |
|  *        define it to __inb if it chooses.
 | |
|  */
 | |
| #include <asm/cache.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/addrspace.h>
 | |
| #include <asm/machvec.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm-generic/iomap.h>
 | |
| 
 | |
| #ifdef __KERNEL__
 | |
| 
 | |
| /*
 | |
|  * Depending on which platform we are running on, we need different
 | |
|  * I/O functions.
 | |
|  */
 | |
| #define __IO_PREFIX	generic
 | |
| #include <asm/io_generic.h>
 | |
| 
 | |
| #define maybebadio(port) \
 | |
|   printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \
 | |
| 	 __FUNCTION__, __LINE__, (port), (u32)__builtin_return_address(0))
 | |
| 
 | |
| /*
 | |
|  * Since boards are able to define their own set of I/O routines through
 | |
|  * their respective machine vector, we always wrap through the mv.
 | |
|  *
 | |
|  * Also, in the event that a board hasn't provided its own definition for
 | |
|  * a given routine, it will be wrapped to generic code at run-time.
 | |
|  */
 | |
| 
 | |
| #define __inb(p)	sh_mv.mv_inb((p))
 | |
| #define __inw(p)	sh_mv.mv_inw((p))
 | |
| #define __inl(p)	sh_mv.mv_inl((p))
 | |
| #define __outb(x,p)	sh_mv.mv_outb((x),(p))
 | |
| #define __outw(x,p)	sh_mv.mv_outw((x),(p))
 | |
| #define __outl(x,p)	sh_mv.mv_outl((x),(p))
 | |
| 
 | |
| #define __inb_p(p)	sh_mv.mv_inb_p((p))
 | |
| #define __inw_p(p)	sh_mv.mv_inw_p((p))
 | |
| #define __inl_p(p)	sh_mv.mv_inl_p((p))
 | |
| #define __outb_p(x,p)	sh_mv.mv_outb_p((x),(p))
 | |
| #define __outw_p(x,p)	sh_mv.mv_outw_p((x),(p))
 | |
| #define __outl_p(x,p)	sh_mv.mv_outl_p((x),(p))
 | |
| 
 | |
| #define __insb(p,b,c)	sh_mv.mv_insb((p), (b), (c))
 | |
| #define __insw(p,b,c)	sh_mv.mv_insw((p), (b), (c))
 | |
| #define __insl(p,b,c)	sh_mv.mv_insl((p), (b), (c))
 | |
| #define __outsb(p,b,c)	sh_mv.mv_outsb((p), (b), (c))
 | |
| #define __outsw(p,b,c)	sh_mv.mv_outsw((p), (b), (c))
 | |
| #define __outsl(p,b,c)	sh_mv.mv_outsl((p), (b), (c))
 | |
| 
 | |
| #define __readb(a)	sh_mv.mv_readb((a))
 | |
| #define __readw(a)	sh_mv.mv_readw((a))
 | |
| #define __readl(a)	sh_mv.mv_readl((a))
 | |
| #define __writeb(v,a)	sh_mv.mv_writeb((v),(a))
 | |
| #define __writew(v,a)	sh_mv.mv_writew((v),(a))
 | |
| #define __writel(v,a)	sh_mv.mv_writel((v),(a))
 | |
| 
 | |
| #define inb		__inb
 | |
| #define inw		__inw
 | |
| #define inl		__inl
 | |
| #define outb		__outb
 | |
| #define outw		__outw
 | |
| #define outl		__outl
 | |
| 
 | |
| #define inb_p		__inb_p
 | |
| #define inw_p		__inw_p
 | |
| #define inl_p		__inl_p
 | |
| #define outb_p		__outb_p
 | |
| #define outw_p		__outw_p
 | |
| #define outl_p		__outl_p
 | |
| 
 | |
| #define insb		__insb
 | |
| #define insw		__insw
 | |
| #define insl		__insl
 | |
| #define outsb		__outsb
 | |
| #define outsw		__outsw
 | |
| #define outsl		__outsl
 | |
| 
 | |
| #define __raw_readb(a)		__readb((void __iomem *)(a))
 | |
| #define __raw_readw(a)		__readw((void __iomem *)(a))
 | |
| #define __raw_readl(a)		__readl((void __iomem *)(a))
 | |
| #define __raw_writeb(v, a)	__writeb(v, (void __iomem *)(a))
 | |
| #define __raw_writew(v, a)	__writew(v, (void __iomem *)(a))
 | |
| #define __raw_writel(v, a)	__writel(v, (void __iomem *)(a))
 | |
| 
 | |
| /*
 | |
|  * The platform header files may define some of these macros to use
 | |
|  * the inlined versions where appropriate.  These macros may also be
 | |
|  * redefined by userlevel programs.
 | |
|  */
 | |
| #ifdef __readb
 | |
| # define readb(a)	({ unsigned long r_ = __raw_readb(a); mb(); r_; })
 | |
| #endif
 | |
| #ifdef __raw_readw
 | |
| # define readw(a)	({ unsigned long r_ = __raw_readw(a); mb(); r_; })
 | |
| #endif
 | |
| #ifdef __raw_readl
 | |
| # define readl(a)	({ unsigned long r_ = __raw_readl(a); mb(); r_; })
 | |
| #endif
 | |
| 
 | |
| #ifdef __raw_writeb
 | |
| # define writeb(v,a)	({ __raw_writeb((v),(a)); mb(); })
 | |
| #endif
 | |
| #ifdef __raw_writew
 | |
| # define writew(v,a)	({ __raw_writew((v),(a)); mb(); })
 | |
| #endif
 | |
| #ifdef __raw_writel
 | |
| # define writel(v,a)	({ __raw_writel((v),(a)); mb(); })
 | |
| #endif
 | |
| 
 | |
| #define readb_relaxed(a) readb(a)
 | |
| #define readw_relaxed(a) readw(a)
 | |
| #define readl_relaxed(a) readl(a)
 | |
| 
 | |
| /* Simple MMIO */
 | |
| #define ioread8(a)		readb(a)
 | |
| #define ioread16(a)		readw(a)
 | |
| #define ioread16be(a)		be16_to_cpu(__raw_readw((a)))
 | |
| #define ioread32(a)		readl(a)
 | |
| #define ioread32be(a)		be32_to_cpu(__raw_readl((a)))
 | |
| 
 | |
| #define iowrite8(v,a)		writeb((v),(a))
 | |
| #define iowrite16(v,a)		writew((v),(a))
 | |
| #define iowrite16be(v,a)	__raw_writew(cpu_to_be16((v)),(a))
 | |
| #define iowrite32(v,a)		writel((v),(a))
 | |
| #define iowrite32be(v,a)	__raw_writel(cpu_to_be32((v)),(a))
 | |
| 
 | |
| #define ioread8_rep(a,d,c)	insb((a),(d),(c))
 | |
| #define ioread16_rep(a,d,c)	insw((a),(d),(c))
 | |
| #define ioread32_rep(a,d,c)	insl((a),(d),(c))
 | |
| 
 | |
| #define iowrite8_rep(a,s,c)	outsb((a),(s),(c))
 | |
| #define iowrite16_rep(a,s,c)	outsw((a),(s),(c))
 | |
| #define iowrite32_rep(a,s,c)	outsl((a),(s),(c))
 | |
| 
 | |
| #define mmiowb()	wmb()	/* synco on SH-4A, otherwise a nop */
 | |
| 
 | |
| /*
 | |
|  * This function provides a method for the generic case where a board-specific
 | |
|  * ioport_map simply needs to return the port + some arbitrary port base.
 | |
|  *
 | |
|  * We use this at board setup time to implicitly set the port base, and
 | |
|  * as a result, we can use the generic ioport_map.
 | |
|  */
 | |
| static inline void __set_io_port_base(unsigned long pbase)
 | |
| {
 | |
| 	extern unsigned long generic_io_base;
 | |
| 
 | |
| 	generic_io_base = pbase;
 | |
| }
 | |
| 
 | |
| /* We really want to try and get these to memcpy etc */
 | |
| extern void memcpy_fromio(void *, volatile void __iomem *, unsigned long);
 | |
| extern void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
 | |
| extern void memset_io(volatile void __iomem *, int, unsigned long);
 | |
| 
 | |
| /* SuperH on-chip I/O functions */
 | |
| static inline unsigned char ctrl_inb(unsigned long addr)
 | |
| {
 | |
| 	return *(volatile unsigned char*)addr;
 | |
| }
 | |
| 
 | |
| static inline unsigned short ctrl_inw(unsigned long addr)
 | |
| {
 | |
| 	return *(volatile unsigned short*)addr;
 | |
| }
 | |
| 
 | |
| static inline unsigned int ctrl_inl(unsigned long addr)
 | |
| {
 | |
| 	return *(volatile unsigned long*)addr;
 | |
| }
 | |
| 
 | |
| static inline void ctrl_outb(unsigned char b, unsigned long addr)
 | |
| {
 | |
| 	*(volatile unsigned char*)addr = b;
 | |
| }
 | |
| 
 | |
| static inline void ctrl_outw(unsigned short b, unsigned long addr)
 | |
| {
 | |
| 	*(volatile unsigned short*)addr = b;
 | |
| }
 | |
| 
 | |
| static inline void ctrl_outl(unsigned int b, unsigned long addr)
 | |
| {
 | |
|         *(volatile unsigned long*)addr = b;
 | |
| }
 | |
| 
 | |
| #define IO_SPACE_LIMIT 0xffffffff
 | |
| 
 | |
| /*
 | |
|  * Change virtual addresses to physical addresses and vv.
 | |
|  * These are trivial on the 1:1 Linux/SuperH mapping
 | |
|  */
 | |
| static inline unsigned long virt_to_phys(volatile void *address)
 | |
| {
 | |
| 	return PHYSADDR(address);
 | |
| }
 | |
| 
 | |
| static inline void *phys_to_virt(unsigned long address)
 | |
| {
 | |
| 	return (void *)P1SEGADDR(address);
 | |
| }
 | |
| 
 | |
| #define virt_to_bus virt_to_phys
 | |
| #define bus_to_virt phys_to_virt
 | |
| #define page_to_bus page_to_phys
 | |
| 
 | |
| /*
 | |
|  * readX/writeX() are used to access memory mapped devices. On some
 | |
|  * architectures the memory mapped IO stuff needs to be accessed
 | |
|  * differently. On the x86 architecture, we just read/write the
 | |
|  * memory location directly.
 | |
|  *
 | |
|  * On SH, we traditionally have the whole physical address space mapped
 | |
|  * at all times (as MIPS does), so "ioremap()" and "iounmap()" do not
 | |
|  * need to do anything but place the address in the proper segment. This
 | |
|  * is true for P1 and P2 addresses, as well as some P3 ones. However,
 | |
|  * most of the P3 addresses and newer cores using extended addressing
 | |
|  * need to map through page tables, so the ioremap() implementation
 | |
|  * becomes a bit more complicated. See arch/sh/mm/ioremap.c for
 | |
|  * additional notes on this.
 | |
|  *
 | |
|  * We cheat a bit and always return uncachable areas until we've fixed
 | |
|  * the drivers to handle caching properly.
 | |
|  */
 | |
| #ifdef CONFIG_MMU
 | |
| void __iomem *__ioremap(unsigned long offset, unsigned long size,
 | |
| 			unsigned long flags);
 | |
| void __iounmap(void __iomem *addr);
 | |
| #else
 | |
| #define __ioremap(offset, size, flags)	((void __iomem *)(offset))
 | |
| #define __iounmap(addr)			do { } while (0)
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| static inline void __iomem *
 | |
| __ioremap_mode(unsigned long offset, unsigned long size, unsigned long flags)
 | |
| {
 | |
| 	unsigned long last_addr = offset + size - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * For P1 and P2 space this is trivial, as everything is already
 | |
| 	 * mapped. Uncached access for P1 addresses are done through P2.
 | |
| 	 * In the P3 case or for addresses outside of the 29-bit space,
 | |
| 	 * mapping must be done by the PMB or by using page tables.
 | |
| 	 */
 | |
| 	if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
 | |
| 		if (unlikely(flags & _PAGE_CACHABLE))
 | |
| 			return (void __iomem *)P1SEGADDR(offset);
 | |
| 
 | |
| 		return (void __iomem *)P2SEGADDR(offset);
 | |
| 	}
 | |
| 
 | |
| 	return __ioremap(offset, size, flags);
 | |
| }
 | |
| 
 | |
| #define ioremap(offset, size)				\
 | |
| 	__ioremap_mode((offset), (size), 0)
 | |
| #define ioremap_nocache(offset, size)			\
 | |
| 	__ioremap_mode((offset), (size), 0)
 | |
| #define ioremap_cache(offset, size)			\
 | |
| 	__ioremap_mode((offset), (size), _PAGE_CACHABLE)
 | |
| #define p3_ioremap(offset, size, flags)			\
 | |
| 	__ioremap((offset), (size), (flags))
 | |
| #define iounmap(addr)					\
 | |
| 	__iounmap((addr))
 | |
| 
 | |
| static inline int check_signature(char __iomem *io_addr,
 | |
| 			const unsigned char *signature, int length)
 | |
| {
 | |
| 	int retval = 0;
 | |
| 	do {
 | |
| 		if (readb(io_addr) != *signature)
 | |
| 			goto out;
 | |
| 		io_addr++;
 | |
| 		signature++;
 | |
| 		length--;
 | |
| 	} while (length);
 | |
| 	retval = 1;
 | |
| out:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The caches on some architectures aren't dma-coherent and have need to
 | |
|  * handle this in software.  There are three types of operations that
 | |
|  * can be applied to dma buffers.
 | |
|  *
 | |
|  *  - dma_cache_wback_inv(start, size) makes caches and RAM coherent by
 | |
|  *    writing the content of the caches back to memory, if necessary.
 | |
|  *    The function also invalidates the affected part of the caches as
 | |
|  *    necessary before DMA transfers from outside to memory.
 | |
|  *  - dma_cache_inv(start, size) invalidates the affected parts of the
 | |
|  *    caches.  Dirty lines of the caches may be written back or simply
 | |
|  *    be discarded.  This operation is necessary before dma operations
 | |
|  *    to the memory.
 | |
|  *  - dma_cache_wback(start, size) writes back any dirty lines but does
 | |
|  *    not invalidate the cache.  This can be used before DMA reads from
 | |
|  *    memory,
 | |
|  */
 | |
| 
 | |
| #define dma_cache_wback_inv(_start,_size) \
 | |
|     __flush_purge_region(_start,_size)
 | |
| #define dma_cache_inv(_start,_size) \
 | |
|     __flush_invalidate_region(_start,_size)
 | |
| #define dma_cache_wback(_start,_size) \
 | |
|     __flush_wback_region(_start,_size)
 | |
| 
 | |
| /*
 | |
|  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
 | |
|  * access
 | |
|  */
 | |
| #define xlate_dev_mem_ptr(p)	__va(p)
 | |
| 
 | |
| /*
 | |
|  * Convert a virtual cached pointer to an uncached pointer
 | |
|  */
 | |
| #define xlate_dev_kmem_ptr(p)	p
 | |
| 
 | |
| #endif /* __KERNEL__ */
 | |
| 
 | |
| #endif /* __ASM_SH_IO_H */
 | 
