 ed2d265d12
			
		
	
	
	ed2d265d12
	
	
	
		
			
			"[RFC - PATCH 0/7] consolidation of BUG support code." https://lkml.org/lkml/2012/1/26/525 -- The changes shown here are to unify linux's BUG support under the one <linux/bug.h> file. Due to historical reasons, we have some BUG code in bug.h and some in kernel.h -- i.e. the support for BUILD_BUG in linux/kernel.h predates the addition of linux/bug.h, but old code in kernel.h wasn't moved to bug.h at that time. As a band-aid, kernel.h was including <asm/bug.h> to pseudo link them. This has caused confusion[1] and general yuck/WTF[2] reactions. Here is an example that violates the principle of least surprise: CC lib/string.o lib/string.c: In function 'strlcat': lib/string.c:225:2: error: implicit declaration of function 'BUILD_BUG_ON' make[2]: *** [lib/string.o] Error 1 $ $ grep linux/bug.h lib/string.c #include <linux/bug.h> $ We've included <linux/bug.h> for the BUG infrastructure and yet we still get a compile fail! [We've not kernel.h for BUILD_BUG_ON.] Ugh - very confusing for someone who is new to kernel development. With the above in mind, the goals of this changeset are: 1) find and fix any include/*.h files that were relying on the implicit presence of BUG code. 2) find and fix any C files that were consuming kernel.h and hence relying on implicitly getting some/all BUG code. 3) Move the BUG related code living in kernel.h to <linux/bug.h> 4) remove the asm/bug.h from kernel.h to finally break the chain. During development, the order was more like 3-4, build-test, 1-2. But to ensure that git history for bisect doesn't get needless build failures introduced, the commits have been reorderd to fix the problem areas in advance. [1] https://lkml.org/lkml/2012/1/3/90 [2] https://lkml.org/lkml/2012/1/17/414 -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.11 (GNU/Linux) iQIcBAABAgAGBQJPbNwpAAoJEOvOhAQsB9HWrqYP/A0t9VB0nK6e42F0OR2P14MZ GJFtf1B++wwioIrx+KSWSRfSur1C5FKhDbxLR3I/pvkAYl4+T4JvRdMG6xJwxyip CC1kVQQNDjWVVqzjz2x6rYkOffx6dUlw/ERyIyk+OzP+1HzRIsIrugMqbzGLlX0X y0v2Tbd0G6xg1DV8lcRdp95eIzcGuUvdb2iY2LGadWZczEOeSXx64Jz3QCFxg3aL LFU4oovsg8Nb7MRJmqDvHK/oQf5vaTm9WSrS0pvVte0msSQRn8LStYdWC0G9BPCS GwL86h/eLXlUXQlC5GpgWg1QQt5i2QpjBFcVBIG0IT5SgEPMx+gXyiqZva2KwbHu LKicjKtfnzPitQnyEV/N6JyV1fb1U6/MsB7ebU5nCCzt9Gr7MYbjZ44peNeprAtu HMvJ/BNnRr4Ha6nPQNu952AdASPKkxmeXFUwBL1zUbLkOX/bK/vy1ujlcdkFxCD7 fP3t7hghYa737IHk0ehUOhrE4H67hvxTSCKioLUAy/YeN1IcfH/iOQiCBQVLWmoS AqYV6ou9cqgdYoyila2UeAqegb+8xyubPIHt+lebcaKxs5aGsTg+r3vq5juMDAPs iwSVYUDcIw9dHer1lJfo7QCy3QUTRDTxh+LB9VlHXQICgeCK02sLBOi9hbEr4/H8 Ko9g8J3BMxcMkXLHT9ud =PYQT -----END PGP SIGNATURE----- Merge tag 'bug-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux Pull <linux/bug.h> cleanup from Paul Gortmaker: "The changes shown here are to unify linux's BUG support under the one <linux/bug.h> file. Due to historical reasons, we have some BUG code in bug.h and some in kernel.h -- i.e. the support for BUILD_BUG in linux/kernel.h predates the addition of linux/bug.h, but old code in kernel.h wasn't moved to bug.h at that time. As a band-aid, kernel.h was including <asm/bug.h> to pseudo link them. This has caused confusion[1] and general yuck/WTF[2] reactions. Here is an example that violates the principle of least surprise: CC lib/string.o lib/string.c: In function 'strlcat': lib/string.c:225:2: error: implicit declaration of function 'BUILD_BUG_ON' make[2]: *** [lib/string.o] Error 1 $ $ grep linux/bug.h lib/string.c #include <linux/bug.h> $ We've included <linux/bug.h> for the BUG infrastructure and yet we still get a compile fail! [We've not kernel.h for BUILD_BUG_ON.] Ugh - very confusing for someone who is new to kernel development. With the above in mind, the goals of this changeset are: 1) find and fix any include/*.h files that were relying on the implicit presence of BUG code. 2) find and fix any C files that were consuming kernel.h and hence relying on implicitly getting some/all BUG code. 3) Move the BUG related code living in kernel.h to <linux/bug.h> 4) remove the asm/bug.h from kernel.h to finally break the chain. During development, the order was more like 3-4, build-test, 1-2. But to ensure that git history for bisect doesn't get needless build failures introduced, the commits have been reorderd to fix the problem areas in advance. [1] https://lkml.org/lkml/2012/1/3/90 [2] https://lkml.org/lkml/2012/1/17/414" Fix up conflicts (new radeon file, reiserfs header cleanups) as per Paul and linux-next. * tag 'bug-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux: kernel.h: doesn't explicitly use bug.h, so don't include it. bug: consolidate BUILD_BUG_ON with other bug code BUG: headers with BUG/BUG_ON etc. need linux/bug.h bug.h: add include of it to various implicit C users lib: fix implicit users of kernel.h for TAINT_WARN spinlock: macroize assert_spin_locked to avoid bug.h dependency x86: relocate get/set debugreg fcns to include/asm/debugreg.
		
			
				
	
	
		
			510 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			510 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef _ASM_GENERIC_PGTABLE_H
 | |
| #define _ASM_GENERIC_PGTABLE_H
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| #ifdef CONFIG_MMU
 | |
| 
 | |
| #include <linux/mm_types.h>
 | |
| #include <linux/bug.h>
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 | |
| extern int ptep_set_access_flags(struct vm_area_struct *vma,
 | |
| 				 unsigned long address, pte_t *ptep,
 | |
| 				 pte_t entry, int dirty);
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 | |
| extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 | |
| 				 unsigned long address, pmd_t *pmdp,
 | |
| 				 pmd_t entry, int dirty);
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 | |
| static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 | |
| 					    unsigned long address,
 | |
| 					    pte_t *ptep)
 | |
| {
 | |
| 	pte_t pte = *ptep;
 | |
| 	int r = 1;
 | |
| 	if (!pte_young(pte))
 | |
| 		r = 0;
 | |
| 	else
 | |
| 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
 | |
| 	return r;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 | |
| 					    unsigned long address,
 | |
| 					    pmd_t *pmdp)
 | |
| {
 | |
| 	pmd_t pmd = *pmdp;
 | |
| 	int r = 1;
 | |
| 	if (!pmd_young(pmd))
 | |
| 		r = 0;
 | |
| 	else
 | |
| 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
 | |
| 	return r;
 | |
| }
 | |
| #else /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 | |
| 					    unsigned long address,
 | |
| 					    pmd_t *pmdp)
 | |
| {
 | |
| 	BUG();
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 | |
| int ptep_clear_flush_young(struct vm_area_struct *vma,
 | |
| 			   unsigned long address, pte_t *ptep);
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 | |
| int pmdp_clear_flush_young(struct vm_area_struct *vma,
 | |
| 			   unsigned long address, pmd_t *pmdp);
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 | |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 | |
| 				       unsigned long address,
 | |
| 				       pte_t *ptep)
 | |
| {
 | |
| 	pte_t pte = *ptep;
 | |
| 	pte_clear(mm, address, ptep);
 | |
| 	return pte;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
 | |
| 				       unsigned long address,
 | |
| 				       pmd_t *pmdp)
 | |
| {
 | |
| 	pmd_t pmd = *pmdp;
 | |
| 	pmd_clear(mm, address, pmdp);
 | |
| 	return pmd;
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 | |
| static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 | |
| 					    unsigned long address, pte_t *ptep,
 | |
| 					    int full)
 | |
| {
 | |
| 	pte_t pte;
 | |
| 	pte = ptep_get_and_clear(mm, address, ptep);
 | |
| 	return pte;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Some architectures may be able to avoid expensive synchronization
 | |
|  * primitives when modifications are made to PTE's which are already
 | |
|  * not present, or in the process of an address space destruction.
 | |
|  */
 | |
| #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
 | |
| static inline void pte_clear_not_present_full(struct mm_struct *mm,
 | |
| 					      unsigned long address,
 | |
| 					      pte_t *ptep,
 | |
| 					      int full)
 | |
| {
 | |
| 	pte_clear(mm, address, ptep);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
 | |
| extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
 | |
| 			      unsigned long address,
 | |
| 			      pte_t *ptep);
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
 | |
| extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
 | |
| 			      unsigned long address,
 | |
| 			      pmd_t *pmdp);
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
 | |
| struct mm_struct;
 | |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
 | |
| {
 | |
| 	pte_t old_pte = *ptep;
 | |
| 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 | |
| 				      unsigned long address, pmd_t *pmdp)
 | |
| {
 | |
| 	pmd_t old_pmd = *pmdp;
 | |
| 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
 | |
| }
 | |
| #else /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 | |
| 				      unsigned long address, pmd_t *pmdp)
 | |
| {
 | |
| 	BUG();
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
 | |
| extern pmd_t pmdp_splitting_flush(struct vm_area_struct *vma,
 | |
| 				  unsigned long address,
 | |
| 				  pmd_t *pmdp);
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTE_SAME
 | |
| static inline int pte_same(pte_t pte_a, pte_t pte_b)
 | |
| {
 | |
| 	return pte_val(pte_a) == pte_val(pte_b);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PMD_SAME
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 | |
| {
 | |
| 	return pmd_val(pmd_a) == pmd_val(pmd_b);
 | |
| }
 | |
| #else /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 | |
| {
 | |
| 	BUG();
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
 | |
| #define page_test_and_clear_dirty(pfn, mapped)	(0)
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
 | |
| #define pte_maybe_dirty(pte)		pte_dirty(pte)
 | |
| #else
 | |
| #define pte_maybe_dirty(pte)		(1)
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
 | |
| #define page_test_and_clear_young(pfn) (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
 | |
| #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_MOVE_PTE
 | |
| #define move_pte(pte, prot, old_addr, new_addr)	(pte)
 | |
| #endif
 | |
| 
 | |
| #ifndef flush_tlb_fix_spurious_fault
 | |
| #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
 | |
| #endif
 | |
| 
 | |
| #ifndef pgprot_noncached
 | |
| #define pgprot_noncached(prot)	(prot)
 | |
| #endif
 | |
| 
 | |
| #ifndef pgprot_writecombine
 | |
| #define pgprot_writecombine pgprot_noncached
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * When walking page tables, get the address of the next boundary,
 | |
|  * or the end address of the range if that comes earlier.  Although no
 | |
|  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
 | |
|  */
 | |
| 
 | |
| #define pgd_addr_end(addr, end)						\
 | |
| ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
 | |
| 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | |
| })
 | |
| 
 | |
| #ifndef pud_addr_end
 | |
| #define pud_addr_end(addr, end)						\
 | |
| ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
 | |
| 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| #ifndef pmd_addr_end
 | |
| #define pmd_addr_end(addr, end)						\
 | |
| ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
 | |
| 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * When walking page tables, we usually want to skip any p?d_none entries;
 | |
|  * and any p?d_bad entries - reporting the error before resetting to none.
 | |
|  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 | |
|  */
 | |
| void pgd_clear_bad(pgd_t *);
 | |
| void pud_clear_bad(pud_t *);
 | |
| void pmd_clear_bad(pmd_t *);
 | |
| 
 | |
| static inline int pgd_none_or_clear_bad(pgd_t *pgd)
 | |
| {
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return 1;
 | |
| 	if (unlikely(pgd_bad(*pgd))) {
 | |
| 		pgd_clear_bad(pgd);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int pud_none_or_clear_bad(pud_t *pud)
 | |
| {
 | |
| 	if (pud_none(*pud))
 | |
| 		return 1;
 | |
| 	if (unlikely(pud_bad(*pud))) {
 | |
| 		pud_clear_bad(pud);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int pmd_none_or_clear_bad(pmd_t *pmd)
 | |
| {
 | |
| 	if (pmd_none(*pmd))
 | |
| 		return 1;
 | |
| 	if (unlikely(pmd_bad(*pmd))) {
 | |
| 		pmd_clear_bad(pmd);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
 | |
| 					     unsigned long addr,
 | |
| 					     pte_t *ptep)
 | |
| {
 | |
| 	/*
 | |
| 	 * Get the current pte state, but zero it out to make it
 | |
| 	 * non-present, preventing the hardware from asynchronously
 | |
| 	 * updating it.
 | |
| 	 */
 | |
| 	return ptep_get_and_clear(mm, addr, ptep);
 | |
| }
 | |
| 
 | |
| static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
 | |
| 					     unsigned long addr,
 | |
| 					     pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	/*
 | |
| 	 * The pte is non-present, so there's no hardware state to
 | |
| 	 * preserve.
 | |
| 	 */
 | |
| 	set_pte_at(mm, addr, ptep, pte);
 | |
| }
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
 | |
| /*
 | |
|  * Start a pte protection read-modify-write transaction, which
 | |
|  * protects against asynchronous hardware modifications to the pte.
 | |
|  * The intention is not to prevent the hardware from making pte
 | |
|  * updates, but to prevent any updates it may make from being lost.
 | |
|  *
 | |
|  * This does not protect against other software modifications of the
 | |
|  * pte; the appropriate pte lock must be held over the transation.
 | |
|  *
 | |
|  * Note that this interface is intended to be batchable, meaning that
 | |
|  * ptep_modify_prot_commit may not actually update the pte, but merely
 | |
|  * queue the update to be done at some later time.  The update must be
 | |
|  * actually committed before the pte lock is released, however.
 | |
|  */
 | |
| static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
 | |
| 					   unsigned long addr,
 | |
| 					   pte_t *ptep)
 | |
| {
 | |
| 	return __ptep_modify_prot_start(mm, addr, ptep);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Commit an update to a pte, leaving any hardware-controlled bits in
 | |
|  * the PTE unmodified.
 | |
|  */
 | |
| static inline void ptep_modify_prot_commit(struct mm_struct *mm,
 | |
| 					   unsigned long addr,
 | |
| 					   pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	__ptep_modify_prot_commit(mm, addr, ptep, pte);
 | |
| }
 | |
| #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| /*
 | |
|  * A facility to provide lazy MMU batching.  This allows PTE updates and
 | |
|  * page invalidations to be delayed until a call to leave lazy MMU mode
 | |
|  * is issued.  Some architectures may benefit from doing this, and it is
 | |
|  * beneficial for both shadow and direct mode hypervisors, which may batch
 | |
|  * the PTE updates which happen during this window.  Note that using this
 | |
|  * interface requires that read hazards be removed from the code.  A read
 | |
|  * hazard could result in the direct mode hypervisor case, since the actual
 | |
|  * write to the page tables may not yet have taken place, so reads though
 | |
|  * a raw PTE pointer after it has been modified are not guaranteed to be
 | |
|  * up to date.  This mode can only be entered and left under the protection of
 | |
|  * the page table locks for all page tables which may be modified.  In the UP
 | |
|  * case, this is required so that preemption is disabled, and in the SMP case,
 | |
|  * it must synchronize the delayed page table writes properly on other CPUs.
 | |
|  */
 | |
| #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
 | |
| #define arch_enter_lazy_mmu_mode()	do {} while (0)
 | |
| #define arch_leave_lazy_mmu_mode()	do {} while (0)
 | |
| #define arch_flush_lazy_mmu_mode()	do {} while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * A facility to provide batching of the reload of page tables and
 | |
|  * other process state with the actual context switch code for
 | |
|  * paravirtualized guests.  By convention, only one of the batched
 | |
|  * update (lazy) modes (CPU, MMU) should be active at any given time,
 | |
|  * entry should never be nested, and entry and exits should always be
 | |
|  * paired.  This is for sanity of maintaining and reasoning about the
 | |
|  * kernel code.  In this case, the exit (end of the context switch) is
 | |
|  * in architecture-specific code, and so doesn't need a generic
 | |
|  * definition.
 | |
|  */
 | |
| #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
 | |
| #define arch_start_context_switch(prev)	do {} while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_PFNMAP_TRACKING
 | |
| /*
 | |
|  * Interface that can be used by architecture code to keep track of
 | |
|  * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
 | |
|  *
 | |
|  * track_pfn_vma_new is called when a _new_ pfn mapping is being established
 | |
|  * for physical range indicated by pfn and size.
 | |
|  */
 | |
| static inline int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
 | |
| 					unsigned long pfn, unsigned long size)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interface that can be used by architecture code to keep track of
 | |
|  * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
 | |
|  *
 | |
|  * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
 | |
|  * copied through copy_page_range().
 | |
|  */
 | |
| static inline int track_pfn_vma_copy(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interface that can be used by architecture code to keep track of
 | |
|  * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
 | |
|  *
 | |
|  * untrack_pfn_vma is called while unmapping a pfnmap for a region.
 | |
|  * untrack can be called for a specific region indicated by pfn and size or
 | |
|  * can be for the entire vma (in which case size can be zero).
 | |
|  */
 | |
| static inline void untrack_pfn_vma(struct vm_area_struct *vma,
 | |
| 					unsigned long pfn, unsigned long size)
 | |
| {
 | |
| }
 | |
| #else
 | |
| extern int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
 | |
| 				unsigned long pfn, unsigned long size);
 | |
| extern int track_pfn_vma_copy(struct vm_area_struct *vma);
 | |
| extern void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
 | |
| 				unsigned long size);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| 
 | |
| #ifndef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| static inline int pmd_trans_huge(pmd_t pmd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline int pmd_trans_splitting(pmd_t pmd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #ifndef __HAVE_ARCH_PMD_WRITE
 | |
| static inline int pmd_write(pmd_t pmd)
 | |
| {
 | |
| 	BUG();
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* __HAVE_ARCH_PMD_WRITE */
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| 
 | |
| /*
 | |
|  * This function is meant to be used by sites walking pagetables with
 | |
|  * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
 | |
|  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
 | |
|  * into a null pmd and the transhuge page fault can convert a null pmd
 | |
|  * into an hugepmd or into a regular pmd (if the hugepage allocation
 | |
|  * fails). While holding the mmap_sem in read mode the pmd becomes
 | |
|  * stable and stops changing under us only if it's not null and not a
 | |
|  * transhuge pmd. When those races occurs and this function makes a
 | |
|  * difference vs the standard pmd_none_or_clear_bad, the result is
 | |
|  * undefined so behaving like if the pmd was none is safe (because it
 | |
|  * can return none anyway). The compiler level barrier() is critically
 | |
|  * important to compute the two checks atomically on the same pmdval.
 | |
|  */
 | |
| static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
 | |
| {
 | |
| 	/* depend on compiler for an atomic pmd read */
 | |
| 	pmd_t pmdval = *pmd;
 | |
| 	/*
 | |
| 	 * The barrier will stabilize the pmdval in a register or on
 | |
| 	 * the stack so that it will stop changing under the code.
 | |
| 	 */
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	barrier();
 | |
| #endif
 | |
| 	if (pmd_none(pmdval))
 | |
| 		return 1;
 | |
| 	if (unlikely(pmd_bad(pmdval))) {
 | |
| 		if (!pmd_trans_huge(pmdval))
 | |
| 			pmd_clear_bad(pmd);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a noop if Transparent Hugepage Support is not built into
 | |
|  * the kernel. Otherwise it is equivalent to
 | |
|  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
 | |
|  * places that already verified the pmd is not none and they want to
 | |
|  * walk ptes while holding the mmap sem in read mode (write mode don't
 | |
|  * need this). If THP is not enabled, the pmd can't go away under the
 | |
|  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
 | |
|  * run a pmd_trans_unstable before walking the ptes after
 | |
|  * split_huge_page_pmd returns (because it may have run when the pmd
 | |
|  * become null, but then a page fault can map in a THP and not a
 | |
|  * regular page).
 | |
|  */
 | |
| static inline int pmd_trans_unstable(pmd_t *pmd)
 | |
| {
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	return pmd_none_or_trans_huge_or_clear_bad(pmd);
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| #endif /* !__ASSEMBLY__ */
 | |
| 
 | |
| #endif /* _ASM_GENERIC_PGTABLE_H */
 |