For doing work on the Linux power management components, I need to make long (30+ seconds) traces. Currently, this then results in a HUGE svg file, with mostly process data that isn't interesting. This patch adds a --power-only mode to perf timechart that only outputs the CPU power section of the SVG; this significantly reduces the size of the SVG file, making even 30+ second traces viewable with inkscape. As a minor tweak for the same effect, the minimum text size is decreased; current inkscape cannot zoom in deep enough to show text this small, but it reduces inkscape compute time. Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Cc: peterz@infradead.org LKML-Reference: <20090924154013.0675ab71@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
		
			
				
	
	
		
			1162 lines
		
	
	
	
		
			23 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1162 lines
		
	
	
	
		
			23 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * builtin-timechart.c - make an svg timechart of system activity
 | 
						|
 *
 | 
						|
 * (C) Copyright 2009 Intel Corporation
 | 
						|
 *
 | 
						|
 * Authors:
 | 
						|
 *     Arjan van de Ven <arjan@linux.intel.com>
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; version 2
 | 
						|
 * of the License.
 | 
						|
 */
 | 
						|
 | 
						|
#include "builtin.h"
 | 
						|
 | 
						|
#include "util/util.h"
 | 
						|
 | 
						|
#include "util/color.h"
 | 
						|
#include <linux/list.h>
 | 
						|
#include "util/cache.h"
 | 
						|
#include <linux/rbtree.h>
 | 
						|
#include "util/symbol.h"
 | 
						|
#include "util/string.h"
 | 
						|
#include "util/callchain.h"
 | 
						|
#include "util/strlist.h"
 | 
						|
 | 
						|
#include "perf.h"
 | 
						|
#include "util/header.h"
 | 
						|
#include "util/parse-options.h"
 | 
						|
#include "util/parse-events.h"
 | 
						|
#include "util/svghelper.h"
 | 
						|
 | 
						|
static char		const *input_name = "perf.data";
 | 
						|
static char		const *output_name = "output.svg";
 | 
						|
 | 
						|
 | 
						|
static unsigned long	page_size;
 | 
						|
static unsigned long	mmap_window = 32;
 | 
						|
static u64		sample_type;
 | 
						|
 | 
						|
static unsigned int	numcpus;
 | 
						|
static u64		min_freq;	/* Lowest CPU frequency seen */
 | 
						|
static u64		max_freq;	/* Highest CPU frequency seen */
 | 
						|
static u64		turbo_frequency;
 | 
						|
 | 
						|
static u64		first_time, last_time;
 | 
						|
 | 
						|
static int		power_only;
 | 
						|
 | 
						|
 | 
						|
static struct perf_header	*header;
 | 
						|
 | 
						|
struct per_pid;
 | 
						|
struct per_pidcomm;
 | 
						|
 | 
						|
struct cpu_sample;
 | 
						|
struct power_event;
 | 
						|
struct wake_event;
 | 
						|
 | 
						|
struct sample_wrapper;
 | 
						|
 | 
						|
/*
 | 
						|
 * Datastructure layout:
 | 
						|
 * We keep an list of "pid"s, matching the kernels notion of a task struct.
 | 
						|
 * Each "pid" entry, has a list of "comm"s.
 | 
						|
 *	this is because we want to track different programs different, while
 | 
						|
 *	exec will reuse the original pid (by design).
 | 
						|
 * Each comm has a list of samples that will be used to draw
 | 
						|
 * final graph.
 | 
						|
 */
 | 
						|
 | 
						|
struct per_pid {
 | 
						|
	struct per_pid *next;
 | 
						|
 | 
						|
	int		pid;
 | 
						|
	int		ppid;
 | 
						|
 | 
						|
	u64		start_time;
 | 
						|
	u64		end_time;
 | 
						|
	u64		total_time;
 | 
						|
	int		display;
 | 
						|
 | 
						|
	struct per_pidcomm *all;
 | 
						|
	struct per_pidcomm *current;
 | 
						|
 | 
						|
	int painted;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
struct per_pidcomm {
 | 
						|
	struct per_pidcomm *next;
 | 
						|
 | 
						|
	u64		start_time;
 | 
						|
	u64		end_time;
 | 
						|
	u64		total_time;
 | 
						|
 | 
						|
	int		Y;
 | 
						|
	int		display;
 | 
						|
 | 
						|
	long		state;
 | 
						|
	u64		state_since;
 | 
						|
 | 
						|
	char		*comm;
 | 
						|
 | 
						|
	struct cpu_sample *samples;
 | 
						|
};
 | 
						|
 | 
						|
struct sample_wrapper {
 | 
						|
	struct sample_wrapper *next;
 | 
						|
 | 
						|
	u64		timestamp;
 | 
						|
	unsigned char	data[0];
 | 
						|
};
 | 
						|
 | 
						|
#define TYPE_NONE	0
 | 
						|
#define TYPE_RUNNING	1
 | 
						|
#define TYPE_WAITING	2
 | 
						|
#define TYPE_BLOCKED	3
 | 
						|
 | 
						|
struct cpu_sample {
 | 
						|
	struct cpu_sample *next;
 | 
						|
 | 
						|
	u64 start_time;
 | 
						|
	u64 end_time;
 | 
						|
	int type;
 | 
						|
	int cpu;
 | 
						|
};
 | 
						|
 | 
						|
static struct per_pid *all_data;
 | 
						|
 | 
						|
#define CSTATE 1
 | 
						|
#define PSTATE 2
 | 
						|
 | 
						|
struct power_event {
 | 
						|
	struct power_event *next;
 | 
						|
	int type;
 | 
						|
	int state;
 | 
						|
	u64 start_time;
 | 
						|
	u64 end_time;
 | 
						|
	int cpu;
 | 
						|
};
 | 
						|
 | 
						|
struct wake_event {
 | 
						|
	struct wake_event *next;
 | 
						|
	int waker;
 | 
						|
	int wakee;
 | 
						|
	u64 time;
 | 
						|
};
 | 
						|
 | 
						|
static struct power_event    *power_events;
 | 
						|
static struct wake_event     *wake_events;
 | 
						|
 | 
						|
struct sample_wrapper *all_samples;
 | 
						|
 | 
						|
static struct per_pid *find_create_pid(int pid)
 | 
						|
{
 | 
						|
	struct per_pid *cursor = all_data;
 | 
						|
 | 
						|
	while (cursor) {
 | 
						|
		if (cursor->pid == pid)
 | 
						|
			return cursor;
 | 
						|
		cursor = cursor->next;
 | 
						|
	}
 | 
						|
	cursor = malloc(sizeof(struct per_pid));
 | 
						|
	assert(cursor != NULL);
 | 
						|
	memset(cursor, 0, sizeof(struct per_pid));
 | 
						|
	cursor->pid = pid;
 | 
						|
	cursor->next = all_data;
 | 
						|
	all_data = cursor;
 | 
						|
	return cursor;
 | 
						|
}
 | 
						|
 | 
						|
static void pid_set_comm(int pid, char *comm)
 | 
						|
{
 | 
						|
	struct per_pid *p;
 | 
						|
	struct per_pidcomm *c;
 | 
						|
	p = find_create_pid(pid);
 | 
						|
	c = p->all;
 | 
						|
	while (c) {
 | 
						|
		if (c->comm && strcmp(c->comm, comm) == 0) {
 | 
						|
			p->current = c;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		if (!c->comm) {
 | 
						|
			c->comm = strdup(comm);
 | 
						|
			p->current = c;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		c = c->next;
 | 
						|
	}
 | 
						|
	c = malloc(sizeof(struct per_pidcomm));
 | 
						|
	assert(c != NULL);
 | 
						|
	memset(c, 0, sizeof(struct per_pidcomm));
 | 
						|
	c->comm = strdup(comm);
 | 
						|
	p->current = c;
 | 
						|
	c->next = p->all;
 | 
						|
	p->all = c;
 | 
						|
}
 | 
						|
 | 
						|
static void pid_fork(int pid, int ppid, u64 timestamp)
 | 
						|
{
 | 
						|
	struct per_pid *p, *pp;
 | 
						|
	p = find_create_pid(pid);
 | 
						|
	pp = find_create_pid(ppid);
 | 
						|
	p->ppid = ppid;
 | 
						|
	if (pp->current && pp->current->comm && !p->current)
 | 
						|
		pid_set_comm(pid, pp->current->comm);
 | 
						|
 | 
						|
	p->start_time = timestamp;
 | 
						|
	if (p->current) {
 | 
						|
		p->current->start_time = timestamp;
 | 
						|
		p->current->state_since = timestamp;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void pid_exit(int pid, u64 timestamp)
 | 
						|
{
 | 
						|
	struct per_pid *p;
 | 
						|
	p = find_create_pid(pid);
 | 
						|
	p->end_time = timestamp;
 | 
						|
	if (p->current)
 | 
						|
		p->current->end_time = timestamp;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
 | 
						|
{
 | 
						|
	struct per_pid *p;
 | 
						|
	struct per_pidcomm *c;
 | 
						|
	struct cpu_sample *sample;
 | 
						|
 | 
						|
	p = find_create_pid(pid);
 | 
						|
	c = p->current;
 | 
						|
	if (!c) {
 | 
						|
		c = malloc(sizeof(struct per_pidcomm));
 | 
						|
		assert(c != NULL);
 | 
						|
		memset(c, 0, sizeof(struct per_pidcomm));
 | 
						|
		p->current = c;
 | 
						|
		c->next = p->all;
 | 
						|
		p->all = c;
 | 
						|
	}
 | 
						|
 | 
						|
	sample = malloc(sizeof(struct cpu_sample));
 | 
						|
	assert(sample != NULL);
 | 
						|
	memset(sample, 0, sizeof(struct cpu_sample));
 | 
						|
	sample->start_time = start;
 | 
						|
	sample->end_time = end;
 | 
						|
	sample->type = type;
 | 
						|
	sample->next = c->samples;
 | 
						|
	sample->cpu = cpu;
 | 
						|
	c->samples = sample;
 | 
						|
 | 
						|
	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 | 
						|
		c->total_time += (end-start);
 | 
						|
		p->total_time += (end-start);
 | 
						|
	}
 | 
						|
 | 
						|
	if (c->start_time == 0 || c->start_time > start)
 | 
						|
		c->start_time = start;
 | 
						|
	if (p->start_time == 0 || p->start_time > start)
 | 
						|
		p->start_time = start;
 | 
						|
 | 
						|
	if (cpu > numcpus)
 | 
						|
		numcpus = cpu;
 | 
						|
}
 | 
						|
 | 
						|
#define MAX_CPUS 4096
 | 
						|
 | 
						|
static u64 cpus_cstate_start_times[MAX_CPUS];
 | 
						|
static int cpus_cstate_state[MAX_CPUS];
 | 
						|
static u64 cpus_pstate_start_times[MAX_CPUS];
 | 
						|
static u64 cpus_pstate_state[MAX_CPUS];
 | 
						|
 | 
						|
static int
 | 
						|
process_comm_event(event_t *event)
 | 
						|
{
 | 
						|
	pid_set_comm(event->comm.pid, event->comm.comm);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static int
 | 
						|
process_fork_event(event_t *event)
 | 
						|
{
 | 
						|
	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
process_exit_event(event_t *event)
 | 
						|
{
 | 
						|
	pid_exit(event->fork.pid, event->fork.time);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
struct trace_entry {
 | 
						|
	u32			size;
 | 
						|
	unsigned short		type;
 | 
						|
	unsigned char		flags;
 | 
						|
	unsigned char		preempt_count;
 | 
						|
	int			pid;
 | 
						|
	int			tgid;
 | 
						|
};
 | 
						|
 | 
						|
struct power_entry {
 | 
						|
	struct trace_entry te;
 | 
						|
	s64	type;
 | 
						|
	s64	value;
 | 
						|
};
 | 
						|
 | 
						|
#define TASK_COMM_LEN 16
 | 
						|
struct wakeup_entry {
 | 
						|
	struct trace_entry te;
 | 
						|
	char comm[TASK_COMM_LEN];
 | 
						|
	int   pid;
 | 
						|
	int   prio;
 | 
						|
	int   success;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * trace_flag_type is an enumeration that holds different
 | 
						|
 * states when a trace occurs. These are:
 | 
						|
 *  IRQS_OFF            - interrupts were disabled
 | 
						|
 *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
 | 
						|
 *  NEED_RESCED         - reschedule is requested
 | 
						|
 *  HARDIRQ             - inside an interrupt handler
 | 
						|
 *  SOFTIRQ             - inside a softirq handler
 | 
						|
 */
 | 
						|
enum trace_flag_type {
 | 
						|
	TRACE_FLAG_IRQS_OFF		= 0x01,
 | 
						|
	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
 | 
						|
	TRACE_FLAG_NEED_RESCHED		= 0x04,
 | 
						|
	TRACE_FLAG_HARDIRQ		= 0x08,
 | 
						|
	TRACE_FLAG_SOFTIRQ		= 0x10,
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
struct sched_switch {
 | 
						|
	struct trace_entry te;
 | 
						|
	char prev_comm[TASK_COMM_LEN];
 | 
						|
	int  prev_pid;
 | 
						|
	int  prev_prio;
 | 
						|
	long prev_state; /* Arjan weeps. */
 | 
						|
	char next_comm[TASK_COMM_LEN];
 | 
						|
	int  next_pid;
 | 
						|
	int  next_prio;
 | 
						|
};
 | 
						|
 | 
						|
static void c_state_start(int cpu, u64 timestamp, int state)
 | 
						|
{
 | 
						|
	cpus_cstate_start_times[cpu] = timestamp;
 | 
						|
	cpus_cstate_state[cpu] = state;
 | 
						|
}
 | 
						|
 | 
						|
static void c_state_end(int cpu, u64 timestamp)
 | 
						|
{
 | 
						|
	struct power_event *pwr;
 | 
						|
	pwr = malloc(sizeof(struct power_event));
 | 
						|
	if (!pwr)
 | 
						|
		return;
 | 
						|
	memset(pwr, 0, sizeof(struct power_event));
 | 
						|
 | 
						|
	pwr->state = cpus_cstate_state[cpu];
 | 
						|
	pwr->start_time = cpus_cstate_start_times[cpu];
 | 
						|
	pwr->end_time = timestamp;
 | 
						|
	pwr->cpu = cpu;
 | 
						|
	pwr->type = CSTATE;
 | 
						|
	pwr->next = power_events;
 | 
						|
 | 
						|
	power_events = pwr;
 | 
						|
}
 | 
						|
 | 
						|
static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
 | 
						|
{
 | 
						|
	struct power_event *pwr;
 | 
						|
	pwr = malloc(sizeof(struct power_event));
 | 
						|
 | 
						|
	if (new_freq > 8000000) /* detect invalid data */
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!pwr)
 | 
						|
		return;
 | 
						|
	memset(pwr, 0, sizeof(struct power_event));
 | 
						|
 | 
						|
	pwr->state = cpus_pstate_state[cpu];
 | 
						|
	pwr->start_time = cpus_pstate_start_times[cpu];
 | 
						|
	pwr->end_time = timestamp;
 | 
						|
	pwr->cpu = cpu;
 | 
						|
	pwr->type = PSTATE;
 | 
						|
	pwr->next = power_events;
 | 
						|
 | 
						|
	if (!pwr->start_time)
 | 
						|
		pwr->start_time = first_time;
 | 
						|
 | 
						|
	power_events = pwr;
 | 
						|
 | 
						|
	cpus_pstate_state[cpu] = new_freq;
 | 
						|
	cpus_pstate_start_times[cpu] = timestamp;
 | 
						|
 | 
						|
	if ((u64)new_freq > max_freq)
 | 
						|
		max_freq = new_freq;
 | 
						|
 | 
						|
	if (new_freq < min_freq || min_freq == 0)
 | 
						|
		min_freq = new_freq;
 | 
						|
 | 
						|
	if (new_freq == max_freq - 1000)
 | 
						|
			turbo_frequency = max_freq;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
 | 
						|
{
 | 
						|
	struct wake_event *we;
 | 
						|
	struct per_pid *p;
 | 
						|
	struct wakeup_entry *wake = (void *)te;
 | 
						|
 | 
						|
	we = malloc(sizeof(struct wake_event));
 | 
						|
	if (!we)
 | 
						|
		return;
 | 
						|
 | 
						|
	memset(we, 0, sizeof(struct wake_event));
 | 
						|
	we->time = timestamp;
 | 
						|
	we->waker = pid;
 | 
						|
 | 
						|
	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
 | 
						|
		we->waker = -1;
 | 
						|
 | 
						|
	we->wakee = wake->pid;
 | 
						|
	we->next = wake_events;
 | 
						|
	wake_events = we;
 | 
						|
	p = find_create_pid(we->wakee);
 | 
						|
 | 
						|
	if (p && p->current && p->current->state == TYPE_NONE) {
 | 
						|
		p->current->state_since = timestamp;
 | 
						|
		p->current->state = TYPE_WAITING;
 | 
						|
	}
 | 
						|
	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 | 
						|
		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
 | 
						|
		p->current->state_since = timestamp;
 | 
						|
		p->current->state = TYPE_WAITING;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
 | 
						|
{
 | 
						|
	struct per_pid *p = NULL, *prev_p;
 | 
						|
	struct sched_switch *sw = (void *)te;
 | 
						|
 | 
						|
 | 
						|
	prev_p = find_create_pid(sw->prev_pid);
 | 
						|
 | 
						|
	p = find_create_pid(sw->next_pid);
 | 
						|
 | 
						|
	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 | 
						|
		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
 | 
						|
	if (p && p->current) {
 | 
						|
		if (p->current->state != TYPE_NONE)
 | 
						|
			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
 | 
						|
 | 
						|
			p->current->state_since = timestamp;
 | 
						|
			p->current->state = TYPE_RUNNING;
 | 
						|
	}
 | 
						|
 | 
						|
	if (prev_p->current) {
 | 
						|
		prev_p->current->state = TYPE_NONE;
 | 
						|
		prev_p->current->state_since = timestamp;
 | 
						|
		if (sw->prev_state & 2)
 | 
						|
			prev_p->current->state = TYPE_BLOCKED;
 | 
						|
		if (sw->prev_state == 0)
 | 
						|
			prev_p->current->state = TYPE_WAITING;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int
 | 
						|
process_sample_event(event_t *event)
 | 
						|
{
 | 
						|
	int cursor = 0;
 | 
						|
	u64 addr = 0;
 | 
						|
	u64 stamp = 0;
 | 
						|
	u32 cpu = 0;
 | 
						|
	u32 pid = 0;
 | 
						|
	struct trace_entry *te;
 | 
						|
 | 
						|
	if (sample_type & PERF_SAMPLE_IP)
 | 
						|
		cursor++;
 | 
						|
 | 
						|
	if (sample_type & PERF_SAMPLE_TID) {
 | 
						|
		pid = event->sample.array[cursor]>>32;
 | 
						|
		cursor++;
 | 
						|
	}
 | 
						|
	if (sample_type & PERF_SAMPLE_TIME) {
 | 
						|
		stamp = event->sample.array[cursor++];
 | 
						|
 | 
						|
		if (!first_time || first_time > stamp)
 | 
						|
			first_time = stamp;
 | 
						|
		if (last_time < stamp)
 | 
						|
			last_time = stamp;
 | 
						|
 | 
						|
	}
 | 
						|
	if (sample_type & PERF_SAMPLE_ADDR)
 | 
						|
		addr = event->sample.array[cursor++];
 | 
						|
	if (sample_type & PERF_SAMPLE_ID)
 | 
						|
		cursor++;
 | 
						|
	if (sample_type & PERF_SAMPLE_STREAM_ID)
 | 
						|
		cursor++;
 | 
						|
	if (sample_type & PERF_SAMPLE_CPU)
 | 
						|
		cpu = event->sample.array[cursor++] & 0xFFFFFFFF;
 | 
						|
	if (sample_type & PERF_SAMPLE_PERIOD)
 | 
						|
		cursor++;
 | 
						|
 | 
						|
	te = (void *)&event->sample.array[cursor];
 | 
						|
 | 
						|
	if (sample_type & PERF_SAMPLE_RAW && te->size > 0) {
 | 
						|
		char *event_str;
 | 
						|
		struct power_entry *pe;
 | 
						|
 | 
						|
		pe = (void *)te;
 | 
						|
 | 
						|
		event_str = perf_header__find_event(te->type);
 | 
						|
 | 
						|
		if (!event_str)
 | 
						|
			return 0;
 | 
						|
 | 
						|
		if (strcmp(event_str, "power:power_start") == 0)
 | 
						|
			c_state_start(cpu, stamp, pe->value);
 | 
						|
 | 
						|
		if (strcmp(event_str, "power:power_end") == 0)
 | 
						|
			c_state_end(cpu, stamp);
 | 
						|
 | 
						|
		if (strcmp(event_str, "power:power_frequency") == 0)
 | 
						|
			p_state_change(cpu, stamp, pe->value);
 | 
						|
 | 
						|
		if (strcmp(event_str, "sched:sched_wakeup") == 0)
 | 
						|
			sched_wakeup(cpu, stamp, pid, te);
 | 
						|
 | 
						|
		if (strcmp(event_str, "sched:sched_switch") == 0)
 | 
						|
			sched_switch(cpu, stamp, te);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * After the last sample we need to wrap up the current C/P state
 | 
						|
 * and close out each CPU for these.
 | 
						|
 */
 | 
						|
static void end_sample_processing(void)
 | 
						|
{
 | 
						|
	u64 cpu;
 | 
						|
	struct power_event *pwr;
 | 
						|
 | 
						|
	for (cpu = 0; cpu <= numcpus; cpu++) {
 | 
						|
		pwr = malloc(sizeof(struct power_event));
 | 
						|
		if (!pwr)
 | 
						|
			return;
 | 
						|
		memset(pwr, 0, sizeof(struct power_event));
 | 
						|
 | 
						|
		/* C state */
 | 
						|
#if 0
 | 
						|
		pwr->state = cpus_cstate_state[cpu];
 | 
						|
		pwr->start_time = cpus_cstate_start_times[cpu];
 | 
						|
		pwr->end_time = last_time;
 | 
						|
		pwr->cpu = cpu;
 | 
						|
		pwr->type = CSTATE;
 | 
						|
		pwr->next = power_events;
 | 
						|
 | 
						|
		power_events = pwr;
 | 
						|
#endif
 | 
						|
		/* P state */
 | 
						|
 | 
						|
		pwr = malloc(sizeof(struct power_event));
 | 
						|
		if (!pwr)
 | 
						|
			return;
 | 
						|
		memset(pwr, 0, sizeof(struct power_event));
 | 
						|
 | 
						|
		pwr->state = cpus_pstate_state[cpu];
 | 
						|
		pwr->start_time = cpus_pstate_start_times[cpu];
 | 
						|
		pwr->end_time = last_time;
 | 
						|
		pwr->cpu = cpu;
 | 
						|
		pwr->type = PSTATE;
 | 
						|
		pwr->next = power_events;
 | 
						|
 | 
						|
		if (!pwr->start_time)
 | 
						|
			pwr->start_time = first_time;
 | 
						|
		if (!pwr->state)
 | 
						|
			pwr->state = min_freq;
 | 
						|
		power_events = pwr;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static u64 sample_time(event_t *event)
 | 
						|
{
 | 
						|
	int cursor;
 | 
						|
 | 
						|
	cursor = 0;
 | 
						|
	if (sample_type & PERF_SAMPLE_IP)
 | 
						|
		cursor++;
 | 
						|
	if (sample_type & PERF_SAMPLE_TID)
 | 
						|
		cursor++;
 | 
						|
	if (sample_type & PERF_SAMPLE_TIME)
 | 
						|
		return event->sample.array[cursor];
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * We first queue all events, sorted backwards by insertion.
 | 
						|
 * The order will get flipped later.
 | 
						|
 */
 | 
						|
static int
 | 
						|
queue_sample_event(event_t *event)
 | 
						|
{
 | 
						|
	struct sample_wrapper *copy, *prev;
 | 
						|
	int size;
 | 
						|
 | 
						|
	size = event->sample.header.size + sizeof(struct sample_wrapper) + 8;
 | 
						|
 | 
						|
	copy = malloc(size);
 | 
						|
	if (!copy)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	memset(copy, 0, size);
 | 
						|
 | 
						|
	copy->next = NULL;
 | 
						|
	copy->timestamp = sample_time(event);
 | 
						|
 | 
						|
	memcpy(©->data, event, event->sample.header.size);
 | 
						|
 | 
						|
	/* insert in the right place in the list */
 | 
						|
 | 
						|
	if (!all_samples) {
 | 
						|
		/* first sample ever */
 | 
						|
		all_samples = copy;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (all_samples->timestamp < copy->timestamp) {
 | 
						|
		/* insert at the head of the list */
 | 
						|
		copy->next = all_samples;
 | 
						|
		all_samples = copy;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	prev = all_samples;
 | 
						|
	while (prev->next) {
 | 
						|
		if (prev->next->timestamp < copy->timestamp) {
 | 
						|
			copy->next = prev->next;
 | 
						|
			prev->next = copy;
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
		prev = prev->next;
 | 
						|
	}
 | 
						|
	/* insert at the end of the list */
 | 
						|
	prev->next = copy;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void sort_queued_samples(void)
 | 
						|
{
 | 
						|
	struct sample_wrapper *cursor, *next;
 | 
						|
 | 
						|
	cursor = all_samples;
 | 
						|
	all_samples = NULL;
 | 
						|
 | 
						|
	while (cursor) {
 | 
						|
		next = cursor->next;
 | 
						|
		cursor->next = all_samples;
 | 
						|
		all_samples = cursor;
 | 
						|
		cursor = next;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Sort the pid datastructure
 | 
						|
 */
 | 
						|
static void sort_pids(void)
 | 
						|
{
 | 
						|
	struct per_pid *new_list, *p, *cursor, *prev;
 | 
						|
	/* sort by ppid first, then by pid, lowest to highest */
 | 
						|
 | 
						|
	new_list = NULL;
 | 
						|
 | 
						|
	while (all_data) {
 | 
						|
		p = all_data;
 | 
						|
		all_data = p->next;
 | 
						|
		p->next = NULL;
 | 
						|
 | 
						|
		if (new_list == NULL) {
 | 
						|
			new_list = p;
 | 
						|
			p->next = NULL;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		prev = NULL;
 | 
						|
		cursor = new_list;
 | 
						|
		while (cursor) {
 | 
						|
			if (cursor->ppid > p->ppid ||
 | 
						|
				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 | 
						|
				/* must insert before */
 | 
						|
				if (prev) {
 | 
						|
					p->next = prev->next;
 | 
						|
					prev->next = p;
 | 
						|
					cursor = NULL;
 | 
						|
					continue;
 | 
						|
				} else {
 | 
						|
					p->next = new_list;
 | 
						|
					new_list = p;
 | 
						|
					cursor = NULL;
 | 
						|
					continue;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			prev = cursor;
 | 
						|
			cursor = cursor->next;
 | 
						|
			if (!cursor)
 | 
						|
				prev->next = p;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	all_data = new_list;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void draw_c_p_states(void)
 | 
						|
{
 | 
						|
	struct power_event *pwr;
 | 
						|
	pwr = power_events;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * two pass drawing so that the P state bars are on top of the C state blocks
 | 
						|
	 */
 | 
						|
	while (pwr) {
 | 
						|
		if (pwr->type == CSTATE)
 | 
						|
			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 | 
						|
		pwr = pwr->next;
 | 
						|
	}
 | 
						|
 | 
						|
	pwr = power_events;
 | 
						|
	while (pwr) {
 | 
						|
		if (pwr->type == PSTATE) {
 | 
						|
			if (!pwr->state)
 | 
						|
				pwr->state = min_freq;
 | 
						|
			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 | 
						|
		}
 | 
						|
		pwr = pwr->next;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void draw_wakeups(void)
 | 
						|
{
 | 
						|
	struct wake_event *we;
 | 
						|
	struct per_pid *p;
 | 
						|
	struct per_pidcomm *c;
 | 
						|
 | 
						|
	we = wake_events;
 | 
						|
	while (we) {
 | 
						|
		int from = 0, to = 0;
 | 
						|
		char *task_from = NULL, *task_to = NULL;
 | 
						|
 | 
						|
		/* locate the column of the waker and wakee */
 | 
						|
		p = all_data;
 | 
						|
		while (p) {
 | 
						|
			if (p->pid == we->waker || p->pid == we->wakee) {
 | 
						|
				c = p->all;
 | 
						|
				while (c) {
 | 
						|
					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 | 
						|
						if (p->pid == we->waker) {
 | 
						|
							from = c->Y;
 | 
						|
							task_from = c->comm;
 | 
						|
						}
 | 
						|
						if (p->pid == we->wakee) {
 | 
						|
							to = c->Y;
 | 
						|
							task_to = c->comm;
 | 
						|
						}
 | 
						|
					}
 | 
						|
					c = c->next;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			p = p->next;
 | 
						|
		}
 | 
						|
 | 
						|
		if (we->waker == -1)
 | 
						|
			svg_interrupt(we->time, to);
 | 
						|
		else if (from && to && abs(from - to) == 1)
 | 
						|
			svg_wakeline(we->time, from, to);
 | 
						|
		else
 | 
						|
			svg_partial_wakeline(we->time, from, task_from, to, task_to);
 | 
						|
		we = we->next;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void draw_cpu_usage(void)
 | 
						|
{
 | 
						|
	struct per_pid *p;
 | 
						|
	struct per_pidcomm *c;
 | 
						|
	struct cpu_sample *sample;
 | 
						|
	p = all_data;
 | 
						|
	while (p) {
 | 
						|
		c = p->all;
 | 
						|
		while (c) {
 | 
						|
			sample = c->samples;
 | 
						|
			while (sample) {
 | 
						|
				if (sample->type == TYPE_RUNNING)
 | 
						|
					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
 | 
						|
 | 
						|
				sample = sample->next;
 | 
						|
			}
 | 
						|
			c = c->next;
 | 
						|
		}
 | 
						|
		p = p->next;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void draw_process_bars(void)
 | 
						|
{
 | 
						|
	struct per_pid *p;
 | 
						|
	struct per_pidcomm *c;
 | 
						|
	struct cpu_sample *sample;
 | 
						|
	int Y = 0;
 | 
						|
 | 
						|
	Y = 2 * numcpus + 2;
 | 
						|
 | 
						|
	p = all_data;
 | 
						|
	while (p) {
 | 
						|
		c = p->all;
 | 
						|
		while (c) {
 | 
						|
			if (!c->display) {
 | 
						|
				c->Y = 0;
 | 
						|
				c = c->next;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			svg_box(Y, c->start_time, c->end_time, "process");
 | 
						|
			sample = c->samples;
 | 
						|
			while (sample) {
 | 
						|
				if (sample->type == TYPE_RUNNING)
 | 
						|
					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
 | 
						|
				if (sample->type == TYPE_BLOCKED)
 | 
						|
					svg_box(Y, sample->start_time, sample->end_time, "blocked");
 | 
						|
				if (sample->type == TYPE_WAITING)
 | 
						|
					svg_waiting(Y, sample->start_time, sample->end_time);
 | 
						|
				sample = sample->next;
 | 
						|
			}
 | 
						|
 | 
						|
			if (c->comm) {
 | 
						|
				char comm[256];
 | 
						|
				if (c->total_time > 5000000000) /* 5 seconds */
 | 
						|
					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 | 
						|
				else
 | 
						|
					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 | 
						|
 | 
						|
				svg_text(Y, c->start_time, comm);
 | 
						|
			}
 | 
						|
			c->Y = Y;
 | 
						|
			Y++;
 | 
						|
			c = c->next;
 | 
						|
		}
 | 
						|
		p = p->next;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int determine_display_tasks(u64 threshold)
 | 
						|
{
 | 
						|
	struct per_pid *p;
 | 
						|
	struct per_pidcomm *c;
 | 
						|
	int count = 0;
 | 
						|
 | 
						|
	p = all_data;
 | 
						|
	while (p) {
 | 
						|
		p->display = 0;
 | 
						|
		if (p->start_time == 1)
 | 
						|
			p->start_time = first_time;
 | 
						|
 | 
						|
		/* no exit marker, task kept running to the end */
 | 
						|
		if (p->end_time == 0)
 | 
						|
			p->end_time = last_time;
 | 
						|
		if (p->total_time >= threshold && !power_only)
 | 
						|
			p->display = 1;
 | 
						|
 | 
						|
		c = p->all;
 | 
						|
 | 
						|
		while (c) {
 | 
						|
			c->display = 0;
 | 
						|
 | 
						|
			if (c->start_time == 1)
 | 
						|
				c->start_time = first_time;
 | 
						|
 | 
						|
			if (c->total_time >= threshold && !power_only) {
 | 
						|
				c->display = 1;
 | 
						|
				count++;
 | 
						|
			}
 | 
						|
 | 
						|
			if (c->end_time == 0)
 | 
						|
				c->end_time = last_time;
 | 
						|
 | 
						|
			c = c->next;
 | 
						|
		}
 | 
						|
		p = p->next;
 | 
						|
	}
 | 
						|
	return count;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#define TIME_THRESH 10000000
 | 
						|
 | 
						|
static void write_svg_file(const char *filename)
 | 
						|
{
 | 
						|
	u64 i;
 | 
						|
	int count;
 | 
						|
 | 
						|
	numcpus++;
 | 
						|
 | 
						|
 | 
						|
	count = determine_display_tasks(TIME_THRESH);
 | 
						|
 | 
						|
	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
 | 
						|
	if (count < 15)
 | 
						|
		count = determine_display_tasks(TIME_THRESH / 10);
 | 
						|
 | 
						|
	open_svg(filename, numcpus, count, first_time, last_time);
 | 
						|
 | 
						|
	svg_time_grid();
 | 
						|
	svg_legenda();
 | 
						|
 | 
						|
	for (i = 0; i < numcpus; i++)
 | 
						|
		svg_cpu_box(i, max_freq, turbo_frequency);
 | 
						|
 | 
						|
	draw_cpu_usage();
 | 
						|
	draw_process_bars();
 | 
						|
	draw_c_p_states();
 | 
						|
	draw_wakeups();
 | 
						|
 | 
						|
	svg_close();
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
process_event(event_t *event)
 | 
						|
{
 | 
						|
 | 
						|
	switch (event->header.type) {
 | 
						|
 | 
						|
	case PERF_RECORD_COMM:
 | 
						|
		return process_comm_event(event);
 | 
						|
	case PERF_RECORD_FORK:
 | 
						|
		return process_fork_event(event);
 | 
						|
	case PERF_RECORD_EXIT:
 | 
						|
		return process_exit_event(event);
 | 
						|
	case PERF_RECORD_SAMPLE:
 | 
						|
		return queue_sample_event(event);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We dont process them right now but they are fine:
 | 
						|
	 */
 | 
						|
	case PERF_RECORD_MMAP:
 | 
						|
	case PERF_RECORD_THROTTLE:
 | 
						|
	case PERF_RECORD_UNTHROTTLE:
 | 
						|
		return 0;
 | 
						|
 | 
						|
	default:
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void process_samples(void)
 | 
						|
{
 | 
						|
	struct sample_wrapper *cursor;
 | 
						|
	event_t *event;
 | 
						|
 | 
						|
	sort_queued_samples();
 | 
						|
 | 
						|
	cursor = all_samples;
 | 
						|
	while (cursor) {
 | 
						|
		event = (void *)&cursor->data;
 | 
						|
		cursor = cursor->next;
 | 
						|
		process_sample_event(event);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int __cmd_timechart(void)
 | 
						|
{
 | 
						|
	int ret, rc = EXIT_FAILURE;
 | 
						|
	unsigned long offset = 0;
 | 
						|
	unsigned long head, shift;
 | 
						|
	struct stat statbuf;
 | 
						|
	event_t *event;
 | 
						|
	uint32_t size;
 | 
						|
	char *buf;
 | 
						|
	int input;
 | 
						|
 | 
						|
	input = open(input_name, O_RDONLY);
 | 
						|
	if (input < 0) {
 | 
						|
		fprintf(stderr, " failed to open file: %s", input_name);
 | 
						|
		if (!strcmp(input_name, "perf.data"))
 | 
						|
			fprintf(stderr, "  (try 'perf record' first)");
 | 
						|
		fprintf(stderr, "\n");
 | 
						|
		exit(-1);
 | 
						|
	}
 | 
						|
 | 
						|
	ret = fstat(input, &statbuf);
 | 
						|
	if (ret < 0) {
 | 
						|
		perror("failed to stat file");
 | 
						|
		exit(-1);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!statbuf.st_size) {
 | 
						|
		fprintf(stderr, "zero-sized file, nothing to do!\n");
 | 
						|
		exit(0);
 | 
						|
	}
 | 
						|
 | 
						|
	header = perf_header__read(input);
 | 
						|
	head = header->data_offset;
 | 
						|
 | 
						|
	sample_type = perf_header__sample_type(header);
 | 
						|
 | 
						|
	shift = page_size * (head / page_size);
 | 
						|
	offset += shift;
 | 
						|
	head -= shift;
 | 
						|
 | 
						|
remap:
 | 
						|
	buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
 | 
						|
			   MAP_SHARED, input, offset);
 | 
						|
	if (buf == MAP_FAILED) {
 | 
						|
		perror("failed to mmap file");
 | 
						|
		exit(-1);
 | 
						|
	}
 | 
						|
 | 
						|
more:
 | 
						|
	event = (event_t *)(buf + head);
 | 
						|
 | 
						|
	size = event->header.size;
 | 
						|
	if (!size)
 | 
						|
		size = 8;
 | 
						|
 | 
						|
	if (head + event->header.size >= page_size * mmap_window) {
 | 
						|
		int ret2;
 | 
						|
 | 
						|
		shift = page_size * (head / page_size);
 | 
						|
 | 
						|
		ret2 = munmap(buf, page_size * mmap_window);
 | 
						|
		assert(ret2 == 0);
 | 
						|
 | 
						|
		offset += shift;
 | 
						|
		head -= shift;
 | 
						|
		goto remap;
 | 
						|
	}
 | 
						|
 | 
						|
	size = event->header.size;
 | 
						|
 | 
						|
	if (!size || process_event(event) < 0) {
 | 
						|
 | 
						|
		printf("%p [%p]: skipping unknown header type: %d\n",
 | 
						|
			(void *)(offset + head),
 | 
						|
			(void *)(long)(event->header.size),
 | 
						|
			event->header.type);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * assume we lost track of the stream, check alignment, and
 | 
						|
		 * increment a single u64 in the hope to catch on again 'soon'.
 | 
						|
		 */
 | 
						|
 | 
						|
		if (unlikely(head & 7))
 | 
						|
			head &= ~7ULL;
 | 
						|
 | 
						|
		size = 8;
 | 
						|
	}
 | 
						|
 | 
						|
	head += size;
 | 
						|
 | 
						|
	if (offset + head >= header->data_offset + header->data_size)
 | 
						|
		goto done;
 | 
						|
 | 
						|
	if (offset + head < (unsigned long)statbuf.st_size)
 | 
						|
		goto more;
 | 
						|
 | 
						|
done:
 | 
						|
	rc = EXIT_SUCCESS;
 | 
						|
	close(input);
 | 
						|
 | 
						|
 | 
						|
	process_samples();
 | 
						|
 | 
						|
	end_sample_processing();
 | 
						|
 | 
						|
	sort_pids();
 | 
						|
 | 
						|
	write_svg_file(output_name);
 | 
						|
 | 
						|
	printf("Written %2.1f seconds of trace to %s.\n", (last_time - first_time) / 1000000000.0, output_name);
 | 
						|
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static const char * const timechart_usage[] = {
 | 
						|
	"perf timechart [<options>] {record}",
 | 
						|
	NULL
 | 
						|
};
 | 
						|
 | 
						|
static const char *record_args[] = {
 | 
						|
	"record",
 | 
						|
	"-a",
 | 
						|
	"-R",
 | 
						|
	"-M",
 | 
						|
	"-f",
 | 
						|
	"-c", "1",
 | 
						|
	"-e", "power:power_start",
 | 
						|
	"-e", "power:power_end",
 | 
						|
	"-e", "power:power_frequency",
 | 
						|
	"-e", "sched:sched_wakeup",
 | 
						|
	"-e", "sched:sched_switch",
 | 
						|
};
 | 
						|
 | 
						|
static int __cmd_record(int argc, const char **argv)
 | 
						|
{
 | 
						|
	unsigned int rec_argc, i, j;
 | 
						|
	const char **rec_argv;
 | 
						|
 | 
						|
	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
 | 
						|
	rec_argv = calloc(rec_argc + 1, sizeof(char *));
 | 
						|
 | 
						|
	for (i = 0; i < ARRAY_SIZE(record_args); i++)
 | 
						|
		rec_argv[i] = strdup(record_args[i]);
 | 
						|
 | 
						|
	for (j = 1; j < (unsigned int)argc; j++, i++)
 | 
						|
		rec_argv[i] = argv[j];
 | 
						|
 | 
						|
	return cmd_record(i, rec_argv, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static const struct option options[] = {
 | 
						|
	OPT_STRING('i', "input", &input_name, "file",
 | 
						|
		    "input file name"),
 | 
						|
	OPT_STRING('o', "output", &output_name, "file",
 | 
						|
		    "output file name"),
 | 
						|
	OPT_INTEGER('w', "width", &svg_page_width,
 | 
						|
		    "page width"),
 | 
						|
	OPT_BOOLEAN('p', "power-only", &power_only,
 | 
						|
		    "output power data only"),
 | 
						|
	OPT_END()
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
int cmd_timechart(int argc, const char **argv, const char *prefix __used)
 | 
						|
{
 | 
						|
	symbol__init();
 | 
						|
 | 
						|
	page_size = getpagesize();
 | 
						|
 | 
						|
	argc = parse_options(argc, argv, options, timechart_usage,
 | 
						|
			PARSE_OPT_STOP_AT_NON_OPTION);
 | 
						|
 | 
						|
	if (argc && !strncmp(argv[0], "rec", 3))
 | 
						|
		return __cmd_record(argc, argv);
 | 
						|
	else if (argc)
 | 
						|
		usage_with_options(timechart_usage, options);
 | 
						|
 | 
						|
	setup_pager();
 | 
						|
 | 
						|
	return __cmd_timechart();
 | 
						|
}
 |