There's a name leak introduced by commit 91a27b2a75 ("vfs: define
struct filename and have getname() return it").  Add the missing
putname.
[akpm@linux-foundation.org: cleanup]
Signed-off-by: Xiaotian Feng <dannyfeng@tencent.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			2466 lines
		
	
	
	
		
			63 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2466 lines
		
	
	
	
		
			63 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  linux/mm/swapfile.c
 | 
						|
 *
 | 
						|
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | 
						|
 *  Swap reorganised 29.12.95, Stephen Tweedie
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/hugetlb.h>
 | 
						|
#include <linux/mman.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/kernel_stat.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/namei.h>
 | 
						|
#include <linux/shmem_fs.h>
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/random.h>
 | 
						|
#include <linux/writeback.h>
 | 
						|
#include <linux/proc_fs.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/ksm.h>
 | 
						|
#include <linux/rmap.h>
 | 
						|
#include <linux/security.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/capability.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/memcontrol.h>
 | 
						|
#include <linux/poll.h>
 | 
						|
#include <linux/oom.h>
 | 
						|
#include <linux/frontswap.h>
 | 
						|
#include <linux/swapfile.h>
 | 
						|
#include <linux/export.h>
 | 
						|
 | 
						|
#include <asm/pgtable.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include <linux/swapops.h>
 | 
						|
#include <linux/page_cgroup.h>
 | 
						|
 | 
						|
static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
 | 
						|
				 unsigned char);
 | 
						|
static void free_swap_count_continuations(struct swap_info_struct *);
 | 
						|
static sector_t map_swap_entry(swp_entry_t, struct block_device**);
 | 
						|
 | 
						|
DEFINE_SPINLOCK(swap_lock);
 | 
						|
static unsigned int nr_swapfiles;
 | 
						|
long nr_swap_pages;
 | 
						|
long total_swap_pages;
 | 
						|
static int least_priority;
 | 
						|
 | 
						|
static const char Bad_file[] = "Bad swap file entry ";
 | 
						|
static const char Unused_file[] = "Unused swap file entry ";
 | 
						|
static const char Bad_offset[] = "Bad swap offset entry ";
 | 
						|
static const char Unused_offset[] = "Unused swap offset entry ";
 | 
						|
 | 
						|
struct swap_list_t swap_list = {-1, -1};
 | 
						|
 | 
						|
struct swap_info_struct *swap_info[MAX_SWAPFILES];
 | 
						|
 | 
						|
static DEFINE_MUTEX(swapon_mutex);
 | 
						|
 | 
						|
static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
 | 
						|
/* Activity counter to indicate that a swapon or swapoff has occurred */
 | 
						|
static atomic_t proc_poll_event = ATOMIC_INIT(0);
 | 
						|
 | 
						|
static inline unsigned char swap_count(unsigned char ent)
 | 
						|
{
 | 
						|
	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
 | 
						|
}
 | 
						|
 | 
						|
/* returns 1 if swap entry is freed */
 | 
						|
static int
 | 
						|
__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
 | 
						|
{
 | 
						|
	swp_entry_t entry = swp_entry(si->type, offset);
 | 
						|
	struct page *page;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	page = find_get_page(&swapper_space, entry.val);
 | 
						|
	if (!page)
 | 
						|
		return 0;
 | 
						|
	/*
 | 
						|
	 * This function is called from scan_swap_map() and it's called
 | 
						|
	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
 | 
						|
	 * We have to use trylock for avoiding deadlock. This is a special
 | 
						|
	 * case and you should use try_to_free_swap() with explicit lock_page()
 | 
						|
	 * in usual operations.
 | 
						|
	 */
 | 
						|
	if (trylock_page(page)) {
 | 
						|
		ret = try_to_free_swap(page);
 | 
						|
		unlock_page(page);
 | 
						|
	}
 | 
						|
	page_cache_release(page);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * swapon tell device that all the old swap contents can be discarded,
 | 
						|
 * to allow the swap device to optimize its wear-levelling.
 | 
						|
 */
 | 
						|
static int discard_swap(struct swap_info_struct *si)
 | 
						|
{
 | 
						|
	struct swap_extent *se;
 | 
						|
	sector_t start_block;
 | 
						|
	sector_t nr_blocks;
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	/* Do not discard the swap header page! */
 | 
						|
	se = &si->first_swap_extent;
 | 
						|
	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 | 
						|
	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 | 
						|
	if (nr_blocks) {
 | 
						|
		err = blkdev_issue_discard(si->bdev, start_block,
 | 
						|
				nr_blocks, GFP_KERNEL, 0);
 | 
						|
		if (err)
 | 
						|
			return err;
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
 | 
						|
	list_for_each_entry(se, &si->first_swap_extent.list, list) {
 | 
						|
		start_block = se->start_block << (PAGE_SHIFT - 9);
 | 
						|
		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 | 
						|
 | 
						|
		err = blkdev_issue_discard(si->bdev, start_block,
 | 
						|
				nr_blocks, GFP_KERNEL, 0);
 | 
						|
		if (err)
 | 
						|
			break;
 | 
						|
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	return err;		/* That will often be -EOPNOTSUPP */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * swap allocation tell device that a cluster of swap can now be discarded,
 | 
						|
 * to allow the swap device to optimize its wear-levelling.
 | 
						|
 */
 | 
						|
static void discard_swap_cluster(struct swap_info_struct *si,
 | 
						|
				 pgoff_t start_page, pgoff_t nr_pages)
 | 
						|
{
 | 
						|
	struct swap_extent *se = si->curr_swap_extent;
 | 
						|
	int found_extent = 0;
 | 
						|
 | 
						|
	while (nr_pages) {
 | 
						|
		struct list_head *lh;
 | 
						|
 | 
						|
		if (se->start_page <= start_page &&
 | 
						|
		    start_page < se->start_page + se->nr_pages) {
 | 
						|
			pgoff_t offset = start_page - se->start_page;
 | 
						|
			sector_t start_block = se->start_block + offset;
 | 
						|
			sector_t nr_blocks = se->nr_pages - offset;
 | 
						|
 | 
						|
			if (nr_blocks > nr_pages)
 | 
						|
				nr_blocks = nr_pages;
 | 
						|
			start_page += nr_blocks;
 | 
						|
			nr_pages -= nr_blocks;
 | 
						|
 | 
						|
			if (!found_extent++)
 | 
						|
				si->curr_swap_extent = se;
 | 
						|
 | 
						|
			start_block <<= PAGE_SHIFT - 9;
 | 
						|
			nr_blocks <<= PAGE_SHIFT - 9;
 | 
						|
			if (blkdev_issue_discard(si->bdev, start_block,
 | 
						|
				    nr_blocks, GFP_NOIO, 0))
 | 
						|
				break;
 | 
						|
		}
 | 
						|
 | 
						|
		lh = se->list.next;
 | 
						|
		se = list_entry(lh, struct swap_extent, list);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int wait_for_discard(void *word)
 | 
						|
{
 | 
						|
	schedule();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#define SWAPFILE_CLUSTER	256
 | 
						|
#define LATENCY_LIMIT		256
 | 
						|
 | 
						|
static unsigned long scan_swap_map(struct swap_info_struct *si,
 | 
						|
				   unsigned char usage)
 | 
						|
{
 | 
						|
	unsigned long offset;
 | 
						|
	unsigned long scan_base;
 | 
						|
	unsigned long last_in_cluster = 0;
 | 
						|
	int latency_ration = LATENCY_LIMIT;
 | 
						|
	int found_free_cluster = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We try to cluster swap pages by allocating them sequentially
 | 
						|
	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 | 
						|
	 * way, however, we resort to first-free allocation, starting
 | 
						|
	 * a new cluster.  This prevents us from scattering swap pages
 | 
						|
	 * all over the entire swap partition, so that we reduce
 | 
						|
	 * overall disk seek times between swap pages.  -- sct
 | 
						|
	 * But we do now try to find an empty cluster.  -Andrea
 | 
						|
	 * And we let swap pages go all over an SSD partition.  Hugh
 | 
						|
	 */
 | 
						|
 | 
						|
	si->flags += SWP_SCANNING;
 | 
						|
	scan_base = offset = si->cluster_next;
 | 
						|
 | 
						|
	if (unlikely(!si->cluster_nr--)) {
 | 
						|
		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 | 
						|
			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 | 
						|
			goto checks;
 | 
						|
		}
 | 
						|
		if (si->flags & SWP_DISCARDABLE) {
 | 
						|
			/*
 | 
						|
			 * Start range check on racing allocations, in case
 | 
						|
			 * they overlap the cluster we eventually decide on
 | 
						|
			 * (we scan without swap_lock to allow preemption).
 | 
						|
			 * It's hardly conceivable that cluster_nr could be
 | 
						|
			 * wrapped during our scan, but don't depend on it.
 | 
						|
			 */
 | 
						|
			if (si->lowest_alloc)
 | 
						|
				goto checks;
 | 
						|
			si->lowest_alloc = si->max;
 | 
						|
			si->highest_alloc = 0;
 | 
						|
		}
 | 
						|
		spin_unlock(&swap_lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If seek is expensive, start searching for new cluster from
 | 
						|
		 * start of partition, to minimize the span of allocated swap.
 | 
						|
		 * But if seek is cheap, search from our current position, so
 | 
						|
		 * that swap is allocated from all over the partition: if the
 | 
						|
		 * Flash Translation Layer only remaps within limited zones,
 | 
						|
		 * we don't want to wear out the first zone too quickly.
 | 
						|
		 */
 | 
						|
		if (!(si->flags & SWP_SOLIDSTATE))
 | 
						|
			scan_base = offset = si->lowest_bit;
 | 
						|
		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 | 
						|
 | 
						|
		/* Locate the first empty (unaligned) cluster */
 | 
						|
		for (; last_in_cluster <= si->highest_bit; offset++) {
 | 
						|
			if (si->swap_map[offset])
 | 
						|
				last_in_cluster = offset + SWAPFILE_CLUSTER;
 | 
						|
			else if (offset == last_in_cluster) {
 | 
						|
				spin_lock(&swap_lock);
 | 
						|
				offset -= SWAPFILE_CLUSTER - 1;
 | 
						|
				si->cluster_next = offset;
 | 
						|
				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 | 
						|
				found_free_cluster = 1;
 | 
						|
				goto checks;
 | 
						|
			}
 | 
						|
			if (unlikely(--latency_ration < 0)) {
 | 
						|
				cond_resched();
 | 
						|
				latency_ration = LATENCY_LIMIT;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		offset = si->lowest_bit;
 | 
						|
		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 | 
						|
 | 
						|
		/* Locate the first empty (unaligned) cluster */
 | 
						|
		for (; last_in_cluster < scan_base; offset++) {
 | 
						|
			if (si->swap_map[offset])
 | 
						|
				last_in_cluster = offset + SWAPFILE_CLUSTER;
 | 
						|
			else if (offset == last_in_cluster) {
 | 
						|
				spin_lock(&swap_lock);
 | 
						|
				offset -= SWAPFILE_CLUSTER - 1;
 | 
						|
				si->cluster_next = offset;
 | 
						|
				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 | 
						|
				found_free_cluster = 1;
 | 
						|
				goto checks;
 | 
						|
			}
 | 
						|
			if (unlikely(--latency_ration < 0)) {
 | 
						|
				cond_resched();
 | 
						|
				latency_ration = LATENCY_LIMIT;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		offset = scan_base;
 | 
						|
		spin_lock(&swap_lock);
 | 
						|
		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 | 
						|
		si->lowest_alloc = 0;
 | 
						|
	}
 | 
						|
 | 
						|
checks:
 | 
						|
	if (!(si->flags & SWP_WRITEOK))
 | 
						|
		goto no_page;
 | 
						|
	if (!si->highest_bit)
 | 
						|
		goto no_page;
 | 
						|
	if (offset > si->highest_bit)
 | 
						|
		scan_base = offset = si->lowest_bit;
 | 
						|
 | 
						|
	/* reuse swap entry of cache-only swap if not busy. */
 | 
						|
	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 | 
						|
		int swap_was_freed;
 | 
						|
		spin_unlock(&swap_lock);
 | 
						|
		swap_was_freed = __try_to_reclaim_swap(si, offset);
 | 
						|
		spin_lock(&swap_lock);
 | 
						|
		/* entry was freed successfully, try to use this again */
 | 
						|
		if (swap_was_freed)
 | 
						|
			goto checks;
 | 
						|
		goto scan; /* check next one */
 | 
						|
	}
 | 
						|
 | 
						|
	if (si->swap_map[offset])
 | 
						|
		goto scan;
 | 
						|
 | 
						|
	if (offset == si->lowest_bit)
 | 
						|
		si->lowest_bit++;
 | 
						|
	if (offset == si->highest_bit)
 | 
						|
		si->highest_bit--;
 | 
						|
	si->inuse_pages++;
 | 
						|
	if (si->inuse_pages == si->pages) {
 | 
						|
		si->lowest_bit = si->max;
 | 
						|
		si->highest_bit = 0;
 | 
						|
	}
 | 
						|
	si->swap_map[offset] = usage;
 | 
						|
	si->cluster_next = offset + 1;
 | 
						|
	si->flags -= SWP_SCANNING;
 | 
						|
 | 
						|
	if (si->lowest_alloc) {
 | 
						|
		/*
 | 
						|
		 * Only set when SWP_DISCARDABLE, and there's a scan
 | 
						|
		 * for a free cluster in progress or just completed.
 | 
						|
		 */
 | 
						|
		if (found_free_cluster) {
 | 
						|
			/*
 | 
						|
			 * To optimize wear-levelling, discard the
 | 
						|
			 * old data of the cluster, taking care not to
 | 
						|
			 * discard any of its pages that have already
 | 
						|
			 * been allocated by racing tasks (offset has
 | 
						|
			 * already stepped over any at the beginning).
 | 
						|
			 */
 | 
						|
			if (offset < si->highest_alloc &&
 | 
						|
			    si->lowest_alloc <= last_in_cluster)
 | 
						|
				last_in_cluster = si->lowest_alloc - 1;
 | 
						|
			si->flags |= SWP_DISCARDING;
 | 
						|
			spin_unlock(&swap_lock);
 | 
						|
 | 
						|
			if (offset < last_in_cluster)
 | 
						|
				discard_swap_cluster(si, offset,
 | 
						|
					last_in_cluster - offset + 1);
 | 
						|
 | 
						|
			spin_lock(&swap_lock);
 | 
						|
			si->lowest_alloc = 0;
 | 
						|
			si->flags &= ~SWP_DISCARDING;
 | 
						|
 | 
						|
			smp_mb();	/* wake_up_bit advises this */
 | 
						|
			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
 | 
						|
 | 
						|
		} else if (si->flags & SWP_DISCARDING) {
 | 
						|
			/*
 | 
						|
			 * Delay using pages allocated by racing tasks
 | 
						|
			 * until the whole discard has been issued. We
 | 
						|
			 * could defer that delay until swap_writepage,
 | 
						|
			 * but it's easier to keep this self-contained.
 | 
						|
			 */
 | 
						|
			spin_unlock(&swap_lock);
 | 
						|
			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
 | 
						|
				wait_for_discard, TASK_UNINTERRUPTIBLE);
 | 
						|
			spin_lock(&swap_lock);
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * Note pages allocated by racing tasks while
 | 
						|
			 * scan for a free cluster is in progress, so
 | 
						|
			 * that its final discard can exclude them.
 | 
						|
			 */
 | 
						|
			if (offset < si->lowest_alloc)
 | 
						|
				si->lowest_alloc = offset;
 | 
						|
			if (offset > si->highest_alloc)
 | 
						|
				si->highest_alloc = offset;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return offset;
 | 
						|
 | 
						|
scan:
 | 
						|
	spin_unlock(&swap_lock);
 | 
						|
	while (++offset <= si->highest_bit) {
 | 
						|
		if (!si->swap_map[offset]) {
 | 
						|
			spin_lock(&swap_lock);
 | 
						|
			goto checks;
 | 
						|
		}
 | 
						|
		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 | 
						|
			spin_lock(&swap_lock);
 | 
						|
			goto checks;
 | 
						|
		}
 | 
						|
		if (unlikely(--latency_ration < 0)) {
 | 
						|
			cond_resched();
 | 
						|
			latency_ration = LATENCY_LIMIT;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	offset = si->lowest_bit;
 | 
						|
	while (++offset < scan_base) {
 | 
						|
		if (!si->swap_map[offset]) {
 | 
						|
			spin_lock(&swap_lock);
 | 
						|
			goto checks;
 | 
						|
		}
 | 
						|
		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 | 
						|
			spin_lock(&swap_lock);
 | 
						|
			goto checks;
 | 
						|
		}
 | 
						|
		if (unlikely(--latency_ration < 0)) {
 | 
						|
			cond_resched();
 | 
						|
			latency_ration = LATENCY_LIMIT;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_lock(&swap_lock);
 | 
						|
 | 
						|
no_page:
 | 
						|
	si->flags -= SWP_SCANNING;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
swp_entry_t get_swap_page(void)
 | 
						|
{
 | 
						|
	struct swap_info_struct *si;
 | 
						|
	pgoff_t offset;
 | 
						|
	int type, next;
 | 
						|
	int wrapped = 0;
 | 
						|
 | 
						|
	spin_lock(&swap_lock);
 | 
						|
	if (nr_swap_pages <= 0)
 | 
						|
		goto noswap;
 | 
						|
	nr_swap_pages--;
 | 
						|
 | 
						|
	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
 | 
						|
		si = swap_info[type];
 | 
						|
		next = si->next;
 | 
						|
		if (next < 0 ||
 | 
						|
		    (!wrapped && si->prio != swap_info[next]->prio)) {
 | 
						|
			next = swap_list.head;
 | 
						|
			wrapped++;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!si->highest_bit)
 | 
						|
			continue;
 | 
						|
		if (!(si->flags & SWP_WRITEOK))
 | 
						|
			continue;
 | 
						|
 | 
						|
		swap_list.next = next;
 | 
						|
		/* This is called for allocating swap entry for cache */
 | 
						|
		offset = scan_swap_map(si, SWAP_HAS_CACHE);
 | 
						|
		if (offset) {
 | 
						|
			spin_unlock(&swap_lock);
 | 
						|
			return swp_entry(type, offset);
 | 
						|
		}
 | 
						|
		next = swap_list.next;
 | 
						|
	}
 | 
						|
 | 
						|
	nr_swap_pages++;
 | 
						|
noswap:
 | 
						|
	spin_unlock(&swap_lock);
 | 
						|
	return (swp_entry_t) {0};
 | 
						|
}
 | 
						|
 | 
						|
/* The only caller of this function is now susupend routine */
 | 
						|
swp_entry_t get_swap_page_of_type(int type)
 | 
						|
{
 | 
						|
	struct swap_info_struct *si;
 | 
						|
	pgoff_t offset;
 | 
						|
 | 
						|
	spin_lock(&swap_lock);
 | 
						|
	si = swap_info[type];
 | 
						|
	if (si && (si->flags & SWP_WRITEOK)) {
 | 
						|
		nr_swap_pages--;
 | 
						|
		/* This is called for allocating swap entry, not cache */
 | 
						|
		offset = scan_swap_map(si, 1);
 | 
						|
		if (offset) {
 | 
						|
			spin_unlock(&swap_lock);
 | 
						|
			return swp_entry(type, offset);
 | 
						|
		}
 | 
						|
		nr_swap_pages++;
 | 
						|
	}
 | 
						|
	spin_unlock(&swap_lock);
 | 
						|
	return (swp_entry_t) {0};
 | 
						|
}
 | 
						|
 | 
						|
static struct swap_info_struct *swap_info_get(swp_entry_t entry)
 | 
						|
{
 | 
						|
	struct swap_info_struct *p;
 | 
						|
	unsigned long offset, type;
 | 
						|
 | 
						|
	if (!entry.val)
 | 
						|
		goto out;
 | 
						|
	type = swp_type(entry);
 | 
						|
	if (type >= nr_swapfiles)
 | 
						|
		goto bad_nofile;
 | 
						|
	p = swap_info[type];
 | 
						|
	if (!(p->flags & SWP_USED))
 | 
						|
		goto bad_device;
 | 
						|
	offset = swp_offset(entry);
 | 
						|
	if (offset >= p->max)
 | 
						|
		goto bad_offset;
 | 
						|
	if (!p->swap_map[offset])
 | 
						|
		goto bad_free;
 | 
						|
	spin_lock(&swap_lock);
 | 
						|
	return p;
 | 
						|
 | 
						|
bad_free:
 | 
						|
	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
 | 
						|
	goto out;
 | 
						|
bad_offset:
 | 
						|
	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
 | 
						|
	goto out;
 | 
						|
bad_device:
 | 
						|
	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
 | 
						|
	goto out;
 | 
						|
bad_nofile:
 | 
						|
	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
 | 
						|
out:
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned char swap_entry_free(struct swap_info_struct *p,
 | 
						|
				     swp_entry_t entry, unsigned char usage)
 | 
						|
{
 | 
						|
	unsigned long offset = swp_offset(entry);
 | 
						|
	unsigned char count;
 | 
						|
	unsigned char has_cache;
 | 
						|
 | 
						|
	count = p->swap_map[offset];
 | 
						|
	has_cache = count & SWAP_HAS_CACHE;
 | 
						|
	count &= ~SWAP_HAS_CACHE;
 | 
						|
 | 
						|
	if (usage == SWAP_HAS_CACHE) {
 | 
						|
		VM_BUG_ON(!has_cache);
 | 
						|
		has_cache = 0;
 | 
						|
	} else if (count == SWAP_MAP_SHMEM) {
 | 
						|
		/*
 | 
						|
		 * Or we could insist on shmem.c using a special
 | 
						|
		 * swap_shmem_free() and free_shmem_swap_and_cache()...
 | 
						|
		 */
 | 
						|
		count = 0;
 | 
						|
	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
 | 
						|
		if (count == COUNT_CONTINUED) {
 | 
						|
			if (swap_count_continued(p, offset, count))
 | 
						|
				count = SWAP_MAP_MAX | COUNT_CONTINUED;
 | 
						|
			else
 | 
						|
				count = SWAP_MAP_MAX;
 | 
						|
		} else
 | 
						|
			count--;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!count)
 | 
						|
		mem_cgroup_uncharge_swap(entry);
 | 
						|
 | 
						|
	usage = count | has_cache;
 | 
						|
	p->swap_map[offset] = usage;
 | 
						|
 | 
						|
	/* free if no reference */
 | 
						|
	if (!usage) {
 | 
						|
		if (offset < p->lowest_bit)
 | 
						|
			p->lowest_bit = offset;
 | 
						|
		if (offset > p->highest_bit)
 | 
						|
			p->highest_bit = offset;
 | 
						|
		if (swap_list.next >= 0 &&
 | 
						|
		    p->prio > swap_info[swap_list.next]->prio)
 | 
						|
			swap_list.next = p->type;
 | 
						|
		nr_swap_pages++;
 | 
						|
		p->inuse_pages--;
 | 
						|
		frontswap_invalidate_page(p->type, offset);
 | 
						|
		if (p->flags & SWP_BLKDEV) {
 | 
						|
			struct gendisk *disk = p->bdev->bd_disk;
 | 
						|
			if (disk->fops->swap_slot_free_notify)
 | 
						|
				disk->fops->swap_slot_free_notify(p->bdev,
 | 
						|
								  offset);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return usage;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Caller has made sure that the swapdevice corresponding to entry
 | 
						|
 * is still around or has not been recycled.
 | 
						|
 */
 | 
						|
void swap_free(swp_entry_t entry)
 | 
						|
{
 | 
						|
	struct swap_info_struct *p;
 | 
						|
 | 
						|
	p = swap_info_get(entry);
 | 
						|
	if (p) {
 | 
						|
		swap_entry_free(p, entry, 1);
 | 
						|
		spin_unlock(&swap_lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called after dropping swapcache to decrease refcnt to swap entries.
 | 
						|
 */
 | 
						|
void swapcache_free(swp_entry_t entry, struct page *page)
 | 
						|
{
 | 
						|
	struct swap_info_struct *p;
 | 
						|
	unsigned char count;
 | 
						|
 | 
						|
	p = swap_info_get(entry);
 | 
						|
	if (p) {
 | 
						|
		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
 | 
						|
		if (page)
 | 
						|
			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
 | 
						|
		spin_unlock(&swap_lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * How many references to page are currently swapped out?
 | 
						|
 * This does not give an exact answer when swap count is continued,
 | 
						|
 * but does include the high COUNT_CONTINUED flag to allow for that.
 | 
						|
 */
 | 
						|
int page_swapcount(struct page *page)
 | 
						|
{
 | 
						|
	int count = 0;
 | 
						|
	struct swap_info_struct *p;
 | 
						|
	swp_entry_t entry;
 | 
						|
 | 
						|
	entry.val = page_private(page);
 | 
						|
	p = swap_info_get(entry);
 | 
						|
	if (p) {
 | 
						|
		count = swap_count(p->swap_map[swp_offset(entry)]);
 | 
						|
		spin_unlock(&swap_lock);
 | 
						|
	}
 | 
						|
	return count;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We can write to an anon page without COW if there are no other references
 | 
						|
 * to it.  And as a side-effect, free up its swap: because the old content
 | 
						|
 * on disk will never be read, and seeking back there to write new content
 | 
						|
 * later would only waste time away from clustering.
 | 
						|
 */
 | 
						|
int reuse_swap_page(struct page *page)
 | 
						|
{
 | 
						|
	int count;
 | 
						|
 | 
						|
	VM_BUG_ON(!PageLocked(page));
 | 
						|
	if (unlikely(PageKsm(page)))
 | 
						|
		return 0;
 | 
						|
	count = page_mapcount(page);
 | 
						|
	if (count <= 1 && PageSwapCache(page)) {
 | 
						|
		count += page_swapcount(page);
 | 
						|
		if (count == 1 && !PageWriteback(page)) {
 | 
						|
			delete_from_swap_cache(page);
 | 
						|
			SetPageDirty(page);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return count <= 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If swap is getting full, or if there are no more mappings of this page,
 | 
						|
 * then try_to_free_swap is called to free its swap space.
 | 
						|
 */
 | 
						|
int try_to_free_swap(struct page *page)
 | 
						|
{
 | 
						|
	VM_BUG_ON(!PageLocked(page));
 | 
						|
 | 
						|
	if (!PageSwapCache(page))
 | 
						|
		return 0;
 | 
						|
	if (PageWriteback(page))
 | 
						|
		return 0;
 | 
						|
	if (page_swapcount(page))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Once hibernation has begun to create its image of memory,
 | 
						|
	 * there's a danger that one of the calls to try_to_free_swap()
 | 
						|
	 * - most probably a call from __try_to_reclaim_swap() while
 | 
						|
	 * hibernation is allocating its own swap pages for the image,
 | 
						|
	 * but conceivably even a call from memory reclaim - will free
 | 
						|
	 * the swap from a page which has already been recorded in the
 | 
						|
	 * image as a clean swapcache page, and then reuse its swap for
 | 
						|
	 * another page of the image.  On waking from hibernation, the
 | 
						|
	 * original page might be freed under memory pressure, then
 | 
						|
	 * later read back in from swap, now with the wrong data.
 | 
						|
	 *
 | 
						|
	 * Hibration suspends storage while it is writing the image
 | 
						|
	 * to disk so check that here.
 | 
						|
	 */
 | 
						|
	if (pm_suspended_storage())
 | 
						|
		return 0;
 | 
						|
 | 
						|
	delete_from_swap_cache(page);
 | 
						|
	SetPageDirty(page);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free the swap entry like above, but also try to
 | 
						|
 * free the page cache entry if it is the last user.
 | 
						|
 */
 | 
						|
int free_swap_and_cache(swp_entry_t entry)
 | 
						|
{
 | 
						|
	struct swap_info_struct *p;
 | 
						|
	struct page *page = NULL;
 | 
						|
 | 
						|
	if (non_swap_entry(entry))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	p = swap_info_get(entry);
 | 
						|
	if (p) {
 | 
						|
		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
 | 
						|
			page = find_get_page(&swapper_space, entry.val);
 | 
						|
			if (page && !trylock_page(page)) {
 | 
						|
				page_cache_release(page);
 | 
						|
				page = NULL;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		spin_unlock(&swap_lock);
 | 
						|
	}
 | 
						|
	if (page) {
 | 
						|
		/*
 | 
						|
		 * Not mapped elsewhere, or swap space full? Free it!
 | 
						|
		 * Also recheck PageSwapCache now page is locked (above).
 | 
						|
		 */
 | 
						|
		if (PageSwapCache(page) && !PageWriteback(page) &&
 | 
						|
				(!page_mapped(page) || vm_swap_full())) {
 | 
						|
			delete_from_swap_cache(page);
 | 
						|
			SetPageDirty(page);
 | 
						|
		}
 | 
						|
		unlock_page(page);
 | 
						|
		page_cache_release(page);
 | 
						|
	}
 | 
						|
	return p != NULL;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HIBERNATION
 | 
						|
/*
 | 
						|
 * Find the swap type that corresponds to given device (if any).
 | 
						|
 *
 | 
						|
 * @offset - number of the PAGE_SIZE-sized block of the device, starting
 | 
						|
 * from 0, in which the swap header is expected to be located.
 | 
						|
 *
 | 
						|
 * This is needed for the suspend to disk (aka swsusp).
 | 
						|
 */
 | 
						|
int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
 | 
						|
{
 | 
						|
	struct block_device *bdev = NULL;
 | 
						|
	int type;
 | 
						|
 | 
						|
	if (device)
 | 
						|
		bdev = bdget(device);
 | 
						|
 | 
						|
	spin_lock(&swap_lock);
 | 
						|
	for (type = 0; type < nr_swapfiles; type++) {
 | 
						|
		struct swap_info_struct *sis = swap_info[type];
 | 
						|
 | 
						|
		if (!(sis->flags & SWP_WRITEOK))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!bdev) {
 | 
						|
			if (bdev_p)
 | 
						|
				*bdev_p = bdgrab(sis->bdev);
 | 
						|
 | 
						|
			spin_unlock(&swap_lock);
 | 
						|
			return type;
 | 
						|
		}
 | 
						|
		if (bdev == sis->bdev) {
 | 
						|
			struct swap_extent *se = &sis->first_swap_extent;
 | 
						|
 | 
						|
			if (se->start_block == offset) {
 | 
						|
				if (bdev_p)
 | 
						|
					*bdev_p = bdgrab(sis->bdev);
 | 
						|
 | 
						|
				spin_unlock(&swap_lock);
 | 
						|
				bdput(bdev);
 | 
						|
				return type;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock(&swap_lock);
 | 
						|
	if (bdev)
 | 
						|
		bdput(bdev);
 | 
						|
 | 
						|
	return -ENODEV;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
 | 
						|
 * corresponding to given index in swap_info (swap type).
 | 
						|
 */
 | 
						|
sector_t swapdev_block(int type, pgoff_t offset)
 | 
						|
{
 | 
						|
	struct block_device *bdev;
 | 
						|
 | 
						|
	if ((unsigned int)type >= nr_swapfiles)
 | 
						|
		return 0;
 | 
						|
	if (!(swap_info[type]->flags & SWP_WRITEOK))
 | 
						|
		return 0;
 | 
						|
	return map_swap_entry(swp_entry(type, offset), &bdev);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return either the total number of swap pages of given type, or the number
 | 
						|
 * of free pages of that type (depending on @free)
 | 
						|
 *
 | 
						|
 * This is needed for software suspend
 | 
						|
 */
 | 
						|
unsigned int count_swap_pages(int type, int free)
 | 
						|
{
 | 
						|
	unsigned int n = 0;
 | 
						|
 | 
						|
	spin_lock(&swap_lock);
 | 
						|
	if ((unsigned int)type < nr_swapfiles) {
 | 
						|
		struct swap_info_struct *sis = swap_info[type];
 | 
						|
 | 
						|
		if (sis->flags & SWP_WRITEOK) {
 | 
						|
			n = sis->pages;
 | 
						|
			if (free)
 | 
						|
				n -= sis->inuse_pages;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock(&swap_lock);
 | 
						|
	return n;
 | 
						|
}
 | 
						|
#endif /* CONFIG_HIBERNATION */
 | 
						|
 | 
						|
/*
 | 
						|
 * No need to decide whether this PTE shares the swap entry with others,
 | 
						|
 * just let do_wp_page work it out if a write is requested later - to
 | 
						|
 * force COW, vm_page_prot omits write permission from any private vma.
 | 
						|
 */
 | 
						|
static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
 | 
						|
		unsigned long addr, swp_entry_t entry, struct page *page)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	pte_t *pte;
 | 
						|
	int ret = 1;
 | 
						|
 | 
						|
	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
 | 
						|
					 GFP_KERNEL, &memcg)) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto out_nolock;
 | 
						|
	}
 | 
						|
 | 
						|
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 | 
						|
	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
 | 
						|
		mem_cgroup_cancel_charge_swapin(memcg);
 | 
						|
		ret = 0;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
 | 
						|
	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
 | 
						|
	get_page(page);
 | 
						|
	set_pte_at(vma->vm_mm, addr, pte,
 | 
						|
		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
 | 
						|
	page_add_anon_rmap(page, vma, addr);
 | 
						|
	mem_cgroup_commit_charge_swapin(page, memcg);
 | 
						|
	swap_free(entry);
 | 
						|
	/*
 | 
						|
	 * Move the page to the active list so it is not
 | 
						|
	 * immediately swapped out again after swapon.
 | 
						|
	 */
 | 
						|
	activate_page(page);
 | 
						|
out:
 | 
						|
	pte_unmap_unlock(pte, ptl);
 | 
						|
out_nolock:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 | 
						|
				unsigned long addr, unsigned long end,
 | 
						|
				swp_entry_t entry, struct page *page)
 | 
						|
{
 | 
						|
	pte_t swp_pte = swp_entry_to_pte(entry);
 | 
						|
	pte_t *pte;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't actually need pte lock while scanning for swp_pte: since
 | 
						|
	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
 | 
						|
	 * page table while we're scanning; though it could get zapped, and on
 | 
						|
	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
 | 
						|
	 * of unmatched parts which look like swp_pte, so unuse_pte must
 | 
						|
	 * recheck under pte lock.  Scanning without pte lock lets it be
 | 
						|
	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
 | 
						|
	 */
 | 
						|
	pte = pte_offset_map(pmd, addr);
 | 
						|
	do {
 | 
						|
		/*
 | 
						|
		 * swapoff spends a _lot_ of time in this loop!
 | 
						|
		 * Test inline before going to call unuse_pte.
 | 
						|
		 */
 | 
						|
		if (unlikely(pte_same(*pte, swp_pte))) {
 | 
						|
			pte_unmap(pte);
 | 
						|
			ret = unuse_pte(vma, pmd, addr, entry, page);
 | 
						|
			if (ret)
 | 
						|
				goto out;
 | 
						|
			pte = pte_offset_map(pmd, addr);
 | 
						|
		}
 | 
						|
	} while (pte++, addr += PAGE_SIZE, addr != end);
 | 
						|
	pte_unmap(pte - 1);
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 | 
						|
				unsigned long addr, unsigned long end,
 | 
						|
				swp_entry_t entry, struct page *page)
 | 
						|
{
 | 
						|
	pmd_t *pmd;
 | 
						|
	unsigned long next;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	pmd = pmd_offset(pud, addr);
 | 
						|
	do {
 | 
						|
		next = pmd_addr_end(addr, end);
 | 
						|
		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 | 
						|
			continue;
 | 
						|
		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	} while (pmd++, addr = next, addr != end);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 | 
						|
				unsigned long addr, unsigned long end,
 | 
						|
				swp_entry_t entry, struct page *page)
 | 
						|
{
 | 
						|
	pud_t *pud;
 | 
						|
	unsigned long next;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	pud = pud_offset(pgd, addr);
 | 
						|
	do {
 | 
						|
		next = pud_addr_end(addr, end);
 | 
						|
		if (pud_none_or_clear_bad(pud))
 | 
						|
			continue;
 | 
						|
		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	} while (pud++, addr = next, addr != end);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int unuse_vma(struct vm_area_struct *vma,
 | 
						|
				swp_entry_t entry, struct page *page)
 | 
						|
{
 | 
						|
	pgd_t *pgd;
 | 
						|
	unsigned long addr, end, next;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (page_anon_vma(page)) {
 | 
						|
		addr = page_address_in_vma(page, vma);
 | 
						|
		if (addr == -EFAULT)
 | 
						|
			return 0;
 | 
						|
		else
 | 
						|
			end = addr + PAGE_SIZE;
 | 
						|
	} else {
 | 
						|
		addr = vma->vm_start;
 | 
						|
		end = vma->vm_end;
 | 
						|
	}
 | 
						|
 | 
						|
	pgd = pgd_offset(vma->vm_mm, addr);
 | 
						|
	do {
 | 
						|
		next = pgd_addr_end(addr, end);
 | 
						|
		if (pgd_none_or_clear_bad(pgd))
 | 
						|
			continue;
 | 
						|
		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	} while (pgd++, addr = next, addr != end);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int unuse_mm(struct mm_struct *mm,
 | 
						|
				swp_entry_t entry, struct page *page)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (!down_read_trylock(&mm->mmap_sem)) {
 | 
						|
		/*
 | 
						|
		 * Activate page so shrink_inactive_list is unlikely to unmap
 | 
						|
		 * its ptes while lock is dropped, so swapoff can make progress.
 | 
						|
		 */
 | 
						|
		activate_page(page);
 | 
						|
		unlock_page(page);
 | 
						|
		down_read(&mm->mmap_sem);
 | 
						|
		lock_page(page);
 | 
						|
	}
 | 
						|
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 | 
						|
		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	up_read(&mm->mmap_sem);
 | 
						|
	return (ret < 0)? ret: 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Scan swap_map (or frontswap_map if frontswap parameter is true)
 | 
						|
 * from current position to next entry still in use.
 | 
						|
 * Recycle to start on reaching the end, returning 0 when empty.
 | 
						|
 */
 | 
						|
static unsigned int find_next_to_unuse(struct swap_info_struct *si,
 | 
						|
					unsigned int prev, bool frontswap)
 | 
						|
{
 | 
						|
	unsigned int max = si->max;
 | 
						|
	unsigned int i = prev;
 | 
						|
	unsigned char count;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * No need for swap_lock here: we're just looking
 | 
						|
	 * for whether an entry is in use, not modifying it; false
 | 
						|
	 * hits are okay, and sys_swapoff() has already prevented new
 | 
						|
	 * allocations from this area (while holding swap_lock).
 | 
						|
	 */
 | 
						|
	for (;;) {
 | 
						|
		if (++i >= max) {
 | 
						|
			if (!prev) {
 | 
						|
				i = 0;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			/*
 | 
						|
			 * No entries in use at top of swap_map,
 | 
						|
			 * loop back to start and recheck there.
 | 
						|
			 */
 | 
						|
			max = prev + 1;
 | 
						|
			prev = 0;
 | 
						|
			i = 1;
 | 
						|
		}
 | 
						|
		if (frontswap) {
 | 
						|
			if (frontswap_test(si, i))
 | 
						|
				break;
 | 
						|
			else
 | 
						|
				continue;
 | 
						|
		}
 | 
						|
		count = si->swap_map[i];
 | 
						|
		if (count && swap_count(count) != SWAP_MAP_BAD)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	return i;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We completely avoid races by reading each swap page in advance,
 | 
						|
 * and then search for the process using it.  All the necessary
 | 
						|
 * page table adjustments can then be made atomically.
 | 
						|
 *
 | 
						|
 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
 | 
						|
 * pages_to_unuse==0 means all pages; ignored if frontswap is false
 | 
						|
 */
 | 
						|
int try_to_unuse(unsigned int type, bool frontswap,
 | 
						|
		 unsigned long pages_to_unuse)
 | 
						|
{
 | 
						|
	struct swap_info_struct *si = swap_info[type];
 | 
						|
	struct mm_struct *start_mm;
 | 
						|
	unsigned char *swap_map;
 | 
						|
	unsigned char swcount;
 | 
						|
	struct page *page;
 | 
						|
	swp_entry_t entry;
 | 
						|
	unsigned int i = 0;
 | 
						|
	int retval = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When searching mms for an entry, a good strategy is to
 | 
						|
	 * start at the first mm we freed the previous entry from
 | 
						|
	 * (though actually we don't notice whether we or coincidence
 | 
						|
	 * freed the entry).  Initialize this start_mm with a hold.
 | 
						|
	 *
 | 
						|
	 * A simpler strategy would be to start at the last mm we
 | 
						|
	 * freed the previous entry from; but that would take less
 | 
						|
	 * advantage of mmlist ordering, which clusters forked mms
 | 
						|
	 * together, child after parent.  If we race with dup_mmap(), we
 | 
						|
	 * prefer to resolve parent before child, lest we miss entries
 | 
						|
	 * duplicated after we scanned child: using last mm would invert
 | 
						|
	 * that.
 | 
						|
	 */
 | 
						|
	start_mm = &init_mm;
 | 
						|
	atomic_inc(&init_mm.mm_users);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Keep on scanning until all entries have gone.  Usually,
 | 
						|
	 * one pass through swap_map is enough, but not necessarily:
 | 
						|
	 * there are races when an instance of an entry might be missed.
 | 
						|
	 */
 | 
						|
	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
 | 
						|
		if (signal_pending(current)) {
 | 
						|
			retval = -EINTR;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Get a page for the entry, using the existing swap
 | 
						|
		 * cache page if there is one.  Otherwise, get a clean
 | 
						|
		 * page and read the swap into it.
 | 
						|
		 */
 | 
						|
		swap_map = &si->swap_map[i];
 | 
						|
		entry = swp_entry(type, i);
 | 
						|
		page = read_swap_cache_async(entry,
 | 
						|
					GFP_HIGHUSER_MOVABLE, NULL, 0);
 | 
						|
		if (!page) {
 | 
						|
			/*
 | 
						|
			 * Either swap_duplicate() failed because entry
 | 
						|
			 * has been freed independently, and will not be
 | 
						|
			 * reused since sys_swapoff() already disabled
 | 
						|
			 * allocation from here, or alloc_page() failed.
 | 
						|
			 */
 | 
						|
			if (!*swap_map)
 | 
						|
				continue;
 | 
						|
			retval = -ENOMEM;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Don't hold on to start_mm if it looks like exiting.
 | 
						|
		 */
 | 
						|
		if (atomic_read(&start_mm->mm_users) == 1) {
 | 
						|
			mmput(start_mm);
 | 
						|
			start_mm = &init_mm;
 | 
						|
			atomic_inc(&init_mm.mm_users);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Wait for and lock page.  When do_swap_page races with
 | 
						|
		 * try_to_unuse, do_swap_page can handle the fault much
 | 
						|
		 * faster than try_to_unuse can locate the entry.  This
 | 
						|
		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
 | 
						|
		 * defer to do_swap_page in such a case - in some tests,
 | 
						|
		 * do_swap_page and try_to_unuse repeatedly compete.
 | 
						|
		 */
 | 
						|
		wait_on_page_locked(page);
 | 
						|
		wait_on_page_writeback(page);
 | 
						|
		lock_page(page);
 | 
						|
		wait_on_page_writeback(page);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Remove all references to entry.
 | 
						|
		 */
 | 
						|
		swcount = *swap_map;
 | 
						|
		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
 | 
						|
			retval = shmem_unuse(entry, page);
 | 
						|
			/* page has already been unlocked and released */
 | 
						|
			if (retval < 0)
 | 
						|
				break;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		if (swap_count(swcount) && start_mm != &init_mm)
 | 
						|
			retval = unuse_mm(start_mm, entry, page);
 | 
						|
 | 
						|
		if (swap_count(*swap_map)) {
 | 
						|
			int set_start_mm = (*swap_map >= swcount);
 | 
						|
			struct list_head *p = &start_mm->mmlist;
 | 
						|
			struct mm_struct *new_start_mm = start_mm;
 | 
						|
			struct mm_struct *prev_mm = start_mm;
 | 
						|
			struct mm_struct *mm;
 | 
						|
 | 
						|
			atomic_inc(&new_start_mm->mm_users);
 | 
						|
			atomic_inc(&prev_mm->mm_users);
 | 
						|
			spin_lock(&mmlist_lock);
 | 
						|
			while (swap_count(*swap_map) && !retval &&
 | 
						|
					(p = p->next) != &start_mm->mmlist) {
 | 
						|
				mm = list_entry(p, struct mm_struct, mmlist);
 | 
						|
				if (!atomic_inc_not_zero(&mm->mm_users))
 | 
						|
					continue;
 | 
						|
				spin_unlock(&mmlist_lock);
 | 
						|
				mmput(prev_mm);
 | 
						|
				prev_mm = mm;
 | 
						|
 | 
						|
				cond_resched();
 | 
						|
 | 
						|
				swcount = *swap_map;
 | 
						|
				if (!swap_count(swcount)) /* any usage ? */
 | 
						|
					;
 | 
						|
				else if (mm == &init_mm)
 | 
						|
					set_start_mm = 1;
 | 
						|
				else
 | 
						|
					retval = unuse_mm(mm, entry, page);
 | 
						|
 | 
						|
				if (set_start_mm && *swap_map < swcount) {
 | 
						|
					mmput(new_start_mm);
 | 
						|
					atomic_inc(&mm->mm_users);
 | 
						|
					new_start_mm = mm;
 | 
						|
					set_start_mm = 0;
 | 
						|
				}
 | 
						|
				spin_lock(&mmlist_lock);
 | 
						|
			}
 | 
						|
			spin_unlock(&mmlist_lock);
 | 
						|
			mmput(prev_mm);
 | 
						|
			mmput(start_mm);
 | 
						|
			start_mm = new_start_mm;
 | 
						|
		}
 | 
						|
		if (retval) {
 | 
						|
			unlock_page(page);
 | 
						|
			page_cache_release(page);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If a reference remains (rare), we would like to leave
 | 
						|
		 * the page in the swap cache; but try_to_unmap could
 | 
						|
		 * then re-duplicate the entry once we drop page lock,
 | 
						|
		 * so we might loop indefinitely; also, that page could
 | 
						|
		 * not be swapped out to other storage meanwhile.  So:
 | 
						|
		 * delete from cache even if there's another reference,
 | 
						|
		 * after ensuring that the data has been saved to disk -
 | 
						|
		 * since if the reference remains (rarer), it will be
 | 
						|
		 * read from disk into another page.  Splitting into two
 | 
						|
		 * pages would be incorrect if swap supported "shared
 | 
						|
		 * private" pages, but they are handled by tmpfs files.
 | 
						|
		 *
 | 
						|
		 * Given how unuse_vma() targets one particular offset
 | 
						|
		 * in an anon_vma, once the anon_vma has been determined,
 | 
						|
		 * this splitting happens to be just what is needed to
 | 
						|
		 * handle where KSM pages have been swapped out: re-reading
 | 
						|
		 * is unnecessarily slow, but we can fix that later on.
 | 
						|
		 */
 | 
						|
		if (swap_count(*swap_map) &&
 | 
						|
		     PageDirty(page) && PageSwapCache(page)) {
 | 
						|
			struct writeback_control wbc = {
 | 
						|
				.sync_mode = WB_SYNC_NONE,
 | 
						|
			};
 | 
						|
 | 
						|
			swap_writepage(page, &wbc);
 | 
						|
			lock_page(page);
 | 
						|
			wait_on_page_writeback(page);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * It is conceivable that a racing task removed this page from
 | 
						|
		 * swap cache just before we acquired the page lock at the top,
 | 
						|
		 * or while we dropped it in unuse_mm().  The page might even
 | 
						|
		 * be back in swap cache on another swap area: that we must not
 | 
						|
		 * delete, since it may not have been written out to swap yet.
 | 
						|
		 */
 | 
						|
		if (PageSwapCache(page) &&
 | 
						|
		    likely(page_private(page) == entry.val))
 | 
						|
			delete_from_swap_cache(page);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * So we could skip searching mms once swap count went
 | 
						|
		 * to 1, we did not mark any present ptes as dirty: must
 | 
						|
		 * mark page dirty so shrink_page_list will preserve it.
 | 
						|
		 */
 | 
						|
		SetPageDirty(page);
 | 
						|
		unlock_page(page);
 | 
						|
		page_cache_release(page);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Make sure that we aren't completely killing
 | 
						|
		 * interactive performance.
 | 
						|
		 */
 | 
						|
		cond_resched();
 | 
						|
		if (frontswap && pages_to_unuse > 0) {
 | 
						|
			if (!--pages_to_unuse)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	mmput(start_mm);
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * After a successful try_to_unuse, if no swap is now in use, we know
 | 
						|
 * we can empty the mmlist.  swap_lock must be held on entry and exit.
 | 
						|
 * Note that mmlist_lock nests inside swap_lock, and an mm must be
 | 
						|
 * added to the mmlist just after page_duplicate - before would be racy.
 | 
						|
 */
 | 
						|
static void drain_mmlist(void)
 | 
						|
{
 | 
						|
	struct list_head *p, *next;
 | 
						|
	unsigned int type;
 | 
						|
 | 
						|
	for (type = 0; type < nr_swapfiles; type++)
 | 
						|
		if (swap_info[type]->inuse_pages)
 | 
						|
			return;
 | 
						|
	spin_lock(&mmlist_lock);
 | 
						|
	list_for_each_safe(p, next, &init_mm.mmlist)
 | 
						|
		list_del_init(p);
 | 
						|
	spin_unlock(&mmlist_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
 | 
						|
 * corresponds to page offset for the specified swap entry.
 | 
						|
 * Note that the type of this function is sector_t, but it returns page offset
 | 
						|
 * into the bdev, not sector offset.
 | 
						|
 */
 | 
						|
static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
 | 
						|
{
 | 
						|
	struct swap_info_struct *sis;
 | 
						|
	struct swap_extent *start_se;
 | 
						|
	struct swap_extent *se;
 | 
						|
	pgoff_t offset;
 | 
						|
 | 
						|
	sis = swap_info[swp_type(entry)];
 | 
						|
	*bdev = sis->bdev;
 | 
						|
 | 
						|
	offset = swp_offset(entry);
 | 
						|
	start_se = sis->curr_swap_extent;
 | 
						|
	se = start_se;
 | 
						|
 | 
						|
	for ( ; ; ) {
 | 
						|
		struct list_head *lh;
 | 
						|
 | 
						|
		if (se->start_page <= offset &&
 | 
						|
				offset < (se->start_page + se->nr_pages)) {
 | 
						|
			return se->start_block + (offset - se->start_page);
 | 
						|
		}
 | 
						|
		lh = se->list.next;
 | 
						|
		se = list_entry(lh, struct swap_extent, list);
 | 
						|
		sis->curr_swap_extent = se;
 | 
						|
		BUG_ON(se == start_se);		/* It *must* be present */
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the page offset into bdev for the specified page's swap entry.
 | 
						|
 */
 | 
						|
sector_t map_swap_page(struct page *page, struct block_device **bdev)
 | 
						|
{
 | 
						|
	swp_entry_t entry;
 | 
						|
	entry.val = page_private(page);
 | 
						|
	return map_swap_entry(entry, bdev);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free all of a swapdev's extent information
 | 
						|
 */
 | 
						|
static void destroy_swap_extents(struct swap_info_struct *sis)
 | 
						|
{
 | 
						|
	while (!list_empty(&sis->first_swap_extent.list)) {
 | 
						|
		struct swap_extent *se;
 | 
						|
 | 
						|
		se = list_entry(sis->first_swap_extent.list.next,
 | 
						|
				struct swap_extent, list);
 | 
						|
		list_del(&se->list);
 | 
						|
		kfree(se);
 | 
						|
	}
 | 
						|
 | 
						|
	if (sis->flags & SWP_FILE) {
 | 
						|
		struct file *swap_file = sis->swap_file;
 | 
						|
		struct address_space *mapping = swap_file->f_mapping;
 | 
						|
 | 
						|
		sis->flags &= ~SWP_FILE;
 | 
						|
		mapping->a_ops->swap_deactivate(swap_file);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add a block range (and the corresponding page range) into this swapdev's
 | 
						|
 * extent list.  The extent list is kept sorted in page order.
 | 
						|
 *
 | 
						|
 * This function rather assumes that it is called in ascending page order.
 | 
						|
 */
 | 
						|
int
 | 
						|
add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
 | 
						|
		unsigned long nr_pages, sector_t start_block)
 | 
						|
{
 | 
						|
	struct swap_extent *se;
 | 
						|
	struct swap_extent *new_se;
 | 
						|
	struct list_head *lh;
 | 
						|
 | 
						|
	if (start_page == 0) {
 | 
						|
		se = &sis->first_swap_extent;
 | 
						|
		sis->curr_swap_extent = se;
 | 
						|
		se->start_page = 0;
 | 
						|
		se->nr_pages = nr_pages;
 | 
						|
		se->start_block = start_block;
 | 
						|
		return 1;
 | 
						|
	} else {
 | 
						|
		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
 | 
						|
		se = list_entry(lh, struct swap_extent, list);
 | 
						|
		BUG_ON(se->start_page + se->nr_pages != start_page);
 | 
						|
		if (se->start_block + se->nr_pages == start_block) {
 | 
						|
			/* Merge it */
 | 
						|
			se->nr_pages += nr_pages;
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * No merge.  Insert a new extent, preserving ordering.
 | 
						|
	 */
 | 
						|
	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
 | 
						|
	if (new_se == NULL)
 | 
						|
		return -ENOMEM;
 | 
						|
	new_se->start_page = start_page;
 | 
						|
	new_se->nr_pages = nr_pages;
 | 
						|
	new_se->start_block = start_block;
 | 
						|
 | 
						|
	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A `swap extent' is a simple thing which maps a contiguous range of pages
 | 
						|
 * onto a contiguous range of disk blocks.  An ordered list of swap extents
 | 
						|
 * is built at swapon time and is then used at swap_writepage/swap_readpage
 | 
						|
 * time for locating where on disk a page belongs.
 | 
						|
 *
 | 
						|
 * If the swapfile is an S_ISBLK block device, a single extent is installed.
 | 
						|
 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
 | 
						|
 * swap files identically.
 | 
						|
 *
 | 
						|
 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
 | 
						|
 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
 | 
						|
 * swapfiles are handled *identically* after swapon time.
 | 
						|
 *
 | 
						|
 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
 | 
						|
 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
 | 
						|
 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
 | 
						|
 * requirements, they are simply tossed out - we will never use those blocks
 | 
						|
 * for swapping.
 | 
						|
 *
 | 
						|
 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
 | 
						|
 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
 | 
						|
 * which will scribble on the fs.
 | 
						|
 *
 | 
						|
 * The amount of disk space which a single swap extent represents varies.
 | 
						|
 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
 | 
						|
 * extents in the list.  To avoid much list walking, we cache the previous
 | 
						|
 * search location in `curr_swap_extent', and start new searches from there.
 | 
						|
 * This is extremely effective.  The average number of iterations in
 | 
						|
 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
 | 
						|
 */
 | 
						|
static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
 | 
						|
{
 | 
						|
	struct file *swap_file = sis->swap_file;
 | 
						|
	struct address_space *mapping = swap_file->f_mapping;
 | 
						|
	struct inode *inode = mapping->host;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (S_ISBLK(inode->i_mode)) {
 | 
						|
		ret = add_swap_extent(sis, 0, sis->max, 0);
 | 
						|
		*span = sis->pages;
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	if (mapping->a_ops->swap_activate) {
 | 
						|
		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
 | 
						|
		if (!ret) {
 | 
						|
			sis->flags |= SWP_FILE;
 | 
						|
			ret = add_swap_extent(sis, 0, sis->max, 0);
 | 
						|
			*span = sis->pages;
 | 
						|
		}
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return generic_swapfile_activate(sis, swap_file, span);
 | 
						|
}
 | 
						|
 | 
						|
static void enable_swap_info(struct swap_info_struct *p, int prio,
 | 
						|
				unsigned char *swap_map,
 | 
						|
				unsigned long *frontswap_map)
 | 
						|
{
 | 
						|
	int i, prev;
 | 
						|
 | 
						|
	spin_lock(&swap_lock);
 | 
						|
	if (prio >= 0)
 | 
						|
		p->prio = prio;
 | 
						|
	else
 | 
						|
		p->prio = --least_priority;
 | 
						|
	p->swap_map = swap_map;
 | 
						|
	frontswap_map_set(p, frontswap_map);
 | 
						|
	p->flags |= SWP_WRITEOK;
 | 
						|
	nr_swap_pages += p->pages;
 | 
						|
	total_swap_pages += p->pages;
 | 
						|
 | 
						|
	/* insert swap space into swap_list: */
 | 
						|
	prev = -1;
 | 
						|
	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
 | 
						|
		if (p->prio >= swap_info[i]->prio)
 | 
						|
			break;
 | 
						|
		prev = i;
 | 
						|
	}
 | 
						|
	p->next = i;
 | 
						|
	if (prev < 0)
 | 
						|
		swap_list.head = swap_list.next = p->type;
 | 
						|
	else
 | 
						|
		swap_info[prev]->next = p->type;
 | 
						|
	frontswap_init(p->type);
 | 
						|
	spin_unlock(&swap_lock);
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
 | 
						|
{
 | 
						|
	struct swap_info_struct *p = NULL;
 | 
						|
	unsigned char *swap_map;
 | 
						|
	struct file *swap_file, *victim;
 | 
						|
	struct address_space *mapping;
 | 
						|
	struct inode *inode;
 | 
						|
	struct filename *pathname;
 | 
						|
	int oom_score_adj;
 | 
						|
	int i, type, prev;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (!capable(CAP_SYS_ADMIN))
 | 
						|
		return -EPERM;
 | 
						|
 | 
						|
	BUG_ON(!current->mm);
 | 
						|
 | 
						|
	pathname = getname(specialfile);
 | 
						|
	if (IS_ERR(pathname))
 | 
						|
		return PTR_ERR(pathname);
 | 
						|
 | 
						|
	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
 | 
						|
	err = PTR_ERR(victim);
 | 
						|
	if (IS_ERR(victim))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	mapping = victim->f_mapping;
 | 
						|
	prev = -1;
 | 
						|
	spin_lock(&swap_lock);
 | 
						|
	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
 | 
						|
		p = swap_info[type];
 | 
						|
		if (p->flags & SWP_WRITEOK) {
 | 
						|
			if (p->swap_file->f_mapping == mapping)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		prev = type;
 | 
						|
	}
 | 
						|
	if (type < 0) {
 | 
						|
		err = -EINVAL;
 | 
						|
		spin_unlock(&swap_lock);
 | 
						|
		goto out_dput;
 | 
						|
	}
 | 
						|
	if (!security_vm_enough_memory_mm(current->mm, p->pages))
 | 
						|
		vm_unacct_memory(p->pages);
 | 
						|
	else {
 | 
						|
		err = -ENOMEM;
 | 
						|
		spin_unlock(&swap_lock);
 | 
						|
		goto out_dput;
 | 
						|
	}
 | 
						|
	if (prev < 0)
 | 
						|
		swap_list.head = p->next;
 | 
						|
	else
 | 
						|
		swap_info[prev]->next = p->next;
 | 
						|
	if (type == swap_list.next) {
 | 
						|
		/* just pick something that's safe... */
 | 
						|
		swap_list.next = swap_list.head;
 | 
						|
	}
 | 
						|
	if (p->prio < 0) {
 | 
						|
		for (i = p->next; i >= 0; i = swap_info[i]->next)
 | 
						|
			swap_info[i]->prio = p->prio--;
 | 
						|
		least_priority++;
 | 
						|
	}
 | 
						|
	nr_swap_pages -= p->pages;
 | 
						|
	total_swap_pages -= p->pages;
 | 
						|
	p->flags &= ~SWP_WRITEOK;
 | 
						|
	spin_unlock(&swap_lock);
 | 
						|
 | 
						|
	oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
 | 
						|
	err = try_to_unuse(type, false, 0); /* force all pages to be unused */
 | 
						|
	compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj);
 | 
						|
 | 
						|
	if (err) {
 | 
						|
		/*
 | 
						|
		 * reading p->prio and p->swap_map outside the lock is
 | 
						|
		 * safe here because only sys_swapon and sys_swapoff
 | 
						|
		 * change them, and there can be no other sys_swapon or
 | 
						|
		 * sys_swapoff for this swap_info_struct at this point.
 | 
						|
		 */
 | 
						|
		/* re-insert swap space back into swap_list */
 | 
						|
		enable_swap_info(p, p->prio, p->swap_map, frontswap_map_get(p));
 | 
						|
		goto out_dput;
 | 
						|
	}
 | 
						|
 | 
						|
	destroy_swap_extents(p);
 | 
						|
	if (p->flags & SWP_CONTINUED)
 | 
						|
		free_swap_count_continuations(p);
 | 
						|
 | 
						|
	mutex_lock(&swapon_mutex);
 | 
						|
	spin_lock(&swap_lock);
 | 
						|
	drain_mmlist();
 | 
						|
 | 
						|
	/* wait for anyone still in scan_swap_map */
 | 
						|
	p->highest_bit = 0;		/* cuts scans short */
 | 
						|
	while (p->flags >= SWP_SCANNING) {
 | 
						|
		spin_unlock(&swap_lock);
 | 
						|
		schedule_timeout_uninterruptible(1);
 | 
						|
		spin_lock(&swap_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	swap_file = p->swap_file;
 | 
						|
	p->swap_file = NULL;
 | 
						|
	p->max = 0;
 | 
						|
	swap_map = p->swap_map;
 | 
						|
	p->swap_map = NULL;
 | 
						|
	p->flags = 0;
 | 
						|
	frontswap_invalidate_area(type);
 | 
						|
	spin_unlock(&swap_lock);
 | 
						|
	mutex_unlock(&swapon_mutex);
 | 
						|
	vfree(swap_map);
 | 
						|
	vfree(frontswap_map_get(p));
 | 
						|
	/* Destroy swap account informatin */
 | 
						|
	swap_cgroup_swapoff(type);
 | 
						|
 | 
						|
	inode = mapping->host;
 | 
						|
	if (S_ISBLK(inode->i_mode)) {
 | 
						|
		struct block_device *bdev = I_BDEV(inode);
 | 
						|
		set_blocksize(bdev, p->old_block_size);
 | 
						|
		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 | 
						|
	} else {
 | 
						|
		mutex_lock(&inode->i_mutex);
 | 
						|
		inode->i_flags &= ~S_SWAPFILE;
 | 
						|
		mutex_unlock(&inode->i_mutex);
 | 
						|
	}
 | 
						|
	filp_close(swap_file, NULL);
 | 
						|
	err = 0;
 | 
						|
	atomic_inc(&proc_poll_event);
 | 
						|
	wake_up_interruptible(&proc_poll_wait);
 | 
						|
 | 
						|
out_dput:
 | 
						|
	filp_close(victim, NULL);
 | 
						|
out:
 | 
						|
	putname(pathname);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_PROC_FS
 | 
						|
static unsigned swaps_poll(struct file *file, poll_table *wait)
 | 
						|
{
 | 
						|
	struct seq_file *seq = file->private_data;
 | 
						|
 | 
						|
	poll_wait(file, &proc_poll_wait, wait);
 | 
						|
 | 
						|
	if (seq->poll_event != atomic_read(&proc_poll_event)) {
 | 
						|
		seq->poll_event = atomic_read(&proc_poll_event);
 | 
						|
		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
 | 
						|
	}
 | 
						|
 | 
						|
	return POLLIN | POLLRDNORM;
 | 
						|
}
 | 
						|
 | 
						|
/* iterator */
 | 
						|
static void *swap_start(struct seq_file *swap, loff_t *pos)
 | 
						|
{
 | 
						|
	struct swap_info_struct *si;
 | 
						|
	int type;
 | 
						|
	loff_t l = *pos;
 | 
						|
 | 
						|
	mutex_lock(&swapon_mutex);
 | 
						|
 | 
						|
	if (!l)
 | 
						|
		return SEQ_START_TOKEN;
 | 
						|
 | 
						|
	for (type = 0; type < nr_swapfiles; type++) {
 | 
						|
		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
 | 
						|
		si = swap_info[type];
 | 
						|
		if (!(si->flags & SWP_USED) || !si->swap_map)
 | 
						|
			continue;
 | 
						|
		if (!--l)
 | 
						|
			return si;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
 | 
						|
{
 | 
						|
	struct swap_info_struct *si = v;
 | 
						|
	int type;
 | 
						|
 | 
						|
	if (v == SEQ_START_TOKEN)
 | 
						|
		type = 0;
 | 
						|
	else
 | 
						|
		type = si->type + 1;
 | 
						|
 | 
						|
	for (; type < nr_swapfiles; type++) {
 | 
						|
		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
 | 
						|
		si = swap_info[type];
 | 
						|
		if (!(si->flags & SWP_USED) || !si->swap_map)
 | 
						|
			continue;
 | 
						|
		++*pos;
 | 
						|
		return si;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void swap_stop(struct seq_file *swap, void *v)
 | 
						|
{
 | 
						|
	mutex_unlock(&swapon_mutex);
 | 
						|
}
 | 
						|
 | 
						|
static int swap_show(struct seq_file *swap, void *v)
 | 
						|
{
 | 
						|
	struct swap_info_struct *si = v;
 | 
						|
	struct file *file;
 | 
						|
	int len;
 | 
						|
 | 
						|
	if (si == SEQ_START_TOKEN) {
 | 
						|
		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	file = si->swap_file;
 | 
						|
	len = seq_path(swap, &file->f_path, " \t\n\\");
 | 
						|
	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
 | 
						|
			len < 40 ? 40 - len : 1, " ",
 | 
						|
			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
 | 
						|
				"partition" : "file\t",
 | 
						|
			si->pages << (PAGE_SHIFT - 10),
 | 
						|
			si->inuse_pages << (PAGE_SHIFT - 10),
 | 
						|
			si->prio);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const struct seq_operations swaps_op = {
 | 
						|
	.start =	swap_start,
 | 
						|
	.next =		swap_next,
 | 
						|
	.stop =		swap_stop,
 | 
						|
	.show =		swap_show
 | 
						|
};
 | 
						|
 | 
						|
static int swaps_open(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	struct seq_file *seq;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = seq_open(file, &swaps_op);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	seq = file->private_data;
 | 
						|
	seq->poll_event = atomic_read(&proc_poll_event);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const struct file_operations proc_swaps_operations = {
 | 
						|
	.open		= swaps_open,
 | 
						|
	.read		= seq_read,
 | 
						|
	.llseek		= seq_lseek,
 | 
						|
	.release	= seq_release,
 | 
						|
	.poll		= swaps_poll,
 | 
						|
};
 | 
						|
 | 
						|
static int __init procswaps_init(void)
 | 
						|
{
 | 
						|
	proc_create("swaps", 0, NULL, &proc_swaps_operations);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
__initcall(procswaps_init);
 | 
						|
#endif /* CONFIG_PROC_FS */
 | 
						|
 | 
						|
#ifdef MAX_SWAPFILES_CHECK
 | 
						|
static int __init max_swapfiles_check(void)
 | 
						|
{
 | 
						|
	MAX_SWAPFILES_CHECK();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
late_initcall(max_swapfiles_check);
 | 
						|
#endif
 | 
						|
 | 
						|
static struct swap_info_struct *alloc_swap_info(void)
 | 
						|
{
 | 
						|
	struct swap_info_struct *p;
 | 
						|
	unsigned int type;
 | 
						|
 | 
						|
	p = kzalloc(sizeof(*p), GFP_KERNEL);
 | 
						|
	if (!p)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	spin_lock(&swap_lock);
 | 
						|
	for (type = 0; type < nr_swapfiles; type++) {
 | 
						|
		if (!(swap_info[type]->flags & SWP_USED))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	if (type >= MAX_SWAPFILES) {
 | 
						|
		spin_unlock(&swap_lock);
 | 
						|
		kfree(p);
 | 
						|
		return ERR_PTR(-EPERM);
 | 
						|
	}
 | 
						|
	if (type >= nr_swapfiles) {
 | 
						|
		p->type = type;
 | 
						|
		swap_info[type] = p;
 | 
						|
		/*
 | 
						|
		 * Write swap_info[type] before nr_swapfiles, in case a
 | 
						|
		 * racing procfs swap_start() or swap_next() is reading them.
 | 
						|
		 * (We never shrink nr_swapfiles, we never free this entry.)
 | 
						|
		 */
 | 
						|
		smp_wmb();
 | 
						|
		nr_swapfiles++;
 | 
						|
	} else {
 | 
						|
		kfree(p);
 | 
						|
		p = swap_info[type];
 | 
						|
		/*
 | 
						|
		 * Do not memset this entry: a racing procfs swap_next()
 | 
						|
		 * would be relying on p->type to remain valid.
 | 
						|
		 */
 | 
						|
	}
 | 
						|
	INIT_LIST_HEAD(&p->first_swap_extent.list);
 | 
						|
	p->flags = SWP_USED;
 | 
						|
	p->next = -1;
 | 
						|
	spin_unlock(&swap_lock);
 | 
						|
 | 
						|
	return p;
 | 
						|
}
 | 
						|
 | 
						|
static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
 | 
						|
	if (S_ISBLK(inode->i_mode)) {
 | 
						|
		p->bdev = bdgrab(I_BDEV(inode));
 | 
						|
		error = blkdev_get(p->bdev,
 | 
						|
				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
 | 
						|
				   sys_swapon);
 | 
						|
		if (error < 0) {
 | 
						|
			p->bdev = NULL;
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
		p->old_block_size = block_size(p->bdev);
 | 
						|
		error = set_blocksize(p->bdev, PAGE_SIZE);
 | 
						|
		if (error < 0)
 | 
						|
			return error;
 | 
						|
		p->flags |= SWP_BLKDEV;
 | 
						|
	} else if (S_ISREG(inode->i_mode)) {
 | 
						|
		p->bdev = inode->i_sb->s_bdev;
 | 
						|
		mutex_lock(&inode->i_mutex);
 | 
						|
		if (IS_SWAPFILE(inode))
 | 
						|
			return -EBUSY;
 | 
						|
	} else
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long read_swap_header(struct swap_info_struct *p,
 | 
						|
					union swap_header *swap_header,
 | 
						|
					struct inode *inode)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	unsigned long maxpages;
 | 
						|
	unsigned long swapfilepages;
 | 
						|
 | 
						|
	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
 | 
						|
		printk(KERN_ERR "Unable to find swap-space signature\n");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* swap partition endianess hack... */
 | 
						|
	if (swab32(swap_header->info.version) == 1) {
 | 
						|
		swab32s(&swap_header->info.version);
 | 
						|
		swab32s(&swap_header->info.last_page);
 | 
						|
		swab32s(&swap_header->info.nr_badpages);
 | 
						|
		for (i = 0; i < swap_header->info.nr_badpages; i++)
 | 
						|
			swab32s(&swap_header->info.badpages[i]);
 | 
						|
	}
 | 
						|
	/* Check the swap header's sub-version */
 | 
						|
	if (swap_header->info.version != 1) {
 | 
						|
		printk(KERN_WARNING
 | 
						|
		       "Unable to handle swap header version %d\n",
 | 
						|
		       swap_header->info.version);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	p->lowest_bit  = 1;
 | 
						|
	p->cluster_next = 1;
 | 
						|
	p->cluster_nr = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find out how many pages are allowed for a single swap
 | 
						|
	 * device. There are two limiting factors: 1) the number
 | 
						|
	 * of bits for the swap offset in the swp_entry_t type, and
 | 
						|
	 * 2) the number of bits in the swap pte as defined by the
 | 
						|
	 * different architectures. In order to find the
 | 
						|
	 * largest possible bit mask, a swap entry with swap type 0
 | 
						|
	 * and swap offset ~0UL is created, encoded to a swap pte,
 | 
						|
	 * decoded to a swp_entry_t again, and finally the swap
 | 
						|
	 * offset is extracted. This will mask all the bits from
 | 
						|
	 * the initial ~0UL mask that can't be encoded in either
 | 
						|
	 * the swp_entry_t or the architecture definition of a
 | 
						|
	 * swap pte.
 | 
						|
	 */
 | 
						|
	maxpages = swp_offset(pte_to_swp_entry(
 | 
						|
			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
 | 
						|
	if (maxpages > swap_header->info.last_page) {
 | 
						|
		maxpages = swap_header->info.last_page + 1;
 | 
						|
		/* p->max is an unsigned int: don't overflow it */
 | 
						|
		if ((unsigned int)maxpages == 0)
 | 
						|
			maxpages = UINT_MAX;
 | 
						|
	}
 | 
						|
	p->highest_bit = maxpages - 1;
 | 
						|
 | 
						|
	if (!maxpages)
 | 
						|
		return 0;
 | 
						|
	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
 | 
						|
	if (swapfilepages && maxpages > swapfilepages) {
 | 
						|
		printk(KERN_WARNING
 | 
						|
		       "Swap area shorter than signature indicates\n");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
 | 
						|
		return 0;
 | 
						|
	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return maxpages;
 | 
						|
}
 | 
						|
 | 
						|
static int setup_swap_map_and_extents(struct swap_info_struct *p,
 | 
						|
					union swap_header *swap_header,
 | 
						|
					unsigned char *swap_map,
 | 
						|
					unsigned long maxpages,
 | 
						|
					sector_t *span)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	unsigned int nr_good_pages;
 | 
						|
	int nr_extents;
 | 
						|
 | 
						|
	nr_good_pages = maxpages - 1;	/* omit header page */
 | 
						|
 | 
						|
	for (i = 0; i < swap_header->info.nr_badpages; i++) {
 | 
						|
		unsigned int page_nr = swap_header->info.badpages[i];
 | 
						|
		if (page_nr == 0 || page_nr > swap_header->info.last_page)
 | 
						|
			return -EINVAL;
 | 
						|
		if (page_nr < maxpages) {
 | 
						|
			swap_map[page_nr] = SWAP_MAP_BAD;
 | 
						|
			nr_good_pages--;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (nr_good_pages) {
 | 
						|
		swap_map[0] = SWAP_MAP_BAD;
 | 
						|
		p->max = maxpages;
 | 
						|
		p->pages = nr_good_pages;
 | 
						|
		nr_extents = setup_swap_extents(p, span);
 | 
						|
		if (nr_extents < 0)
 | 
						|
			return nr_extents;
 | 
						|
		nr_good_pages = p->pages;
 | 
						|
	}
 | 
						|
	if (!nr_good_pages) {
 | 
						|
		printk(KERN_WARNING "Empty swap-file\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return nr_extents;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
 | 
						|
{
 | 
						|
	struct swap_info_struct *p;
 | 
						|
	struct filename *name;
 | 
						|
	struct file *swap_file = NULL;
 | 
						|
	struct address_space *mapping;
 | 
						|
	int i;
 | 
						|
	int prio;
 | 
						|
	int error;
 | 
						|
	union swap_header *swap_header;
 | 
						|
	int nr_extents;
 | 
						|
	sector_t span;
 | 
						|
	unsigned long maxpages;
 | 
						|
	unsigned char *swap_map = NULL;
 | 
						|
	unsigned long *frontswap_map = NULL;
 | 
						|
	struct page *page = NULL;
 | 
						|
	struct inode *inode = NULL;
 | 
						|
 | 
						|
	if (swap_flags & ~SWAP_FLAGS_VALID)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (!capable(CAP_SYS_ADMIN))
 | 
						|
		return -EPERM;
 | 
						|
 | 
						|
	p = alloc_swap_info();
 | 
						|
	if (IS_ERR(p))
 | 
						|
		return PTR_ERR(p);
 | 
						|
 | 
						|
	name = getname(specialfile);
 | 
						|
	if (IS_ERR(name)) {
 | 
						|
		error = PTR_ERR(name);
 | 
						|
		name = NULL;
 | 
						|
		goto bad_swap;
 | 
						|
	}
 | 
						|
	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
 | 
						|
	if (IS_ERR(swap_file)) {
 | 
						|
		error = PTR_ERR(swap_file);
 | 
						|
		swap_file = NULL;
 | 
						|
		goto bad_swap;
 | 
						|
	}
 | 
						|
 | 
						|
	p->swap_file = swap_file;
 | 
						|
	mapping = swap_file->f_mapping;
 | 
						|
 | 
						|
	for (i = 0; i < nr_swapfiles; i++) {
 | 
						|
		struct swap_info_struct *q = swap_info[i];
 | 
						|
 | 
						|
		if (q == p || !q->swap_file)
 | 
						|
			continue;
 | 
						|
		if (mapping == q->swap_file->f_mapping) {
 | 
						|
			error = -EBUSY;
 | 
						|
			goto bad_swap;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	inode = mapping->host;
 | 
						|
	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
 | 
						|
	error = claim_swapfile(p, inode);
 | 
						|
	if (unlikely(error))
 | 
						|
		goto bad_swap;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Read the swap header.
 | 
						|
	 */
 | 
						|
	if (!mapping->a_ops->readpage) {
 | 
						|
		error = -EINVAL;
 | 
						|
		goto bad_swap;
 | 
						|
	}
 | 
						|
	page = read_mapping_page(mapping, 0, swap_file);
 | 
						|
	if (IS_ERR(page)) {
 | 
						|
		error = PTR_ERR(page);
 | 
						|
		goto bad_swap;
 | 
						|
	}
 | 
						|
	swap_header = kmap(page);
 | 
						|
 | 
						|
	maxpages = read_swap_header(p, swap_header, inode);
 | 
						|
	if (unlikely(!maxpages)) {
 | 
						|
		error = -EINVAL;
 | 
						|
		goto bad_swap;
 | 
						|
	}
 | 
						|
 | 
						|
	/* OK, set up the swap map and apply the bad block list */
 | 
						|
	swap_map = vzalloc(maxpages);
 | 
						|
	if (!swap_map) {
 | 
						|
		error = -ENOMEM;
 | 
						|
		goto bad_swap;
 | 
						|
	}
 | 
						|
 | 
						|
	error = swap_cgroup_swapon(p->type, maxpages);
 | 
						|
	if (error)
 | 
						|
		goto bad_swap;
 | 
						|
 | 
						|
	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
 | 
						|
		maxpages, &span);
 | 
						|
	if (unlikely(nr_extents < 0)) {
 | 
						|
		error = nr_extents;
 | 
						|
		goto bad_swap;
 | 
						|
	}
 | 
						|
	/* frontswap enabled? set up bit-per-page map for frontswap */
 | 
						|
	if (frontswap_enabled)
 | 
						|
		frontswap_map = vzalloc(maxpages / sizeof(long));
 | 
						|
 | 
						|
	if (p->bdev) {
 | 
						|
		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
 | 
						|
			p->flags |= SWP_SOLIDSTATE;
 | 
						|
			p->cluster_next = 1 + (random32() % p->highest_bit);
 | 
						|
		}
 | 
						|
		if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
 | 
						|
			p->flags |= SWP_DISCARDABLE;
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_lock(&swapon_mutex);
 | 
						|
	prio = -1;
 | 
						|
	if (swap_flags & SWAP_FLAG_PREFER)
 | 
						|
		prio =
 | 
						|
		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
 | 
						|
	enable_swap_info(p, prio, swap_map, frontswap_map);
 | 
						|
 | 
						|
	printk(KERN_INFO "Adding %uk swap on %s.  "
 | 
						|
			"Priority:%d extents:%d across:%lluk %s%s%s\n",
 | 
						|
		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
 | 
						|
		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
 | 
						|
		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
 | 
						|
		(p->flags & SWP_DISCARDABLE) ? "D" : "",
 | 
						|
		(frontswap_map) ? "FS" : "");
 | 
						|
 | 
						|
	mutex_unlock(&swapon_mutex);
 | 
						|
	atomic_inc(&proc_poll_event);
 | 
						|
	wake_up_interruptible(&proc_poll_wait);
 | 
						|
 | 
						|
	if (S_ISREG(inode->i_mode))
 | 
						|
		inode->i_flags |= S_SWAPFILE;
 | 
						|
	error = 0;
 | 
						|
	goto out;
 | 
						|
bad_swap:
 | 
						|
	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
 | 
						|
		set_blocksize(p->bdev, p->old_block_size);
 | 
						|
		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 | 
						|
	}
 | 
						|
	destroy_swap_extents(p);
 | 
						|
	swap_cgroup_swapoff(p->type);
 | 
						|
	spin_lock(&swap_lock);
 | 
						|
	p->swap_file = NULL;
 | 
						|
	p->flags = 0;
 | 
						|
	spin_unlock(&swap_lock);
 | 
						|
	vfree(swap_map);
 | 
						|
	if (swap_file) {
 | 
						|
		if (inode && S_ISREG(inode->i_mode)) {
 | 
						|
			mutex_unlock(&inode->i_mutex);
 | 
						|
			inode = NULL;
 | 
						|
		}
 | 
						|
		filp_close(swap_file, NULL);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	if (page && !IS_ERR(page)) {
 | 
						|
		kunmap(page);
 | 
						|
		page_cache_release(page);
 | 
						|
	}
 | 
						|
	if (name)
 | 
						|
		putname(name);
 | 
						|
	if (inode && S_ISREG(inode->i_mode))
 | 
						|
		mutex_unlock(&inode->i_mutex);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
void si_swapinfo(struct sysinfo *val)
 | 
						|
{
 | 
						|
	unsigned int type;
 | 
						|
	unsigned long nr_to_be_unused = 0;
 | 
						|
 | 
						|
	spin_lock(&swap_lock);
 | 
						|
	for (type = 0; type < nr_swapfiles; type++) {
 | 
						|
		struct swap_info_struct *si = swap_info[type];
 | 
						|
 | 
						|
		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
 | 
						|
			nr_to_be_unused += si->inuse_pages;
 | 
						|
	}
 | 
						|
	val->freeswap = nr_swap_pages + nr_to_be_unused;
 | 
						|
	val->totalswap = total_swap_pages + nr_to_be_unused;
 | 
						|
	spin_unlock(&swap_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Verify that a swap entry is valid and increment its swap map count.
 | 
						|
 *
 | 
						|
 * Returns error code in following case.
 | 
						|
 * - success -> 0
 | 
						|
 * - swp_entry is invalid -> EINVAL
 | 
						|
 * - swp_entry is migration entry -> EINVAL
 | 
						|
 * - swap-cache reference is requested but there is already one. -> EEXIST
 | 
						|
 * - swap-cache reference is requested but the entry is not used. -> ENOENT
 | 
						|
 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
 | 
						|
 */
 | 
						|
static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
 | 
						|
{
 | 
						|
	struct swap_info_struct *p;
 | 
						|
	unsigned long offset, type;
 | 
						|
	unsigned char count;
 | 
						|
	unsigned char has_cache;
 | 
						|
	int err = -EINVAL;
 | 
						|
 | 
						|
	if (non_swap_entry(entry))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	type = swp_type(entry);
 | 
						|
	if (type >= nr_swapfiles)
 | 
						|
		goto bad_file;
 | 
						|
	p = swap_info[type];
 | 
						|
	offset = swp_offset(entry);
 | 
						|
 | 
						|
	spin_lock(&swap_lock);
 | 
						|
	if (unlikely(offset >= p->max))
 | 
						|
		goto unlock_out;
 | 
						|
 | 
						|
	count = p->swap_map[offset];
 | 
						|
	has_cache = count & SWAP_HAS_CACHE;
 | 
						|
	count &= ~SWAP_HAS_CACHE;
 | 
						|
	err = 0;
 | 
						|
 | 
						|
	if (usage == SWAP_HAS_CACHE) {
 | 
						|
 | 
						|
		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
 | 
						|
		if (!has_cache && count)
 | 
						|
			has_cache = SWAP_HAS_CACHE;
 | 
						|
		else if (has_cache)		/* someone else added cache */
 | 
						|
			err = -EEXIST;
 | 
						|
		else				/* no users remaining */
 | 
						|
			err = -ENOENT;
 | 
						|
 | 
						|
	} else if (count || has_cache) {
 | 
						|
 | 
						|
		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
 | 
						|
			count += usage;
 | 
						|
		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
 | 
						|
			err = -EINVAL;
 | 
						|
		else if (swap_count_continued(p, offset, count))
 | 
						|
			count = COUNT_CONTINUED;
 | 
						|
		else
 | 
						|
			err = -ENOMEM;
 | 
						|
	} else
 | 
						|
		err = -ENOENT;			/* unused swap entry */
 | 
						|
 | 
						|
	p->swap_map[offset] = count | has_cache;
 | 
						|
 | 
						|
unlock_out:
 | 
						|
	spin_unlock(&swap_lock);
 | 
						|
out:
 | 
						|
	return err;
 | 
						|
 | 
						|
bad_file:
 | 
						|
	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
 | 
						|
	goto out;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
 | 
						|
 * (in which case its reference count is never incremented).
 | 
						|
 */
 | 
						|
void swap_shmem_alloc(swp_entry_t entry)
 | 
						|
{
 | 
						|
	__swap_duplicate(entry, SWAP_MAP_SHMEM);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Increase reference count of swap entry by 1.
 | 
						|
 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
 | 
						|
 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
 | 
						|
 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
 | 
						|
 * might occur if a page table entry has got corrupted.
 | 
						|
 */
 | 
						|
int swap_duplicate(swp_entry_t entry)
 | 
						|
{
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
 | 
						|
		err = add_swap_count_continuation(entry, GFP_ATOMIC);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * @entry: swap entry for which we allocate swap cache.
 | 
						|
 *
 | 
						|
 * Called when allocating swap cache for existing swap entry,
 | 
						|
 * This can return error codes. Returns 0 at success.
 | 
						|
 * -EBUSY means there is a swap cache.
 | 
						|
 * Note: return code is different from swap_duplicate().
 | 
						|
 */
 | 
						|
int swapcache_prepare(swp_entry_t entry)
 | 
						|
{
 | 
						|
	return __swap_duplicate(entry, SWAP_HAS_CACHE);
 | 
						|
}
 | 
						|
 | 
						|
struct swap_info_struct *page_swap_info(struct page *page)
 | 
						|
{
 | 
						|
	swp_entry_t swap = { .val = page_private(page) };
 | 
						|
	BUG_ON(!PageSwapCache(page));
 | 
						|
	return swap_info[swp_type(swap)];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * out-of-line __page_file_ methods to avoid include hell.
 | 
						|
 */
 | 
						|
struct address_space *__page_file_mapping(struct page *page)
 | 
						|
{
 | 
						|
	VM_BUG_ON(!PageSwapCache(page));
 | 
						|
	return page_swap_info(page)->swap_file->f_mapping;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(__page_file_mapping);
 | 
						|
 | 
						|
pgoff_t __page_file_index(struct page *page)
 | 
						|
{
 | 
						|
	swp_entry_t swap = { .val = page_private(page) };
 | 
						|
	VM_BUG_ON(!PageSwapCache(page));
 | 
						|
	return swp_offset(swap);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(__page_file_index);
 | 
						|
 | 
						|
/*
 | 
						|
 * add_swap_count_continuation - called when a swap count is duplicated
 | 
						|
 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
 | 
						|
 * page of the original vmalloc'ed swap_map, to hold the continuation count
 | 
						|
 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
 | 
						|
 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
 | 
						|
 *
 | 
						|
 * These continuation pages are seldom referenced: the common paths all work
 | 
						|
 * on the original swap_map, only referring to a continuation page when the
 | 
						|
 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
 | 
						|
 *
 | 
						|
 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
 | 
						|
 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
 | 
						|
 * can be called after dropping locks.
 | 
						|
 */
 | 
						|
int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	struct swap_info_struct *si;
 | 
						|
	struct page *head;
 | 
						|
	struct page *page;
 | 
						|
	struct page *list_page;
 | 
						|
	pgoff_t offset;
 | 
						|
	unsigned char count;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
 | 
						|
	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
 | 
						|
	 */
 | 
						|
	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
 | 
						|
 | 
						|
	si = swap_info_get(entry);
 | 
						|
	if (!si) {
 | 
						|
		/*
 | 
						|
		 * An acceptable race has occurred since the failing
 | 
						|
		 * __swap_duplicate(): the swap entry has been freed,
 | 
						|
		 * perhaps even the whole swap_map cleared for swapoff.
 | 
						|
		 */
 | 
						|
		goto outer;
 | 
						|
	}
 | 
						|
 | 
						|
	offset = swp_offset(entry);
 | 
						|
	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
 | 
						|
 | 
						|
	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
 | 
						|
		/*
 | 
						|
		 * The higher the swap count, the more likely it is that tasks
 | 
						|
		 * will race to add swap count continuation: we need to avoid
 | 
						|
		 * over-provisioning.
 | 
						|
		 */
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!page) {
 | 
						|
		spin_unlock(&swap_lock);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
 | 
						|
	 * no architecture is using highmem pages for kernel pagetables: so it
 | 
						|
	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
 | 
						|
	 */
 | 
						|
	head = vmalloc_to_page(si->swap_map + offset);
 | 
						|
	offset &= ~PAGE_MASK;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Page allocation does not initialize the page's lru field,
 | 
						|
	 * but it does always reset its private field.
 | 
						|
	 */
 | 
						|
	if (!page_private(head)) {
 | 
						|
		BUG_ON(count & COUNT_CONTINUED);
 | 
						|
		INIT_LIST_HEAD(&head->lru);
 | 
						|
		set_page_private(head, SWP_CONTINUED);
 | 
						|
		si->flags |= SWP_CONTINUED;
 | 
						|
	}
 | 
						|
 | 
						|
	list_for_each_entry(list_page, &head->lru, lru) {
 | 
						|
		unsigned char *map;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the previous map said no continuation, but we've found
 | 
						|
		 * a continuation page, free our allocation and use this one.
 | 
						|
		 */
 | 
						|
		if (!(count & COUNT_CONTINUED))
 | 
						|
			goto out;
 | 
						|
 | 
						|
		map = kmap_atomic(list_page) + offset;
 | 
						|
		count = *map;
 | 
						|
		kunmap_atomic(map);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If this continuation count now has some space in it,
 | 
						|
		 * free our allocation and use this one.
 | 
						|
		 */
 | 
						|
		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	list_add_tail(&page->lru, &head->lru);
 | 
						|
	page = NULL;			/* now it's attached, don't free it */
 | 
						|
out:
 | 
						|
	spin_unlock(&swap_lock);
 | 
						|
outer:
 | 
						|
	if (page)
 | 
						|
		__free_page(page);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * swap_count_continued - when the original swap_map count is incremented
 | 
						|
 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
 | 
						|
 * into, carry if so, or else fail until a new continuation page is allocated;
 | 
						|
 * when the original swap_map count is decremented from 0 with continuation,
 | 
						|
 * borrow from the continuation and report whether it still holds more.
 | 
						|
 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
 | 
						|
 */
 | 
						|
static bool swap_count_continued(struct swap_info_struct *si,
 | 
						|
				 pgoff_t offset, unsigned char count)
 | 
						|
{
 | 
						|
	struct page *head;
 | 
						|
	struct page *page;
 | 
						|
	unsigned char *map;
 | 
						|
 | 
						|
	head = vmalloc_to_page(si->swap_map + offset);
 | 
						|
	if (page_private(head) != SWP_CONTINUED) {
 | 
						|
		BUG_ON(count & COUNT_CONTINUED);
 | 
						|
		return false;		/* need to add count continuation */
 | 
						|
	}
 | 
						|
 | 
						|
	offset &= ~PAGE_MASK;
 | 
						|
	page = list_entry(head->lru.next, struct page, lru);
 | 
						|
	map = kmap_atomic(page) + offset;
 | 
						|
 | 
						|
	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
 | 
						|
		goto init_map;		/* jump over SWAP_CONT_MAX checks */
 | 
						|
 | 
						|
	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
 | 
						|
		/*
 | 
						|
		 * Think of how you add 1 to 999
 | 
						|
		 */
 | 
						|
		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
 | 
						|
			kunmap_atomic(map);
 | 
						|
			page = list_entry(page->lru.next, struct page, lru);
 | 
						|
			BUG_ON(page == head);
 | 
						|
			map = kmap_atomic(page) + offset;
 | 
						|
		}
 | 
						|
		if (*map == SWAP_CONT_MAX) {
 | 
						|
			kunmap_atomic(map);
 | 
						|
			page = list_entry(page->lru.next, struct page, lru);
 | 
						|
			if (page == head)
 | 
						|
				return false;	/* add count continuation */
 | 
						|
			map = kmap_atomic(page) + offset;
 | 
						|
init_map:		*map = 0;		/* we didn't zero the page */
 | 
						|
		}
 | 
						|
		*map += 1;
 | 
						|
		kunmap_atomic(map);
 | 
						|
		page = list_entry(page->lru.prev, struct page, lru);
 | 
						|
		while (page != head) {
 | 
						|
			map = kmap_atomic(page) + offset;
 | 
						|
			*map = COUNT_CONTINUED;
 | 
						|
			kunmap_atomic(map);
 | 
						|
			page = list_entry(page->lru.prev, struct page, lru);
 | 
						|
		}
 | 
						|
		return true;			/* incremented */
 | 
						|
 | 
						|
	} else {				/* decrementing */
 | 
						|
		/*
 | 
						|
		 * Think of how you subtract 1 from 1000
 | 
						|
		 */
 | 
						|
		BUG_ON(count != COUNT_CONTINUED);
 | 
						|
		while (*map == COUNT_CONTINUED) {
 | 
						|
			kunmap_atomic(map);
 | 
						|
			page = list_entry(page->lru.next, struct page, lru);
 | 
						|
			BUG_ON(page == head);
 | 
						|
			map = kmap_atomic(page) + offset;
 | 
						|
		}
 | 
						|
		BUG_ON(*map == 0);
 | 
						|
		*map -= 1;
 | 
						|
		if (*map == 0)
 | 
						|
			count = 0;
 | 
						|
		kunmap_atomic(map);
 | 
						|
		page = list_entry(page->lru.prev, struct page, lru);
 | 
						|
		while (page != head) {
 | 
						|
			map = kmap_atomic(page) + offset;
 | 
						|
			*map = SWAP_CONT_MAX | count;
 | 
						|
			count = COUNT_CONTINUED;
 | 
						|
			kunmap_atomic(map);
 | 
						|
			page = list_entry(page->lru.prev, struct page, lru);
 | 
						|
		}
 | 
						|
		return count == COUNT_CONTINUED;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * free_swap_count_continuations - swapoff free all the continuation pages
 | 
						|
 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
 | 
						|
 */
 | 
						|
static void free_swap_count_continuations(struct swap_info_struct *si)
 | 
						|
{
 | 
						|
	pgoff_t offset;
 | 
						|
 | 
						|
	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
 | 
						|
		struct page *head;
 | 
						|
		head = vmalloc_to_page(si->swap_map + offset);
 | 
						|
		if (page_private(head)) {
 | 
						|
			struct list_head *this, *next;
 | 
						|
			list_for_each_safe(this, next, &head->lru) {
 | 
						|
				struct page *page;
 | 
						|
				page = list_entry(this, struct page, lru);
 | 
						|
				list_del(this);
 | 
						|
				__free_page(page);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 |