503 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			503 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef __ASM_SYSTEM_H
 | |
| #define __ASM_SYSTEM_H
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <asm/segment.h>
 | |
| #include <asm/cpufeature.h>
 | |
| #include <linux/bitops.h> /* for LOCK_PREFIX */
 | |
| 
 | |
| #ifdef __KERNEL__
 | |
| 
 | |
| struct task_struct;	/* one of the stranger aspects of C forward declarations.. */
 | |
| extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));
 | |
| 
 | |
| #define switch_to(prev,next,last) do {					\
 | |
| 	unsigned long esi,edi;						\
 | |
| 	asm volatile("pushl %%ebp\n\t"					\
 | |
| 		     "movl %%esp,%0\n\t"	/* save ESP */		\
 | |
| 		     "movl %5,%%esp\n\t"	/* restore ESP */	\
 | |
| 		     "movl $1f,%1\n\t"		/* save EIP */		\
 | |
| 		     "pushl %6\n\t"		/* restore EIP */	\
 | |
| 		     "jmp __switch_to\n"				\
 | |
| 		     "1:\t"						\
 | |
| 		     "popl %%ebp\n\t"					\
 | |
| 		     :"=m" (prev->thread.esp),"=m" (prev->thread.eip),	\
 | |
| 		      "=a" (last),"=S" (esi),"=D" (edi)			\
 | |
| 		     :"m" (next->thread.esp),"m" (next->thread.eip),	\
 | |
| 		      "2" (prev), "d" (next));				\
 | |
| } while (0)
 | |
| 
 | |
| #define _set_base(addr,base) do { unsigned long __pr; \
 | |
| __asm__ __volatile__ ("movw %%dx,%1\n\t" \
 | |
| 	"rorl $16,%%edx\n\t" \
 | |
| 	"movb %%dl,%2\n\t" \
 | |
| 	"movb %%dh,%3" \
 | |
| 	:"=&d" (__pr) \
 | |
| 	:"m" (*((addr)+2)), \
 | |
| 	 "m" (*((addr)+4)), \
 | |
| 	 "m" (*((addr)+7)), \
 | |
|          "0" (base) \
 | |
|         ); } while(0)
 | |
| 
 | |
| #define _set_limit(addr,limit) do { unsigned long __lr; \
 | |
| __asm__ __volatile__ ("movw %%dx,%1\n\t" \
 | |
| 	"rorl $16,%%edx\n\t" \
 | |
| 	"movb %2,%%dh\n\t" \
 | |
| 	"andb $0xf0,%%dh\n\t" \
 | |
| 	"orb %%dh,%%dl\n\t" \
 | |
| 	"movb %%dl,%2" \
 | |
| 	:"=&d" (__lr) \
 | |
| 	:"m" (*(addr)), \
 | |
| 	 "m" (*((addr)+6)), \
 | |
| 	 "0" (limit) \
 | |
|         ); } while(0)
 | |
| 
 | |
| #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
 | |
| #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) )
 | |
| 
 | |
| /*
 | |
|  * Load a segment. Fall back on loading the zero
 | |
|  * segment if something goes wrong..
 | |
|  */
 | |
| #define loadsegment(seg,value)			\
 | |
| 	asm volatile("\n"			\
 | |
| 		"1:\t"				\
 | |
| 		"mov %0,%%" #seg "\n"		\
 | |
| 		"2:\n"				\
 | |
| 		".section .fixup,\"ax\"\n"	\
 | |
| 		"3:\t"				\
 | |
| 		"pushl $0\n\t"			\
 | |
| 		"popl %%" #seg "\n\t"		\
 | |
| 		"jmp 2b\n"			\
 | |
| 		".previous\n"			\
 | |
| 		".section __ex_table,\"a\"\n\t"	\
 | |
| 		".align 4\n\t"			\
 | |
| 		".long 1b,3b\n"			\
 | |
| 		".previous"			\
 | |
| 		: :"rm" (value))
 | |
| 
 | |
| /*
 | |
|  * Save a segment register away
 | |
|  */
 | |
| #define savesegment(seg, value) \
 | |
| 	asm volatile("mov %%" #seg ",%0":"=rm" (value))
 | |
| 
 | |
| /*
 | |
|  * Clear and set 'TS' bit respectively
 | |
|  */
 | |
| #define clts() __asm__ __volatile__ ("clts")
 | |
| #define read_cr0() ({ \
 | |
| 	unsigned int __dummy; \
 | |
| 	__asm__ __volatile__( \
 | |
| 		"movl %%cr0,%0\n\t" \
 | |
| 		:"=r" (__dummy)); \
 | |
| 	__dummy; \
 | |
| })
 | |
| #define write_cr0(x) \
 | |
| 	__asm__ __volatile__("movl %0,%%cr0": :"r" (x));
 | |
| 
 | |
| #define read_cr2() ({ \
 | |
| 	unsigned int __dummy; \
 | |
| 	__asm__ __volatile__( \
 | |
| 		"movl %%cr2,%0\n\t" \
 | |
| 		:"=r" (__dummy)); \
 | |
| 	__dummy; \
 | |
| })
 | |
| #define write_cr2(x) \
 | |
| 	__asm__ __volatile__("movl %0,%%cr2": :"r" (x));
 | |
| 
 | |
| #define read_cr3() ({ \
 | |
| 	unsigned int __dummy; \
 | |
| 	__asm__ ( \
 | |
| 		"movl %%cr3,%0\n\t" \
 | |
| 		:"=r" (__dummy)); \
 | |
| 	__dummy; \
 | |
| })
 | |
| #define write_cr3(x) \
 | |
| 	__asm__ __volatile__("movl %0,%%cr3": :"r" (x));
 | |
| 
 | |
| #define read_cr4() ({ \
 | |
| 	unsigned int __dummy; \
 | |
| 	__asm__( \
 | |
| 		"movl %%cr4,%0\n\t" \
 | |
| 		:"=r" (__dummy)); \
 | |
| 	__dummy; \
 | |
| })
 | |
| 
 | |
| #define read_cr4_safe() ({			      \
 | |
| 	unsigned int __dummy;			      \
 | |
| 	/* This could fault if %cr4 does not exist */ \
 | |
| 	__asm__("1: movl %%cr4, %0		\n"   \
 | |
| 		"2:				\n"   \
 | |
| 		".section __ex_table,\"a\"	\n"   \
 | |
| 		".long 1b,2b			\n"   \
 | |
| 		".previous			\n"   \
 | |
| 		: "=r" (__dummy): "0" (0));	      \
 | |
| 	__dummy;				      \
 | |
| })
 | |
| 
 | |
| #define write_cr4(x) \
 | |
| 	__asm__ __volatile__("movl %0,%%cr4": :"r" (x));
 | |
| #define stts() write_cr0(8 | read_cr0())
 | |
| 
 | |
| #endif	/* __KERNEL__ */
 | |
| 
 | |
| #define wbinvd() \
 | |
| 	__asm__ __volatile__ ("wbinvd": : :"memory");
 | |
| 
 | |
| static inline unsigned long get_limit(unsigned long segment)
 | |
| {
 | |
| 	unsigned long __limit;
 | |
| 	__asm__("lsll %1,%0"
 | |
| 		:"=r" (__limit):"r" (segment));
 | |
| 	return __limit+1;
 | |
| }
 | |
| 
 | |
| #define nop() __asm__ __volatile__ ("nop")
 | |
| 
 | |
| #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr))))
 | |
| 
 | |
| #define tas(ptr) (xchg((ptr),1))
 | |
| 
 | |
| struct __xchg_dummy { unsigned long a[100]; };
 | |
| #define __xg(x) ((struct __xchg_dummy *)(x))
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_X86_CMPXCHG64
 | |
| 
 | |
| /*
 | |
|  * The semantics of XCHGCMP8B are a bit strange, this is why
 | |
|  * there is a loop and the loading of %%eax and %%edx has to
 | |
|  * be inside. This inlines well in most cases, the cached
 | |
|  * cost is around ~38 cycles. (in the future we might want
 | |
|  * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
 | |
|  * might have an implicit FPU-save as a cost, so it's not
 | |
|  * clear which path to go.)
 | |
|  *
 | |
|  * cmpxchg8b must be used with the lock prefix here to allow
 | |
|  * the instruction to be executed atomically, see page 3-102
 | |
|  * of the instruction set reference 24319102.pdf. We need
 | |
|  * the reader side to see the coherent 64bit value.
 | |
|  */
 | |
| static inline void __set_64bit (unsigned long long * ptr,
 | |
| 		unsigned int low, unsigned int high)
 | |
| {
 | |
| 	__asm__ __volatile__ (
 | |
| 		"\n1:\t"
 | |
| 		"movl (%0), %%eax\n\t"
 | |
| 		"movl 4(%0), %%edx\n\t"
 | |
| 		"lock cmpxchg8b (%0)\n\t"
 | |
| 		"jnz 1b"
 | |
| 		: /* no outputs */
 | |
| 		:	"D"(ptr),
 | |
| 			"b"(low),
 | |
| 			"c"(high)
 | |
| 		:	"ax","dx","memory");
 | |
| }
 | |
| 
 | |
| static inline void __set_64bit_constant (unsigned long long *ptr,
 | |
| 						 unsigned long long value)
 | |
| {
 | |
| 	__set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL));
 | |
| }
 | |
| #define ll_low(x)	*(((unsigned int*)&(x))+0)
 | |
| #define ll_high(x)	*(((unsigned int*)&(x))+1)
 | |
| 
 | |
| static inline void __set_64bit_var (unsigned long long *ptr,
 | |
| 			 unsigned long long value)
 | |
| {
 | |
| 	__set_64bit(ptr,ll_low(value), ll_high(value));
 | |
| }
 | |
| 
 | |
| #define set_64bit(ptr,value) \
 | |
| (__builtin_constant_p(value) ? \
 | |
|  __set_64bit_constant(ptr, value) : \
 | |
|  __set_64bit_var(ptr, value) )
 | |
| 
 | |
| #define _set_64bit(ptr,value) \
 | |
| (__builtin_constant_p(value) ? \
 | |
|  __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \
 | |
|  __set_64bit(ptr, ll_low(value), ll_high(value)) )
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Note: no "lock" prefix even on SMP: xchg always implies lock anyway
 | |
|  * Note 2: xchg has side effect, so that attribute volatile is necessary,
 | |
|  *	  but generally the primitive is invalid, *ptr is output argument. --ANK
 | |
|  */
 | |
| static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size)
 | |
| {
 | |
| 	switch (size) {
 | |
| 		case 1:
 | |
| 			__asm__ __volatile__("xchgb %b0,%1"
 | |
| 				:"=q" (x)
 | |
| 				:"m" (*__xg(ptr)), "0" (x)
 | |
| 				:"memory");
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			__asm__ __volatile__("xchgw %w0,%1"
 | |
| 				:"=r" (x)
 | |
| 				:"m" (*__xg(ptr)), "0" (x)
 | |
| 				:"memory");
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			__asm__ __volatile__("xchgl %0,%1"
 | |
| 				:"=r" (x)
 | |
| 				:"m" (*__xg(ptr)), "0" (x)
 | |
| 				:"memory");
 | |
| 			break;
 | |
| 	}
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Atomic compare and exchange.  Compare OLD with MEM, if identical,
 | |
|  * store NEW in MEM.  Return the initial value in MEM.  Success is
 | |
|  * indicated by comparing RETURN with OLD.
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_X86_CMPXCHG
 | |
| #define __HAVE_ARCH_CMPXCHG 1
 | |
| #define cmpxchg(ptr,o,n)\
 | |
| 	((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\
 | |
| 					(unsigned long)(n),sizeof(*(ptr))))
 | |
| #endif
 | |
| 
 | |
| static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,
 | |
| 				      unsigned long new, int size)
 | |
| {
 | |
| 	unsigned long prev;
 | |
| 	switch (size) {
 | |
| 	case 1:
 | |
| 		__asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2"
 | |
| 				     : "=a"(prev)
 | |
| 				     : "q"(new), "m"(*__xg(ptr)), "0"(old)
 | |
| 				     : "memory");
 | |
| 		return prev;
 | |
| 	case 2:
 | |
| 		__asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2"
 | |
| 				     : "=a"(prev)
 | |
| 				     : "r"(new), "m"(*__xg(ptr)), "0"(old)
 | |
| 				     : "memory");
 | |
| 		return prev;
 | |
| 	case 4:
 | |
| 		__asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2"
 | |
| 				     : "=a"(prev)
 | |
| 				     : "r"(new), "m"(*__xg(ptr)), "0"(old)
 | |
| 				     : "memory");
 | |
| 		return prev;
 | |
| 	}
 | |
| 	return old;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_X86_CMPXCHG
 | |
| /*
 | |
|  * Building a kernel capable running on 80386. It may be necessary to
 | |
|  * simulate the cmpxchg on the 80386 CPU. For that purpose we define
 | |
|  * a function for each of the sizes we support.
 | |
|  */
 | |
| 
 | |
| extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8);
 | |
| extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16);
 | |
| extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32);
 | |
| 
 | |
| static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old,
 | |
| 				      unsigned long new, int size)
 | |
| {
 | |
| 	switch (size) {
 | |
| 	case 1:
 | |
| 		return cmpxchg_386_u8(ptr, old, new);
 | |
| 	case 2:
 | |
| 		return cmpxchg_386_u16(ptr, old, new);
 | |
| 	case 4:
 | |
| 		return cmpxchg_386_u32(ptr, old, new);
 | |
| 	}
 | |
| 	return old;
 | |
| }
 | |
| 
 | |
| #define cmpxchg(ptr,o,n)						\
 | |
| ({									\
 | |
| 	__typeof__(*(ptr)) __ret;					\
 | |
| 	if (likely(boot_cpu_data.x86 > 3))				\
 | |
| 		__ret = __cmpxchg((ptr), (unsigned long)(o),		\
 | |
| 					(unsigned long)(n), sizeof(*(ptr))); \
 | |
| 	else								\
 | |
| 		__ret = cmpxchg_386((ptr), (unsigned long)(o),		\
 | |
| 					(unsigned long)(n), sizeof(*(ptr))); \
 | |
| 	__ret;								\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_CMPXCHG64
 | |
| 
 | |
| static inline unsigned long long __cmpxchg64(volatile void *ptr, unsigned long long old,
 | |
| 				      unsigned long long new)
 | |
| {
 | |
| 	unsigned long long prev;
 | |
| 	__asm__ __volatile__(LOCK_PREFIX "cmpxchg8b %3"
 | |
| 			     : "=A"(prev)
 | |
| 			     : "b"((unsigned long)new),
 | |
| 			       "c"((unsigned long)(new >> 32)),
 | |
| 			       "m"(*__xg(ptr)),
 | |
| 			       "0"(old)
 | |
| 			     : "memory");
 | |
| 	return prev;
 | |
| }
 | |
| 
 | |
| #define cmpxchg64(ptr,o,n)\
 | |
| 	((__typeof__(*(ptr)))__cmpxchg64((ptr),(unsigned long long)(o),\
 | |
| 					(unsigned long long)(n)))
 | |
| 
 | |
| #endif
 | |
|     
 | |
| /*
 | |
|  * Force strict CPU ordering.
 | |
|  * And yes, this is required on UP too when we're talking
 | |
|  * to devices.
 | |
|  *
 | |
|  * For now, "wmb()" doesn't actually do anything, as all
 | |
|  * Intel CPU's follow what Intel calls a *Processor Order*,
 | |
|  * in which all writes are seen in the program order even
 | |
|  * outside the CPU.
 | |
|  *
 | |
|  * I expect future Intel CPU's to have a weaker ordering,
 | |
|  * but I'd also expect them to finally get their act together
 | |
|  * and add some real memory barriers if so.
 | |
|  *
 | |
|  * Some non intel clones support out of order store. wmb() ceases to be a
 | |
|  * nop for these.
 | |
|  */
 | |
|  
 | |
| 
 | |
| /* 
 | |
|  * Actually only lfence would be needed for mb() because all stores done 
 | |
|  * by the kernel should be already ordered. But keep a full barrier for now. 
 | |
|  */
 | |
| 
 | |
| #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
 | |
| #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
 | |
| 
 | |
| /**
 | |
|  * read_barrier_depends - Flush all pending reads that subsequents reads
 | |
|  * depend on.
 | |
|  *
 | |
|  * No data-dependent reads from memory-like regions are ever reordered
 | |
|  * over this barrier.  All reads preceding this primitive are guaranteed
 | |
|  * to access memory (but not necessarily other CPUs' caches) before any
 | |
|  * reads following this primitive that depend on the data return by
 | |
|  * any of the preceding reads.  This primitive is much lighter weight than
 | |
|  * rmb() on most CPUs, and is never heavier weight than is
 | |
|  * rmb().
 | |
|  *
 | |
|  * These ordering constraints are respected by both the local CPU
 | |
|  * and the compiler.
 | |
|  *
 | |
|  * Ordering is not guaranteed by anything other than these primitives,
 | |
|  * not even by data dependencies.  See the documentation for
 | |
|  * memory_barrier() for examples and URLs to more information.
 | |
|  *
 | |
|  * For example, the following code would force ordering (the initial
 | |
|  * value of "a" is zero, "b" is one, and "p" is "&a"):
 | |
|  *
 | |
|  * <programlisting>
 | |
|  *	CPU 0				CPU 1
 | |
|  *
 | |
|  *	b = 2;
 | |
|  *	memory_barrier();
 | |
|  *	p = &b;				q = p;
 | |
|  *					read_barrier_depends();
 | |
|  *					d = *q;
 | |
|  * </programlisting>
 | |
|  *
 | |
|  * because the read of "*q" depends on the read of "p" and these
 | |
|  * two reads are separated by a read_barrier_depends().  However,
 | |
|  * the following code, with the same initial values for "a" and "b":
 | |
|  *
 | |
|  * <programlisting>
 | |
|  *	CPU 0				CPU 1
 | |
|  *
 | |
|  *	a = 2;
 | |
|  *	memory_barrier();
 | |
|  *	b = 3;				y = b;
 | |
|  *					read_barrier_depends();
 | |
|  *					x = a;
 | |
|  * </programlisting>
 | |
|  *
 | |
|  * does not enforce ordering, since there is no data dependency between
 | |
|  * the read of "a" and the read of "b".  Therefore, on some CPUs, such
 | |
|  * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
 | |
|  * in cases like thiswhere there are no data dependencies.
 | |
|  **/
 | |
| 
 | |
| #define read_barrier_depends()	do { } while(0)
 | |
| 
 | |
| #ifdef CONFIG_X86_OOSTORE
 | |
| /* Actually there are no OOO store capable CPUs for now that do SSE, 
 | |
|    but make it already an possibility. */
 | |
| #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
 | |
| #else
 | |
| #define wmb()	__asm__ __volatile__ ("": : :"memory")
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| #define smp_mb()	mb()
 | |
| #define smp_rmb()	rmb()
 | |
| #define smp_wmb()	wmb()
 | |
| #define smp_read_barrier_depends()	read_barrier_depends()
 | |
| #define set_mb(var, value) do { (void) xchg(&var, value); } while (0)
 | |
| #else
 | |
| #define smp_mb()	barrier()
 | |
| #define smp_rmb()	barrier()
 | |
| #define smp_wmb()	barrier()
 | |
| #define smp_read_barrier_depends()	do { } while(0)
 | |
| #define set_mb(var, value) do { var = value; barrier(); } while (0)
 | |
| #endif
 | |
| 
 | |
| #define set_wmb(var, value) do { var = value; wmb(); } while (0)
 | |
| 
 | |
| /* interrupt control.. */
 | |
| #define local_save_flags(x)	do { typecheck(unsigned long,x); __asm__ __volatile__("pushfl ; popl %0":"=g" (x): /* no input */); } while (0)
 | |
| #define local_irq_restore(x) 	do { typecheck(unsigned long,x); __asm__ __volatile__("pushl %0 ; popfl": /* no output */ :"g" (x):"memory", "cc"); } while (0)
 | |
| #define local_irq_disable() 	__asm__ __volatile__("cli": : :"memory")
 | |
| #define local_irq_enable()	__asm__ __volatile__("sti": : :"memory")
 | |
| /* used in the idle loop; sti takes one instruction cycle to complete */
 | |
| #define safe_halt()		__asm__ __volatile__("sti; hlt": : :"memory")
 | |
| /* used when interrupts are already enabled or to shutdown the processor */
 | |
| #define halt()			__asm__ __volatile__("hlt": : :"memory")
 | |
| 
 | |
| #define irqs_disabled()			\
 | |
| ({					\
 | |
| 	unsigned long flags;		\
 | |
| 	local_save_flags(flags);	\
 | |
| 	!(flags & (1<<9));		\
 | |
| })
 | |
| 
 | |
| /* For spinlocks etc */
 | |
| #define local_irq_save(x)	__asm__ __volatile__("pushfl ; popl %0 ; cli":"=g" (x): /* no input */ :"memory")
 | |
| 
 | |
| /*
 | |
|  * disable hlt during certain critical i/o operations
 | |
|  */
 | |
| #define HAVE_DISABLE_HLT
 | |
| void disable_hlt(void);
 | |
| void enable_hlt(void);
 | |
| 
 | |
| extern int es7000_plat;
 | |
| void cpu_idle_wait(void);
 | |
| 
 | |
| /*
 | |
|  * On SMP systems, when the scheduler does migration-cost autodetection,
 | |
|  * it needs a way to flush as much of the CPU's caches as possible:
 | |
|  */
 | |
| static inline void sched_cacheflush(void)
 | |
| {
 | |
| 	wbinvd();
 | |
| }
 | |
| 
 | |
| extern unsigned long arch_align_stack(unsigned long sp);
 | |
| extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
 | |
| 
 | |
| void default_idle(void);
 | |
| 
 | |
| #endif
 | 
