 28f23d1f3b
			
		
	
	
	28f23d1f3b
	
	
	
		
			
			Pull x86 "urgent" leftovers from Ingo Molnar: "Pending x86/urgent bits that were not high prio enough to warrant -rc-less v3.3-final inclusion." * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86, efi: Fix pointer math issue in handle_ramdisks() x86/ioapic: Add register level checks to detect bogus io-apic entries x86, mce: Fix rcu splat in drain_mce_log_buffer() x86, memblock: Move mem_hole_size() to .init
		
			
				
	
	
		
			498 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			498 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * NUMA emulation
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/topology.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <asm/dma.h>
 | |
| 
 | |
| #include "numa_internal.h"
 | |
| 
 | |
| static int emu_nid_to_phys[MAX_NUMNODES] __cpuinitdata;
 | |
| static char *emu_cmdline __initdata;
 | |
| 
 | |
| void __init numa_emu_cmdline(char *str)
 | |
| {
 | |
| 	emu_cmdline = str;
 | |
| }
 | |
| 
 | |
| static int __init emu_find_memblk_by_nid(int nid, const struct numa_meminfo *mi)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < mi->nr_blks; i++)
 | |
| 		if (mi->blk[i].nid == nid)
 | |
| 			return i;
 | |
| 	return -ENOENT;
 | |
| }
 | |
| 
 | |
| static u64 __init mem_hole_size(u64 start, u64 end)
 | |
| {
 | |
| 	unsigned long start_pfn = PFN_UP(start);
 | |
| 	unsigned long end_pfn = PFN_DOWN(end);
 | |
| 
 | |
| 	if (start_pfn < end_pfn)
 | |
| 		return PFN_PHYS(absent_pages_in_range(start_pfn, end_pfn));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sets up nid to range from @start to @end.  The return value is -errno if
 | |
|  * something went wrong, 0 otherwise.
 | |
|  */
 | |
| static int __init emu_setup_memblk(struct numa_meminfo *ei,
 | |
| 				   struct numa_meminfo *pi,
 | |
| 				   int nid, int phys_blk, u64 size)
 | |
| {
 | |
| 	struct numa_memblk *eb = &ei->blk[ei->nr_blks];
 | |
| 	struct numa_memblk *pb = &pi->blk[phys_blk];
 | |
| 
 | |
| 	if (ei->nr_blks >= NR_NODE_MEMBLKS) {
 | |
| 		pr_err("NUMA: Too many emulated memblks, failing emulation\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ei->nr_blks++;
 | |
| 	eb->start = pb->start;
 | |
| 	eb->end = pb->start + size;
 | |
| 	eb->nid = nid;
 | |
| 
 | |
| 	if (emu_nid_to_phys[nid] == NUMA_NO_NODE)
 | |
| 		emu_nid_to_phys[nid] = nid;
 | |
| 
 | |
| 	pb->start += size;
 | |
| 	if (pb->start >= pb->end) {
 | |
| 		WARN_ON_ONCE(pb->start > pb->end);
 | |
| 		numa_remove_memblk_from(phys_blk, pi);
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
 | |
| 	       eb->start, eb->end, (eb->end - eb->start) >> 20);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
 | |
|  * to max_addr.  The return value is the number of nodes allocated.
 | |
|  */
 | |
| static int __init split_nodes_interleave(struct numa_meminfo *ei,
 | |
| 					 struct numa_meminfo *pi,
 | |
| 					 u64 addr, u64 max_addr, int nr_nodes)
 | |
| {
 | |
| 	nodemask_t physnode_mask = NODE_MASK_NONE;
 | |
| 	u64 size;
 | |
| 	int big;
 | |
| 	int nid = 0;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	if (nr_nodes <= 0)
 | |
| 		return -1;
 | |
| 	if (nr_nodes > MAX_NUMNODES) {
 | |
| 		pr_info("numa=fake=%d too large, reducing to %d\n",
 | |
| 			nr_nodes, MAX_NUMNODES);
 | |
| 		nr_nodes = MAX_NUMNODES;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate target node size.  x86_32 freaks on __udivdi3() so do
 | |
| 	 * the division in ulong number of pages and convert back.
 | |
| 	 */
 | |
| 	size = max_addr - addr - mem_hole_size(addr, max_addr);
 | |
| 	size = PFN_PHYS((unsigned long)(size >> PAGE_SHIFT) / nr_nodes);
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the number of big nodes that can be allocated as a result
 | |
| 	 * of consolidating the remainder.
 | |
| 	 */
 | |
| 	big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
 | |
| 		FAKE_NODE_MIN_SIZE;
 | |
| 
 | |
| 	size &= FAKE_NODE_MIN_HASH_MASK;
 | |
| 	if (!size) {
 | |
| 		pr_err("Not enough memory for each node.  "
 | |
| 			"NUMA emulation disabled.\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < pi->nr_blks; i++)
 | |
| 		node_set(pi->blk[i].nid, physnode_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Continue to fill physical nodes with fake nodes until there is no
 | |
| 	 * memory left on any of them.
 | |
| 	 */
 | |
| 	while (nodes_weight(physnode_mask)) {
 | |
| 		for_each_node_mask(i, physnode_mask) {
 | |
| 			u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
 | |
| 			u64 start, limit, end;
 | |
| 			int phys_blk;
 | |
| 
 | |
| 			phys_blk = emu_find_memblk_by_nid(i, pi);
 | |
| 			if (phys_blk < 0) {
 | |
| 				node_clear(i, physnode_mask);
 | |
| 				continue;
 | |
| 			}
 | |
| 			start = pi->blk[phys_blk].start;
 | |
| 			limit = pi->blk[phys_blk].end;
 | |
| 			end = start + size;
 | |
| 
 | |
| 			if (nid < big)
 | |
| 				end += FAKE_NODE_MIN_SIZE;
 | |
| 
 | |
| 			/*
 | |
| 			 * Continue to add memory to this fake node if its
 | |
| 			 * non-reserved memory is less than the per-node size.
 | |
| 			 */
 | |
| 			while (end - start - mem_hole_size(start, end) < size) {
 | |
| 				end += FAKE_NODE_MIN_SIZE;
 | |
| 				if (end > limit) {
 | |
| 					end = limit;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * If there won't be at least FAKE_NODE_MIN_SIZE of
 | |
| 			 * non-reserved memory in ZONE_DMA32 for the next node,
 | |
| 			 * this one must extend to the boundary.
 | |
| 			 */
 | |
| 			if (end < dma32_end && dma32_end - end -
 | |
| 			    mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
 | |
| 				end = dma32_end;
 | |
| 
 | |
| 			/*
 | |
| 			 * If there won't be enough non-reserved memory for the
 | |
| 			 * next node, this one must extend to the end of the
 | |
| 			 * physical node.
 | |
| 			 */
 | |
| 			if (limit - end - mem_hole_size(end, limit) < size)
 | |
| 				end = limit;
 | |
| 
 | |
| 			ret = emu_setup_memblk(ei, pi, nid++ % nr_nodes,
 | |
| 					       phys_blk,
 | |
| 					       min(end, limit) - start);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the end address of a node so that there is at least `size' amount of
 | |
|  * non-reserved memory or `max_addr' is reached.
 | |
|  */
 | |
| static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
 | |
| {
 | |
| 	u64 end = start + size;
 | |
| 
 | |
| 	while (end - start - mem_hole_size(start, end) < size) {
 | |
| 		end += FAKE_NODE_MIN_SIZE;
 | |
| 		if (end > max_addr) {
 | |
| 			end = max_addr;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return end;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sets up fake nodes of `size' interleaved over physical nodes ranging from
 | |
|  * `addr' to `max_addr'.  The return value is the number of nodes allocated.
 | |
|  */
 | |
| static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
 | |
| 					      struct numa_meminfo *pi,
 | |
| 					      u64 addr, u64 max_addr, u64 size)
 | |
| {
 | |
| 	nodemask_t physnode_mask = NODE_MASK_NONE;
 | |
| 	u64 min_size;
 | |
| 	int nid = 0;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	if (!size)
 | |
| 		return -1;
 | |
| 	/*
 | |
| 	 * The limit on emulated nodes is MAX_NUMNODES, so the size per node is
 | |
| 	 * increased accordingly if the requested size is too small.  This
 | |
| 	 * creates a uniform distribution of node sizes across the entire
 | |
| 	 * machine (but not necessarily over physical nodes).
 | |
| 	 */
 | |
| 	min_size = (max_addr - addr - mem_hole_size(addr, max_addr)) / MAX_NUMNODES;
 | |
| 	min_size = max(min_size, FAKE_NODE_MIN_SIZE);
 | |
| 	if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
 | |
| 		min_size = (min_size + FAKE_NODE_MIN_SIZE) &
 | |
| 						FAKE_NODE_MIN_HASH_MASK;
 | |
| 	if (size < min_size) {
 | |
| 		pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
 | |
| 			size >> 20, min_size >> 20);
 | |
| 		size = min_size;
 | |
| 	}
 | |
| 	size &= FAKE_NODE_MIN_HASH_MASK;
 | |
| 
 | |
| 	for (i = 0; i < pi->nr_blks; i++)
 | |
| 		node_set(pi->blk[i].nid, physnode_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Fill physical nodes with fake nodes of size until there is no memory
 | |
| 	 * left on any of them.
 | |
| 	 */
 | |
| 	while (nodes_weight(physnode_mask)) {
 | |
| 		for_each_node_mask(i, physnode_mask) {
 | |
| 			u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
 | |
| 			u64 start, limit, end;
 | |
| 			int phys_blk;
 | |
| 
 | |
| 			phys_blk = emu_find_memblk_by_nid(i, pi);
 | |
| 			if (phys_blk < 0) {
 | |
| 				node_clear(i, physnode_mask);
 | |
| 				continue;
 | |
| 			}
 | |
| 			start = pi->blk[phys_blk].start;
 | |
| 			limit = pi->blk[phys_blk].end;
 | |
| 
 | |
| 			end = find_end_of_node(start, limit, size);
 | |
| 			/*
 | |
| 			 * If there won't be at least FAKE_NODE_MIN_SIZE of
 | |
| 			 * non-reserved memory in ZONE_DMA32 for the next node,
 | |
| 			 * this one must extend to the boundary.
 | |
| 			 */
 | |
| 			if (end < dma32_end && dma32_end - end -
 | |
| 			    mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
 | |
| 				end = dma32_end;
 | |
| 
 | |
| 			/*
 | |
| 			 * If there won't be enough non-reserved memory for the
 | |
| 			 * next node, this one must extend to the end of the
 | |
| 			 * physical node.
 | |
| 			 */
 | |
| 			if (limit - end - mem_hole_size(end, limit) < size)
 | |
| 				end = limit;
 | |
| 
 | |
| 			ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES,
 | |
| 					       phys_blk,
 | |
| 					       min(end, limit) - start);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * numa_emulation - Emulate NUMA nodes
 | |
|  * @numa_meminfo: NUMA configuration to massage
 | |
|  * @numa_dist_cnt: The size of the physical NUMA distance table
 | |
|  *
 | |
|  * Emulate NUMA nodes according to the numa=fake kernel parameter.
 | |
|  * @numa_meminfo contains the physical memory configuration and is modified
 | |
|  * to reflect the emulated configuration on success.  @numa_dist_cnt is
 | |
|  * used to determine the size of the physical distance table.
 | |
|  *
 | |
|  * On success, the following modifications are made.
 | |
|  *
 | |
|  * - @numa_meminfo is updated to reflect the emulated nodes.
 | |
|  *
 | |
|  * - __apicid_to_node[] is updated such that APIC IDs are mapped to the
 | |
|  *   emulated nodes.
 | |
|  *
 | |
|  * - NUMA distance table is rebuilt to represent distances between emulated
 | |
|  *   nodes.  The distances are determined considering how emulated nodes
 | |
|  *   are mapped to physical nodes and match the actual distances.
 | |
|  *
 | |
|  * - emu_nid_to_phys[] reflects how emulated nodes are mapped to physical
 | |
|  *   nodes.  This is used by numa_add_cpu() and numa_remove_cpu().
 | |
|  *
 | |
|  * If emulation is not enabled or fails, emu_nid_to_phys[] is filled with
 | |
|  * identity mapping and no other modification is made.
 | |
|  */
 | |
| void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt)
 | |
| {
 | |
| 	static struct numa_meminfo ei __initdata;
 | |
| 	static struct numa_meminfo pi __initdata;
 | |
| 	const u64 max_addr = PFN_PHYS(max_pfn);
 | |
| 	u8 *phys_dist = NULL;
 | |
| 	size_t phys_size = numa_dist_cnt * numa_dist_cnt * sizeof(phys_dist[0]);
 | |
| 	int max_emu_nid, dfl_phys_nid;
 | |
| 	int i, j, ret;
 | |
| 
 | |
| 	if (!emu_cmdline)
 | |
| 		goto no_emu;
 | |
| 
 | |
| 	memset(&ei, 0, sizeof(ei));
 | |
| 	pi = *numa_meminfo;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NUMNODES; i++)
 | |
| 		emu_nid_to_phys[i] = NUMA_NO_NODE;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the numa=fake command-line contains a 'M' or 'G', it represents
 | |
| 	 * the fixed node size.  Otherwise, if it is just a single number N,
 | |
| 	 * split the system RAM into N fake nodes.
 | |
| 	 */
 | |
| 	if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) {
 | |
| 		u64 size;
 | |
| 
 | |
| 		size = memparse(emu_cmdline, &emu_cmdline);
 | |
| 		ret = split_nodes_size_interleave(&ei, &pi, 0, max_addr, size);
 | |
| 	} else {
 | |
| 		unsigned long n;
 | |
| 
 | |
| 		n = simple_strtoul(emu_cmdline, NULL, 0);
 | |
| 		ret = split_nodes_interleave(&ei, &pi, 0, max_addr, n);
 | |
| 	}
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		goto no_emu;
 | |
| 
 | |
| 	if (numa_cleanup_meminfo(&ei) < 0) {
 | |
| 		pr_warning("NUMA: Warning: constructed meminfo invalid, disabling emulation\n");
 | |
| 		goto no_emu;
 | |
| 	}
 | |
| 
 | |
| 	/* copy the physical distance table */
 | |
| 	if (numa_dist_cnt) {
 | |
| 		u64 phys;
 | |
| 
 | |
| 		phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 | |
| 					      phys_size, PAGE_SIZE);
 | |
| 		if (!phys) {
 | |
| 			pr_warning("NUMA: Warning: can't allocate copy of distance table, disabling emulation\n");
 | |
| 			goto no_emu;
 | |
| 		}
 | |
| 		memblock_reserve(phys, phys_size);
 | |
| 		phys_dist = __va(phys);
 | |
| 
 | |
| 		for (i = 0; i < numa_dist_cnt; i++)
 | |
| 			for (j = 0; j < numa_dist_cnt; j++)
 | |
| 				phys_dist[i * numa_dist_cnt + j] =
 | |
| 					node_distance(i, j);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the max emulated nid and the default phys nid to use
 | |
| 	 * for unmapped nodes.
 | |
| 	 */
 | |
| 	max_emu_nid = 0;
 | |
| 	dfl_phys_nid = NUMA_NO_NODE;
 | |
| 	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) {
 | |
| 		if (emu_nid_to_phys[i] != NUMA_NO_NODE) {
 | |
| 			max_emu_nid = i;
 | |
| 			if (dfl_phys_nid == NUMA_NO_NODE)
 | |
| 				dfl_phys_nid = emu_nid_to_phys[i];
 | |
| 		}
 | |
| 	}
 | |
| 	if (dfl_phys_nid == NUMA_NO_NODE) {
 | |
| 		pr_warning("NUMA: Warning: can't determine default physical node, disabling emulation\n");
 | |
| 		goto no_emu;
 | |
| 	}
 | |
| 
 | |
| 	/* commit */
 | |
| 	*numa_meminfo = ei;
 | |
| 
 | |
| 	/*
 | |
| 	 * Transform __apicid_to_node table to use emulated nids by
 | |
| 	 * reverse-mapping phys_nid.  The maps should always exist but fall
 | |
| 	 * back to zero just in case.
 | |
| 	 */
 | |
| 	for (i = 0; i < ARRAY_SIZE(__apicid_to_node); i++) {
 | |
| 		if (__apicid_to_node[i] == NUMA_NO_NODE)
 | |
| 			continue;
 | |
| 		for (j = 0; j < ARRAY_SIZE(emu_nid_to_phys); j++)
 | |
| 			if (__apicid_to_node[i] == emu_nid_to_phys[j])
 | |
| 				break;
 | |
| 		__apicid_to_node[i] = j < ARRAY_SIZE(emu_nid_to_phys) ? j : 0;
 | |
| 	}
 | |
| 
 | |
| 	/* make sure all emulated nodes are mapped to a physical node */
 | |
| 	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
 | |
| 		if (emu_nid_to_phys[i] == NUMA_NO_NODE)
 | |
| 			emu_nid_to_phys[i] = dfl_phys_nid;
 | |
| 
 | |
| 	/* transform distance table */
 | |
| 	numa_reset_distance();
 | |
| 	for (i = 0; i < max_emu_nid + 1; i++) {
 | |
| 		for (j = 0; j < max_emu_nid + 1; j++) {
 | |
| 			int physi = emu_nid_to_phys[i];
 | |
| 			int physj = emu_nid_to_phys[j];
 | |
| 			int dist;
 | |
| 
 | |
| 			if (physi >= numa_dist_cnt || physj >= numa_dist_cnt)
 | |
| 				dist = physi == physj ?
 | |
| 					LOCAL_DISTANCE : REMOTE_DISTANCE;
 | |
| 			else
 | |
| 				dist = phys_dist[physi * numa_dist_cnt + physj];
 | |
| 
 | |
| 			numa_set_distance(i, j, dist);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* free the copied physical distance table */
 | |
| 	if (phys_dist)
 | |
| 		memblock_free(__pa(phys_dist), phys_size);
 | |
| 	return;
 | |
| 
 | |
| no_emu:
 | |
| 	/* No emulation.  Build identity emu_nid_to_phys[] for numa_add_cpu() */
 | |
| 	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
 | |
| 		emu_nid_to_phys[i] = i;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_DEBUG_PER_CPU_MAPS
 | |
| void __cpuinit numa_add_cpu(int cpu)
 | |
| {
 | |
| 	int physnid, nid;
 | |
| 
 | |
| 	nid = early_cpu_to_node(cpu);
 | |
| 	BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
 | |
| 
 | |
| 	physnid = emu_nid_to_phys[nid];
 | |
| 
 | |
| 	/*
 | |
| 	 * Map the cpu to each emulated node that is allocated on the physical
 | |
| 	 * node of the cpu's apic id.
 | |
| 	 */
 | |
| 	for_each_online_node(nid)
 | |
| 		if (emu_nid_to_phys[nid] == physnid)
 | |
| 			cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
 | |
| }
 | |
| 
 | |
| void __cpuinit numa_remove_cpu(int cpu)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_online_node(i)
 | |
| 		cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
 | |
| }
 | |
| #else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
 | |
| static void __cpuinit numa_set_cpumask(int cpu, bool enable)
 | |
| {
 | |
| 	int nid, physnid;
 | |
| 
 | |
| 	nid = early_cpu_to_node(cpu);
 | |
| 	if (nid == NUMA_NO_NODE) {
 | |
| 		/* early_cpu_to_node() already emits a warning and trace */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	physnid = emu_nid_to_phys[nid];
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		if (emu_nid_to_phys[nid] != physnid)
 | |
| 			continue;
 | |
| 
 | |
| 		debug_cpumask_set_cpu(cpu, nid, enable);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __cpuinit numa_add_cpu(int cpu)
 | |
| {
 | |
| 	numa_set_cpumask(cpu, true);
 | |
| }
 | |
| 
 | |
| void __cpuinit numa_remove_cpu(int cpu)
 | |
| {
 | |
| 	numa_set_cpumask(cpu, false);
 | |
| }
 | |
| #endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
 |