The function names page_xchg_last_nid(), page_last_nid() and reset_page_last_nid() were judged to be inconsistent so rename them to a struct_field_op style pattern. As it looked jarring to have reset_page_mapcount() and page_nid_reset_last() beside each other in memmap_init_zone(), this patch also renames reset_page_mapcount() to page_mapcount_reset(). There are others like init_page_count() but as it is used throughout the arch code a rename would likely cause more conflicts than it is worth. [akpm@linux-foundation.org: fix zcache] Signed-off-by: Mel Gorman <mgorman@suse.de> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			625 lines
		
	
	
	
		
			15 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			625 lines
		
	
	
	
		
			15 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * SLOB Allocator: Simple List Of Blocks
 | 
						|
 *
 | 
						|
 * Matt Mackall <mpm@selenic.com> 12/30/03
 | 
						|
 *
 | 
						|
 * NUMA support by Paul Mundt, 2007.
 | 
						|
 *
 | 
						|
 * How SLOB works:
 | 
						|
 *
 | 
						|
 * The core of SLOB is a traditional K&R style heap allocator, with
 | 
						|
 * support for returning aligned objects. The granularity of this
 | 
						|
 * allocator is as little as 2 bytes, however typically most architectures
 | 
						|
 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
 | 
						|
 *
 | 
						|
 * The slob heap is a set of linked list of pages from alloc_pages(),
 | 
						|
 * and within each page, there is a singly-linked list of free blocks
 | 
						|
 * (slob_t). The heap is grown on demand. To reduce fragmentation,
 | 
						|
 * heap pages are segregated into three lists, with objects less than
 | 
						|
 * 256 bytes, objects less than 1024 bytes, and all other objects.
 | 
						|
 *
 | 
						|
 * Allocation from heap involves first searching for a page with
 | 
						|
 * sufficient free blocks (using a next-fit-like approach) followed by
 | 
						|
 * a first-fit scan of the page. Deallocation inserts objects back
 | 
						|
 * into the free list in address order, so this is effectively an
 | 
						|
 * address-ordered first fit.
 | 
						|
 *
 | 
						|
 * Above this is an implementation of kmalloc/kfree. Blocks returned
 | 
						|
 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
 | 
						|
 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
 | 
						|
 * alloc_pages() directly, allocating compound pages so the page order
 | 
						|
 * does not have to be separately tracked.
 | 
						|
 * These objects are detected in kfree() because PageSlab()
 | 
						|
 * is false for them.
 | 
						|
 *
 | 
						|
 * SLAB is emulated on top of SLOB by simply calling constructors and
 | 
						|
 * destructors for every SLAB allocation. Objects are returned with the
 | 
						|
 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
 | 
						|
 * case the low-level allocator will fragment blocks to create the proper
 | 
						|
 * alignment. Again, objects of page-size or greater are allocated by
 | 
						|
 * calling alloc_pages(). As SLAB objects know their size, no separate
 | 
						|
 * size bookkeeping is necessary and there is essentially no allocation
 | 
						|
 * space overhead, and compound pages aren't needed for multi-page
 | 
						|
 * allocations.
 | 
						|
 *
 | 
						|
 * NUMA support in SLOB is fairly simplistic, pushing most of the real
 | 
						|
 * logic down to the page allocator, and simply doing the node accounting
 | 
						|
 * on the upper levels. In the event that a node id is explicitly
 | 
						|
 * provided, alloc_pages_exact_node() with the specified node id is used
 | 
						|
 * instead. The common case (or when the node id isn't explicitly provided)
 | 
						|
 * will default to the current node, as per numa_node_id().
 | 
						|
 *
 | 
						|
 * Node aware pages are still inserted in to the global freelist, and
 | 
						|
 * these are scanned for by matching against the node id encoded in the
 | 
						|
 * page flags. As a result, block allocations that can be satisfied from
 | 
						|
 * the freelist will only be done so on pages residing on the same node,
 | 
						|
 * in order to prevent random node placement.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/swap.h> /* struct reclaim_state */
 | 
						|
#include <linux/cache.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/rcupdate.h>
 | 
						|
#include <linux/list.h>
 | 
						|
#include <linux/kmemleak.h>
 | 
						|
 | 
						|
#include <trace/events/kmem.h>
 | 
						|
 | 
						|
#include <linux/atomic.h>
 | 
						|
 | 
						|
#include "slab.h"
 | 
						|
/*
 | 
						|
 * slob_block has a field 'units', which indicates size of block if +ve,
 | 
						|
 * or offset of next block if -ve (in SLOB_UNITs).
 | 
						|
 *
 | 
						|
 * Free blocks of size 1 unit simply contain the offset of the next block.
 | 
						|
 * Those with larger size contain their size in the first SLOB_UNIT of
 | 
						|
 * memory, and the offset of the next free block in the second SLOB_UNIT.
 | 
						|
 */
 | 
						|
#if PAGE_SIZE <= (32767 * 2)
 | 
						|
typedef s16 slobidx_t;
 | 
						|
#else
 | 
						|
typedef s32 slobidx_t;
 | 
						|
#endif
 | 
						|
 | 
						|
struct slob_block {
 | 
						|
	slobidx_t units;
 | 
						|
};
 | 
						|
typedef struct slob_block slob_t;
 | 
						|
 | 
						|
/*
 | 
						|
 * All partially free slob pages go on these lists.
 | 
						|
 */
 | 
						|
#define SLOB_BREAK1 256
 | 
						|
#define SLOB_BREAK2 1024
 | 
						|
static LIST_HEAD(free_slob_small);
 | 
						|
static LIST_HEAD(free_slob_medium);
 | 
						|
static LIST_HEAD(free_slob_large);
 | 
						|
 | 
						|
/*
 | 
						|
 * slob_page_free: true for pages on free_slob_pages list.
 | 
						|
 */
 | 
						|
static inline int slob_page_free(struct page *sp)
 | 
						|
{
 | 
						|
	return PageSlobFree(sp);
 | 
						|
}
 | 
						|
 | 
						|
static void set_slob_page_free(struct page *sp, struct list_head *list)
 | 
						|
{
 | 
						|
	list_add(&sp->list, list);
 | 
						|
	__SetPageSlobFree(sp);
 | 
						|
}
 | 
						|
 | 
						|
static inline void clear_slob_page_free(struct page *sp)
 | 
						|
{
 | 
						|
	list_del(&sp->list);
 | 
						|
	__ClearPageSlobFree(sp);
 | 
						|
}
 | 
						|
 | 
						|
#define SLOB_UNIT sizeof(slob_t)
 | 
						|
#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
 | 
						|
 | 
						|
/*
 | 
						|
 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
 | 
						|
 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
 | 
						|
 * the block using call_rcu.
 | 
						|
 */
 | 
						|
struct slob_rcu {
 | 
						|
	struct rcu_head head;
 | 
						|
	int size;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * slob_lock protects all slob allocator structures.
 | 
						|
 */
 | 
						|
static DEFINE_SPINLOCK(slob_lock);
 | 
						|
 | 
						|
/*
 | 
						|
 * Encode the given size and next info into a free slob block s.
 | 
						|
 */
 | 
						|
static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
 | 
						|
{
 | 
						|
	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
 | 
						|
	slobidx_t offset = next - base;
 | 
						|
 | 
						|
	if (size > 1) {
 | 
						|
		s[0].units = size;
 | 
						|
		s[1].units = offset;
 | 
						|
	} else
 | 
						|
		s[0].units = -offset;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the size of a slob block.
 | 
						|
 */
 | 
						|
static slobidx_t slob_units(slob_t *s)
 | 
						|
{
 | 
						|
	if (s->units > 0)
 | 
						|
		return s->units;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the next free slob block pointer after this one.
 | 
						|
 */
 | 
						|
static slob_t *slob_next(slob_t *s)
 | 
						|
{
 | 
						|
	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
 | 
						|
	slobidx_t next;
 | 
						|
 | 
						|
	if (s[0].units < 0)
 | 
						|
		next = -s[0].units;
 | 
						|
	else
 | 
						|
		next = s[1].units;
 | 
						|
	return base+next;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns true if s is the last free block in its page.
 | 
						|
 */
 | 
						|
static int slob_last(slob_t *s)
 | 
						|
{
 | 
						|
	return !((unsigned long)slob_next(s) & ~PAGE_MASK);
 | 
						|
}
 | 
						|
 | 
						|
static void *slob_new_pages(gfp_t gfp, int order, int node)
 | 
						|
{
 | 
						|
	void *page;
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
	if (node != NUMA_NO_NODE)
 | 
						|
		page = alloc_pages_exact_node(node, gfp, order);
 | 
						|
	else
 | 
						|
#endif
 | 
						|
		page = alloc_pages(gfp, order);
 | 
						|
 | 
						|
	if (!page)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return page_address(page);
 | 
						|
}
 | 
						|
 | 
						|
static void slob_free_pages(void *b, int order)
 | 
						|
{
 | 
						|
	if (current->reclaim_state)
 | 
						|
		current->reclaim_state->reclaimed_slab += 1 << order;
 | 
						|
	free_pages((unsigned long)b, order);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate a slob block within a given slob_page sp.
 | 
						|
 */
 | 
						|
static void *slob_page_alloc(struct page *sp, size_t size, int align)
 | 
						|
{
 | 
						|
	slob_t *prev, *cur, *aligned = NULL;
 | 
						|
	int delta = 0, units = SLOB_UNITS(size);
 | 
						|
 | 
						|
	for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
 | 
						|
		slobidx_t avail = slob_units(cur);
 | 
						|
 | 
						|
		if (align) {
 | 
						|
			aligned = (slob_t *)ALIGN((unsigned long)cur, align);
 | 
						|
			delta = aligned - cur;
 | 
						|
		}
 | 
						|
		if (avail >= units + delta) { /* room enough? */
 | 
						|
			slob_t *next;
 | 
						|
 | 
						|
			if (delta) { /* need to fragment head to align? */
 | 
						|
				next = slob_next(cur);
 | 
						|
				set_slob(aligned, avail - delta, next);
 | 
						|
				set_slob(cur, delta, aligned);
 | 
						|
				prev = cur;
 | 
						|
				cur = aligned;
 | 
						|
				avail = slob_units(cur);
 | 
						|
			}
 | 
						|
 | 
						|
			next = slob_next(cur);
 | 
						|
			if (avail == units) { /* exact fit? unlink. */
 | 
						|
				if (prev)
 | 
						|
					set_slob(prev, slob_units(prev), next);
 | 
						|
				else
 | 
						|
					sp->freelist = next;
 | 
						|
			} else { /* fragment */
 | 
						|
				if (prev)
 | 
						|
					set_slob(prev, slob_units(prev), cur + units);
 | 
						|
				else
 | 
						|
					sp->freelist = cur + units;
 | 
						|
				set_slob(cur + units, avail - units, next);
 | 
						|
			}
 | 
						|
 | 
						|
			sp->units -= units;
 | 
						|
			if (!sp->units)
 | 
						|
				clear_slob_page_free(sp);
 | 
						|
			return cur;
 | 
						|
		}
 | 
						|
		if (slob_last(cur))
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * slob_alloc: entry point into the slob allocator.
 | 
						|
 */
 | 
						|
static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
 | 
						|
{
 | 
						|
	struct page *sp;
 | 
						|
	struct list_head *prev;
 | 
						|
	struct list_head *slob_list;
 | 
						|
	slob_t *b = NULL;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	if (size < SLOB_BREAK1)
 | 
						|
		slob_list = &free_slob_small;
 | 
						|
	else if (size < SLOB_BREAK2)
 | 
						|
		slob_list = &free_slob_medium;
 | 
						|
	else
 | 
						|
		slob_list = &free_slob_large;
 | 
						|
 | 
						|
	spin_lock_irqsave(&slob_lock, flags);
 | 
						|
	/* Iterate through each partially free page, try to find room */
 | 
						|
	list_for_each_entry(sp, slob_list, list) {
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
		/*
 | 
						|
		 * If there's a node specification, search for a partial
 | 
						|
		 * page with a matching node id in the freelist.
 | 
						|
		 */
 | 
						|
		if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
 | 
						|
			continue;
 | 
						|
#endif
 | 
						|
		/* Enough room on this page? */
 | 
						|
		if (sp->units < SLOB_UNITS(size))
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* Attempt to alloc */
 | 
						|
		prev = sp->list.prev;
 | 
						|
		b = slob_page_alloc(sp, size, align);
 | 
						|
		if (!b)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* Improve fragment distribution and reduce our average
 | 
						|
		 * search time by starting our next search here. (see
 | 
						|
		 * Knuth vol 1, sec 2.5, pg 449) */
 | 
						|
		if (prev != slob_list->prev &&
 | 
						|
				slob_list->next != prev->next)
 | 
						|
			list_move_tail(slob_list, prev->next);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&slob_lock, flags);
 | 
						|
 | 
						|
	/* Not enough space: must allocate a new page */
 | 
						|
	if (!b) {
 | 
						|
		b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
 | 
						|
		if (!b)
 | 
						|
			return NULL;
 | 
						|
		sp = virt_to_page(b);
 | 
						|
		__SetPageSlab(sp);
 | 
						|
 | 
						|
		spin_lock_irqsave(&slob_lock, flags);
 | 
						|
		sp->units = SLOB_UNITS(PAGE_SIZE);
 | 
						|
		sp->freelist = b;
 | 
						|
		INIT_LIST_HEAD(&sp->list);
 | 
						|
		set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
 | 
						|
		set_slob_page_free(sp, slob_list);
 | 
						|
		b = slob_page_alloc(sp, size, align);
 | 
						|
		BUG_ON(!b);
 | 
						|
		spin_unlock_irqrestore(&slob_lock, flags);
 | 
						|
	}
 | 
						|
	if (unlikely((gfp & __GFP_ZERO) && b))
 | 
						|
		memset(b, 0, size);
 | 
						|
	return b;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * slob_free: entry point into the slob allocator.
 | 
						|
 */
 | 
						|
static void slob_free(void *block, int size)
 | 
						|
{
 | 
						|
	struct page *sp;
 | 
						|
	slob_t *prev, *next, *b = (slob_t *)block;
 | 
						|
	slobidx_t units;
 | 
						|
	unsigned long flags;
 | 
						|
	struct list_head *slob_list;
 | 
						|
 | 
						|
	if (unlikely(ZERO_OR_NULL_PTR(block)))
 | 
						|
		return;
 | 
						|
	BUG_ON(!size);
 | 
						|
 | 
						|
	sp = virt_to_page(block);
 | 
						|
	units = SLOB_UNITS(size);
 | 
						|
 | 
						|
	spin_lock_irqsave(&slob_lock, flags);
 | 
						|
 | 
						|
	if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
 | 
						|
		/* Go directly to page allocator. Do not pass slob allocator */
 | 
						|
		if (slob_page_free(sp))
 | 
						|
			clear_slob_page_free(sp);
 | 
						|
		spin_unlock_irqrestore(&slob_lock, flags);
 | 
						|
		__ClearPageSlab(sp);
 | 
						|
		page_mapcount_reset(sp);
 | 
						|
		slob_free_pages(b, 0);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!slob_page_free(sp)) {
 | 
						|
		/* This slob page is about to become partially free. Easy! */
 | 
						|
		sp->units = units;
 | 
						|
		sp->freelist = b;
 | 
						|
		set_slob(b, units,
 | 
						|
			(void *)((unsigned long)(b +
 | 
						|
					SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
 | 
						|
		if (size < SLOB_BREAK1)
 | 
						|
			slob_list = &free_slob_small;
 | 
						|
		else if (size < SLOB_BREAK2)
 | 
						|
			slob_list = &free_slob_medium;
 | 
						|
		else
 | 
						|
			slob_list = &free_slob_large;
 | 
						|
		set_slob_page_free(sp, slob_list);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Otherwise the page is already partially free, so find reinsertion
 | 
						|
	 * point.
 | 
						|
	 */
 | 
						|
	sp->units += units;
 | 
						|
 | 
						|
	if (b < (slob_t *)sp->freelist) {
 | 
						|
		if (b + units == sp->freelist) {
 | 
						|
			units += slob_units(sp->freelist);
 | 
						|
			sp->freelist = slob_next(sp->freelist);
 | 
						|
		}
 | 
						|
		set_slob(b, units, sp->freelist);
 | 
						|
		sp->freelist = b;
 | 
						|
	} else {
 | 
						|
		prev = sp->freelist;
 | 
						|
		next = slob_next(prev);
 | 
						|
		while (b > next) {
 | 
						|
			prev = next;
 | 
						|
			next = slob_next(prev);
 | 
						|
		}
 | 
						|
 | 
						|
		if (!slob_last(prev) && b + units == next) {
 | 
						|
			units += slob_units(next);
 | 
						|
			set_slob(b, units, slob_next(next));
 | 
						|
		} else
 | 
						|
			set_slob(b, units, next);
 | 
						|
 | 
						|
		if (prev + slob_units(prev) == b) {
 | 
						|
			units = slob_units(b) + slob_units(prev);
 | 
						|
			set_slob(prev, units, slob_next(b));
 | 
						|
		} else
 | 
						|
			set_slob(prev, slob_units(prev), b);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	spin_unlock_irqrestore(&slob_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
 | 
						|
 */
 | 
						|
 | 
						|
static __always_inline void *
 | 
						|
__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
 | 
						|
{
 | 
						|
	unsigned int *m;
 | 
						|
	int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 | 
						|
	void *ret;
 | 
						|
 | 
						|
	gfp &= gfp_allowed_mask;
 | 
						|
 | 
						|
	lockdep_trace_alloc(gfp);
 | 
						|
 | 
						|
	if (size < PAGE_SIZE - align) {
 | 
						|
		if (!size)
 | 
						|
			return ZERO_SIZE_PTR;
 | 
						|
 | 
						|
		m = slob_alloc(size + align, gfp, align, node);
 | 
						|
 | 
						|
		if (!m)
 | 
						|
			return NULL;
 | 
						|
		*m = size;
 | 
						|
		ret = (void *)m + align;
 | 
						|
 | 
						|
		trace_kmalloc_node(caller, ret,
 | 
						|
				   size, size + align, gfp, node);
 | 
						|
	} else {
 | 
						|
		unsigned int order = get_order(size);
 | 
						|
 | 
						|
		if (likely(order))
 | 
						|
			gfp |= __GFP_COMP;
 | 
						|
		ret = slob_new_pages(gfp, order, node);
 | 
						|
 | 
						|
		trace_kmalloc_node(caller, ret,
 | 
						|
				   size, PAGE_SIZE << order, gfp, node);
 | 
						|
	}
 | 
						|
 | 
						|
	kmemleak_alloc(ret, size, 1, gfp);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void *__kmalloc_node(size_t size, gfp_t gfp, int node)
 | 
						|
{
 | 
						|
	return __do_kmalloc_node(size, gfp, node, _RET_IP_);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__kmalloc_node);
 | 
						|
 | 
						|
#ifdef CONFIG_TRACING
 | 
						|
void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
 | 
						|
{
 | 
						|
	return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
 | 
						|
					int node, unsigned long caller)
 | 
						|
{
 | 
						|
	return __do_kmalloc_node(size, gfp, node, caller);
 | 
						|
}
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
void kfree(const void *block)
 | 
						|
{
 | 
						|
	struct page *sp;
 | 
						|
 | 
						|
	trace_kfree(_RET_IP_, block);
 | 
						|
 | 
						|
	if (unlikely(ZERO_OR_NULL_PTR(block)))
 | 
						|
		return;
 | 
						|
	kmemleak_free(block);
 | 
						|
 | 
						|
	sp = virt_to_page(block);
 | 
						|
	if (PageSlab(sp)) {
 | 
						|
		int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 | 
						|
		unsigned int *m = (unsigned int *)(block - align);
 | 
						|
		slob_free(m, *m + align);
 | 
						|
	} else
 | 
						|
		__free_pages(sp, compound_order(sp));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kfree);
 | 
						|
 | 
						|
/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
 | 
						|
size_t ksize(const void *block)
 | 
						|
{
 | 
						|
	struct page *sp;
 | 
						|
	int align;
 | 
						|
	unsigned int *m;
 | 
						|
 | 
						|
	BUG_ON(!block);
 | 
						|
	if (unlikely(block == ZERO_SIZE_PTR))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	sp = virt_to_page(block);
 | 
						|
	if (unlikely(!PageSlab(sp)))
 | 
						|
		return PAGE_SIZE << compound_order(sp);
 | 
						|
 | 
						|
	align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 | 
						|
	m = (unsigned int *)(block - align);
 | 
						|
	return SLOB_UNITS(*m) * SLOB_UNIT;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(ksize);
 | 
						|
 | 
						|
int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
 | 
						|
{
 | 
						|
	if (flags & SLAB_DESTROY_BY_RCU) {
 | 
						|
		/* leave room for rcu footer at the end of object */
 | 
						|
		c->size += sizeof(struct slob_rcu);
 | 
						|
	}
 | 
						|
	c->flags = flags;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
 | 
						|
{
 | 
						|
	void *b;
 | 
						|
 | 
						|
	flags &= gfp_allowed_mask;
 | 
						|
 | 
						|
	lockdep_trace_alloc(flags);
 | 
						|
 | 
						|
	if (c->size < PAGE_SIZE) {
 | 
						|
		b = slob_alloc(c->size, flags, c->align, node);
 | 
						|
		trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
 | 
						|
					    SLOB_UNITS(c->size) * SLOB_UNIT,
 | 
						|
					    flags, node);
 | 
						|
	} else {
 | 
						|
		b = slob_new_pages(flags, get_order(c->size), node);
 | 
						|
		trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
 | 
						|
					    PAGE_SIZE << get_order(c->size),
 | 
						|
					    flags, node);
 | 
						|
	}
 | 
						|
 | 
						|
	if (c->ctor)
 | 
						|
		c->ctor(b);
 | 
						|
 | 
						|
	kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
 | 
						|
	return b;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kmem_cache_alloc_node);
 | 
						|
 | 
						|
static void __kmem_cache_free(void *b, int size)
 | 
						|
{
 | 
						|
	if (size < PAGE_SIZE)
 | 
						|
		slob_free(b, size);
 | 
						|
	else
 | 
						|
		slob_free_pages(b, get_order(size));
 | 
						|
}
 | 
						|
 | 
						|
static void kmem_rcu_free(struct rcu_head *head)
 | 
						|
{
 | 
						|
	struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
 | 
						|
	void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
 | 
						|
 | 
						|
	__kmem_cache_free(b, slob_rcu->size);
 | 
						|
}
 | 
						|
 | 
						|
void kmem_cache_free(struct kmem_cache *c, void *b)
 | 
						|
{
 | 
						|
	kmemleak_free_recursive(b, c->flags);
 | 
						|
	if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
 | 
						|
		struct slob_rcu *slob_rcu;
 | 
						|
		slob_rcu = b + (c->size - sizeof(struct slob_rcu));
 | 
						|
		slob_rcu->size = c->size;
 | 
						|
		call_rcu(&slob_rcu->head, kmem_rcu_free);
 | 
						|
	} else {
 | 
						|
		__kmem_cache_free(b, c->size);
 | 
						|
	}
 | 
						|
 | 
						|
	trace_kmem_cache_free(_RET_IP_, b);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kmem_cache_free);
 | 
						|
 | 
						|
int __kmem_cache_shutdown(struct kmem_cache *c)
 | 
						|
{
 | 
						|
	/* No way to check for remaining objects */
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int kmem_cache_shrink(struct kmem_cache *d)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kmem_cache_shrink);
 | 
						|
 | 
						|
struct kmem_cache kmem_cache_boot = {
 | 
						|
	.name = "kmem_cache",
 | 
						|
	.size = sizeof(struct kmem_cache),
 | 
						|
	.flags = SLAB_PANIC,
 | 
						|
	.align = ARCH_KMALLOC_MINALIGN,
 | 
						|
};
 | 
						|
 | 
						|
void __init kmem_cache_init(void)
 | 
						|
{
 | 
						|
	kmem_cache = &kmem_cache_boot;
 | 
						|
	slab_state = UP;
 | 
						|
}
 | 
						|
 | 
						|
void __init kmem_cache_init_late(void)
 | 
						|
{
 | 
						|
	slab_state = FULL;
 | 
						|
}
 |