 24aa07882b
			
		
	
	
	24aa07882b
	
	
	
		
			
			Other than sanity check and debug message, the x86 specific version of memblock reserve/free functions are simple wrappers around the generic versions - memblock_reserve/free(). This patch adds debug messages with caller identification to the generic versions and replaces x86 specific ones and kills them. arch/x86/include/asm/memblock.h and arch/x86/mm/memblock.c are empty after this change and removed. Signed-off-by: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/1310462166-31469-14-git-send-email-tj@kernel.org Cc: Yinghai Lu <yinghai@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
		
			
				
	
	
		
			265 lines
		
	
	
	
		
			8.3 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			265 lines
		
	
	
	
		
			8.3 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
 | |
|  * August 2002: added remote node KVA remap - Martin J. Bligh 
 | |
|  *
 | |
|  * Copyright (C) 2002, IBM Corp.
 | |
|  *
 | |
|  * All rights reserved.          
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 | |
|  * NON INFRINGEMENT.  See the GNU General Public License for more
 | |
|  * details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/module.h>
 | |
| 
 | |
| #include "numa_internal.h"
 | |
| 
 | |
| #ifdef CONFIG_DISCONTIGMEM
 | |
| /*
 | |
|  * 4) physnode_map     - the mapping between a pfn and owning node
 | |
|  * physnode_map keeps track of the physical memory layout of a generic
 | |
|  * numa node on a 64Mb break (each element of the array will
 | |
|  * represent 64Mb of memory and will be marked by the node id.  so,
 | |
|  * if the first gig is on node 0, and the second gig is on node 1
 | |
|  * physnode_map will contain:
 | |
|  *
 | |
|  *     physnode_map[0-15] = 0;
 | |
|  *     physnode_map[16-31] = 1;
 | |
|  *     physnode_map[32- ] = -1;
 | |
|  */
 | |
| s8 physnode_map[MAX_SECTIONS] __read_mostly = { [0 ... (MAX_SECTIONS - 1)] = -1};
 | |
| EXPORT_SYMBOL(physnode_map);
 | |
| 
 | |
| void memory_present(int nid, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
 | |
| 			nid, start, end);
 | |
| 	printk(KERN_DEBUG "  Setting physnode_map array to node %d for pfns:\n", nid);
 | |
| 	printk(KERN_DEBUG "  ");
 | |
| 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
 | |
| 		physnode_map[pfn / PAGES_PER_SECTION] = nid;
 | |
| 		printk(KERN_CONT "%lx ", pfn);
 | |
| 	}
 | |
| 	printk(KERN_CONT "\n");
 | |
| }
 | |
| 
 | |
| unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
 | |
| 					      unsigned long end_pfn)
 | |
| {
 | |
| 	unsigned long nr_pages = end_pfn - start_pfn;
 | |
| 
 | |
| 	if (!nr_pages)
 | |
| 		return 0;
 | |
| 
 | |
| 	return (nr_pages + 1) * sizeof(struct page);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern unsigned long highend_pfn, highstart_pfn;
 | |
| 
 | |
| #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
 | |
| 
 | |
| static void *node_remap_start_vaddr[MAX_NUMNODES];
 | |
| void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
 | |
| 
 | |
| /*
 | |
|  * Remap memory allocator
 | |
|  */
 | |
| static unsigned long node_remap_start_pfn[MAX_NUMNODES];
 | |
| static void *node_remap_end_vaddr[MAX_NUMNODES];
 | |
| static void *node_remap_alloc_vaddr[MAX_NUMNODES];
 | |
| 
 | |
| /**
 | |
|  * alloc_remap - Allocate remapped memory
 | |
|  * @nid: NUMA node to allocate memory from
 | |
|  * @size: The size of allocation
 | |
|  *
 | |
|  * Allocate @size bytes from the remap area of NUMA node @nid.  The
 | |
|  * size of the remap area is predetermined by init_alloc_remap() and
 | |
|  * only the callers considered there should call this function.  For
 | |
|  * more info, please read the comment on top of init_alloc_remap().
 | |
|  *
 | |
|  * The caller must be ready to handle allocation failure from this
 | |
|  * function and fall back to regular memory allocator in such cases.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * Single CPU early boot context.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Pointer to the allocated memory on success, %NULL on failure.
 | |
|  */
 | |
| void *alloc_remap(int nid, unsigned long size)
 | |
| {
 | |
| 	void *allocation = node_remap_alloc_vaddr[nid];
 | |
| 
 | |
| 	size = ALIGN(size, L1_CACHE_BYTES);
 | |
| 
 | |
| 	if (!allocation || (allocation + size) > node_remap_end_vaddr[nid])
 | |
| 		return NULL;
 | |
| 
 | |
| 	node_remap_alloc_vaddr[nid] += size;
 | |
| 	memset(allocation, 0, size);
 | |
| 
 | |
| 	return allocation;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| /**
 | |
|  * resume_map_numa_kva - add KVA mapping to the temporary page tables created
 | |
|  *                       during resume from hibernation
 | |
|  * @pgd_base - temporary resume page directory
 | |
|  */
 | |
| void resume_map_numa_kva(pgd_t *pgd_base)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		unsigned long start_va, start_pfn, nr_pages, pfn;
 | |
| 
 | |
| 		start_va = (unsigned long)node_remap_start_vaddr[node];
 | |
| 		start_pfn = node_remap_start_pfn[node];
 | |
| 		nr_pages = (node_remap_end_vaddr[node] -
 | |
| 			    node_remap_start_vaddr[node]) >> PAGE_SHIFT;
 | |
| 
 | |
| 		printk(KERN_DEBUG "%s: node %d\n", __func__, node);
 | |
| 
 | |
| 		for (pfn = 0; pfn < nr_pages; pfn += PTRS_PER_PTE) {
 | |
| 			unsigned long vaddr = start_va + (pfn << PAGE_SHIFT);
 | |
| 			pgd_t *pgd = pgd_base + pgd_index(vaddr);
 | |
| 			pud_t *pud = pud_offset(pgd, vaddr);
 | |
| 			pmd_t *pmd = pmd_offset(pud, vaddr);
 | |
| 
 | |
| 			set_pmd(pmd, pfn_pmd(start_pfn + pfn,
 | |
| 						PAGE_KERNEL_LARGE_EXEC));
 | |
| 
 | |
| 			printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n",
 | |
| 				__func__, vaddr, start_pfn + pfn);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * init_alloc_remap - Initialize remap allocator for a NUMA node
 | |
|  * @nid: NUMA node to initizlie remap allocator for
 | |
|  *
 | |
|  * NUMA nodes may end up without any lowmem.  As allocating pgdat and
 | |
|  * memmap on a different node with lowmem is inefficient, a special
 | |
|  * remap allocator is implemented which can be used by alloc_remap().
 | |
|  *
 | |
|  * For each node, the amount of memory which will be necessary for
 | |
|  * pgdat and memmap is calculated and two memory areas of the size are
 | |
|  * allocated - one in the node and the other in lowmem; then, the area
 | |
|  * in the node is remapped to the lowmem area.
 | |
|  *
 | |
|  * As pgdat and memmap must be allocated in lowmem anyway, this
 | |
|  * doesn't waste lowmem address space; however, the actual lowmem
 | |
|  * which gets remapped over is wasted.  The amount shouldn't be
 | |
|  * problematic on machines this feature will be used.
 | |
|  *
 | |
|  * Initialization failure isn't fatal.  alloc_remap() is used
 | |
|  * opportunistically and the callers will fall back to other memory
 | |
|  * allocation mechanisms on failure.
 | |
|  */
 | |
| void __init init_alloc_remap(int nid, u64 start, u64 end)
 | |
| {
 | |
| 	unsigned long start_pfn = start >> PAGE_SHIFT;
 | |
| 	unsigned long end_pfn = end >> PAGE_SHIFT;
 | |
| 	unsigned long size, pfn;
 | |
| 	u64 node_pa, remap_pa;
 | |
| 	void *remap_va;
 | |
| 
 | |
| 	/*
 | |
| 	 * The acpi/srat node info can show hot-add memroy zones where
 | |
| 	 * memory could be added but not currently present.
 | |
| 	 */
 | |
| 	printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
 | |
| 	       nid, start_pfn, end_pfn);
 | |
| 
 | |
| 	/* calculate the necessary space aligned to large page size */
 | |
| 	size = node_memmap_size_bytes(nid, start_pfn, end_pfn);
 | |
| 	size += ALIGN(sizeof(pg_data_t), PAGE_SIZE);
 | |
| 	size = ALIGN(size, LARGE_PAGE_BYTES);
 | |
| 
 | |
| 	/* allocate node memory and the lowmem remap area */
 | |
| 	node_pa = memblock_find_in_range(start, end, size, LARGE_PAGE_BYTES);
 | |
| 	if (!node_pa) {
 | |
| 		pr_warning("remap_alloc: failed to allocate %lu bytes for node %d\n",
 | |
| 			   size, nid);
 | |
| 		return;
 | |
| 	}
 | |
| 	memblock_reserve(node_pa, size);
 | |
| 
 | |
| 	remap_pa = memblock_find_in_range(min_low_pfn << PAGE_SHIFT,
 | |
| 					  max_low_pfn << PAGE_SHIFT,
 | |
| 					  size, LARGE_PAGE_BYTES);
 | |
| 	if (!remap_pa) {
 | |
| 		pr_warning("remap_alloc: failed to allocate %lu bytes remap area for node %d\n",
 | |
| 			   size, nid);
 | |
| 		memblock_free(node_pa, size);
 | |
| 		return;
 | |
| 	}
 | |
| 	memblock_reserve(remap_pa, size);
 | |
| 	remap_va = phys_to_virt(remap_pa);
 | |
| 
 | |
| 	/* perform actual remap */
 | |
| 	for (pfn = 0; pfn < size >> PAGE_SHIFT; pfn += PTRS_PER_PTE)
 | |
| 		set_pmd_pfn((unsigned long)remap_va + (pfn << PAGE_SHIFT),
 | |
| 			    (node_pa >> PAGE_SHIFT) + pfn,
 | |
| 			    PAGE_KERNEL_LARGE);
 | |
| 
 | |
| 	/* initialize remap allocator parameters */
 | |
| 	node_remap_start_pfn[nid] = node_pa >> PAGE_SHIFT;
 | |
| 	node_remap_start_vaddr[nid] = remap_va;
 | |
| 	node_remap_end_vaddr[nid] = remap_va + size;
 | |
| 	node_remap_alloc_vaddr[nid] = remap_va;
 | |
| 
 | |
| 	printk(KERN_DEBUG "remap_alloc: node %d [%08llx-%08llx) -> [%p-%p)\n",
 | |
| 	       nid, node_pa, node_pa + size, remap_va, remap_va + size);
 | |
| }
 | |
| 
 | |
| void __init initmem_init(void)
 | |
| {
 | |
| 	x86_numa_init();
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	highstart_pfn = highend_pfn = max_pfn;
 | |
| 	if (max_pfn > max_low_pfn)
 | |
| 		highstart_pfn = max_low_pfn;
 | |
| 	printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
 | |
| 	       pages_to_mb(highend_pfn - highstart_pfn));
 | |
| 	num_physpages = highend_pfn;
 | |
| 	high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
 | |
| #else
 | |
| 	num_physpages = max_low_pfn;
 | |
| 	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
 | |
| #endif
 | |
| 	printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
 | |
| 			pages_to_mb(max_low_pfn));
 | |
| 	printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
 | |
| 			max_low_pfn, highstart_pfn);
 | |
| 
 | |
| 	printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
 | |
| 			(ulong) pfn_to_kaddr(max_low_pfn));
 | |
| 
 | |
| 	printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
 | |
| 			(ulong) pfn_to_kaddr(highstart_pfn));
 | |
| 
 | |
| 	setup_bootmem_allocator();
 | |
| }
 |