This allows us to move duplicated code in <asm/atomic.h> (atomic_inc_not_zero() for now) to <linux/atomic.h> Signed-off-by: Arun Sharma <asharma@fb.com> Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: David Miller <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Acked-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			140 lines
		
	
	
	
		
			3.9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			140 lines
		
	
	
	
		
			3.9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
 | 
						|
 * Copyright (C) 2008-2009 PetaLogix
 | 
						|
 * Copyright (C) 2006 Atmark Techno, Inc.
 | 
						|
 *
 | 
						|
 * This file is subject to the terms and conditions of the GNU General Public
 | 
						|
 * License. See the file "COPYING" in the main directory of this archive
 | 
						|
 * for more details.
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef _ASM_MICROBLAZE_MMU_CONTEXT_H
 | 
						|
#define _ASM_MICROBLAZE_MMU_CONTEXT_H
 | 
						|
 | 
						|
#include <linux/atomic.h>
 | 
						|
#include <asm/bitops.h>
 | 
						|
#include <asm/mmu.h>
 | 
						|
#include <asm-generic/mm_hooks.h>
 | 
						|
 | 
						|
# ifdef __KERNEL__
 | 
						|
/*
 | 
						|
 * This function defines the mapping from contexts to VSIDs (virtual
 | 
						|
 * segment IDs).  We use a skew on both the context and the high 4 bits
 | 
						|
 * of the 32-bit virtual address (the "effective segment ID") in order
 | 
						|
 * to spread out the entries in the MMU hash table.
 | 
						|
 */
 | 
						|
# define CTX_TO_VSID(ctx, va)	(((ctx) * (897 * 16) + ((va) >> 28) * 0x111) \
 | 
						|
				 & 0xffffff)
 | 
						|
 | 
						|
/*
 | 
						|
   MicroBlaze has 256 contexts, so we can just rotate through these
 | 
						|
   as a way of "switching" contexts.  If the TID of the TLB is zero,
 | 
						|
   the PID/TID comparison is disabled, so we can use a TID of zero
 | 
						|
   to represent all kernel pages as shared among all contexts.
 | 
						|
 */
 | 
						|
 | 
						|
static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
# define NO_CONTEXT	256
 | 
						|
# define LAST_CONTEXT	255
 | 
						|
# define FIRST_CONTEXT	1
 | 
						|
 | 
						|
/*
 | 
						|
 * Set the current MMU context.
 | 
						|
 * This is done byloading up the segment registers for the user part of the
 | 
						|
 * address space.
 | 
						|
 *
 | 
						|
 * Since the PGD is immediately available, it is much faster to simply
 | 
						|
 * pass this along as a second parameter, which is required for 8xx and
 | 
						|
 * can be used for debugging on all processors (if you happen to have
 | 
						|
 * an Abatron).
 | 
						|
 */
 | 
						|
extern void set_context(mm_context_t context, pgd_t *pgd);
 | 
						|
 | 
						|
/*
 | 
						|
 * Bitmap of contexts in use.
 | 
						|
 * The size of this bitmap is LAST_CONTEXT + 1 bits.
 | 
						|
 */
 | 
						|
extern unsigned long context_map[];
 | 
						|
 | 
						|
/*
 | 
						|
 * This caches the next context number that we expect to be free.
 | 
						|
 * Its use is an optimization only, we can't rely on this context
 | 
						|
 * number to be free, but it usually will be.
 | 
						|
 */
 | 
						|
extern mm_context_t next_mmu_context;
 | 
						|
 | 
						|
/*
 | 
						|
 * Since we don't have sufficient contexts to give one to every task
 | 
						|
 * that could be in the system, we need to be able to steal contexts.
 | 
						|
 * These variables support that.
 | 
						|
 */
 | 
						|
extern atomic_t nr_free_contexts;
 | 
						|
extern struct mm_struct *context_mm[LAST_CONTEXT+1];
 | 
						|
extern void steal_context(void);
 | 
						|
 | 
						|
/*
 | 
						|
 * Get a new mmu context for the address space described by `mm'.
 | 
						|
 */
 | 
						|
static inline void get_mmu_context(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	mm_context_t ctx;
 | 
						|
 | 
						|
	if (mm->context != NO_CONTEXT)
 | 
						|
		return;
 | 
						|
	while (atomic_dec_if_positive(&nr_free_contexts) < 0)
 | 
						|
		steal_context();
 | 
						|
	ctx = next_mmu_context;
 | 
						|
	while (test_and_set_bit(ctx, context_map)) {
 | 
						|
		ctx = find_next_zero_bit(context_map, LAST_CONTEXT+1, ctx);
 | 
						|
		if (ctx > LAST_CONTEXT)
 | 
						|
			ctx = 0;
 | 
						|
	}
 | 
						|
	next_mmu_context = (ctx + 1) & LAST_CONTEXT;
 | 
						|
	mm->context = ctx;
 | 
						|
	context_mm[ctx] = mm;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set up the context for a new address space.
 | 
						|
 */
 | 
						|
# define init_new_context(tsk, mm)	(((mm)->context = NO_CONTEXT), 0)
 | 
						|
 | 
						|
/*
 | 
						|
 * We're finished using the context for an address space.
 | 
						|
 */
 | 
						|
static inline void destroy_context(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	if (mm->context != NO_CONTEXT) {
 | 
						|
		clear_bit(mm->context, context_map);
 | 
						|
		mm->context = NO_CONTEXT;
 | 
						|
		atomic_inc(&nr_free_contexts);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
 | 
						|
			     struct task_struct *tsk)
 | 
						|
{
 | 
						|
	tsk->thread.pgdir = next->pgd;
 | 
						|
	get_mmu_context(next);
 | 
						|
	set_context(next->context, next->pgd);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * After we have set current->mm to a new value, this activates
 | 
						|
 * the context for the new mm so we see the new mappings.
 | 
						|
 */
 | 
						|
static inline void activate_mm(struct mm_struct *active_mm,
 | 
						|
			struct mm_struct *mm)
 | 
						|
{
 | 
						|
	current->thread.pgdir = mm->pgd;
 | 
						|
	get_mmu_context(mm);
 | 
						|
	set_context(mm->context, mm->pgd);
 | 
						|
}
 | 
						|
 | 
						|
extern void mmu_context_init(void);
 | 
						|
 | 
						|
# endif /* __KERNEL__ */
 | 
						|
#endif /* _ASM_MICROBLAZE_MMU_CONTEXT_H */
 |