Pull EDAC fixes from Borislav Petkov: - EDAC core error path fix, from Denis Kirjanov. - Generalization of AMD MCE bank names and some minor error reporting improvements. - EDAC core cleanups and simplifications, from Wei Yongjun. - amd64_edac fixes for sysfs-reported values, from Josh Hunt. - some heavy amd64_edac error reporting path shaving, leading to removing a bunch of code. - amd64_edac error injection method improvements. - EDAC core cleanups and fixes * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp: (24 commits) EDAC, pci_sysfs: Use for_each_pci_dev to simplify the code EDAC: Handle error path in edac_mc_sysfs_init() properly MCE, AMD: Dump error status MCE, AMD: Report decoded error type first MCE, AMD: Dump CPU f/m/s triple with the error MCE, AMD: Remove functional unit references EDAC: Convert to use simple_open() EDAC, Calxeda highbank: Convert to use simple_open() EDAC: Fix mc size reported in sysfs EDAC: Fix csrow size reported in sysfs EDAC: Pass mci parent EDAC: Add memory controller flags amd64_edac: Fix csrows size and pages computation amd64_edac: Use DBAM_DIMM macro amd64_edac: Fix K8 chip select reporting amd64_edac: Reorganize error reporting path amd64_edac: Do not check whether error address is valid amd64_edac: Improve error injection amd64_edac: Cleanup error injection code amd64_edac: Small fixlets and cleanups ...
		
			
				
	
	
		
			1246 lines
		
	
	
	
		
			32 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1246 lines
		
	
	
	
		
			32 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * edac_mc kernel module
 | 
						|
 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
 | 
						|
 * This file may be distributed under the terms of the
 | 
						|
 * GNU General Public License.
 | 
						|
 *
 | 
						|
 * Written by Thayne Harbaugh
 | 
						|
 * Based on work by Dan Hollis <goemon at anime dot net> and others.
 | 
						|
 *	http://www.anime.net/~goemon/linux-ecc/
 | 
						|
 *
 | 
						|
 * Modified by Dave Peterson and Doug Thompson
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/proc_fs.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/sysctl.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/timer.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/jiffies.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/list.h>
 | 
						|
#include <linux/ctype.h>
 | 
						|
#include <linux/edac.h>
 | 
						|
#include <linux/bitops.h>
 | 
						|
#include <asm/uaccess.h>
 | 
						|
#include <asm/page.h>
 | 
						|
#include <asm/edac.h>
 | 
						|
#include "edac_core.h"
 | 
						|
#include "edac_module.h"
 | 
						|
 | 
						|
#define CREATE_TRACE_POINTS
 | 
						|
#define TRACE_INCLUDE_PATH ../../include/ras
 | 
						|
#include <ras/ras_event.h>
 | 
						|
 | 
						|
/* lock to memory controller's control array */
 | 
						|
static DEFINE_MUTEX(mem_ctls_mutex);
 | 
						|
static LIST_HEAD(mc_devices);
 | 
						|
 | 
						|
unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
 | 
						|
			         unsigned len)
 | 
						|
{
 | 
						|
	struct mem_ctl_info *mci = dimm->mci;
 | 
						|
	int i, n, count = 0;
 | 
						|
	char *p = buf;
 | 
						|
 | 
						|
	for (i = 0; i < mci->n_layers; i++) {
 | 
						|
		n = snprintf(p, len, "%s %d ",
 | 
						|
			      edac_layer_name[mci->layers[i].type],
 | 
						|
			      dimm->location[i]);
 | 
						|
		p += n;
 | 
						|
		len -= n;
 | 
						|
		count += n;
 | 
						|
		if (!len)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return count;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_EDAC_DEBUG
 | 
						|
 | 
						|
static void edac_mc_dump_channel(struct rank_info *chan)
 | 
						|
{
 | 
						|
	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
 | 
						|
	edac_dbg(4, "    channel = %p\n", chan);
 | 
						|
	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
 | 
						|
	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
 | 
						|
}
 | 
						|
 | 
						|
static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
 | 
						|
{
 | 
						|
	char location[80];
 | 
						|
 | 
						|
	edac_dimm_info_location(dimm, location, sizeof(location));
 | 
						|
 | 
						|
	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
 | 
						|
		 dimm->mci->mem_is_per_rank ? "rank" : "dimm",
 | 
						|
		 number, location, dimm->csrow, dimm->cschannel);
 | 
						|
	edac_dbg(4, "  dimm = %p\n", dimm);
 | 
						|
	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
 | 
						|
	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
 | 
						|
	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
 | 
						|
	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
 | 
						|
}
 | 
						|
 | 
						|
static void edac_mc_dump_csrow(struct csrow_info *csrow)
 | 
						|
{
 | 
						|
	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
 | 
						|
	edac_dbg(4, "  csrow = %p\n", csrow);
 | 
						|
	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
 | 
						|
	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
 | 
						|
	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
 | 
						|
	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
 | 
						|
	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
 | 
						|
	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
 | 
						|
}
 | 
						|
 | 
						|
static void edac_mc_dump_mci(struct mem_ctl_info *mci)
 | 
						|
{
 | 
						|
	edac_dbg(3, "\tmci = %p\n", mci);
 | 
						|
	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
 | 
						|
	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
 | 
						|
	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
 | 
						|
	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
 | 
						|
	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
 | 
						|
		 mci->nr_csrows, mci->csrows);
 | 
						|
	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
 | 
						|
		 mci->tot_dimms, mci->dimms);
 | 
						|
	edac_dbg(3, "\tdev = %p\n", mci->pdev);
 | 
						|
	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
 | 
						|
		 mci->mod_name, mci->ctl_name);
 | 
						|
	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
 | 
						|
}
 | 
						|
 | 
						|
#endif				/* CONFIG_EDAC_DEBUG */
 | 
						|
 | 
						|
/*
 | 
						|
 * keep those in sync with the enum mem_type
 | 
						|
 */
 | 
						|
const char *edac_mem_types[] = {
 | 
						|
	"Empty csrow",
 | 
						|
	"Reserved csrow type",
 | 
						|
	"Unknown csrow type",
 | 
						|
	"Fast page mode RAM",
 | 
						|
	"Extended data out RAM",
 | 
						|
	"Burst Extended data out RAM",
 | 
						|
	"Single data rate SDRAM",
 | 
						|
	"Registered single data rate SDRAM",
 | 
						|
	"Double data rate SDRAM",
 | 
						|
	"Registered Double data rate SDRAM",
 | 
						|
	"Rambus DRAM",
 | 
						|
	"Unbuffered DDR2 RAM",
 | 
						|
	"Fully buffered DDR2",
 | 
						|
	"Registered DDR2 RAM",
 | 
						|
	"Rambus XDR",
 | 
						|
	"Unbuffered DDR3 RAM",
 | 
						|
	"Registered DDR3 RAM",
 | 
						|
};
 | 
						|
EXPORT_SYMBOL_GPL(edac_mem_types);
 | 
						|
 | 
						|
/**
 | 
						|
 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
 | 
						|
 * @p:		pointer to a pointer with the memory offset to be used. At
 | 
						|
 *		return, this will be incremented to point to the next offset
 | 
						|
 * @size:	Size of the data structure to be reserved
 | 
						|
 * @n_elems:	Number of elements that should be reserved
 | 
						|
 *
 | 
						|
 * If 'size' is a constant, the compiler will optimize this whole function
 | 
						|
 * down to either a no-op or the addition of a constant to the value of '*p'.
 | 
						|
 *
 | 
						|
 * The 'p' pointer is absolutely needed to keep the proper advancing
 | 
						|
 * further in memory to the proper offsets when allocating the struct along
 | 
						|
 * with its embedded structs, as edac_device_alloc_ctl_info() does it
 | 
						|
 * above, for example.
 | 
						|
 *
 | 
						|
 * At return, the pointer 'p' will be incremented to be used on a next call
 | 
						|
 * to this function.
 | 
						|
 */
 | 
						|
void *edac_align_ptr(void **p, unsigned size, int n_elems)
 | 
						|
{
 | 
						|
	unsigned align, r;
 | 
						|
	void *ptr = *p;
 | 
						|
 | 
						|
	*p += size * n_elems;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
 | 
						|
	 * 'size'.  Adjust 'p' so that its alignment is at least as
 | 
						|
	 * stringent as what the compiler would provide for X and return
 | 
						|
	 * the aligned result.
 | 
						|
	 * Here we assume that the alignment of a "long long" is the most
 | 
						|
	 * stringent alignment that the compiler will ever provide by default.
 | 
						|
	 * As far as I know, this is a reasonable assumption.
 | 
						|
	 */
 | 
						|
	if (size > sizeof(long))
 | 
						|
		align = sizeof(long long);
 | 
						|
	else if (size > sizeof(int))
 | 
						|
		align = sizeof(long);
 | 
						|
	else if (size > sizeof(short))
 | 
						|
		align = sizeof(int);
 | 
						|
	else if (size > sizeof(char))
 | 
						|
		align = sizeof(short);
 | 
						|
	else
 | 
						|
		return (char *)ptr;
 | 
						|
 | 
						|
	r = (unsigned long)p % align;
 | 
						|
 | 
						|
	if (r == 0)
 | 
						|
		return (char *)ptr;
 | 
						|
 | 
						|
	*p += align - r;
 | 
						|
 | 
						|
	return (void *)(((unsigned long)ptr) + align - r);
 | 
						|
}
 | 
						|
 | 
						|
static void _edac_mc_free(struct mem_ctl_info *mci)
 | 
						|
{
 | 
						|
	int i, chn, row;
 | 
						|
	struct csrow_info *csr;
 | 
						|
	const unsigned int tot_dimms = mci->tot_dimms;
 | 
						|
	const unsigned int tot_channels = mci->num_cschannel;
 | 
						|
	const unsigned int tot_csrows = mci->nr_csrows;
 | 
						|
 | 
						|
	if (mci->dimms) {
 | 
						|
		for (i = 0; i < tot_dimms; i++)
 | 
						|
			kfree(mci->dimms[i]);
 | 
						|
		kfree(mci->dimms);
 | 
						|
	}
 | 
						|
	if (mci->csrows) {
 | 
						|
		for (row = 0; row < tot_csrows; row++) {
 | 
						|
			csr = mci->csrows[row];
 | 
						|
			if (csr) {
 | 
						|
				if (csr->channels) {
 | 
						|
					for (chn = 0; chn < tot_channels; chn++)
 | 
						|
						kfree(csr->channels[chn]);
 | 
						|
					kfree(csr->channels);
 | 
						|
				}
 | 
						|
				kfree(csr);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		kfree(mci->csrows);
 | 
						|
	}
 | 
						|
	kfree(mci);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
 | 
						|
 * @mc_num:		Memory controller number
 | 
						|
 * @n_layers:		Number of MC hierarchy layers
 | 
						|
 * layers:		Describes each layer as seen by the Memory Controller
 | 
						|
 * @size_pvt:		size of private storage needed
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * Everything is kmalloc'ed as one big chunk - more efficient.
 | 
						|
 * Only can be used if all structures have the same lifetime - otherwise
 | 
						|
 * you have to allocate and initialize your own structures.
 | 
						|
 *
 | 
						|
 * Use edac_mc_free() to free mc structures allocated by this function.
 | 
						|
 *
 | 
						|
 * NOTE: drivers handle multi-rank memories in different ways: in some
 | 
						|
 * drivers, one multi-rank memory stick is mapped as one entry, while, in
 | 
						|
 * others, a single multi-rank memory stick would be mapped into several
 | 
						|
 * entries. Currently, this function will allocate multiple struct dimm_info
 | 
						|
 * on such scenarios, as grouping the multiple ranks require drivers change.
 | 
						|
 *
 | 
						|
 * Returns:
 | 
						|
 *	On failure: NULL
 | 
						|
 *	On success: struct mem_ctl_info pointer
 | 
						|
 */
 | 
						|
struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
 | 
						|
				   unsigned n_layers,
 | 
						|
				   struct edac_mc_layer *layers,
 | 
						|
				   unsigned sz_pvt)
 | 
						|
{
 | 
						|
	struct mem_ctl_info *mci;
 | 
						|
	struct edac_mc_layer *layer;
 | 
						|
	struct csrow_info *csr;
 | 
						|
	struct rank_info *chan;
 | 
						|
	struct dimm_info *dimm;
 | 
						|
	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
 | 
						|
	unsigned pos[EDAC_MAX_LAYERS];
 | 
						|
	unsigned size, tot_dimms = 1, count = 1;
 | 
						|
	unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
 | 
						|
	void *pvt, *p, *ptr = NULL;
 | 
						|
	int i, j, row, chn, n, len, off;
 | 
						|
	bool per_rank = false;
 | 
						|
 | 
						|
	BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
 | 
						|
	/*
 | 
						|
	 * Calculate the total amount of dimms and csrows/cschannels while
 | 
						|
	 * in the old API emulation mode
 | 
						|
	 */
 | 
						|
	for (i = 0; i < n_layers; i++) {
 | 
						|
		tot_dimms *= layers[i].size;
 | 
						|
		if (layers[i].is_virt_csrow)
 | 
						|
			tot_csrows *= layers[i].size;
 | 
						|
		else
 | 
						|
			tot_channels *= layers[i].size;
 | 
						|
 | 
						|
		if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
 | 
						|
			per_rank = true;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Figure out the offsets of the various items from the start of an mc
 | 
						|
	 * structure.  We want the alignment of each item to be at least as
 | 
						|
	 * stringent as what the compiler would provide if we could simply
 | 
						|
	 * hardcode everything into a single struct.
 | 
						|
	 */
 | 
						|
	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
 | 
						|
	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
 | 
						|
	for (i = 0; i < n_layers; i++) {
 | 
						|
		count *= layers[i].size;
 | 
						|
		edac_dbg(4, "errcount layer %d size %d\n", i, count);
 | 
						|
		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
 | 
						|
		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
 | 
						|
		tot_errcount += 2 * count;
 | 
						|
	}
 | 
						|
 | 
						|
	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
 | 
						|
	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
 | 
						|
	size = ((unsigned long)pvt) + sz_pvt;
 | 
						|
 | 
						|
	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
 | 
						|
		 size,
 | 
						|
		 tot_dimms,
 | 
						|
		 per_rank ? "ranks" : "dimms",
 | 
						|
		 tot_csrows * tot_channels);
 | 
						|
 | 
						|
	mci = kzalloc(size, GFP_KERNEL);
 | 
						|
	if (mci == NULL)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/* Adjust pointers so they point within the memory we just allocated
 | 
						|
	 * rather than an imaginary chunk of memory located at address 0.
 | 
						|
	 */
 | 
						|
	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
 | 
						|
	for (i = 0; i < n_layers; i++) {
 | 
						|
		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
 | 
						|
		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
 | 
						|
	}
 | 
						|
	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
 | 
						|
 | 
						|
	/* setup index and various internal pointers */
 | 
						|
	mci->mc_idx = mc_num;
 | 
						|
	mci->tot_dimms = tot_dimms;
 | 
						|
	mci->pvt_info = pvt;
 | 
						|
	mci->n_layers = n_layers;
 | 
						|
	mci->layers = layer;
 | 
						|
	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
 | 
						|
	mci->nr_csrows = tot_csrows;
 | 
						|
	mci->num_cschannel = tot_channels;
 | 
						|
	mci->mem_is_per_rank = per_rank;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Alocate and fill the csrow/channels structs
 | 
						|
	 */
 | 
						|
	mci->csrows = kcalloc(sizeof(*mci->csrows), tot_csrows, GFP_KERNEL);
 | 
						|
	if (!mci->csrows)
 | 
						|
		goto error;
 | 
						|
	for (row = 0; row < tot_csrows; row++) {
 | 
						|
		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
 | 
						|
		if (!csr)
 | 
						|
			goto error;
 | 
						|
		mci->csrows[row] = csr;
 | 
						|
		csr->csrow_idx = row;
 | 
						|
		csr->mci = mci;
 | 
						|
		csr->nr_channels = tot_channels;
 | 
						|
		csr->channels = kcalloc(sizeof(*csr->channels), tot_channels,
 | 
						|
					GFP_KERNEL);
 | 
						|
		if (!csr->channels)
 | 
						|
			goto error;
 | 
						|
 | 
						|
		for (chn = 0; chn < tot_channels; chn++) {
 | 
						|
			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
 | 
						|
			if (!chan)
 | 
						|
				goto error;
 | 
						|
			csr->channels[chn] = chan;
 | 
						|
			chan->chan_idx = chn;
 | 
						|
			chan->csrow = csr;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate and fill the dimm structs
 | 
						|
	 */
 | 
						|
	mci->dimms  = kcalloc(sizeof(*mci->dimms), tot_dimms, GFP_KERNEL);
 | 
						|
	if (!mci->dimms)
 | 
						|
		goto error;
 | 
						|
 | 
						|
	memset(&pos, 0, sizeof(pos));
 | 
						|
	row = 0;
 | 
						|
	chn = 0;
 | 
						|
	for (i = 0; i < tot_dimms; i++) {
 | 
						|
		chan = mci->csrows[row]->channels[chn];
 | 
						|
		off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
 | 
						|
		if (off < 0 || off >= tot_dimms) {
 | 
						|
			edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
 | 
						|
		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
 | 
						|
		if (!dimm)
 | 
						|
			goto error;
 | 
						|
		mci->dimms[off] = dimm;
 | 
						|
		dimm->mci = mci;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Copy DIMM location and initialize it.
 | 
						|
		 */
 | 
						|
		len = sizeof(dimm->label);
 | 
						|
		p = dimm->label;
 | 
						|
		n = snprintf(p, len, "mc#%u", mc_num);
 | 
						|
		p += n;
 | 
						|
		len -= n;
 | 
						|
		for (j = 0; j < n_layers; j++) {
 | 
						|
			n = snprintf(p, len, "%s#%u",
 | 
						|
				     edac_layer_name[layers[j].type],
 | 
						|
				     pos[j]);
 | 
						|
			p += n;
 | 
						|
			len -= n;
 | 
						|
			dimm->location[j] = pos[j];
 | 
						|
 | 
						|
			if (len <= 0)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Link it to the csrows old API data */
 | 
						|
		chan->dimm = dimm;
 | 
						|
		dimm->csrow = row;
 | 
						|
		dimm->cschannel = chn;
 | 
						|
 | 
						|
		/* Increment csrow location */
 | 
						|
		if (layers[0].is_virt_csrow) {
 | 
						|
			chn++;
 | 
						|
			if (chn == tot_channels) {
 | 
						|
				chn = 0;
 | 
						|
				row++;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			row++;
 | 
						|
			if (row == tot_csrows) {
 | 
						|
				row = 0;
 | 
						|
				chn++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* Increment dimm location */
 | 
						|
		for (j = n_layers - 1; j >= 0; j--) {
 | 
						|
			pos[j]++;
 | 
						|
			if (pos[j] < layers[j].size)
 | 
						|
				break;
 | 
						|
			pos[j] = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	mci->op_state = OP_ALLOC;
 | 
						|
 | 
						|
	/* at this point, the root kobj is valid, and in order to
 | 
						|
	 * 'free' the object, then the function:
 | 
						|
	 *      edac_mc_unregister_sysfs_main_kobj() must be called
 | 
						|
	 * which will perform kobj unregistration and the actual free
 | 
						|
	 * will occur during the kobject callback operation
 | 
						|
	 */
 | 
						|
 | 
						|
	return mci;
 | 
						|
 | 
						|
error:
 | 
						|
	_edac_mc_free(mci);
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(edac_mc_alloc);
 | 
						|
 | 
						|
/**
 | 
						|
 * edac_mc_free
 | 
						|
 *	'Free' a previously allocated 'mci' structure
 | 
						|
 * @mci: pointer to a struct mem_ctl_info structure
 | 
						|
 */
 | 
						|
void edac_mc_free(struct mem_ctl_info *mci)
 | 
						|
{
 | 
						|
	edac_dbg(1, "\n");
 | 
						|
 | 
						|
	/* If we're not yet registered with sysfs free only what was allocated
 | 
						|
	 * in edac_mc_alloc().
 | 
						|
	 */
 | 
						|
	if (!device_is_registered(&mci->dev)) {
 | 
						|
		_edac_mc_free(mci);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* the mci instance is freed here, when the sysfs object is dropped */
 | 
						|
	edac_unregister_sysfs(mci);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(edac_mc_free);
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * find_mci_by_dev
 | 
						|
 *
 | 
						|
 *	scan list of controllers looking for the one that manages
 | 
						|
 *	the 'dev' device
 | 
						|
 * @dev: pointer to a struct device related with the MCI
 | 
						|
 */
 | 
						|
struct mem_ctl_info *find_mci_by_dev(struct device *dev)
 | 
						|
{
 | 
						|
	struct mem_ctl_info *mci;
 | 
						|
	struct list_head *item;
 | 
						|
 | 
						|
	edac_dbg(3, "\n");
 | 
						|
 | 
						|
	list_for_each(item, &mc_devices) {
 | 
						|
		mci = list_entry(item, struct mem_ctl_info, link);
 | 
						|
 | 
						|
		if (mci->pdev == dev)
 | 
						|
			return mci;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(find_mci_by_dev);
 | 
						|
 | 
						|
/*
 | 
						|
 * handler for EDAC to check if NMI type handler has asserted interrupt
 | 
						|
 */
 | 
						|
static int edac_mc_assert_error_check_and_clear(void)
 | 
						|
{
 | 
						|
	int old_state;
 | 
						|
 | 
						|
	if (edac_op_state == EDAC_OPSTATE_POLL)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	old_state = edac_err_assert;
 | 
						|
	edac_err_assert = 0;
 | 
						|
 | 
						|
	return old_state;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * edac_mc_workq_function
 | 
						|
 *	performs the operation scheduled by a workq request
 | 
						|
 */
 | 
						|
static void edac_mc_workq_function(struct work_struct *work_req)
 | 
						|
{
 | 
						|
	struct delayed_work *d_work = to_delayed_work(work_req);
 | 
						|
	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
 | 
						|
 | 
						|
	mutex_lock(&mem_ctls_mutex);
 | 
						|
 | 
						|
	/* if this control struct has movd to offline state, we are done */
 | 
						|
	if (mci->op_state == OP_OFFLINE) {
 | 
						|
		mutex_unlock(&mem_ctls_mutex);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Only poll controllers that are running polled and have a check */
 | 
						|
	if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
 | 
						|
		mci->edac_check(mci);
 | 
						|
 | 
						|
	mutex_unlock(&mem_ctls_mutex);
 | 
						|
 | 
						|
	/* Reschedule */
 | 
						|
	queue_delayed_work(edac_workqueue, &mci->work,
 | 
						|
			msecs_to_jiffies(edac_mc_get_poll_msec()));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * edac_mc_workq_setup
 | 
						|
 *	initialize a workq item for this mci
 | 
						|
 *	passing in the new delay period in msec
 | 
						|
 *
 | 
						|
 *	locking model:
 | 
						|
 *
 | 
						|
 *		called with the mem_ctls_mutex held
 | 
						|
 */
 | 
						|
static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
 | 
						|
{
 | 
						|
	edac_dbg(0, "\n");
 | 
						|
 | 
						|
	/* if this instance is not in the POLL state, then simply return */
 | 
						|
	if (mci->op_state != OP_RUNNING_POLL)
 | 
						|
		return;
 | 
						|
 | 
						|
	INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
 | 
						|
	mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * edac_mc_workq_teardown
 | 
						|
 *	stop the workq processing on this mci
 | 
						|
 *
 | 
						|
 *	locking model:
 | 
						|
 *
 | 
						|
 *		called WITHOUT lock held
 | 
						|
 */
 | 
						|
static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
 | 
						|
{
 | 
						|
	int status;
 | 
						|
 | 
						|
	if (mci->op_state != OP_RUNNING_POLL)
 | 
						|
		return;
 | 
						|
 | 
						|
	status = cancel_delayed_work(&mci->work);
 | 
						|
	if (status == 0) {
 | 
						|
		edac_dbg(0, "not canceled, flush the queue\n");
 | 
						|
 | 
						|
		/* workq instance might be running, wait for it */
 | 
						|
		flush_workqueue(edac_workqueue);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * edac_mc_reset_delay_period(unsigned long value)
 | 
						|
 *
 | 
						|
 *	user space has updated our poll period value, need to
 | 
						|
 *	reset our workq delays
 | 
						|
 */
 | 
						|
void edac_mc_reset_delay_period(int value)
 | 
						|
{
 | 
						|
	struct mem_ctl_info *mci;
 | 
						|
	struct list_head *item;
 | 
						|
 | 
						|
	mutex_lock(&mem_ctls_mutex);
 | 
						|
 | 
						|
	list_for_each(item, &mc_devices) {
 | 
						|
		mci = list_entry(item, struct mem_ctl_info, link);
 | 
						|
 | 
						|
		edac_mc_workq_setup(mci, (unsigned long) value);
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_unlock(&mem_ctls_mutex);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Return 0 on success, 1 on failure.
 | 
						|
 * Before calling this function, caller must
 | 
						|
 * assign a unique value to mci->mc_idx.
 | 
						|
 *
 | 
						|
 *	locking model:
 | 
						|
 *
 | 
						|
 *		called with the mem_ctls_mutex lock held
 | 
						|
 */
 | 
						|
static int add_mc_to_global_list(struct mem_ctl_info *mci)
 | 
						|
{
 | 
						|
	struct list_head *item, *insert_before;
 | 
						|
	struct mem_ctl_info *p;
 | 
						|
 | 
						|
	insert_before = &mc_devices;
 | 
						|
 | 
						|
	p = find_mci_by_dev(mci->pdev);
 | 
						|
	if (unlikely(p != NULL))
 | 
						|
		goto fail0;
 | 
						|
 | 
						|
	list_for_each(item, &mc_devices) {
 | 
						|
		p = list_entry(item, struct mem_ctl_info, link);
 | 
						|
 | 
						|
		if (p->mc_idx >= mci->mc_idx) {
 | 
						|
			if (unlikely(p->mc_idx == mci->mc_idx))
 | 
						|
				goto fail1;
 | 
						|
 | 
						|
			insert_before = item;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	list_add_tail_rcu(&mci->link, insert_before);
 | 
						|
	atomic_inc(&edac_handlers);
 | 
						|
	return 0;
 | 
						|
 | 
						|
fail0:
 | 
						|
	edac_printk(KERN_WARNING, EDAC_MC,
 | 
						|
		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
 | 
						|
		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
 | 
						|
	return 1;
 | 
						|
 | 
						|
fail1:
 | 
						|
	edac_printk(KERN_WARNING, EDAC_MC,
 | 
						|
		"bug in low-level driver: attempt to assign\n"
 | 
						|
		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void del_mc_from_global_list(struct mem_ctl_info *mci)
 | 
						|
{
 | 
						|
	atomic_dec(&edac_handlers);
 | 
						|
	list_del_rcu(&mci->link);
 | 
						|
 | 
						|
	/* these are for safe removal of devices from global list while
 | 
						|
	 * NMI handlers may be traversing list
 | 
						|
	 */
 | 
						|
	synchronize_rcu();
 | 
						|
	INIT_LIST_HEAD(&mci->link);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
 | 
						|
 *
 | 
						|
 * If found, return a pointer to the structure.
 | 
						|
 * Else return NULL.
 | 
						|
 *
 | 
						|
 * Caller must hold mem_ctls_mutex.
 | 
						|
 */
 | 
						|
struct mem_ctl_info *edac_mc_find(int idx)
 | 
						|
{
 | 
						|
	struct list_head *item;
 | 
						|
	struct mem_ctl_info *mci;
 | 
						|
 | 
						|
	list_for_each(item, &mc_devices) {
 | 
						|
		mci = list_entry(item, struct mem_ctl_info, link);
 | 
						|
 | 
						|
		if (mci->mc_idx >= idx) {
 | 
						|
			if (mci->mc_idx == idx)
 | 
						|
				return mci;
 | 
						|
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(edac_mc_find);
 | 
						|
 | 
						|
/**
 | 
						|
 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
 | 
						|
 *                 create sysfs entries associated with mci structure
 | 
						|
 * @mci: pointer to the mci structure to be added to the list
 | 
						|
 *
 | 
						|
 * Return:
 | 
						|
 *	0	Success
 | 
						|
 *	!0	Failure
 | 
						|
 */
 | 
						|
 | 
						|
/* FIXME - should a warning be printed if no error detection? correction? */
 | 
						|
int edac_mc_add_mc(struct mem_ctl_info *mci)
 | 
						|
{
 | 
						|
	edac_dbg(0, "\n");
 | 
						|
 | 
						|
#ifdef CONFIG_EDAC_DEBUG
 | 
						|
	if (edac_debug_level >= 3)
 | 
						|
		edac_mc_dump_mci(mci);
 | 
						|
 | 
						|
	if (edac_debug_level >= 4) {
 | 
						|
		int i;
 | 
						|
 | 
						|
		for (i = 0; i < mci->nr_csrows; i++) {
 | 
						|
			struct csrow_info *csrow = mci->csrows[i];
 | 
						|
			u32 nr_pages = 0;
 | 
						|
			int j;
 | 
						|
 | 
						|
			for (j = 0; j < csrow->nr_channels; j++)
 | 
						|
				nr_pages += csrow->channels[j]->dimm->nr_pages;
 | 
						|
			if (!nr_pages)
 | 
						|
				continue;
 | 
						|
			edac_mc_dump_csrow(csrow);
 | 
						|
			for (j = 0; j < csrow->nr_channels; j++)
 | 
						|
				if (csrow->channels[j]->dimm->nr_pages)
 | 
						|
					edac_mc_dump_channel(csrow->channels[j]);
 | 
						|
		}
 | 
						|
		for (i = 0; i < mci->tot_dimms; i++)
 | 
						|
			if (mci->dimms[i]->nr_pages)
 | 
						|
				edac_mc_dump_dimm(mci->dimms[i], i);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	mutex_lock(&mem_ctls_mutex);
 | 
						|
 | 
						|
	if (add_mc_to_global_list(mci))
 | 
						|
		goto fail0;
 | 
						|
 | 
						|
	/* set load time so that error rate can be tracked */
 | 
						|
	mci->start_time = jiffies;
 | 
						|
 | 
						|
	if (edac_create_sysfs_mci_device(mci)) {
 | 
						|
		edac_mc_printk(mci, KERN_WARNING,
 | 
						|
			"failed to create sysfs device\n");
 | 
						|
		goto fail1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If there IS a check routine, then we are running POLLED */
 | 
						|
	if (mci->edac_check != NULL) {
 | 
						|
		/* This instance is NOW RUNNING */
 | 
						|
		mci->op_state = OP_RUNNING_POLL;
 | 
						|
 | 
						|
		edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
 | 
						|
	} else {
 | 
						|
		mci->op_state = OP_RUNNING_INTERRUPT;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Report action taken */
 | 
						|
	edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
 | 
						|
		" DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
 | 
						|
 | 
						|
	mutex_unlock(&mem_ctls_mutex);
 | 
						|
	return 0;
 | 
						|
 | 
						|
fail1:
 | 
						|
	del_mc_from_global_list(mci);
 | 
						|
 | 
						|
fail0:
 | 
						|
	mutex_unlock(&mem_ctls_mutex);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(edac_mc_add_mc);
 | 
						|
 | 
						|
/**
 | 
						|
 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
 | 
						|
 *                 remove mci structure from global list
 | 
						|
 * @pdev: Pointer to 'struct device' representing mci structure to remove.
 | 
						|
 *
 | 
						|
 * Return pointer to removed mci structure, or NULL if device not found.
 | 
						|
 */
 | 
						|
struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
 | 
						|
{
 | 
						|
	struct mem_ctl_info *mci;
 | 
						|
 | 
						|
	edac_dbg(0, "\n");
 | 
						|
 | 
						|
	mutex_lock(&mem_ctls_mutex);
 | 
						|
 | 
						|
	/* find the requested mci struct in the global list */
 | 
						|
	mci = find_mci_by_dev(dev);
 | 
						|
	if (mci == NULL) {
 | 
						|
		mutex_unlock(&mem_ctls_mutex);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	del_mc_from_global_list(mci);
 | 
						|
	mutex_unlock(&mem_ctls_mutex);
 | 
						|
 | 
						|
	/* flush workq processes */
 | 
						|
	edac_mc_workq_teardown(mci);
 | 
						|
 | 
						|
	/* marking MCI offline */
 | 
						|
	mci->op_state = OP_OFFLINE;
 | 
						|
 | 
						|
	/* remove from sysfs */
 | 
						|
	edac_remove_sysfs_mci_device(mci);
 | 
						|
 | 
						|
	edac_printk(KERN_INFO, EDAC_MC,
 | 
						|
		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
 | 
						|
		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
 | 
						|
 | 
						|
	return mci;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(edac_mc_del_mc);
 | 
						|
 | 
						|
static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
 | 
						|
				u32 size)
 | 
						|
{
 | 
						|
	struct page *pg;
 | 
						|
	void *virt_addr;
 | 
						|
	unsigned long flags = 0;
 | 
						|
 | 
						|
	edac_dbg(3, "\n");
 | 
						|
 | 
						|
	/* ECC error page was not in our memory. Ignore it. */
 | 
						|
	if (!pfn_valid(page))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Find the actual page structure then map it and fix */
 | 
						|
	pg = pfn_to_page(page);
 | 
						|
 | 
						|
	if (PageHighMem(pg))
 | 
						|
		local_irq_save(flags);
 | 
						|
 | 
						|
	virt_addr = kmap_atomic(pg);
 | 
						|
 | 
						|
	/* Perform architecture specific atomic scrub operation */
 | 
						|
	atomic_scrub(virt_addr + offset, size);
 | 
						|
 | 
						|
	/* Unmap and complete */
 | 
						|
	kunmap_atomic(virt_addr);
 | 
						|
 | 
						|
	if (PageHighMem(pg))
 | 
						|
		local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/* FIXME - should return -1 */
 | 
						|
int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
 | 
						|
{
 | 
						|
	struct csrow_info **csrows = mci->csrows;
 | 
						|
	int row, i, j, n;
 | 
						|
 | 
						|
	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
 | 
						|
	row = -1;
 | 
						|
 | 
						|
	for (i = 0; i < mci->nr_csrows; i++) {
 | 
						|
		struct csrow_info *csrow = csrows[i];
 | 
						|
		n = 0;
 | 
						|
		for (j = 0; j < csrow->nr_channels; j++) {
 | 
						|
			struct dimm_info *dimm = csrow->channels[j]->dimm;
 | 
						|
			n += dimm->nr_pages;
 | 
						|
		}
 | 
						|
		if (n == 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
 | 
						|
			 mci->mc_idx,
 | 
						|
			 csrow->first_page, page, csrow->last_page,
 | 
						|
			 csrow->page_mask);
 | 
						|
 | 
						|
		if ((page >= csrow->first_page) &&
 | 
						|
		    (page <= csrow->last_page) &&
 | 
						|
		    ((page & csrow->page_mask) ==
 | 
						|
		     (csrow->first_page & csrow->page_mask))) {
 | 
						|
			row = i;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (row == -1)
 | 
						|
		edac_mc_printk(mci, KERN_ERR,
 | 
						|
			"could not look up page error address %lx\n",
 | 
						|
			(unsigned long)page);
 | 
						|
 | 
						|
	return row;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
 | 
						|
 | 
						|
const char *edac_layer_name[] = {
 | 
						|
	[EDAC_MC_LAYER_BRANCH] = "branch",
 | 
						|
	[EDAC_MC_LAYER_CHANNEL] = "channel",
 | 
						|
	[EDAC_MC_LAYER_SLOT] = "slot",
 | 
						|
	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
 | 
						|
};
 | 
						|
EXPORT_SYMBOL_GPL(edac_layer_name);
 | 
						|
 | 
						|
static void edac_inc_ce_error(struct mem_ctl_info *mci,
 | 
						|
			      bool enable_per_layer_report,
 | 
						|
			      const int pos[EDAC_MAX_LAYERS],
 | 
						|
			      const u16 count)
 | 
						|
{
 | 
						|
	int i, index = 0;
 | 
						|
 | 
						|
	mci->ce_mc += count;
 | 
						|
 | 
						|
	if (!enable_per_layer_report) {
 | 
						|
		mci->ce_noinfo_count += count;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < mci->n_layers; i++) {
 | 
						|
		if (pos[i] < 0)
 | 
						|
			break;
 | 
						|
		index += pos[i];
 | 
						|
		mci->ce_per_layer[i][index] += count;
 | 
						|
 | 
						|
		if (i < mci->n_layers - 1)
 | 
						|
			index *= mci->layers[i + 1].size;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void edac_inc_ue_error(struct mem_ctl_info *mci,
 | 
						|
				    bool enable_per_layer_report,
 | 
						|
				    const int pos[EDAC_MAX_LAYERS],
 | 
						|
				    const u16 count)
 | 
						|
{
 | 
						|
	int i, index = 0;
 | 
						|
 | 
						|
	mci->ue_mc += count;
 | 
						|
 | 
						|
	if (!enable_per_layer_report) {
 | 
						|
		mci->ce_noinfo_count += count;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < mci->n_layers; i++) {
 | 
						|
		if (pos[i] < 0)
 | 
						|
			break;
 | 
						|
		index += pos[i];
 | 
						|
		mci->ue_per_layer[i][index] += count;
 | 
						|
 | 
						|
		if (i < mci->n_layers - 1)
 | 
						|
			index *= mci->layers[i + 1].size;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void edac_ce_error(struct mem_ctl_info *mci,
 | 
						|
			  const u16 error_count,
 | 
						|
			  const int pos[EDAC_MAX_LAYERS],
 | 
						|
			  const char *msg,
 | 
						|
			  const char *location,
 | 
						|
			  const char *label,
 | 
						|
			  const char *detail,
 | 
						|
			  const char *other_detail,
 | 
						|
			  const bool enable_per_layer_report,
 | 
						|
			  const unsigned long page_frame_number,
 | 
						|
			  const unsigned long offset_in_page,
 | 
						|
			  long grain)
 | 
						|
{
 | 
						|
	unsigned long remapped_page;
 | 
						|
	char *msg_aux = "";
 | 
						|
 | 
						|
	if (*msg)
 | 
						|
		msg_aux = " ";
 | 
						|
 | 
						|
	if (edac_mc_get_log_ce()) {
 | 
						|
		if (other_detail && *other_detail)
 | 
						|
			edac_mc_printk(mci, KERN_WARNING,
 | 
						|
				       "%d CE %s%son %s (%s %s - %s)\n",
 | 
						|
				       error_count, msg, msg_aux, label,
 | 
						|
				       location, detail, other_detail);
 | 
						|
		else
 | 
						|
			edac_mc_printk(mci, KERN_WARNING,
 | 
						|
				       "%d CE %s%son %s (%s %s)\n",
 | 
						|
				       error_count, msg, msg_aux, label,
 | 
						|
				       location, detail);
 | 
						|
	}
 | 
						|
	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
 | 
						|
 | 
						|
	if (mci->scrub_mode & SCRUB_SW_SRC) {
 | 
						|
		/*
 | 
						|
			* Some memory controllers (called MCs below) can remap
 | 
						|
			* memory so that it is still available at a different
 | 
						|
			* address when PCI devices map into memory.
 | 
						|
			* MC's that can't do this, lose the memory where PCI
 | 
						|
			* devices are mapped. This mapping is MC-dependent
 | 
						|
			* and so we call back into the MC driver for it to
 | 
						|
			* map the MC page to a physical (CPU) page which can
 | 
						|
			* then be mapped to a virtual page - which can then
 | 
						|
			* be scrubbed.
 | 
						|
			*/
 | 
						|
		remapped_page = mci->ctl_page_to_phys ?
 | 
						|
			mci->ctl_page_to_phys(mci, page_frame_number) :
 | 
						|
			page_frame_number;
 | 
						|
 | 
						|
		edac_mc_scrub_block(remapped_page,
 | 
						|
					offset_in_page, grain);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void edac_ue_error(struct mem_ctl_info *mci,
 | 
						|
			  const u16 error_count,
 | 
						|
			  const int pos[EDAC_MAX_LAYERS],
 | 
						|
			  const char *msg,
 | 
						|
			  const char *location,
 | 
						|
			  const char *label,
 | 
						|
			  const char *detail,
 | 
						|
			  const char *other_detail,
 | 
						|
			  const bool enable_per_layer_report)
 | 
						|
{
 | 
						|
	char *msg_aux = "";
 | 
						|
 | 
						|
	if (*msg)
 | 
						|
		msg_aux = " ";
 | 
						|
 | 
						|
	if (edac_mc_get_log_ue()) {
 | 
						|
		if (other_detail && *other_detail)
 | 
						|
			edac_mc_printk(mci, KERN_WARNING,
 | 
						|
				       "%d UE %s%son %s (%s %s - %s)\n",
 | 
						|
				       error_count, msg, msg_aux, label,
 | 
						|
				       location, detail, other_detail);
 | 
						|
		else
 | 
						|
			edac_mc_printk(mci, KERN_WARNING,
 | 
						|
				       "%d UE %s%son %s (%s %s)\n",
 | 
						|
				       error_count, msg, msg_aux, label,
 | 
						|
				       location, detail);
 | 
						|
	}
 | 
						|
 | 
						|
	if (edac_mc_get_panic_on_ue()) {
 | 
						|
		if (other_detail && *other_detail)
 | 
						|
			panic("UE %s%son %s (%s%s - %s)\n",
 | 
						|
			      msg, msg_aux, label, location, detail, other_detail);
 | 
						|
		else
 | 
						|
			panic("UE %s%son %s (%s%s)\n",
 | 
						|
			      msg, msg_aux, label, location, detail);
 | 
						|
	}
 | 
						|
 | 
						|
	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
 | 
						|
}
 | 
						|
 | 
						|
#define OTHER_LABEL " or "
 | 
						|
 | 
						|
/**
 | 
						|
 * edac_mc_handle_error - reports a memory event to userspace
 | 
						|
 *
 | 
						|
 * @type:		severity of the error (CE/UE/Fatal)
 | 
						|
 * @mci:		a struct mem_ctl_info pointer
 | 
						|
 * @error_count:	Number of errors of the same type
 | 
						|
 * @page_frame_number:	mem page where the error occurred
 | 
						|
 * @offset_in_page:	offset of the error inside the page
 | 
						|
 * @syndrome:		ECC syndrome
 | 
						|
 * @top_layer:		Memory layer[0] position
 | 
						|
 * @mid_layer:		Memory layer[1] position
 | 
						|
 * @low_layer:		Memory layer[2] position
 | 
						|
 * @msg:		Message meaningful to the end users that
 | 
						|
 *			explains the event
 | 
						|
 * @other_detail:	Technical details about the event that
 | 
						|
 *			may help hardware manufacturers and
 | 
						|
 *			EDAC developers to analyse the event
 | 
						|
 */
 | 
						|
void edac_mc_handle_error(const enum hw_event_mc_err_type type,
 | 
						|
			  struct mem_ctl_info *mci,
 | 
						|
			  const u16 error_count,
 | 
						|
			  const unsigned long page_frame_number,
 | 
						|
			  const unsigned long offset_in_page,
 | 
						|
			  const unsigned long syndrome,
 | 
						|
			  const int top_layer,
 | 
						|
			  const int mid_layer,
 | 
						|
			  const int low_layer,
 | 
						|
			  const char *msg,
 | 
						|
			  const char *other_detail)
 | 
						|
{
 | 
						|
	/* FIXME: too much for stack: move it to some pre-alocated area */
 | 
						|
	char detail[80], location[80];
 | 
						|
	char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * mci->tot_dimms];
 | 
						|
	char *p;
 | 
						|
	int row = -1, chan = -1;
 | 
						|
	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
 | 
						|
	int i;
 | 
						|
	long grain;
 | 
						|
	bool enable_per_layer_report = false;
 | 
						|
	u8 grain_bits;
 | 
						|
 | 
						|
	edac_dbg(3, "MC%d\n", mci->mc_idx);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check if the event report is consistent and if the memory
 | 
						|
	 * location is known. If it is known, enable_per_layer_report will be
 | 
						|
	 * true, the DIMM(s) label info will be filled and the per-layer
 | 
						|
	 * error counters will be incremented.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < mci->n_layers; i++) {
 | 
						|
		if (pos[i] >= (int)mci->layers[i].size) {
 | 
						|
 | 
						|
			edac_mc_printk(mci, KERN_ERR,
 | 
						|
				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
 | 
						|
				       edac_layer_name[mci->layers[i].type],
 | 
						|
				       pos[i], mci->layers[i].size);
 | 
						|
			/*
 | 
						|
			 * Instead of just returning it, let's use what's
 | 
						|
			 * known about the error. The increment routines and
 | 
						|
			 * the DIMM filter logic will do the right thing by
 | 
						|
			 * pointing the likely damaged DIMMs.
 | 
						|
			 */
 | 
						|
			pos[i] = -1;
 | 
						|
		}
 | 
						|
		if (pos[i] >= 0)
 | 
						|
			enable_per_layer_report = true;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get the dimm label/grain that applies to the match criteria.
 | 
						|
	 * As the error algorithm may not be able to point to just one memory
 | 
						|
	 * stick, the logic here will get all possible labels that could
 | 
						|
	 * pottentially be affected by the error.
 | 
						|
	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
 | 
						|
	 * to have only the MC channel and the MC dimm (also called "branch")
 | 
						|
	 * but the channel is not known, as the memory is arranged in pairs,
 | 
						|
	 * where each memory belongs to a separate channel within the same
 | 
						|
	 * branch.
 | 
						|
	 */
 | 
						|
	grain = 0;
 | 
						|
	p = label;
 | 
						|
	*p = '\0';
 | 
						|
 | 
						|
	for (i = 0; i < mci->tot_dimms; i++) {
 | 
						|
		struct dimm_info *dimm = mci->dimms[i];
 | 
						|
 | 
						|
		if (top_layer >= 0 && top_layer != dimm->location[0])
 | 
						|
			continue;
 | 
						|
		if (mid_layer >= 0 && mid_layer != dimm->location[1])
 | 
						|
			continue;
 | 
						|
		if (low_layer >= 0 && low_layer != dimm->location[2])
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* get the max grain, over the error match range */
 | 
						|
		if (dimm->grain > grain)
 | 
						|
			grain = dimm->grain;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the error is memory-controller wide, there's no need to
 | 
						|
		 * seek for the affected DIMMs because the whole
 | 
						|
		 * channel/memory controller/...  may be affected.
 | 
						|
		 * Also, don't show errors for empty DIMM slots.
 | 
						|
		 */
 | 
						|
		if (enable_per_layer_report && dimm->nr_pages) {
 | 
						|
			if (p != label) {
 | 
						|
				strcpy(p, OTHER_LABEL);
 | 
						|
				p += strlen(OTHER_LABEL);
 | 
						|
			}
 | 
						|
			strcpy(p, dimm->label);
 | 
						|
			p += strlen(p);
 | 
						|
			*p = '\0';
 | 
						|
 | 
						|
			/*
 | 
						|
			 * get csrow/channel of the DIMM, in order to allow
 | 
						|
			 * incrementing the compat API counters
 | 
						|
			 */
 | 
						|
			edac_dbg(4, "%s csrows map: (%d,%d)\n",
 | 
						|
				 mci->mem_is_per_rank ? "rank" : "dimm",
 | 
						|
				 dimm->csrow, dimm->cschannel);
 | 
						|
			if (row == -1)
 | 
						|
				row = dimm->csrow;
 | 
						|
			else if (row >= 0 && row != dimm->csrow)
 | 
						|
				row = -2;
 | 
						|
 | 
						|
			if (chan == -1)
 | 
						|
				chan = dimm->cschannel;
 | 
						|
			else if (chan >= 0 && chan != dimm->cschannel)
 | 
						|
				chan = -2;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (!enable_per_layer_report) {
 | 
						|
		strcpy(label, "any memory");
 | 
						|
	} else {
 | 
						|
		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
 | 
						|
		if (p == label)
 | 
						|
			strcpy(label, "unknown memory");
 | 
						|
		if (type == HW_EVENT_ERR_CORRECTED) {
 | 
						|
			if (row >= 0) {
 | 
						|
				mci->csrows[row]->ce_count += error_count;
 | 
						|
				if (chan >= 0)
 | 
						|
					mci->csrows[row]->channels[chan]->ce_count += error_count;
 | 
						|
			}
 | 
						|
		} else
 | 
						|
			if (row >= 0)
 | 
						|
				mci->csrows[row]->ue_count += error_count;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Fill the RAM location data */
 | 
						|
	p = location;
 | 
						|
 | 
						|
	for (i = 0; i < mci->n_layers; i++) {
 | 
						|
		if (pos[i] < 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		p += sprintf(p, "%s:%d ",
 | 
						|
			     edac_layer_name[mci->layers[i].type],
 | 
						|
			     pos[i]);
 | 
						|
	}
 | 
						|
	if (p > location)
 | 
						|
		*(p - 1) = '\0';
 | 
						|
 | 
						|
	/* Report the error via the trace interface */
 | 
						|
	grain_bits = fls_long(grain) + 1;
 | 
						|
	trace_mc_event(type, msg, label, error_count,
 | 
						|
		       mci->mc_idx, top_layer, mid_layer, low_layer,
 | 
						|
		       PAGES_TO_MiB(page_frame_number) | offset_in_page,
 | 
						|
		       grain_bits, syndrome, other_detail);
 | 
						|
 | 
						|
	/* Memory type dependent details about the error */
 | 
						|
	if (type == HW_EVENT_ERR_CORRECTED) {
 | 
						|
		snprintf(detail, sizeof(detail),
 | 
						|
			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
 | 
						|
			page_frame_number, offset_in_page,
 | 
						|
			grain, syndrome);
 | 
						|
		edac_ce_error(mci, error_count, pos, msg, location, label,
 | 
						|
			      detail, other_detail, enable_per_layer_report,
 | 
						|
			      page_frame_number, offset_in_page, grain);
 | 
						|
	} else {
 | 
						|
		snprintf(detail, sizeof(detail),
 | 
						|
			"page:0x%lx offset:0x%lx grain:%ld",
 | 
						|
			page_frame_number, offset_in_page, grain);
 | 
						|
 | 
						|
		edac_ue_error(mci, error_count, pos, msg, location, label,
 | 
						|
			      detail, other_detail, enable_per_layer_report);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(edac_mc_handle_error);
 |