 eed8100766
			
		
	
	
	eed8100766
	
	
	
		
			
			We check submounts before doing d_drop() on a non-empty directory dentry in NFS (have_submounts()), but we do not exclude a racing mount. Nor do we prevent mounts to be added to the disconnected subtree using relative paths after the d_drop(). This patch fixes these issues by checking for unlinked (unhashed, non-root) ancestors before proceeding with the mount. This is done with rename seqlock taken for write and with ->d_lock grabbed on each ancestor in turn, including our dentry itself. This ensures that the only one of check_submounts_and_drop() or has_unlinked_ancestor() can succeed. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
		
			
				
	
	
		
			3189 lines
		
	
	
	
		
			80 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3189 lines
		
	
	
	
		
			80 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * fs/dcache.c
 | |
|  *
 | |
|  * Complete reimplementation
 | |
|  * (C) 1997 Thomas Schoebel-Theuer,
 | |
|  * with heavy changes by Linus Torvalds
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Notes on the allocation strategy:
 | |
|  *
 | |
|  * The dcache is a master of the icache - whenever a dcache entry
 | |
|  * exists, the inode will always exist. "iput()" is done either when
 | |
|  * the dcache entry is deleted or garbage collected.
 | |
|  */
 | |
| 
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/fsnotify.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/file.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/seqlock.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/fs_struct.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/bit_spinlock.h>
 | |
| #include <linux/rculist_bl.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include "internal.h"
 | |
| #include "mount.h"
 | |
| 
 | |
| /*
 | |
|  * Usage:
 | |
|  * dcache->d_inode->i_lock protects:
 | |
|  *   - i_dentry, d_alias, d_inode of aliases
 | |
|  * dcache_hash_bucket lock protects:
 | |
|  *   - the dcache hash table
 | |
|  * s_anon bl list spinlock protects:
 | |
|  *   - the s_anon list (see __d_drop)
 | |
|  * dcache_lru_lock protects:
 | |
|  *   - the dcache lru lists and counters
 | |
|  * d_lock protects:
 | |
|  *   - d_flags
 | |
|  *   - d_name
 | |
|  *   - d_lru
 | |
|  *   - d_count
 | |
|  *   - d_unhashed()
 | |
|  *   - d_parent and d_subdirs
 | |
|  *   - childrens' d_child and d_parent
 | |
|  *   - d_alias, d_inode
 | |
|  *
 | |
|  * Ordering:
 | |
|  * dentry->d_inode->i_lock
 | |
|  *   dentry->d_lock
 | |
|  *     dcache_lru_lock
 | |
|  *     dcache_hash_bucket lock
 | |
|  *     s_anon lock
 | |
|  *
 | |
|  * If there is an ancestor relationship:
 | |
|  * dentry->d_parent->...->d_parent->d_lock
 | |
|  *   ...
 | |
|  *     dentry->d_parent->d_lock
 | |
|  *       dentry->d_lock
 | |
|  *
 | |
|  * If no ancestor relationship:
 | |
|  * if (dentry1 < dentry2)
 | |
|  *   dentry1->d_lock
 | |
|  *     dentry2->d_lock
 | |
|  */
 | |
| int sysctl_vfs_cache_pressure __read_mostly = 100;
 | |
| EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
 | |
| 
 | |
| static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
 | |
| __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
 | |
| 
 | |
| EXPORT_SYMBOL(rename_lock);
 | |
| 
 | |
| static struct kmem_cache *dentry_cache __read_mostly;
 | |
| 
 | |
| /*
 | |
|  * This is the single most critical data structure when it comes
 | |
|  * to the dcache: the hashtable for lookups. Somebody should try
 | |
|  * to make this good - I've just made it work.
 | |
|  *
 | |
|  * This hash-function tries to avoid losing too many bits of hash
 | |
|  * information, yet avoid using a prime hash-size or similar.
 | |
|  */
 | |
| #define D_HASHBITS     d_hash_shift
 | |
| #define D_HASHMASK     d_hash_mask
 | |
| 
 | |
| static unsigned int d_hash_mask __read_mostly;
 | |
| static unsigned int d_hash_shift __read_mostly;
 | |
| 
 | |
| static struct hlist_bl_head *dentry_hashtable __read_mostly;
 | |
| 
 | |
| static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
 | |
| 					unsigned int hash)
 | |
| {
 | |
| 	hash += (unsigned long) parent / L1_CACHE_BYTES;
 | |
| 	hash = hash + (hash >> D_HASHBITS);
 | |
| 	return dentry_hashtable + (hash & D_HASHMASK);
 | |
| }
 | |
| 
 | |
| /* Statistics gathering. */
 | |
| struct dentry_stat_t dentry_stat = {
 | |
| 	.age_limit = 45,
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(unsigned int, nr_dentry);
 | |
| 
 | |
| #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
 | |
| static int get_nr_dentry(void)
 | |
| {
 | |
| 	int i;
 | |
| 	int sum = 0;
 | |
| 	for_each_possible_cpu(i)
 | |
| 		sum += per_cpu(nr_dentry, i);
 | |
| 	return sum < 0 ? 0 : sum;
 | |
| }
 | |
| 
 | |
| int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
 | |
| 		   size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	dentry_stat.nr_dentry = get_nr_dentry();
 | |
| 	return proc_dointvec(table, write, buffer, lenp, ppos);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
 | |
|  * The strings are both count bytes long, and count is non-zero.
 | |
|  */
 | |
| #ifdef CONFIG_DCACHE_WORD_ACCESS
 | |
| 
 | |
| #include <asm/word-at-a-time.h>
 | |
| /*
 | |
|  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
 | |
|  * aligned allocation for this particular component. We don't
 | |
|  * strictly need the load_unaligned_zeropad() safety, but it
 | |
|  * doesn't hurt either.
 | |
|  *
 | |
|  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
 | |
|  * need the careful unaligned handling.
 | |
|  */
 | |
| static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 | |
| {
 | |
| 	unsigned long a,b,mask;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		a = *(unsigned long *)cs;
 | |
| 		b = load_unaligned_zeropad(ct);
 | |
| 		if (tcount < sizeof(unsigned long))
 | |
| 			break;
 | |
| 		if (unlikely(a != b))
 | |
| 			return 1;
 | |
| 		cs += sizeof(unsigned long);
 | |
| 		ct += sizeof(unsigned long);
 | |
| 		tcount -= sizeof(unsigned long);
 | |
| 		if (!tcount)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	mask = ~(~0ul << tcount*8);
 | |
| 	return unlikely(!!((a ^ b) & mask));
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 | |
| {
 | |
| 	do {
 | |
| 		if (*cs != *ct)
 | |
| 			return 1;
 | |
| 		cs++;
 | |
| 		ct++;
 | |
| 		tcount--;
 | |
| 	} while (tcount);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
 | |
| {
 | |
| 	const unsigned char *cs;
 | |
| 	/*
 | |
| 	 * Be careful about RCU walk racing with rename:
 | |
| 	 * use ACCESS_ONCE to fetch the name pointer.
 | |
| 	 *
 | |
| 	 * NOTE! Even if a rename will mean that the length
 | |
| 	 * was not loaded atomically, we don't care. The
 | |
| 	 * RCU walk will check the sequence count eventually,
 | |
| 	 * and catch it. And we won't overrun the buffer,
 | |
| 	 * because we're reading the name pointer atomically,
 | |
| 	 * and a dentry name is guaranteed to be properly
 | |
| 	 * terminated with a NUL byte.
 | |
| 	 *
 | |
| 	 * End result: even if 'len' is wrong, we'll exit
 | |
| 	 * early because the data cannot match (there can
 | |
| 	 * be no NUL in the ct/tcount data)
 | |
| 	 */
 | |
| 	cs = ACCESS_ONCE(dentry->d_name.name);
 | |
| 	smp_read_barrier_depends();
 | |
| 	return dentry_string_cmp(cs, ct, tcount);
 | |
| }
 | |
| 
 | |
| static void __d_free(struct rcu_head *head)
 | |
| {
 | |
| 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 | |
| 
 | |
| 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
 | |
| 	if (dname_external(dentry))
 | |
| 		kfree(dentry->d_name.name);
 | |
| 	kmem_cache_free(dentry_cache, dentry); 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * no locks, please.
 | |
|  */
 | |
| static void d_free(struct dentry *dentry)
 | |
| {
 | |
| 	BUG_ON(dentry->d_lockref.count);
 | |
| 	this_cpu_dec(nr_dentry);
 | |
| 	if (dentry->d_op && dentry->d_op->d_release)
 | |
| 		dentry->d_op->d_release(dentry);
 | |
| 
 | |
| 	/* if dentry was never visible to RCU, immediate free is OK */
 | |
| 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
 | |
| 		__d_free(&dentry->d_u.d_rcu);
 | |
| 	else
 | |
| 		call_rcu(&dentry->d_u.d_rcu, __d_free);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
 | |
|  * @dentry: the target dentry
 | |
|  * After this call, in-progress rcu-walk path lookup will fail. This
 | |
|  * should be called after unhashing, and after changing d_inode (if
 | |
|  * the dentry has not already been unhashed).
 | |
|  */
 | |
| static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
 | |
| {
 | |
| 	assert_spin_locked(&dentry->d_lock);
 | |
| 	/* Go through a barrier */
 | |
| 	write_seqcount_barrier(&dentry->d_seq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release the dentry's inode, using the filesystem
 | |
|  * d_iput() operation if defined. Dentry has no refcount
 | |
|  * and is unhashed.
 | |
|  */
 | |
| static void dentry_iput(struct dentry * dentry)
 | |
| 	__releases(dentry->d_lock)
 | |
| 	__releases(dentry->d_inode->i_lock)
 | |
| {
 | |
| 	struct inode *inode = dentry->d_inode;
 | |
| 	if (inode) {
 | |
| 		dentry->d_inode = NULL;
 | |
| 		hlist_del_init(&dentry->d_alias);
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 		spin_unlock(&inode->i_lock);
 | |
| 		if (!inode->i_nlink)
 | |
| 			fsnotify_inoderemove(inode);
 | |
| 		if (dentry->d_op && dentry->d_op->d_iput)
 | |
| 			dentry->d_op->d_iput(dentry, inode);
 | |
| 		else
 | |
| 			iput(inode);
 | |
| 	} else {
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release the dentry's inode, using the filesystem
 | |
|  * d_iput() operation if defined. dentry remains in-use.
 | |
|  */
 | |
| static void dentry_unlink_inode(struct dentry * dentry)
 | |
| 	__releases(dentry->d_lock)
 | |
| 	__releases(dentry->d_inode->i_lock)
 | |
| {
 | |
| 	struct inode *inode = dentry->d_inode;
 | |
| 	dentry->d_inode = NULL;
 | |
| 	hlist_del_init(&dentry->d_alias);
 | |
| 	dentry_rcuwalk_barrier(dentry);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| 	if (!inode->i_nlink)
 | |
| 		fsnotify_inoderemove(inode);
 | |
| 	if (dentry->d_op && dentry->d_op->d_iput)
 | |
| 		dentry->d_op->d_iput(dentry, inode);
 | |
| 	else
 | |
| 		iput(inode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
 | |
|  */
 | |
| static void dentry_lru_add(struct dentry *dentry)
 | |
| {
 | |
| 	if (list_empty(&dentry->d_lru)) {
 | |
| 		spin_lock(&dcache_lru_lock);
 | |
| 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
 | |
| 		dentry->d_sb->s_nr_dentry_unused++;
 | |
| 		dentry_stat.nr_unused++;
 | |
| 		spin_unlock(&dcache_lru_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __dentry_lru_del(struct dentry *dentry)
 | |
| {
 | |
| 	list_del_init(&dentry->d_lru);
 | |
| 	dentry->d_flags &= ~DCACHE_SHRINK_LIST;
 | |
| 	dentry->d_sb->s_nr_dentry_unused--;
 | |
| 	dentry_stat.nr_unused--;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a dentry with references from the LRU.
 | |
|  */
 | |
| static void dentry_lru_del(struct dentry *dentry)
 | |
| {
 | |
| 	if (!list_empty(&dentry->d_lru)) {
 | |
| 		spin_lock(&dcache_lru_lock);
 | |
| 		__dentry_lru_del(dentry);
 | |
| 		spin_unlock(&dcache_lru_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
 | |
| {
 | |
| 	spin_lock(&dcache_lru_lock);
 | |
| 	if (list_empty(&dentry->d_lru)) {
 | |
| 		list_add_tail(&dentry->d_lru, list);
 | |
| 		dentry->d_sb->s_nr_dentry_unused++;
 | |
| 		dentry_stat.nr_unused++;
 | |
| 	} else {
 | |
| 		list_move_tail(&dentry->d_lru, list);
 | |
| 	}
 | |
| 	spin_unlock(&dcache_lru_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_kill - kill dentry and return parent
 | |
|  * @dentry: dentry to kill
 | |
|  * @parent: parent dentry
 | |
|  *
 | |
|  * The dentry must already be unhashed and removed from the LRU.
 | |
|  *
 | |
|  * If this is the root of the dentry tree, return NULL.
 | |
|  *
 | |
|  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
 | |
|  * d_kill.
 | |
|  */
 | |
| static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
 | |
| 	__releases(dentry->d_lock)
 | |
| 	__releases(parent->d_lock)
 | |
| 	__releases(dentry->d_inode->i_lock)
 | |
| {
 | |
| 	list_del(&dentry->d_u.d_child);
 | |
| 	/*
 | |
| 	 * Inform try_to_ascend() that we are no longer attached to the
 | |
| 	 * dentry tree
 | |
| 	 */
 | |
| 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
 | |
| 	if (parent)
 | |
| 		spin_unlock(&parent->d_lock);
 | |
| 	dentry_iput(dentry);
 | |
| 	/*
 | |
| 	 * dentry_iput drops the locks, at which point nobody (except
 | |
| 	 * transient RCU lookups) can reach this dentry.
 | |
| 	 */
 | |
| 	d_free(dentry);
 | |
| 	return parent;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unhash a dentry without inserting an RCU walk barrier or checking that
 | |
|  * dentry->d_lock is locked.  The caller must take care of that, if
 | |
|  * appropriate.
 | |
|  */
 | |
| static void __d_shrink(struct dentry *dentry)
 | |
| {
 | |
| 	if (!d_unhashed(dentry)) {
 | |
| 		struct hlist_bl_head *b;
 | |
| 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
 | |
| 			b = &dentry->d_sb->s_anon;
 | |
| 		else
 | |
| 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
 | |
| 
 | |
| 		hlist_bl_lock(b);
 | |
| 		__hlist_bl_del(&dentry->d_hash);
 | |
| 		dentry->d_hash.pprev = NULL;
 | |
| 		hlist_bl_unlock(b);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_drop - drop a dentry
 | |
|  * @dentry: dentry to drop
 | |
|  *
 | |
|  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
 | |
|  * be found through a VFS lookup any more. Note that this is different from
 | |
|  * deleting the dentry - d_delete will try to mark the dentry negative if
 | |
|  * possible, giving a successful _negative_ lookup, while d_drop will
 | |
|  * just make the cache lookup fail.
 | |
|  *
 | |
|  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
 | |
|  * reason (NFS timeouts or autofs deletes).
 | |
|  *
 | |
|  * __d_drop requires dentry->d_lock.
 | |
|  */
 | |
| void __d_drop(struct dentry *dentry)
 | |
| {
 | |
| 	if (!d_unhashed(dentry)) {
 | |
| 		__d_shrink(dentry);
 | |
| 		dentry_rcuwalk_barrier(dentry);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(__d_drop);
 | |
| 
 | |
| void d_drop(struct dentry *dentry)
 | |
| {
 | |
| 	spin_lock(&dentry->d_lock);
 | |
| 	__d_drop(dentry);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(d_drop);
 | |
| 
 | |
| /*
 | |
|  * Finish off a dentry we've decided to kill.
 | |
|  * dentry->d_lock must be held, returns with it unlocked.
 | |
|  * If ref is non-zero, then decrement the refcount too.
 | |
|  * Returns dentry requiring refcount drop, or NULL if we're done.
 | |
|  */
 | |
| static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
 | |
| 	__releases(dentry->d_lock)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	struct dentry *parent;
 | |
| 
 | |
| 	inode = dentry->d_inode;
 | |
| 	if (inode && !spin_trylock(&inode->i_lock)) {
 | |
| relock:
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 		cpu_relax();
 | |
| 		return dentry; /* try again with same dentry */
 | |
| 	}
 | |
| 	if (IS_ROOT(dentry))
 | |
| 		parent = NULL;
 | |
| 	else
 | |
| 		parent = dentry->d_parent;
 | |
| 	if (parent && !spin_trylock(&parent->d_lock)) {
 | |
| 		if (inode)
 | |
| 			spin_unlock(&inode->i_lock);
 | |
| 		goto relock;
 | |
| 	}
 | |
| 
 | |
| 	if (ref)
 | |
| 		dentry->d_lockref.count--;
 | |
| 	/*
 | |
| 	 * inform the fs via d_prune that this dentry is about to be
 | |
| 	 * unhashed and destroyed.
 | |
| 	 */
 | |
| 	if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
 | |
| 		dentry->d_op->d_prune(dentry);
 | |
| 
 | |
| 	dentry_lru_del(dentry);
 | |
| 	/* if it was on the hash then remove it */
 | |
| 	__d_drop(dentry);
 | |
| 	return d_kill(dentry, parent);
 | |
| }
 | |
| 
 | |
| /* 
 | |
|  * This is dput
 | |
|  *
 | |
|  * This is complicated by the fact that we do not want to put
 | |
|  * dentries that are no longer on any hash chain on the unused
 | |
|  * list: we'd much rather just get rid of them immediately.
 | |
|  *
 | |
|  * However, that implies that we have to traverse the dentry
 | |
|  * tree upwards to the parents which might _also_ now be
 | |
|  * scheduled for deletion (it may have been only waiting for
 | |
|  * its last child to go away).
 | |
|  *
 | |
|  * This tail recursion is done by hand as we don't want to depend
 | |
|  * on the compiler to always get this right (gcc generally doesn't).
 | |
|  * Real recursion would eat up our stack space.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * dput - release a dentry
 | |
|  * @dentry: dentry to release 
 | |
|  *
 | |
|  * Release a dentry. This will drop the usage count and if appropriate
 | |
|  * call the dentry unlink method as well as removing it from the queues and
 | |
|  * releasing its resources. If the parent dentries were scheduled for release
 | |
|  * they too may now get deleted.
 | |
|  */
 | |
| void dput(struct dentry *dentry)
 | |
| {
 | |
| 	if (!dentry)
 | |
| 		return;
 | |
| 
 | |
| repeat:
 | |
| 	if (dentry->d_lockref.count == 1)
 | |
| 		might_sleep();
 | |
| 	if (lockref_put_or_lock(&dentry->d_lockref))
 | |
| 		return;
 | |
| 
 | |
| 	if (dentry->d_flags & DCACHE_OP_DELETE) {
 | |
| 		if (dentry->d_op->d_delete(dentry))
 | |
| 			goto kill_it;
 | |
| 	}
 | |
| 
 | |
| 	/* Unreachable? Get rid of it */
 | |
|  	if (d_unhashed(dentry))
 | |
| 		goto kill_it;
 | |
| 
 | |
| 	dentry->d_flags |= DCACHE_REFERENCED;
 | |
| 	dentry_lru_add(dentry);
 | |
| 
 | |
| 	dentry->d_lockref.count--;
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 	return;
 | |
| 
 | |
| kill_it:
 | |
| 	dentry = dentry_kill(dentry, 1);
 | |
| 	if (dentry)
 | |
| 		goto repeat;
 | |
| }
 | |
| EXPORT_SYMBOL(dput);
 | |
| 
 | |
| /**
 | |
|  * d_invalidate - invalidate a dentry
 | |
|  * @dentry: dentry to invalidate
 | |
|  *
 | |
|  * Try to invalidate the dentry if it turns out to be
 | |
|  * possible. If there are other dentries that can be
 | |
|  * reached through this one we can't delete it and we
 | |
|  * return -EBUSY. On success we return 0.
 | |
|  *
 | |
|  * no dcache lock.
 | |
|  */
 | |
|  
 | |
| int d_invalidate(struct dentry * dentry)
 | |
| {
 | |
| 	/*
 | |
| 	 * If it's already been dropped, return OK.
 | |
| 	 */
 | |
| 	spin_lock(&dentry->d_lock);
 | |
| 	if (d_unhashed(dentry)) {
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Check whether to do a partial shrink_dcache
 | |
| 	 * to get rid of unused child entries.
 | |
| 	 */
 | |
| 	if (!list_empty(&dentry->d_subdirs)) {
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 		shrink_dcache_parent(dentry);
 | |
| 		spin_lock(&dentry->d_lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Somebody else still using it?
 | |
| 	 *
 | |
| 	 * If it's a directory, we can't drop it
 | |
| 	 * for fear of somebody re-populating it
 | |
| 	 * with children (even though dropping it
 | |
| 	 * would make it unreachable from the root,
 | |
| 	 * we might still populate it if it was a
 | |
| 	 * working directory or similar).
 | |
| 	 * We also need to leave mountpoints alone,
 | |
| 	 * directory or not.
 | |
| 	 */
 | |
| 	if (dentry->d_lockref.count > 1 && dentry->d_inode) {
 | |
| 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	__d_drop(dentry);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(d_invalidate);
 | |
| 
 | |
| /* This must be called with d_lock held */
 | |
| static inline void __dget_dlock(struct dentry *dentry)
 | |
| {
 | |
| 	dentry->d_lockref.count++;
 | |
| }
 | |
| 
 | |
| static inline void __dget(struct dentry *dentry)
 | |
| {
 | |
| 	lockref_get(&dentry->d_lockref);
 | |
| }
 | |
| 
 | |
| struct dentry *dget_parent(struct dentry *dentry)
 | |
| {
 | |
| 	int gotref;
 | |
| 	struct dentry *ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do optimistic parent lookup without any
 | |
| 	 * locking.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	ret = ACCESS_ONCE(dentry->d_parent);
 | |
| 	gotref = lockref_get_not_zero(&ret->d_lockref);
 | |
| 	rcu_read_unlock();
 | |
| 	if (likely(gotref)) {
 | |
| 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
 | |
| 			return ret;
 | |
| 		dput(ret);
 | |
| 	}
 | |
| 
 | |
| repeat:
 | |
| 	/*
 | |
| 	 * Don't need rcu_dereference because we re-check it was correct under
 | |
| 	 * the lock.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	ret = dentry->d_parent;
 | |
| 	spin_lock(&ret->d_lock);
 | |
| 	if (unlikely(ret != dentry->d_parent)) {
 | |
| 		spin_unlock(&ret->d_lock);
 | |
| 		rcu_read_unlock();
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	BUG_ON(!ret->d_lockref.count);
 | |
| 	ret->d_lockref.count++;
 | |
| 	spin_unlock(&ret->d_lock);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(dget_parent);
 | |
| 
 | |
| /**
 | |
|  * d_find_alias - grab a hashed alias of inode
 | |
|  * @inode: inode in question
 | |
|  * @want_discon:  flag, used by d_splice_alias, to request
 | |
|  *          that only a DISCONNECTED alias be returned.
 | |
|  *
 | |
|  * If inode has a hashed alias, or is a directory and has any alias,
 | |
|  * acquire the reference to alias and return it. Otherwise return NULL.
 | |
|  * Notice that if inode is a directory there can be only one alias and
 | |
|  * it can be unhashed only if it has no children, or if it is the root
 | |
|  * of a filesystem.
 | |
|  *
 | |
|  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
 | |
|  * any other hashed alias over that one unless @want_discon is set,
 | |
|  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
 | |
|  */
 | |
| static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
 | |
| {
 | |
| 	struct dentry *alias, *discon_alias;
 | |
| 
 | |
| again:
 | |
| 	discon_alias = NULL;
 | |
| 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
 | |
| 		spin_lock(&alias->d_lock);
 | |
|  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
 | |
| 			if (IS_ROOT(alias) &&
 | |
| 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
 | |
| 				discon_alias = alias;
 | |
| 			} else if (!want_discon) {
 | |
| 				__dget_dlock(alias);
 | |
| 				spin_unlock(&alias->d_lock);
 | |
| 				return alias;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock(&alias->d_lock);
 | |
| 	}
 | |
| 	if (discon_alias) {
 | |
| 		alias = discon_alias;
 | |
| 		spin_lock(&alias->d_lock);
 | |
| 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
 | |
| 			if (IS_ROOT(alias) &&
 | |
| 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
 | |
| 				__dget_dlock(alias);
 | |
| 				spin_unlock(&alias->d_lock);
 | |
| 				return alias;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock(&alias->d_lock);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| struct dentry *d_find_alias(struct inode *inode)
 | |
| {
 | |
| 	struct dentry *de = NULL;
 | |
| 
 | |
| 	if (!hlist_empty(&inode->i_dentry)) {
 | |
| 		spin_lock(&inode->i_lock);
 | |
| 		de = __d_find_alias(inode, 0);
 | |
| 		spin_unlock(&inode->i_lock);
 | |
| 	}
 | |
| 	return de;
 | |
| }
 | |
| EXPORT_SYMBOL(d_find_alias);
 | |
| 
 | |
| /*
 | |
|  *	Try to kill dentries associated with this inode.
 | |
|  * WARNING: you must own a reference to inode.
 | |
|  */
 | |
| void d_prune_aliases(struct inode *inode)
 | |
| {
 | |
| 	struct dentry *dentry;
 | |
| restart:
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 	hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
 | |
| 		spin_lock(&dentry->d_lock);
 | |
| 		if (!dentry->d_lockref.count) {
 | |
| 			/*
 | |
| 			 * inform the fs via d_prune that this dentry
 | |
| 			 * is about to be unhashed and destroyed.
 | |
| 			 */
 | |
| 			if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
 | |
| 			    !d_unhashed(dentry))
 | |
| 				dentry->d_op->d_prune(dentry);
 | |
| 
 | |
| 			__dget_dlock(dentry);
 | |
| 			__d_drop(dentry);
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 			spin_unlock(&inode->i_lock);
 | |
| 			dput(dentry);
 | |
| 			goto restart;
 | |
| 		}
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 	}
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(d_prune_aliases);
 | |
| 
 | |
| /*
 | |
|  * Try to throw away a dentry - free the inode, dput the parent.
 | |
|  * Requires dentry->d_lock is held, and dentry->d_count == 0.
 | |
|  * Releases dentry->d_lock.
 | |
|  *
 | |
|  * This may fail if locks cannot be acquired no problem, just try again.
 | |
|  */
 | |
| static void try_prune_one_dentry(struct dentry *dentry)
 | |
| 	__releases(dentry->d_lock)
 | |
| {
 | |
| 	struct dentry *parent;
 | |
| 
 | |
| 	parent = dentry_kill(dentry, 0);
 | |
| 	/*
 | |
| 	 * If dentry_kill returns NULL, we have nothing more to do.
 | |
| 	 * if it returns the same dentry, trylocks failed. In either
 | |
| 	 * case, just loop again.
 | |
| 	 *
 | |
| 	 * Otherwise, we need to prune ancestors too. This is necessary
 | |
| 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
 | |
| 	 * is also expected to be beneficial in reducing dentry cache
 | |
| 	 * fragmentation.
 | |
| 	 */
 | |
| 	if (!parent)
 | |
| 		return;
 | |
| 	if (parent == dentry)
 | |
| 		return;
 | |
| 
 | |
| 	/* Prune ancestors. */
 | |
| 	dentry = parent;
 | |
| 	while (dentry) {
 | |
| 		if (lockref_put_or_lock(&dentry->d_lockref))
 | |
| 			return;
 | |
| 		dentry = dentry_kill(dentry, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void shrink_dentry_list(struct list_head *list)
 | |
| {
 | |
| 	struct dentry *dentry;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (;;) {
 | |
| 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
 | |
| 		if (&dentry->d_lru == list)
 | |
| 			break; /* empty */
 | |
| 		spin_lock(&dentry->d_lock);
 | |
| 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We found an inuse dentry which was not removed from
 | |
| 		 * the LRU because of laziness during lookup.  Do not free
 | |
| 		 * it - just keep it off the LRU list.
 | |
| 		 */
 | |
| 		if (dentry->d_lockref.count) {
 | |
| 			dentry_lru_del(dentry);
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		try_prune_one_dentry(dentry);
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * prune_dcache_sb - shrink the dcache
 | |
|  * @sb: superblock
 | |
|  * @count: number of entries to try to free
 | |
|  *
 | |
|  * Attempt to shrink the superblock dcache LRU by @count entries. This is
 | |
|  * done when we need more memory an called from the superblock shrinker
 | |
|  * function.
 | |
|  *
 | |
|  * This function may fail to free any resources if all the dentries are in
 | |
|  * use.
 | |
|  */
 | |
| void prune_dcache_sb(struct super_block *sb, int count)
 | |
| {
 | |
| 	struct dentry *dentry;
 | |
| 	LIST_HEAD(referenced);
 | |
| 	LIST_HEAD(tmp);
 | |
| 
 | |
| relock:
 | |
| 	spin_lock(&dcache_lru_lock);
 | |
| 	while (!list_empty(&sb->s_dentry_lru)) {
 | |
| 		dentry = list_entry(sb->s_dentry_lru.prev,
 | |
| 				struct dentry, d_lru);
 | |
| 		BUG_ON(dentry->d_sb != sb);
 | |
| 
 | |
| 		if (!spin_trylock(&dentry->d_lock)) {
 | |
| 			spin_unlock(&dcache_lru_lock);
 | |
| 			cpu_relax();
 | |
| 			goto relock;
 | |
| 		}
 | |
| 
 | |
| 		if (dentry->d_flags & DCACHE_REFERENCED) {
 | |
| 			dentry->d_flags &= ~DCACHE_REFERENCED;
 | |
| 			list_move(&dentry->d_lru, &referenced);
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 		} else {
 | |
| 			list_move_tail(&dentry->d_lru, &tmp);
 | |
| 			dentry->d_flags |= DCACHE_SHRINK_LIST;
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 			if (!--count)
 | |
| 				break;
 | |
| 		}
 | |
| 		cond_resched_lock(&dcache_lru_lock);
 | |
| 	}
 | |
| 	if (!list_empty(&referenced))
 | |
| 		list_splice(&referenced, &sb->s_dentry_lru);
 | |
| 	spin_unlock(&dcache_lru_lock);
 | |
| 
 | |
| 	shrink_dentry_list(&tmp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * shrink_dcache_sb - shrink dcache for a superblock
 | |
|  * @sb: superblock
 | |
|  *
 | |
|  * Shrink the dcache for the specified super block. This is used to free
 | |
|  * the dcache before unmounting a file system.
 | |
|  */
 | |
| void shrink_dcache_sb(struct super_block *sb)
 | |
| {
 | |
| 	LIST_HEAD(tmp);
 | |
| 
 | |
| 	spin_lock(&dcache_lru_lock);
 | |
| 	while (!list_empty(&sb->s_dentry_lru)) {
 | |
| 		list_splice_init(&sb->s_dentry_lru, &tmp);
 | |
| 		spin_unlock(&dcache_lru_lock);
 | |
| 		shrink_dentry_list(&tmp);
 | |
| 		spin_lock(&dcache_lru_lock);
 | |
| 	}
 | |
| 	spin_unlock(&dcache_lru_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(shrink_dcache_sb);
 | |
| 
 | |
| /*
 | |
|  * destroy a single subtree of dentries for unmount
 | |
|  * - see the comments on shrink_dcache_for_umount() for a description of the
 | |
|  *   locking
 | |
|  */
 | |
| static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
 | |
| {
 | |
| 	struct dentry *parent;
 | |
| 
 | |
| 	BUG_ON(!IS_ROOT(dentry));
 | |
| 
 | |
| 	for (;;) {
 | |
| 		/* descend to the first leaf in the current subtree */
 | |
| 		while (!list_empty(&dentry->d_subdirs))
 | |
| 			dentry = list_entry(dentry->d_subdirs.next,
 | |
| 					    struct dentry, d_u.d_child);
 | |
| 
 | |
| 		/* consume the dentries from this leaf up through its parents
 | |
| 		 * until we find one with children or run out altogether */
 | |
| 		do {
 | |
| 			struct inode *inode;
 | |
| 
 | |
| 			/*
 | |
| 			 * inform the fs that this dentry is about to be
 | |
| 			 * unhashed and destroyed.
 | |
| 			 */
 | |
| 			if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
 | |
| 			    !d_unhashed(dentry))
 | |
| 				dentry->d_op->d_prune(dentry);
 | |
| 
 | |
| 			dentry_lru_del(dentry);
 | |
| 			__d_shrink(dentry);
 | |
| 
 | |
| 			if (dentry->d_lockref.count != 0) {
 | |
| 				printk(KERN_ERR
 | |
| 				       "BUG: Dentry %p{i=%lx,n=%s}"
 | |
| 				       " still in use (%d)"
 | |
| 				       " [unmount of %s %s]\n",
 | |
| 				       dentry,
 | |
| 				       dentry->d_inode ?
 | |
| 				       dentry->d_inode->i_ino : 0UL,
 | |
| 				       dentry->d_name.name,
 | |
| 				       dentry->d_lockref.count,
 | |
| 				       dentry->d_sb->s_type->name,
 | |
| 				       dentry->d_sb->s_id);
 | |
| 				BUG();
 | |
| 			}
 | |
| 
 | |
| 			if (IS_ROOT(dentry)) {
 | |
| 				parent = NULL;
 | |
| 				list_del(&dentry->d_u.d_child);
 | |
| 			} else {
 | |
| 				parent = dentry->d_parent;
 | |
| 				parent->d_lockref.count--;
 | |
| 				list_del(&dentry->d_u.d_child);
 | |
| 			}
 | |
| 
 | |
| 			inode = dentry->d_inode;
 | |
| 			if (inode) {
 | |
| 				dentry->d_inode = NULL;
 | |
| 				hlist_del_init(&dentry->d_alias);
 | |
| 				if (dentry->d_op && dentry->d_op->d_iput)
 | |
| 					dentry->d_op->d_iput(dentry, inode);
 | |
| 				else
 | |
| 					iput(inode);
 | |
| 			}
 | |
| 
 | |
| 			d_free(dentry);
 | |
| 
 | |
| 			/* finished when we fall off the top of the tree,
 | |
| 			 * otherwise we ascend to the parent and move to the
 | |
| 			 * next sibling if there is one */
 | |
| 			if (!parent)
 | |
| 				return;
 | |
| 			dentry = parent;
 | |
| 		} while (list_empty(&dentry->d_subdirs));
 | |
| 
 | |
| 		dentry = list_entry(dentry->d_subdirs.next,
 | |
| 				    struct dentry, d_u.d_child);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * destroy the dentries attached to a superblock on unmounting
 | |
|  * - we don't need to use dentry->d_lock because:
 | |
|  *   - the superblock is detached from all mountings and open files, so the
 | |
|  *     dentry trees will not be rearranged by the VFS
 | |
|  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
 | |
|  *     any dentries belonging to this superblock that it comes across
 | |
|  *   - the filesystem itself is no longer permitted to rearrange the dentries
 | |
|  *     in this superblock
 | |
|  */
 | |
| void shrink_dcache_for_umount(struct super_block *sb)
 | |
| {
 | |
| 	struct dentry *dentry;
 | |
| 
 | |
| 	if (down_read_trylock(&sb->s_umount))
 | |
| 		BUG();
 | |
| 
 | |
| 	dentry = sb->s_root;
 | |
| 	sb->s_root = NULL;
 | |
| 	dentry->d_lockref.count--;
 | |
| 	shrink_dcache_for_umount_subtree(dentry);
 | |
| 
 | |
| 	while (!hlist_bl_empty(&sb->s_anon)) {
 | |
| 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
 | |
| 		shrink_dcache_for_umount_subtree(dentry);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This tries to ascend one level of parenthood, but
 | |
|  * we can race with renaming, so we need to re-check
 | |
|  * the parenthood after dropping the lock and check
 | |
|  * that the sequence number still matches.
 | |
|  */
 | |
| static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
 | |
| {
 | |
| 	struct dentry *new = old->d_parent;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	spin_unlock(&old->d_lock);
 | |
| 	spin_lock(&new->d_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * might go back up the wrong parent if we have had a rename
 | |
| 	 * or deletion
 | |
| 	 */
 | |
| 	if (new != old->d_parent ||
 | |
| 		 (old->d_flags & DCACHE_DENTRY_KILLED) ||
 | |
| 		 (!locked && read_seqretry(&rename_lock, seq))) {
 | |
| 		spin_unlock(&new->d_lock);
 | |
| 		new = NULL;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * enum d_walk_ret - action to talke during tree walk
 | |
|  * @D_WALK_CONTINUE:	contrinue walk
 | |
|  * @D_WALK_QUIT:	quit walk
 | |
|  * @D_WALK_NORETRY:	quit when retry is needed
 | |
|  * @D_WALK_SKIP:	skip this dentry and its children
 | |
|  */
 | |
| enum d_walk_ret {
 | |
| 	D_WALK_CONTINUE,
 | |
| 	D_WALK_QUIT,
 | |
| 	D_WALK_NORETRY,
 | |
| 	D_WALK_SKIP,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * d_walk - walk the dentry tree
 | |
|  * @parent:	start of walk
 | |
|  * @data:	data passed to @enter() and @finish()
 | |
|  * @enter:	callback when first entering the dentry
 | |
|  * @finish:	callback when successfully finished the walk
 | |
|  *
 | |
|  * The @enter() and @finish() callbacks are called with d_lock held.
 | |
|  */
 | |
| static void d_walk(struct dentry *parent, void *data,
 | |
| 		   enum d_walk_ret (*enter)(void *, struct dentry *),
 | |
| 		   void (*finish)(void *))
 | |
| {
 | |
| 	struct dentry *this_parent;
 | |
| 	struct list_head *next;
 | |
| 	unsigned seq;
 | |
| 	int locked = 0;
 | |
| 	enum d_walk_ret ret;
 | |
| 	bool retry = true;
 | |
| 
 | |
| 	seq = read_seqbegin(&rename_lock);
 | |
| again:
 | |
| 	this_parent = parent;
 | |
| 	spin_lock(&this_parent->d_lock);
 | |
| 
 | |
| 	ret = enter(data, this_parent);
 | |
| 	switch (ret) {
 | |
| 	case D_WALK_CONTINUE:
 | |
| 		break;
 | |
| 	case D_WALK_QUIT:
 | |
| 	case D_WALK_SKIP:
 | |
| 		goto out_unlock;
 | |
| 	case D_WALK_NORETRY:
 | |
| 		retry = false;
 | |
| 		break;
 | |
| 	}
 | |
| repeat:
 | |
| 	next = this_parent->d_subdirs.next;
 | |
| resume:
 | |
| 	while (next != &this_parent->d_subdirs) {
 | |
| 		struct list_head *tmp = next;
 | |
| 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
 | |
| 		next = tmp->next;
 | |
| 
 | |
| 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 | |
| 
 | |
| 		ret = enter(data, dentry);
 | |
| 		switch (ret) {
 | |
| 		case D_WALK_CONTINUE:
 | |
| 			break;
 | |
| 		case D_WALK_QUIT:
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 			goto out_unlock;
 | |
| 		case D_WALK_NORETRY:
 | |
| 			retry = false;
 | |
| 			break;
 | |
| 		case D_WALK_SKIP:
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!list_empty(&dentry->d_subdirs)) {
 | |
| 			spin_unlock(&this_parent->d_lock);
 | |
| 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
 | |
| 			this_parent = dentry;
 | |
| 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * All done at this level ... ascend and resume the search.
 | |
| 	 */
 | |
| 	if (this_parent != parent) {
 | |
| 		struct dentry *child = this_parent;
 | |
| 		this_parent = try_to_ascend(this_parent, locked, seq);
 | |
| 		if (!this_parent)
 | |
| 			goto rename_retry;
 | |
| 		next = child->d_u.d_child.next;
 | |
| 		goto resume;
 | |
| 	}
 | |
| 	if (!locked && read_seqretry(&rename_lock, seq)) {
 | |
| 		spin_unlock(&this_parent->d_lock);
 | |
| 		goto rename_retry;
 | |
| 	}
 | |
| 	if (finish)
 | |
| 		finish(data);
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&this_parent->d_lock);
 | |
| 	if (locked)
 | |
| 		write_sequnlock(&rename_lock);
 | |
| 	return;
 | |
| 
 | |
| rename_retry:
 | |
| 	if (!retry)
 | |
| 		return;
 | |
| 	if (locked)
 | |
| 		goto again;
 | |
| 	locked = 1;
 | |
| 	write_seqlock(&rename_lock);
 | |
| 	goto again;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Search for at least 1 mount point in the dentry's subdirs.
 | |
|  * We descend to the next level whenever the d_subdirs
 | |
|  * list is non-empty and continue searching.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * have_submounts - check for mounts over a dentry
 | |
|  * @parent: dentry to check.
 | |
|  *
 | |
|  * Return true if the parent or its subdirectories contain
 | |
|  * a mount point
 | |
|  */
 | |
| 
 | |
| static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
 | |
| {
 | |
| 	int *ret = data;
 | |
| 	if (d_mountpoint(dentry)) {
 | |
| 		*ret = 1;
 | |
| 		return D_WALK_QUIT;
 | |
| 	}
 | |
| 	return D_WALK_CONTINUE;
 | |
| }
 | |
| 
 | |
| int have_submounts(struct dentry *parent)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	d_walk(parent, &ret, check_mount, NULL);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(have_submounts);
 | |
| 
 | |
| /*
 | |
|  * Called by mount code to set a mountpoint and check if the mountpoint is
 | |
|  * reachable (e.g. NFS can unhash a directory dentry and then the complete
 | |
|  * subtree can become unreachable).
 | |
|  *
 | |
|  * Only one of check_submounts_and_drop() and d_set_mounted() must succeed.  For
 | |
|  * this reason take rename_lock and d_lock on dentry and ancestors.
 | |
|  */
 | |
| int d_set_mounted(struct dentry *dentry)
 | |
| {
 | |
| 	struct dentry *p;
 | |
| 	int ret = -ENOENT;
 | |
| 	write_seqlock(&rename_lock);
 | |
| 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
 | |
| 		/* Need exclusion wrt. check_submounts_and_drop() */
 | |
| 		spin_lock(&p->d_lock);
 | |
| 		if (unlikely(d_unhashed(p))) {
 | |
| 			spin_unlock(&p->d_lock);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		spin_unlock(&p->d_lock);
 | |
| 	}
 | |
| 	spin_lock(&dentry->d_lock);
 | |
| 	if (!d_unlinked(dentry)) {
 | |
| 		dentry->d_flags |= DCACHE_MOUNTED;
 | |
| 		ret = 0;
 | |
| 	}
 | |
|  	spin_unlock(&dentry->d_lock);
 | |
| out:
 | |
| 	write_sequnlock(&rename_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Search the dentry child list of the specified parent,
 | |
|  * and move any unused dentries to the end of the unused
 | |
|  * list for prune_dcache(). We descend to the next level
 | |
|  * whenever the d_subdirs list is non-empty and continue
 | |
|  * searching.
 | |
|  *
 | |
|  * It returns zero iff there are no unused children,
 | |
|  * otherwise  it returns the number of children moved to
 | |
|  * the end of the unused list. This may not be the total
 | |
|  * number of unused children, because select_parent can
 | |
|  * drop the lock and return early due to latency
 | |
|  * constraints.
 | |
|  */
 | |
| 
 | |
| struct select_data {
 | |
| 	struct dentry *start;
 | |
| 	struct list_head dispose;
 | |
| 	int found;
 | |
| };
 | |
| 
 | |
| static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
 | |
| {
 | |
| 	struct select_data *data = _data;
 | |
| 	enum d_walk_ret ret = D_WALK_CONTINUE;
 | |
| 
 | |
| 	if (data->start == dentry)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * move only zero ref count dentries to the dispose list.
 | |
| 	 *
 | |
| 	 * Those which are presently on the shrink list, being processed
 | |
| 	 * by shrink_dentry_list(), shouldn't be moved.  Otherwise the
 | |
| 	 * loop in shrink_dcache_parent() might not make any progress
 | |
| 	 * and loop forever.
 | |
| 	 */
 | |
| 	if (dentry->d_lockref.count) {
 | |
| 		dentry_lru_del(dentry);
 | |
| 	} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
 | |
| 		dentry_lru_move_list(dentry, &data->dispose);
 | |
| 		dentry->d_flags |= DCACHE_SHRINK_LIST;
 | |
| 		data->found++;
 | |
| 		ret = D_WALK_NORETRY;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We can return to the caller if we have found some (this
 | |
| 	 * ensures forward progress). We'll be coming back to find
 | |
| 	 * the rest.
 | |
| 	 */
 | |
| 	if (data->found && need_resched())
 | |
| 		ret = D_WALK_QUIT;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * shrink_dcache_parent - prune dcache
 | |
|  * @parent: parent of entries to prune
 | |
|  *
 | |
|  * Prune the dcache to remove unused children of the parent dentry.
 | |
|  */
 | |
| void shrink_dcache_parent(struct dentry *parent)
 | |
| {
 | |
| 	for (;;) {
 | |
| 		struct select_data data;
 | |
| 
 | |
| 		INIT_LIST_HEAD(&data.dispose);
 | |
| 		data.start = parent;
 | |
| 		data.found = 0;
 | |
| 
 | |
| 		d_walk(parent, &data, select_collect, NULL);
 | |
| 		if (!data.found)
 | |
| 			break;
 | |
| 
 | |
| 		shrink_dentry_list(&data.dispose);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(shrink_dcache_parent);
 | |
| 
 | |
| static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
 | |
| {
 | |
| 	struct select_data *data = _data;
 | |
| 
 | |
| 	if (d_mountpoint(dentry)) {
 | |
| 		data->found = -EBUSY;
 | |
| 		return D_WALK_QUIT;
 | |
| 	}
 | |
| 
 | |
| 	return select_collect(_data, dentry);
 | |
| }
 | |
| 
 | |
| static void check_and_drop(void *_data)
 | |
| {
 | |
| 	struct select_data *data = _data;
 | |
| 
 | |
| 	if (d_mountpoint(data->start))
 | |
| 		data->found = -EBUSY;
 | |
| 	if (!data->found)
 | |
| 		__d_drop(data->start);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * check_submounts_and_drop - prune dcache, check for submounts and drop
 | |
|  *
 | |
|  * All done as a single atomic operation relative to has_unlinked_ancestor().
 | |
|  * Returns 0 if successfully unhashed @parent.  If there were submounts then
 | |
|  * return -EBUSY.
 | |
|  *
 | |
|  * @dentry: dentry to prune and drop
 | |
|  */
 | |
| int check_submounts_and_drop(struct dentry *dentry)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Negative dentries can be dropped without further checks */
 | |
| 	if (!dentry->d_inode) {
 | |
| 		d_drop(dentry);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (;;) {
 | |
| 		struct select_data data;
 | |
| 
 | |
| 		INIT_LIST_HEAD(&data.dispose);
 | |
| 		data.start = dentry;
 | |
| 		data.found = 0;
 | |
| 
 | |
| 		d_walk(dentry, &data, check_and_collect, check_and_drop);
 | |
| 		ret = data.found;
 | |
| 
 | |
| 		if (!list_empty(&data.dispose))
 | |
| 			shrink_dentry_list(&data.dispose);
 | |
| 
 | |
| 		if (ret <= 0)
 | |
| 			break;
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(check_submounts_and_drop);
 | |
| 
 | |
| /**
 | |
|  * __d_alloc	-	allocate a dcache entry
 | |
|  * @sb: filesystem it will belong to
 | |
|  * @name: qstr of the name
 | |
|  *
 | |
|  * Allocates a dentry. It returns %NULL if there is insufficient memory
 | |
|  * available. On a success the dentry is returned. The name passed in is
 | |
|  * copied and the copy passed in may be reused after this call.
 | |
|  */
 | |
|  
 | |
| struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
 | |
| {
 | |
| 	struct dentry *dentry;
 | |
| 	char *dname;
 | |
| 
 | |
| 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
 | |
| 	if (!dentry)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We guarantee that the inline name is always NUL-terminated.
 | |
| 	 * This way the memcpy() done by the name switching in rename
 | |
| 	 * will still always have a NUL at the end, even if we might
 | |
| 	 * be overwriting an internal NUL character
 | |
| 	 */
 | |
| 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
 | |
| 	if (name->len > DNAME_INLINE_LEN-1) {
 | |
| 		dname = kmalloc(name->len + 1, GFP_KERNEL);
 | |
| 		if (!dname) {
 | |
| 			kmem_cache_free(dentry_cache, dentry); 
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	} else  {
 | |
| 		dname = dentry->d_iname;
 | |
| 	}	
 | |
| 
 | |
| 	dentry->d_name.len = name->len;
 | |
| 	dentry->d_name.hash = name->hash;
 | |
| 	memcpy(dname, name->name, name->len);
 | |
| 	dname[name->len] = 0;
 | |
| 
 | |
| 	/* Make sure we always see the terminating NUL character */
 | |
| 	smp_wmb();
 | |
| 	dentry->d_name.name = dname;
 | |
| 
 | |
| 	dentry->d_lockref.count = 1;
 | |
| 	dentry->d_flags = 0;
 | |
| 	spin_lock_init(&dentry->d_lock);
 | |
| 	seqcount_init(&dentry->d_seq);
 | |
| 	dentry->d_inode = NULL;
 | |
| 	dentry->d_parent = dentry;
 | |
| 	dentry->d_sb = sb;
 | |
| 	dentry->d_op = NULL;
 | |
| 	dentry->d_fsdata = NULL;
 | |
| 	INIT_HLIST_BL_NODE(&dentry->d_hash);
 | |
| 	INIT_LIST_HEAD(&dentry->d_lru);
 | |
| 	INIT_LIST_HEAD(&dentry->d_subdirs);
 | |
| 	INIT_HLIST_NODE(&dentry->d_alias);
 | |
| 	INIT_LIST_HEAD(&dentry->d_u.d_child);
 | |
| 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
 | |
| 
 | |
| 	this_cpu_inc(nr_dentry);
 | |
| 
 | |
| 	return dentry;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_alloc	-	allocate a dcache entry
 | |
|  * @parent: parent of entry to allocate
 | |
|  * @name: qstr of the name
 | |
|  *
 | |
|  * Allocates a dentry. It returns %NULL if there is insufficient memory
 | |
|  * available. On a success the dentry is returned. The name passed in is
 | |
|  * copied and the copy passed in may be reused after this call.
 | |
|  */
 | |
| struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
 | |
| {
 | |
| 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
 | |
| 	if (!dentry)
 | |
| 		return NULL;
 | |
| 
 | |
| 	spin_lock(&parent->d_lock);
 | |
| 	/*
 | |
| 	 * don't need child lock because it is not subject
 | |
| 	 * to concurrency here
 | |
| 	 */
 | |
| 	__dget_dlock(parent);
 | |
| 	dentry->d_parent = parent;
 | |
| 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
 | |
| 	spin_unlock(&parent->d_lock);
 | |
| 
 | |
| 	return dentry;
 | |
| }
 | |
| EXPORT_SYMBOL(d_alloc);
 | |
| 
 | |
| struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
 | |
| {
 | |
| 	struct dentry *dentry = __d_alloc(sb, name);
 | |
| 	if (dentry)
 | |
| 		dentry->d_flags |= DCACHE_DISCONNECTED;
 | |
| 	return dentry;
 | |
| }
 | |
| EXPORT_SYMBOL(d_alloc_pseudo);
 | |
| 
 | |
| struct dentry *d_alloc_name(struct dentry *parent, const char *name)
 | |
| {
 | |
| 	struct qstr q;
 | |
| 
 | |
| 	q.name = name;
 | |
| 	q.len = strlen(name);
 | |
| 	q.hash = full_name_hash(q.name, q.len);
 | |
| 	return d_alloc(parent, &q);
 | |
| }
 | |
| EXPORT_SYMBOL(d_alloc_name);
 | |
| 
 | |
| void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
 | |
| {
 | |
| 	WARN_ON_ONCE(dentry->d_op);
 | |
| 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
 | |
| 				DCACHE_OP_COMPARE	|
 | |
| 				DCACHE_OP_REVALIDATE	|
 | |
| 				DCACHE_OP_WEAK_REVALIDATE	|
 | |
| 				DCACHE_OP_DELETE ));
 | |
| 	dentry->d_op = op;
 | |
| 	if (!op)
 | |
| 		return;
 | |
| 	if (op->d_hash)
 | |
| 		dentry->d_flags |= DCACHE_OP_HASH;
 | |
| 	if (op->d_compare)
 | |
| 		dentry->d_flags |= DCACHE_OP_COMPARE;
 | |
| 	if (op->d_revalidate)
 | |
| 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
 | |
| 	if (op->d_weak_revalidate)
 | |
| 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
 | |
| 	if (op->d_delete)
 | |
| 		dentry->d_flags |= DCACHE_OP_DELETE;
 | |
| 	if (op->d_prune)
 | |
| 		dentry->d_flags |= DCACHE_OP_PRUNE;
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(d_set_d_op);
 | |
| 
 | |
| static void __d_instantiate(struct dentry *dentry, struct inode *inode)
 | |
| {
 | |
| 	spin_lock(&dentry->d_lock);
 | |
| 	if (inode) {
 | |
| 		if (unlikely(IS_AUTOMOUNT(inode)))
 | |
| 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
 | |
| 		hlist_add_head(&dentry->d_alias, &inode->i_dentry);
 | |
| 	}
 | |
| 	dentry->d_inode = inode;
 | |
| 	dentry_rcuwalk_barrier(dentry);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 	fsnotify_d_instantiate(dentry, inode);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_instantiate - fill in inode information for a dentry
 | |
|  * @entry: dentry to complete
 | |
|  * @inode: inode to attach to this dentry
 | |
|  *
 | |
|  * Fill in inode information in the entry.
 | |
|  *
 | |
|  * This turns negative dentries into productive full members
 | |
|  * of society.
 | |
|  *
 | |
|  * NOTE! This assumes that the inode count has been incremented
 | |
|  * (or otherwise set) by the caller to indicate that it is now
 | |
|  * in use by the dcache.
 | |
|  */
 | |
|  
 | |
| void d_instantiate(struct dentry *entry, struct inode * inode)
 | |
| {
 | |
| 	BUG_ON(!hlist_unhashed(&entry->d_alias));
 | |
| 	if (inode)
 | |
| 		spin_lock(&inode->i_lock);
 | |
| 	__d_instantiate(entry, inode);
 | |
| 	if (inode)
 | |
| 		spin_unlock(&inode->i_lock);
 | |
| 	security_d_instantiate(entry, inode);
 | |
| }
 | |
| EXPORT_SYMBOL(d_instantiate);
 | |
| 
 | |
| /**
 | |
|  * d_instantiate_unique - instantiate a non-aliased dentry
 | |
|  * @entry: dentry to instantiate
 | |
|  * @inode: inode to attach to this dentry
 | |
|  *
 | |
|  * Fill in inode information in the entry. On success, it returns NULL.
 | |
|  * If an unhashed alias of "entry" already exists, then we return the
 | |
|  * aliased dentry instead and drop one reference to inode.
 | |
|  *
 | |
|  * Note that in order to avoid conflicts with rename() etc, the caller
 | |
|  * had better be holding the parent directory semaphore.
 | |
|  *
 | |
|  * This also assumes that the inode count has been incremented
 | |
|  * (or otherwise set) by the caller to indicate that it is now
 | |
|  * in use by the dcache.
 | |
|  */
 | |
| static struct dentry *__d_instantiate_unique(struct dentry *entry,
 | |
| 					     struct inode *inode)
 | |
| {
 | |
| 	struct dentry *alias;
 | |
| 	int len = entry->d_name.len;
 | |
| 	const char *name = entry->d_name.name;
 | |
| 	unsigned int hash = entry->d_name.hash;
 | |
| 
 | |
| 	if (!inode) {
 | |
| 		__d_instantiate(entry, NULL);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
 | |
| 		/*
 | |
| 		 * Don't need alias->d_lock here, because aliases with
 | |
| 		 * d_parent == entry->d_parent are not subject to name or
 | |
| 		 * parent changes, because the parent inode i_mutex is held.
 | |
| 		 */
 | |
| 		if (alias->d_name.hash != hash)
 | |
| 			continue;
 | |
| 		if (alias->d_parent != entry->d_parent)
 | |
| 			continue;
 | |
| 		if (alias->d_name.len != len)
 | |
| 			continue;
 | |
| 		if (dentry_cmp(alias, name, len))
 | |
| 			continue;
 | |
| 		__dget(alias);
 | |
| 		return alias;
 | |
| 	}
 | |
| 
 | |
| 	__d_instantiate(entry, inode);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
 | |
| {
 | |
| 	struct dentry *result;
 | |
| 
 | |
| 	BUG_ON(!hlist_unhashed(&entry->d_alias));
 | |
| 
 | |
| 	if (inode)
 | |
| 		spin_lock(&inode->i_lock);
 | |
| 	result = __d_instantiate_unique(entry, inode);
 | |
| 	if (inode)
 | |
| 		spin_unlock(&inode->i_lock);
 | |
| 
 | |
| 	if (!result) {
 | |
| 		security_d_instantiate(entry, inode);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(!d_unhashed(result));
 | |
| 	iput(inode);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(d_instantiate_unique);
 | |
| 
 | |
| struct dentry *d_make_root(struct inode *root_inode)
 | |
| {
 | |
| 	struct dentry *res = NULL;
 | |
| 
 | |
| 	if (root_inode) {
 | |
| 		static const struct qstr name = QSTR_INIT("/", 1);
 | |
| 
 | |
| 		res = __d_alloc(root_inode->i_sb, &name);
 | |
| 		if (res)
 | |
| 			d_instantiate(res, root_inode);
 | |
| 		else
 | |
| 			iput(root_inode);
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(d_make_root);
 | |
| 
 | |
| static struct dentry * __d_find_any_alias(struct inode *inode)
 | |
| {
 | |
| 	struct dentry *alias;
 | |
| 
 | |
| 	if (hlist_empty(&inode->i_dentry))
 | |
| 		return NULL;
 | |
| 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
 | |
| 	__dget(alias);
 | |
| 	return alias;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_find_any_alias - find any alias for a given inode
 | |
|  * @inode: inode to find an alias for
 | |
|  *
 | |
|  * If any aliases exist for the given inode, take and return a
 | |
|  * reference for one of them.  If no aliases exist, return %NULL.
 | |
|  */
 | |
| struct dentry *d_find_any_alias(struct inode *inode)
 | |
| {
 | |
| 	struct dentry *de;
 | |
| 
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 	de = __d_find_any_alias(inode);
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| 	return de;
 | |
| }
 | |
| EXPORT_SYMBOL(d_find_any_alias);
 | |
| 
 | |
| /**
 | |
|  * d_obtain_alias - find or allocate a dentry for a given inode
 | |
|  * @inode: inode to allocate the dentry for
 | |
|  *
 | |
|  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
 | |
|  * similar open by handle operations.  The returned dentry may be anonymous,
 | |
|  * or may have a full name (if the inode was already in the cache).
 | |
|  *
 | |
|  * When called on a directory inode, we must ensure that the inode only ever
 | |
|  * has one dentry.  If a dentry is found, that is returned instead of
 | |
|  * allocating a new one.
 | |
|  *
 | |
|  * On successful return, the reference to the inode has been transferred
 | |
|  * to the dentry.  In case of an error the reference on the inode is released.
 | |
|  * To make it easier to use in export operations a %NULL or IS_ERR inode may
 | |
|  * be passed in and will be the error will be propagate to the return value,
 | |
|  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
 | |
|  */
 | |
| struct dentry *d_obtain_alias(struct inode *inode)
 | |
| {
 | |
| 	static const struct qstr anonstring = QSTR_INIT("/", 1);
 | |
| 	struct dentry *tmp;
 | |
| 	struct dentry *res;
 | |
| 
 | |
| 	if (!inode)
 | |
| 		return ERR_PTR(-ESTALE);
 | |
| 	if (IS_ERR(inode))
 | |
| 		return ERR_CAST(inode);
 | |
| 
 | |
| 	res = d_find_any_alias(inode);
 | |
| 	if (res)
 | |
| 		goto out_iput;
 | |
| 
 | |
| 	tmp = __d_alloc(inode->i_sb, &anonstring);
 | |
| 	if (!tmp) {
 | |
| 		res = ERR_PTR(-ENOMEM);
 | |
| 		goto out_iput;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 	res = __d_find_any_alias(inode);
 | |
| 	if (res) {
 | |
| 		spin_unlock(&inode->i_lock);
 | |
| 		dput(tmp);
 | |
| 		goto out_iput;
 | |
| 	}
 | |
| 
 | |
| 	/* attach a disconnected dentry */
 | |
| 	spin_lock(&tmp->d_lock);
 | |
| 	tmp->d_inode = inode;
 | |
| 	tmp->d_flags |= DCACHE_DISCONNECTED;
 | |
| 	hlist_add_head(&tmp->d_alias, &inode->i_dentry);
 | |
| 	hlist_bl_lock(&tmp->d_sb->s_anon);
 | |
| 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
 | |
| 	hlist_bl_unlock(&tmp->d_sb->s_anon);
 | |
| 	spin_unlock(&tmp->d_lock);
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| 	security_d_instantiate(tmp, inode);
 | |
| 
 | |
| 	return tmp;
 | |
| 
 | |
|  out_iput:
 | |
| 	if (res && !IS_ERR(res))
 | |
| 		security_d_instantiate(res, inode);
 | |
| 	iput(inode);
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(d_obtain_alias);
 | |
| 
 | |
| /**
 | |
|  * d_splice_alias - splice a disconnected dentry into the tree if one exists
 | |
|  * @inode:  the inode which may have a disconnected dentry
 | |
|  * @dentry: a negative dentry which we want to point to the inode.
 | |
|  *
 | |
|  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
 | |
|  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
 | |
|  * and return it, else simply d_add the inode to the dentry and return NULL.
 | |
|  *
 | |
|  * This is needed in the lookup routine of any filesystem that is exportable
 | |
|  * (via knfsd) so that we can build dcache paths to directories effectively.
 | |
|  *
 | |
|  * If a dentry was found and moved, then it is returned.  Otherwise NULL
 | |
|  * is returned.  This matches the expected return value of ->lookup.
 | |
|  *
 | |
|  * Cluster filesystems may call this function with a negative, hashed dentry.
 | |
|  * In that case, we know that the inode will be a regular file, and also this
 | |
|  * will only occur during atomic_open. So we need to check for the dentry
 | |
|  * being already hashed only in the final case.
 | |
|  */
 | |
| struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
 | |
| {
 | |
| 	struct dentry *new = NULL;
 | |
| 
 | |
| 	if (IS_ERR(inode))
 | |
| 		return ERR_CAST(inode);
 | |
| 
 | |
| 	if (inode && S_ISDIR(inode->i_mode)) {
 | |
| 		spin_lock(&inode->i_lock);
 | |
| 		new = __d_find_alias(inode, 1);
 | |
| 		if (new) {
 | |
| 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
 | |
| 			spin_unlock(&inode->i_lock);
 | |
| 			security_d_instantiate(new, inode);
 | |
| 			d_move(new, dentry);
 | |
| 			iput(inode);
 | |
| 		} else {
 | |
| 			/* already taking inode->i_lock, so d_add() by hand */
 | |
| 			__d_instantiate(dentry, inode);
 | |
| 			spin_unlock(&inode->i_lock);
 | |
| 			security_d_instantiate(dentry, inode);
 | |
| 			d_rehash(dentry);
 | |
| 		}
 | |
| 	} else {
 | |
| 		d_instantiate(dentry, inode);
 | |
| 		if (d_unhashed(dentry))
 | |
| 			d_rehash(dentry);
 | |
| 	}
 | |
| 	return new;
 | |
| }
 | |
| EXPORT_SYMBOL(d_splice_alias);
 | |
| 
 | |
| /**
 | |
|  * d_add_ci - lookup or allocate new dentry with case-exact name
 | |
|  * @inode:  the inode case-insensitive lookup has found
 | |
|  * @dentry: the negative dentry that was passed to the parent's lookup func
 | |
|  * @name:   the case-exact name to be associated with the returned dentry
 | |
|  *
 | |
|  * This is to avoid filling the dcache with case-insensitive names to the
 | |
|  * same inode, only the actual correct case is stored in the dcache for
 | |
|  * case-insensitive filesystems.
 | |
|  *
 | |
|  * For a case-insensitive lookup match and if the the case-exact dentry
 | |
|  * already exists in in the dcache, use it and return it.
 | |
|  *
 | |
|  * If no entry exists with the exact case name, allocate new dentry with
 | |
|  * the exact case, and return the spliced entry.
 | |
|  */
 | |
| struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
 | |
| 			struct qstr *name)
 | |
| {
 | |
| 	struct dentry *found;
 | |
| 	struct dentry *new;
 | |
| 
 | |
| 	/*
 | |
| 	 * First check if a dentry matching the name already exists,
 | |
| 	 * if not go ahead and create it now.
 | |
| 	 */
 | |
| 	found = d_hash_and_lookup(dentry->d_parent, name);
 | |
| 	if (unlikely(IS_ERR(found)))
 | |
| 		goto err_out;
 | |
| 	if (!found) {
 | |
| 		new = d_alloc(dentry->d_parent, name);
 | |
| 		if (!new) {
 | |
| 			found = ERR_PTR(-ENOMEM);
 | |
| 			goto err_out;
 | |
| 		}
 | |
| 
 | |
| 		found = d_splice_alias(inode, new);
 | |
| 		if (found) {
 | |
| 			dput(new);
 | |
| 			return found;
 | |
| 		}
 | |
| 		return new;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If a matching dentry exists, and it's not negative use it.
 | |
| 	 *
 | |
| 	 * Decrement the reference count to balance the iget() done
 | |
| 	 * earlier on.
 | |
| 	 */
 | |
| 	if (found->d_inode) {
 | |
| 		if (unlikely(found->d_inode != inode)) {
 | |
| 			/* This can't happen because bad inodes are unhashed. */
 | |
| 			BUG_ON(!is_bad_inode(inode));
 | |
| 			BUG_ON(!is_bad_inode(found->d_inode));
 | |
| 		}
 | |
| 		iput(inode);
 | |
| 		return found;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Negative dentry: instantiate it unless the inode is a directory and
 | |
| 	 * already has a dentry.
 | |
| 	 */
 | |
| 	new = d_splice_alias(inode, found);
 | |
| 	if (new) {
 | |
| 		dput(found);
 | |
| 		found = new;
 | |
| 	}
 | |
| 	return found;
 | |
| 
 | |
| err_out:
 | |
| 	iput(inode);
 | |
| 	return found;
 | |
| }
 | |
| EXPORT_SYMBOL(d_add_ci);
 | |
| 
 | |
| /*
 | |
|  * Do the slow-case of the dentry name compare.
 | |
|  *
 | |
|  * Unlike the dentry_cmp() function, we need to atomically
 | |
|  * load the name and length information, so that the
 | |
|  * filesystem can rely on them, and can use the 'name' and
 | |
|  * 'len' information without worrying about walking off the
 | |
|  * end of memory etc.
 | |
|  *
 | |
|  * Thus the read_seqcount_retry() and the "duplicate" info
 | |
|  * in arguments (the low-level filesystem should not look
 | |
|  * at the dentry inode or name contents directly, since
 | |
|  * rename can change them while we're in RCU mode).
 | |
|  */
 | |
| enum slow_d_compare {
 | |
| 	D_COMP_OK,
 | |
| 	D_COMP_NOMATCH,
 | |
| 	D_COMP_SEQRETRY,
 | |
| };
 | |
| 
 | |
| static noinline enum slow_d_compare slow_dentry_cmp(
 | |
| 		const struct dentry *parent,
 | |
| 		struct dentry *dentry,
 | |
| 		unsigned int seq,
 | |
| 		const struct qstr *name)
 | |
| {
 | |
| 	int tlen = dentry->d_name.len;
 | |
| 	const char *tname = dentry->d_name.name;
 | |
| 
 | |
| 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
 | |
| 		cpu_relax();
 | |
| 		return D_COMP_SEQRETRY;
 | |
| 	}
 | |
| 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
 | |
| 		return D_COMP_NOMATCH;
 | |
| 	return D_COMP_OK;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __d_lookup_rcu - search for a dentry (racy, store-free)
 | |
|  * @parent: parent dentry
 | |
|  * @name: qstr of name we wish to find
 | |
|  * @seqp: returns d_seq value at the point where the dentry was found
 | |
|  * Returns: dentry, or NULL
 | |
|  *
 | |
|  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
 | |
|  * resolution (store-free path walking) design described in
 | |
|  * Documentation/filesystems/path-lookup.txt.
 | |
|  *
 | |
|  * This is not to be used outside core vfs.
 | |
|  *
 | |
|  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
 | |
|  * held, and rcu_read_lock held. The returned dentry must not be stored into
 | |
|  * without taking d_lock and checking d_seq sequence count against @seq
 | |
|  * returned here.
 | |
|  *
 | |
|  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
 | |
|  * function.
 | |
|  *
 | |
|  * Alternatively, __d_lookup_rcu may be called again to look up the child of
 | |
|  * the returned dentry, so long as its parent's seqlock is checked after the
 | |
|  * child is looked up. Thus, an interlocking stepping of sequence lock checks
 | |
|  * is formed, giving integrity down the path walk.
 | |
|  *
 | |
|  * NOTE! The caller *has* to check the resulting dentry against the sequence
 | |
|  * number we've returned before using any of the resulting dentry state!
 | |
|  */
 | |
| struct dentry *__d_lookup_rcu(const struct dentry *parent,
 | |
| 				const struct qstr *name,
 | |
| 				unsigned *seqp)
 | |
| {
 | |
| 	u64 hashlen = name->hash_len;
 | |
| 	const unsigned char *str = name->name;
 | |
| 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
 | |
| 	struct hlist_bl_node *node;
 | |
| 	struct dentry *dentry;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: There is significant duplication with __d_lookup_rcu which is
 | |
| 	 * required to prevent single threaded performance regressions
 | |
| 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
 | |
| 	 * Keep the two functions in sync.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * The hash list is protected using RCU.
 | |
| 	 *
 | |
| 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
 | |
| 	 * races with d_move().
 | |
| 	 *
 | |
| 	 * It is possible that concurrent renames can mess up our list
 | |
| 	 * walk here and result in missing our dentry, resulting in the
 | |
| 	 * false-negative result. d_lookup() protects against concurrent
 | |
| 	 * renames using rename_lock seqlock.
 | |
| 	 *
 | |
| 	 * See Documentation/filesystems/path-lookup.txt for more details.
 | |
| 	 */
 | |
| 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
 | |
| 		unsigned seq;
 | |
| 
 | |
| seqretry:
 | |
| 		/*
 | |
| 		 * The dentry sequence count protects us from concurrent
 | |
| 		 * renames, and thus protects parent and name fields.
 | |
| 		 *
 | |
| 		 * The caller must perform a seqcount check in order
 | |
| 		 * to do anything useful with the returned dentry.
 | |
| 		 *
 | |
| 		 * NOTE! We do a "raw" seqcount_begin here. That means that
 | |
| 		 * we don't wait for the sequence count to stabilize if it
 | |
| 		 * is in the middle of a sequence change. If we do the slow
 | |
| 		 * dentry compare, we will do seqretries until it is stable,
 | |
| 		 * and if we end up with a successful lookup, we actually
 | |
| 		 * want to exit RCU lookup anyway.
 | |
| 		 */
 | |
| 		seq = raw_seqcount_begin(&dentry->d_seq);
 | |
| 		if (dentry->d_parent != parent)
 | |
| 			continue;
 | |
| 		if (d_unhashed(dentry))
 | |
| 			continue;
 | |
| 
 | |
| 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
 | |
| 			if (dentry->d_name.hash != hashlen_hash(hashlen))
 | |
| 				continue;
 | |
| 			*seqp = seq;
 | |
| 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
 | |
| 			case D_COMP_OK:
 | |
| 				return dentry;
 | |
| 			case D_COMP_NOMATCH:
 | |
| 				continue;
 | |
| 			default:
 | |
| 				goto seqretry;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (dentry->d_name.hash_len != hashlen)
 | |
| 			continue;
 | |
| 		*seqp = seq;
 | |
| 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
 | |
| 			return dentry;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_lookup - search for a dentry
 | |
|  * @parent: parent dentry
 | |
|  * @name: qstr of name we wish to find
 | |
|  * Returns: dentry, or NULL
 | |
|  *
 | |
|  * d_lookup searches the children of the parent dentry for the name in
 | |
|  * question. If the dentry is found its reference count is incremented and the
 | |
|  * dentry is returned. The caller must use dput to free the entry when it has
 | |
|  * finished using it. %NULL is returned if the dentry does not exist.
 | |
|  */
 | |
| struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
 | |
| {
 | |
| 	struct dentry *dentry;
 | |
| 	unsigned seq;
 | |
| 
 | |
|         do {
 | |
|                 seq = read_seqbegin(&rename_lock);
 | |
|                 dentry = __d_lookup(parent, name);
 | |
|                 if (dentry)
 | |
| 			break;
 | |
| 	} while (read_seqretry(&rename_lock, seq));
 | |
| 	return dentry;
 | |
| }
 | |
| EXPORT_SYMBOL(d_lookup);
 | |
| 
 | |
| /**
 | |
|  * __d_lookup - search for a dentry (racy)
 | |
|  * @parent: parent dentry
 | |
|  * @name: qstr of name we wish to find
 | |
|  * Returns: dentry, or NULL
 | |
|  *
 | |
|  * __d_lookup is like d_lookup, however it may (rarely) return a
 | |
|  * false-negative result due to unrelated rename activity.
 | |
|  *
 | |
|  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
 | |
|  * however it must be used carefully, eg. with a following d_lookup in
 | |
|  * the case of failure.
 | |
|  *
 | |
|  * __d_lookup callers must be commented.
 | |
|  */
 | |
| struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
 | |
| {
 | |
| 	unsigned int len = name->len;
 | |
| 	unsigned int hash = name->hash;
 | |
| 	const unsigned char *str = name->name;
 | |
| 	struct hlist_bl_head *b = d_hash(parent, hash);
 | |
| 	struct hlist_bl_node *node;
 | |
| 	struct dentry *found = NULL;
 | |
| 	struct dentry *dentry;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: There is significant duplication with __d_lookup_rcu which is
 | |
| 	 * required to prevent single threaded performance regressions
 | |
| 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
 | |
| 	 * Keep the two functions in sync.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * The hash list is protected using RCU.
 | |
| 	 *
 | |
| 	 * Take d_lock when comparing a candidate dentry, to avoid races
 | |
| 	 * with d_move().
 | |
| 	 *
 | |
| 	 * It is possible that concurrent renames can mess up our list
 | |
| 	 * walk here and result in missing our dentry, resulting in the
 | |
| 	 * false-negative result. d_lookup() protects against concurrent
 | |
| 	 * renames using rename_lock seqlock.
 | |
| 	 *
 | |
| 	 * See Documentation/filesystems/path-lookup.txt for more details.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	
 | |
| 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
 | |
| 
 | |
| 		if (dentry->d_name.hash != hash)
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock(&dentry->d_lock);
 | |
| 		if (dentry->d_parent != parent)
 | |
| 			goto next;
 | |
| 		if (d_unhashed(dentry))
 | |
| 			goto next;
 | |
| 
 | |
| 		/*
 | |
| 		 * It is safe to compare names since d_move() cannot
 | |
| 		 * change the qstr (protected by d_lock).
 | |
| 		 */
 | |
| 		if (parent->d_flags & DCACHE_OP_COMPARE) {
 | |
| 			int tlen = dentry->d_name.len;
 | |
| 			const char *tname = dentry->d_name.name;
 | |
| 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
 | |
| 				goto next;
 | |
| 		} else {
 | |
| 			if (dentry->d_name.len != len)
 | |
| 				goto next;
 | |
| 			if (dentry_cmp(dentry, str, len))
 | |
| 				goto next;
 | |
| 		}
 | |
| 
 | |
| 		dentry->d_lockref.count++;
 | |
| 		found = dentry;
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 		break;
 | |
| next:
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
|  	}
 | |
|  	rcu_read_unlock();
 | |
| 
 | |
|  	return found;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_hash_and_lookup - hash the qstr then search for a dentry
 | |
|  * @dir: Directory to search in
 | |
|  * @name: qstr of name we wish to find
 | |
|  *
 | |
|  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
 | |
|  */
 | |
| struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
 | |
| {
 | |
| 	/*
 | |
| 	 * Check for a fs-specific hash function. Note that we must
 | |
| 	 * calculate the standard hash first, as the d_op->d_hash()
 | |
| 	 * routine may choose to leave the hash value unchanged.
 | |
| 	 */
 | |
| 	name->hash = full_name_hash(name->name, name->len);
 | |
| 	if (dir->d_flags & DCACHE_OP_HASH) {
 | |
| 		int err = dir->d_op->d_hash(dir, name);
 | |
| 		if (unlikely(err < 0))
 | |
| 			return ERR_PTR(err);
 | |
| 	}
 | |
| 	return d_lookup(dir, name);
 | |
| }
 | |
| EXPORT_SYMBOL(d_hash_and_lookup);
 | |
| 
 | |
| /**
 | |
|  * d_validate - verify dentry provided from insecure source (deprecated)
 | |
|  * @dentry: The dentry alleged to be valid child of @dparent
 | |
|  * @dparent: The parent dentry (known to be valid)
 | |
|  *
 | |
|  * An insecure source has sent us a dentry, here we verify it and dget() it.
 | |
|  * This is used by ncpfs in its readdir implementation.
 | |
|  * Zero is returned in the dentry is invalid.
 | |
|  *
 | |
|  * This function is slow for big directories, and deprecated, do not use it.
 | |
|  */
 | |
| int d_validate(struct dentry *dentry, struct dentry *dparent)
 | |
| {
 | |
| 	struct dentry *child;
 | |
| 
 | |
| 	spin_lock(&dparent->d_lock);
 | |
| 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
 | |
| 		if (dentry == child) {
 | |
| 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 | |
| 			__dget_dlock(dentry);
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 			spin_unlock(&dparent->d_lock);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&dparent->d_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(d_validate);
 | |
| 
 | |
| /*
 | |
|  * When a file is deleted, we have two options:
 | |
|  * - turn this dentry into a negative dentry
 | |
|  * - unhash this dentry and free it.
 | |
|  *
 | |
|  * Usually, we want to just turn this into
 | |
|  * a negative dentry, but if anybody else is
 | |
|  * currently using the dentry or the inode
 | |
|  * we can't do that and we fall back on removing
 | |
|  * it from the hash queues and waiting for
 | |
|  * it to be deleted later when it has no users
 | |
|  */
 | |
|  
 | |
| /**
 | |
|  * d_delete - delete a dentry
 | |
|  * @dentry: The dentry to delete
 | |
|  *
 | |
|  * Turn the dentry into a negative dentry if possible, otherwise
 | |
|  * remove it from the hash queues so it can be deleted later
 | |
|  */
 | |
|  
 | |
| void d_delete(struct dentry * dentry)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	int isdir = 0;
 | |
| 	/*
 | |
| 	 * Are we the only user?
 | |
| 	 */
 | |
| again:
 | |
| 	spin_lock(&dentry->d_lock);
 | |
| 	inode = dentry->d_inode;
 | |
| 	isdir = S_ISDIR(inode->i_mode);
 | |
| 	if (dentry->d_lockref.count == 1) {
 | |
| 		if (!spin_trylock(&inode->i_lock)) {
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 			cpu_relax();
 | |
| 			goto again;
 | |
| 		}
 | |
| 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
 | |
| 		dentry_unlink_inode(dentry);
 | |
| 		fsnotify_nameremove(dentry, isdir);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!d_unhashed(dentry))
 | |
| 		__d_drop(dentry);
 | |
| 
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 
 | |
| 	fsnotify_nameremove(dentry, isdir);
 | |
| }
 | |
| EXPORT_SYMBOL(d_delete);
 | |
| 
 | |
| static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
 | |
| {
 | |
| 	BUG_ON(!d_unhashed(entry));
 | |
| 	hlist_bl_lock(b);
 | |
| 	entry->d_flags |= DCACHE_RCUACCESS;
 | |
| 	hlist_bl_add_head_rcu(&entry->d_hash, b);
 | |
| 	hlist_bl_unlock(b);
 | |
| }
 | |
| 
 | |
| static void _d_rehash(struct dentry * entry)
 | |
| {
 | |
| 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_rehash	- add an entry back to the hash
 | |
|  * @entry: dentry to add to the hash
 | |
|  *
 | |
|  * Adds a dentry to the hash according to its name.
 | |
|  */
 | |
|  
 | |
| void d_rehash(struct dentry * entry)
 | |
| {
 | |
| 	spin_lock(&entry->d_lock);
 | |
| 	_d_rehash(entry);
 | |
| 	spin_unlock(&entry->d_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(d_rehash);
 | |
| 
 | |
| /**
 | |
|  * dentry_update_name_case - update case insensitive dentry with a new name
 | |
|  * @dentry: dentry to be updated
 | |
|  * @name: new name
 | |
|  *
 | |
|  * Update a case insensitive dentry with new case of name.
 | |
|  *
 | |
|  * dentry must have been returned by d_lookup with name @name. Old and new
 | |
|  * name lengths must match (ie. no d_compare which allows mismatched name
 | |
|  * lengths).
 | |
|  *
 | |
|  * Parent inode i_mutex must be held over d_lookup and into this call (to
 | |
|  * keep renames and concurrent inserts, and readdir(2) away).
 | |
|  */
 | |
| void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
 | |
| {
 | |
| 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
 | |
| 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
 | |
| 
 | |
| 	spin_lock(&dentry->d_lock);
 | |
| 	write_seqcount_begin(&dentry->d_seq);
 | |
| 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
 | |
| 	write_seqcount_end(&dentry->d_seq);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(dentry_update_name_case);
 | |
| 
 | |
| static void switch_names(struct dentry *dentry, struct dentry *target)
 | |
| {
 | |
| 	if (dname_external(target)) {
 | |
| 		if (dname_external(dentry)) {
 | |
| 			/*
 | |
| 			 * Both external: swap the pointers
 | |
| 			 */
 | |
| 			swap(target->d_name.name, dentry->d_name.name);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * dentry:internal, target:external.  Steal target's
 | |
| 			 * storage and make target internal.
 | |
| 			 */
 | |
| 			memcpy(target->d_iname, dentry->d_name.name,
 | |
| 					dentry->d_name.len + 1);
 | |
| 			dentry->d_name.name = target->d_name.name;
 | |
| 			target->d_name.name = target->d_iname;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (dname_external(dentry)) {
 | |
| 			/*
 | |
| 			 * dentry:external, target:internal.  Give dentry's
 | |
| 			 * storage to target and make dentry internal
 | |
| 			 */
 | |
| 			memcpy(dentry->d_iname, target->d_name.name,
 | |
| 					target->d_name.len + 1);
 | |
| 			target->d_name.name = dentry->d_name.name;
 | |
| 			dentry->d_name.name = dentry->d_iname;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Both are internal.  Just copy target to dentry
 | |
| 			 */
 | |
| 			memcpy(dentry->d_iname, target->d_name.name,
 | |
| 					target->d_name.len + 1);
 | |
| 			dentry->d_name.len = target->d_name.len;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	swap(dentry->d_name.len, target->d_name.len);
 | |
| }
 | |
| 
 | |
| static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
 | |
| {
 | |
| 	/*
 | |
| 	 * XXXX: do we really need to take target->d_lock?
 | |
| 	 */
 | |
| 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
 | |
| 		spin_lock(&target->d_parent->d_lock);
 | |
| 	else {
 | |
| 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
 | |
| 			spin_lock(&dentry->d_parent->d_lock);
 | |
| 			spin_lock_nested(&target->d_parent->d_lock,
 | |
| 						DENTRY_D_LOCK_NESTED);
 | |
| 		} else {
 | |
| 			spin_lock(&target->d_parent->d_lock);
 | |
| 			spin_lock_nested(&dentry->d_parent->d_lock,
 | |
| 						DENTRY_D_LOCK_NESTED);
 | |
| 		}
 | |
| 	}
 | |
| 	if (target < dentry) {
 | |
| 		spin_lock_nested(&target->d_lock, 2);
 | |
| 		spin_lock_nested(&dentry->d_lock, 3);
 | |
| 	} else {
 | |
| 		spin_lock_nested(&dentry->d_lock, 2);
 | |
| 		spin_lock_nested(&target->d_lock, 3);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dentry_unlock_parents_for_move(struct dentry *dentry,
 | |
| 					struct dentry *target)
 | |
| {
 | |
| 	if (target->d_parent != dentry->d_parent)
 | |
| 		spin_unlock(&dentry->d_parent->d_lock);
 | |
| 	if (target->d_parent != target)
 | |
| 		spin_unlock(&target->d_parent->d_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When switching names, the actual string doesn't strictly have to
 | |
|  * be preserved in the target - because we're dropping the target
 | |
|  * anyway. As such, we can just do a simple memcpy() to copy over
 | |
|  * the new name before we switch.
 | |
|  *
 | |
|  * Note that we have to be a lot more careful about getting the hash
 | |
|  * switched - we have to switch the hash value properly even if it
 | |
|  * then no longer matches the actual (corrupted) string of the target.
 | |
|  * The hash value has to match the hash queue that the dentry is on..
 | |
|  */
 | |
| /*
 | |
|  * __d_move - move a dentry
 | |
|  * @dentry: entry to move
 | |
|  * @target: new dentry
 | |
|  *
 | |
|  * Update the dcache to reflect the move of a file name. Negative
 | |
|  * dcache entries should not be moved in this way. Caller must hold
 | |
|  * rename_lock, the i_mutex of the source and target directories,
 | |
|  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
 | |
|  */
 | |
| static void __d_move(struct dentry * dentry, struct dentry * target)
 | |
| {
 | |
| 	if (!dentry->d_inode)
 | |
| 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
 | |
| 
 | |
| 	BUG_ON(d_ancestor(dentry, target));
 | |
| 	BUG_ON(d_ancestor(target, dentry));
 | |
| 
 | |
| 	dentry_lock_for_move(dentry, target);
 | |
| 
 | |
| 	write_seqcount_begin(&dentry->d_seq);
 | |
| 	write_seqcount_begin(&target->d_seq);
 | |
| 
 | |
| 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Move the dentry to the target hash queue. Don't bother checking
 | |
| 	 * for the same hash queue because of how unlikely it is.
 | |
| 	 */
 | |
| 	__d_drop(dentry);
 | |
| 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
 | |
| 
 | |
| 	/* Unhash the target: dput() will then get rid of it */
 | |
| 	__d_drop(target);
 | |
| 
 | |
| 	list_del(&dentry->d_u.d_child);
 | |
| 	list_del(&target->d_u.d_child);
 | |
| 
 | |
| 	/* Switch the names.. */
 | |
| 	switch_names(dentry, target);
 | |
| 	swap(dentry->d_name.hash, target->d_name.hash);
 | |
| 
 | |
| 	/* ... and switch the parents */
 | |
| 	if (IS_ROOT(dentry)) {
 | |
| 		dentry->d_parent = target->d_parent;
 | |
| 		target->d_parent = target;
 | |
| 		INIT_LIST_HEAD(&target->d_u.d_child);
 | |
| 	} else {
 | |
| 		swap(dentry->d_parent, target->d_parent);
 | |
| 
 | |
| 		/* And add them back to the (new) parent lists */
 | |
| 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
 | |
| 	}
 | |
| 
 | |
| 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
 | |
| 
 | |
| 	write_seqcount_end(&target->d_seq);
 | |
| 	write_seqcount_end(&dentry->d_seq);
 | |
| 
 | |
| 	dentry_unlock_parents_for_move(dentry, target);
 | |
| 	spin_unlock(&target->d_lock);
 | |
| 	fsnotify_d_move(dentry);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * d_move - move a dentry
 | |
|  * @dentry: entry to move
 | |
|  * @target: new dentry
 | |
|  *
 | |
|  * Update the dcache to reflect the move of a file name. Negative
 | |
|  * dcache entries should not be moved in this way. See the locking
 | |
|  * requirements for __d_move.
 | |
|  */
 | |
| void d_move(struct dentry *dentry, struct dentry *target)
 | |
| {
 | |
| 	write_seqlock(&rename_lock);
 | |
| 	__d_move(dentry, target);
 | |
| 	write_sequnlock(&rename_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(d_move);
 | |
| 
 | |
| /**
 | |
|  * d_ancestor - search for an ancestor
 | |
|  * @p1: ancestor dentry
 | |
|  * @p2: child dentry
 | |
|  *
 | |
|  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
 | |
|  * an ancestor of p2, else NULL.
 | |
|  */
 | |
| struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
 | |
| {
 | |
| 	struct dentry *p;
 | |
| 
 | |
| 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
 | |
| 		if (p->d_parent == p1)
 | |
| 			return p;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This helper attempts to cope with remotely renamed directories
 | |
|  *
 | |
|  * It assumes that the caller is already holding
 | |
|  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
 | |
|  *
 | |
|  * Note: If ever the locking in lock_rename() changes, then please
 | |
|  * remember to update this too...
 | |
|  */
 | |
| static struct dentry *__d_unalias(struct inode *inode,
 | |
| 		struct dentry *dentry, struct dentry *alias)
 | |
| {
 | |
| 	struct mutex *m1 = NULL, *m2 = NULL;
 | |
| 	struct dentry *ret = ERR_PTR(-EBUSY);
 | |
| 
 | |
| 	/* If alias and dentry share a parent, then no extra locks required */
 | |
| 	if (alias->d_parent == dentry->d_parent)
 | |
| 		goto out_unalias;
 | |
| 
 | |
| 	/* See lock_rename() */
 | |
| 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
 | |
| 		goto out_err;
 | |
| 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
 | |
| 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
 | |
| 		goto out_err;
 | |
| 	m2 = &alias->d_parent->d_inode->i_mutex;
 | |
| out_unalias:
 | |
| 	if (likely(!d_mountpoint(alias))) {
 | |
| 		__d_move(alias, dentry);
 | |
| 		ret = alias;
 | |
| 	}
 | |
| out_err:
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| 	if (m2)
 | |
| 		mutex_unlock(m2);
 | |
| 	if (m1)
 | |
| 		mutex_unlock(m1);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
 | |
|  * named dentry in place of the dentry to be replaced.
 | |
|  * returns with anon->d_lock held!
 | |
|  */
 | |
| static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
 | |
| {
 | |
| 	struct dentry *dparent;
 | |
| 
 | |
| 	dentry_lock_for_move(anon, dentry);
 | |
| 
 | |
| 	write_seqcount_begin(&dentry->d_seq);
 | |
| 	write_seqcount_begin(&anon->d_seq);
 | |
| 
 | |
| 	dparent = dentry->d_parent;
 | |
| 
 | |
| 	switch_names(dentry, anon);
 | |
| 	swap(dentry->d_name.hash, anon->d_name.hash);
 | |
| 
 | |
| 	dentry->d_parent = dentry;
 | |
| 	list_del_init(&dentry->d_u.d_child);
 | |
| 	anon->d_parent = dparent;
 | |
| 	list_move(&anon->d_u.d_child, &dparent->d_subdirs);
 | |
| 
 | |
| 	write_seqcount_end(&dentry->d_seq);
 | |
| 	write_seqcount_end(&anon->d_seq);
 | |
| 
 | |
| 	dentry_unlock_parents_for_move(anon, dentry);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 
 | |
| 	/* anon->d_lock still locked, returns locked */
 | |
| 	anon->d_flags &= ~DCACHE_DISCONNECTED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_materialise_unique - introduce an inode into the tree
 | |
|  * @dentry: candidate dentry
 | |
|  * @inode: inode to bind to the dentry, to which aliases may be attached
 | |
|  *
 | |
|  * Introduces an dentry into the tree, substituting an extant disconnected
 | |
|  * root directory alias in its place if there is one. Caller must hold the
 | |
|  * i_mutex of the parent directory.
 | |
|  */
 | |
| struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
 | |
| {
 | |
| 	struct dentry *actual;
 | |
| 
 | |
| 	BUG_ON(!d_unhashed(dentry));
 | |
| 
 | |
| 	if (!inode) {
 | |
| 		actual = dentry;
 | |
| 		__d_instantiate(dentry, NULL);
 | |
| 		d_rehash(actual);
 | |
| 		goto out_nolock;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 
 | |
| 	if (S_ISDIR(inode->i_mode)) {
 | |
| 		struct dentry *alias;
 | |
| 
 | |
| 		/* Does an aliased dentry already exist? */
 | |
| 		alias = __d_find_alias(inode, 0);
 | |
| 		if (alias) {
 | |
| 			actual = alias;
 | |
| 			write_seqlock(&rename_lock);
 | |
| 
 | |
| 			if (d_ancestor(alias, dentry)) {
 | |
| 				/* Check for loops */
 | |
| 				actual = ERR_PTR(-ELOOP);
 | |
| 				spin_unlock(&inode->i_lock);
 | |
| 			} else if (IS_ROOT(alias)) {
 | |
| 				/* Is this an anonymous mountpoint that we
 | |
| 				 * could splice into our tree? */
 | |
| 				__d_materialise_dentry(dentry, alias);
 | |
| 				write_sequnlock(&rename_lock);
 | |
| 				__d_drop(alias);
 | |
| 				goto found;
 | |
| 			} else {
 | |
| 				/* Nope, but we must(!) avoid directory
 | |
| 				 * aliasing. This drops inode->i_lock */
 | |
| 				actual = __d_unalias(inode, dentry, alias);
 | |
| 			}
 | |
| 			write_sequnlock(&rename_lock);
 | |
| 			if (IS_ERR(actual)) {
 | |
| 				if (PTR_ERR(actual) == -ELOOP)
 | |
| 					pr_warn_ratelimited(
 | |
| 						"VFS: Lookup of '%s' in %s %s"
 | |
| 						" would have caused loop\n",
 | |
| 						dentry->d_name.name,
 | |
| 						inode->i_sb->s_type->name,
 | |
| 						inode->i_sb->s_id);
 | |
| 				dput(alias);
 | |
| 			}
 | |
| 			goto out_nolock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Add a unique reference */
 | |
| 	actual = __d_instantiate_unique(dentry, inode);
 | |
| 	if (!actual)
 | |
| 		actual = dentry;
 | |
| 	else
 | |
| 		BUG_ON(!d_unhashed(actual));
 | |
| 
 | |
| 	spin_lock(&actual->d_lock);
 | |
| found:
 | |
| 	_d_rehash(actual);
 | |
| 	spin_unlock(&actual->d_lock);
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| out_nolock:
 | |
| 	if (actual == dentry) {
 | |
| 		security_d_instantiate(dentry, inode);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	iput(inode);
 | |
| 	return actual;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(d_materialise_unique);
 | |
| 
 | |
| static int prepend(char **buffer, int *buflen, const char *str, int namelen)
 | |
| {
 | |
| 	*buflen -= namelen;
 | |
| 	if (*buflen < 0)
 | |
| 		return -ENAMETOOLONG;
 | |
| 	*buffer -= namelen;
 | |
| 	memcpy(*buffer, str, namelen);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int prepend_name(char **buffer, int *buflen, struct qstr *name)
 | |
| {
 | |
| 	return prepend(buffer, buflen, name->name, name->len);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * prepend_path - Prepend path string to a buffer
 | |
|  * @path: the dentry/vfsmount to report
 | |
|  * @root: root vfsmnt/dentry
 | |
|  * @buffer: pointer to the end of the buffer
 | |
|  * @buflen: pointer to buffer length
 | |
|  *
 | |
|  * Caller holds the rename_lock.
 | |
|  */
 | |
| static int prepend_path(const struct path *path,
 | |
| 			const struct path *root,
 | |
| 			char **buffer, int *buflen)
 | |
| {
 | |
| 	struct dentry *dentry = path->dentry;
 | |
| 	struct vfsmount *vfsmnt = path->mnt;
 | |
| 	struct mount *mnt = real_mount(vfsmnt);
 | |
| 	bool slash = false;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	while (dentry != root->dentry || vfsmnt != root->mnt) {
 | |
| 		struct dentry * parent;
 | |
| 
 | |
| 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
 | |
| 			/* Global root? */
 | |
| 			if (!mnt_has_parent(mnt))
 | |
| 				goto global_root;
 | |
| 			dentry = mnt->mnt_mountpoint;
 | |
| 			mnt = mnt->mnt_parent;
 | |
| 			vfsmnt = &mnt->mnt;
 | |
| 			continue;
 | |
| 		}
 | |
| 		parent = dentry->d_parent;
 | |
| 		prefetch(parent);
 | |
| 		spin_lock(&dentry->d_lock);
 | |
| 		error = prepend_name(buffer, buflen, &dentry->d_name);
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 		if (!error)
 | |
| 			error = prepend(buffer, buflen, "/", 1);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 
 | |
| 		slash = true;
 | |
| 		dentry = parent;
 | |
| 	}
 | |
| 
 | |
| 	if (!error && !slash)
 | |
| 		error = prepend(buffer, buflen, "/", 1);
 | |
| 
 | |
| 	return error;
 | |
| 
 | |
| global_root:
 | |
| 	/*
 | |
| 	 * Filesystems needing to implement special "root names"
 | |
| 	 * should do so with ->d_dname()
 | |
| 	 */
 | |
| 	if (IS_ROOT(dentry) &&
 | |
| 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
 | |
| 		WARN(1, "Root dentry has weird name <%.*s>\n",
 | |
| 		     (int) dentry->d_name.len, dentry->d_name.name);
 | |
| 	}
 | |
| 	if (!slash)
 | |
| 		error = prepend(buffer, buflen, "/", 1);
 | |
| 	if (!error)
 | |
| 		error = is_mounted(vfsmnt) ? 1 : 2;
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __d_path - return the path of a dentry
 | |
|  * @path: the dentry/vfsmount to report
 | |
|  * @root: root vfsmnt/dentry
 | |
|  * @buf: buffer to return value in
 | |
|  * @buflen: buffer length
 | |
|  *
 | |
|  * Convert a dentry into an ASCII path name.
 | |
|  *
 | |
|  * Returns a pointer into the buffer or an error code if the
 | |
|  * path was too long.
 | |
|  *
 | |
|  * "buflen" should be positive.
 | |
|  *
 | |
|  * If the path is not reachable from the supplied root, return %NULL.
 | |
|  */
 | |
| char *__d_path(const struct path *path,
 | |
| 	       const struct path *root,
 | |
| 	       char *buf, int buflen)
 | |
| {
 | |
| 	char *res = buf + buflen;
 | |
| 	int error;
 | |
| 
 | |
| 	prepend(&res, &buflen, "\0", 1);
 | |
| 	br_read_lock(&vfsmount_lock);
 | |
| 	write_seqlock(&rename_lock);
 | |
| 	error = prepend_path(path, root, &res, &buflen);
 | |
| 	write_sequnlock(&rename_lock);
 | |
| 	br_read_unlock(&vfsmount_lock);
 | |
| 
 | |
| 	if (error < 0)
 | |
| 		return ERR_PTR(error);
 | |
| 	if (error > 0)
 | |
| 		return NULL;
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| char *d_absolute_path(const struct path *path,
 | |
| 	       char *buf, int buflen)
 | |
| {
 | |
| 	struct path root = {};
 | |
| 	char *res = buf + buflen;
 | |
| 	int error;
 | |
| 
 | |
| 	prepend(&res, &buflen, "\0", 1);
 | |
| 	br_read_lock(&vfsmount_lock);
 | |
| 	write_seqlock(&rename_lock);
 | |
| 	error = prepend_path(path, &root, &res, &buflen);
 | |
| 	write_sequnlock(&rename_lock);
 | |
| 	br_read_unlock(&vfsmount_lock);
 | |
| 
 | |
| 	if (error > 1)
 | |
| 		error = -EINVAL;
 | |
| 	if (error < 0)
 | |
| 		return ERR_PTR(error);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * same as __d_path but appends "(deleted)" for unlinked files.
 | |
|  */
 | |
| static int path_with_deleted(const struct path *path,
 | |
| 			     const struct path *root,
 | |
| 			     char **buf, int *buflen)
 | |
| {
 | |
| 	prepend(buf, buflen, "\0", 1);
 | |
| 	if (d_unlinked(path->dentry)) {
 | |
| 		int error = prepend(buf, buflen, " (deleted)", 10);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	return prepend_path(path, root, buf, buflen);
 | |
| }
 | |
| 
 | |
| static int prepend_unreachable(char **buffer, int *buflen)
 | |
| {
 | |
| 	return prepend(buffer, buflen, "(unreachable)", 13);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_path - return the path of a dentry
 | |
|  * @path: path to report
 | |
|  * @buf: buffer to return value in
 | |
|  * @buflen: buffer length
 | |
|  *
 | |
|  * Convert a dentry into an ASCII path name. If the entry has been deleted
 | |
|  * the string " (deleted)" is appended. Note that this is ambiguous.
 | |
|  *
 | |
|  * Returns a pointer into the buffer or an error code if the path was
 | |
|  * too long. Note: Callers should use the returned pointer, not the passed
 | |
|  * in buffer, to use the name! The implementation often starts at an offset
 | |
|  * into the buffer, and may leave 0 bytes at the start.
 | |
|  *
 | |
|  * "buflen" should be positive.
 | |
|  */
 | |
| char *d_path(const struct path *path, char *buf, int buflen)
 | |
| {
 | |
| 	char *res = buf + buflen;
 | |
| 	struct path root;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have various synthetic filesystems that never get mounted.  On
 | |
| 	 * these filesystems dentries are never used for lookup purposes, and
 | |
| 	 * thus don't need to be hashed.  They also don't need a name until a
 | |
| 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
 | |
| 	 * below allows us to generate a name for these objects on demand:
 | |
| 	 */
 | |
| 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
 | |
| 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
 | |
| 
 | |
| 	get_fs_root(current->fs, &root);
 | |
| 	br_read_lock(&vfsmount_lock);
 | |
| 	write_seqlock(&rename_lock);
 | |
| 	error = path_with_deleted(path, &root, &res, &buflen);
 | |
| 	write_sequnlock(&rename_lock);
 | |
| 	br_read_unlock(&vfsmount_lock);
 | |
| 	if (error < 0)
 | |
| 		res = ERR_PTR(error);
 | |
| 	path_put(&root);
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(d_path);
 | |
| 
 | |
| /*
 | |
|  * Helper function for dentry_operations.d_dname() members
 | |
|  */
 | |
| char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
 | |
| 			const char *fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 	char temp[64];
 | |
| 	int sz;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
 | |
| 	va_end(args);
 | |
| 
 | |
| 	if (sz > sizeof(temp) || sz > buflen)
 | |
| 		return ERR_PTR(-ENAMETOOLONG);
 | |
| 
 | |
| 	buffer += buflen - sz;
 | |
| 	return memcpy(buffer, temp, sz);
 | |
| }
 | |
| 
 | |
| char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
 | |
| {
 | |
| 	char *end = buffer + buflen;
 | |
| 	/* these dentries are never renamed, so d_lock is not needed */
 | |
| 	if (prepend(&end, &buflen, " (deleted)", 11) ||
 | |
| 	    prepend_name(&end, &buflen, &dentry->d_name) ||
 | |
| 	    prepend(&end, &buflen, "/", 1))  
 | |
| 		end = ERR_PTR(-ENAMETOOLONG);
 | |
| 	return end;  
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write full pathname from the root of the filesystem into the buffer.
 | |
|  */
 | |
| static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
 | |
| {
 | |
| 	char *end = buf + buflen;
 | |
| 	char *retval;
 | |
| 
 | |
| 	prepend(&end, &buflen, "\0", 1);
 | |
| 	if (buflen < 1)
 | |
| 		goto Elong;
 | |
| 	/* Get '/' right */
 | |
| 	retval = end-1;
 | |
| 	*retval = '/';
 | |
| 
 | |
| 	while (!IS_ROOT(dentry)) {
 | |
| 		struct dentry *parent = dentry->d_parent;
 | |
| 		int error;
 | |
| 
 | |
| 		prefetch(parent);
 | |
| 		spin_lock(&dentry->d_lock);
 | |
| 		error = prepend_name(&end, &buflen, &dentry->d_name);
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
 | |
| 			goto Elong;
 | |
| 
 | |
| 		retval = end;
 | |
| 		dentry = parent;
 | |
| 	}
 | |
| 	return retval;
 | |
| Elong:
 | |
| 	return ERR_PTR(-ENAMETOOLONG);
 | |
| }
 | |
| 
 | |
| char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
 | |
| {
 | |
| 	char *retval;
 | |
| 
 | |
| 	write_seqlock(&rename_lock);
 | |
| 	retval = __dentry_path(dentry, buf, buflen);
 | |
| 	write_sequnlock(&rename_lock);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| EXPORT_SYMBOL(dentry_path_raw);
 | |
| 
 | |
| char *dentry_path(struct dentry *dentry, char *buf, int buflen)
 | |
| {
 | |
| 	char *p = NULL;
 | |
| 	char *retval;
 | |
| 
 | |
| 	write_seqlock(&rename_lock);
 | |
| 	if (d_unlinked(dentry)) {
 | |
| 		p = buf + buflen;
 | |
| 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
 | |
| 			goto Elong;
 | |
| 		buflen++;
 | |
| 	}
 | |
| 	retval = __dentry_path(dentry, buf, buflen);
 | |
| 	write_sequnlock(&rename_lock);
 | |
| 	if (!IS_ERR(retval) && p)
 | |
| 		*p = '/';	/* restore '/' overriden with '\0' */
 | |
| 	return retval;
 | |
| Elong:
 | |
| 	return ERR_PTR(-ENAMETOOLONG);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NOTE! The user-level library version returns a
 | |
|  * character pointer. The kernel system call just
 | |
|  * returns the length of the buffer filled (which
 | |
|  * includes the ending '\0' character), or a negative
 | |
|  * error value. So libc would do something like
 | |
|  *
 | |
|  *	char *getcwd(char * buf, size_t size)
 | |
|  *	{
 | |
|  *		int retval;
 | |
|  *
 | |
|  *		retval = sys_getcwd(buf, size);
 | |
|  *		if (retval >= 0)
 | |
|  *			return buf;
 | |
|  *		errno = -retval;
 | |
|  *		return NULL;
 | |
|  *	}
 | |
|  */
 | |
| SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
 | |
| {
 | |
| 	int error;
 | |
| 	struct path pwd, root;
 | |
| 	char *page = (char *) __get_free_page(GFP_USER);
 | |
| 
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	get_fs_root_and_pwd(current->fs, &root, &pwd);
 | |
| 
 | |
| 	error = -ENOENT;
 | |
| 	br_read_lock(&vfsmount_lock);
 | |
| 	write_seqlock(&rename_lock);
 | |
| 	if (!d_unlinked(pwd.dentry)) {
 | |
| 		unsigned long len;
 | |
| 		char *cwd = page + PAGE_SIZE;
 | |
| 		int buflen = PAGE_SIZE;
 | |
| 
 | |
| 		prepend(&cwd, &buflen, "\0", 1);
 | |
| 		error = prepend_path(&pwd, &root, &cwd, &buflen);
 | |
| 		write_sequnlock(&rename_lock);
 | |
| 		br_read_unlock(&vfsmount_lock);
 | |
| 
 | |
| 		if (error < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		/* Unreachable from current root */
 | |
| 		if (error > 0) {
 | |
| 			error = prepend_unreachable(&cwd, &buflen);
 | |
| 			if (error)
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		error = -ERANGE;
 | |
| 		len = PAGE_SIZE + page - cwd;
 | |
| 		if (len <= size) {
 | |
| 			error = len;
 | |
| 			if (copy_to_user(buf, cwd, len))
 | |
| 				error = -EFAULT;
 | |
| 		}
 | |
| 	} else {
 | |
| 		write_sequnlock(&rename_lock);
 | |
| 		br_read_unlock(&vfsmount_lock);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	path_put(&pwd);
 | |
| 	path_put(&root);
 | |
| 	free_page((unsigned long) page);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test whether new_dentry is a subdirectory of old_dentry.
 | |
|  *
 | |
|  * Trivially implemented using the dcache structure
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * is_subdir - is new dentry a subdirectory of old_dentry
 | |
|  * @new_dentry: new dentry
 | |
|  * @old_dentry: old dentry
 | |
|  *
 | |
|  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
 | |
|  * Returns 0 otherwise.
 | |
|  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
 | |
|  */
 | |
|   
 | |
| int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
 | |
| {
 | |
| 	int result;
 | |
| 	unsigned seq;
 | |
| 
 | |
| 	if (new_dentry == old_dentry)
 | |
| 		return 1;
 | |
| 
 | |
| 	do {
 | |
| 		/* for restarting inner loop in case of seq retry */
 | |
| 		seq = read_seqbegin(&rename_lock);
 | |
| 		/*
 | |
| 		 * Need rcu_readlock to protect against the d_parent trashing
 | |
| 		 * due to d_move
 | |
| 		 */
 | |
| 		rcu_read_lock();
 | |
| 		if (d_ancestor(old_dentry, new_dentry))
 | |
| 			result = 1;
 | |
| 		else
 | |
| 			result = 0;
 | |
| 		rcu_read_unlock();
 | |
| 	} while (read_seqretry(&rename_lock, seq));
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
 | |
| {
 | |
| 	struct dentry *root = data;
 | |
| 	if (dentry != root) {
 | |
| 		if (d_unhashed(dentry) || !dentry->d_inode)
 | |
| 			return D_WALK_SKIP;
 | |
| 
 | |
| 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
 | |
| 			dentry->d_flags |= DCACHE_GENOCIDE;
 | |
| 			dentry->d_lockref.count--;
 | |
| 		}
 | |
| 	}
 | |
| 	return D_WALK_CONTINUE;
 | |
| }
 | |
| 
 | |
| void d_genocide(struct dentry *parent)
 | |
| {
 | |
| 	d_walk(parent, parent, d_genocide_kill, NULL);
 | |
| }
 | |
| 
 | |
| void d_tmpfile(struct dentry *dentry, struct inode *inode)
 | |
| {
 | |
| 	inode_dec_link_count(inode);
 | |
| 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
 | |
| 		!hlist_unhashed(&dentry->d_alias) ||
 | |
| 		!d_unlinked(dentry));
 | |
| 	spin_lock(&dentry->d_parent->d_lock);
 | |
| 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 | |
| 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
 | |
| 				(unsigned long long)inode->i_ino);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 	spin_unlock(&dentry->d_parent->d_lock);
 | |
| 	d_instantiate(dentry, inode);
 | |
| }
 | |
| EXPORT_SYMBOL(d_tmpfile);
 | |
| 
 | |
| static __initdata unsigned long dhash_entries;
 | |
| static int __init set_dhash_entries(char *str)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return 0;
 | |
| 	dhash_entries = simple_strtoul(str, &str, 0);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("dhash_entries=", set_dhash_entries);
 | |
| 
 | |
| static void __init dcache_init_early(void)
 | |
| {
 | |
| 	unsigned int loop;
 | |
| 
 | |
| 	/* If hashes are distributed across NUMA nodes, defer
 | |
| 	 * hash allocation until vmalloc space is available.
 | |
| 	 */
 | |
| 	if (hashdist)
 | |
| 		return;
 | |
| 
 | |
| 	dentry_hashtable =
 | |
| 		alloc_large_system_hash("Dentry cache",
 | |
| 					sizeof(struct hlist_bl_head),
 | |
| 					dhash_entries,
 | |
| 					13,
 | |
| 					HASH_EARLY,
 | |
| 					&d_hash_shift,
 | |
| 					&d_hash_mask,
 | |
| 					0,
 | |
| 					0);
 | |
| 
 | |
| 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
 | |
| 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
 | |
| }
 | |
| 
 | |
| static void __init dcache_init(void)
 | |
| {
 | |
| 	unsigned int loop;
 | |
| 
 | |
| 	/* 
 | |
| 	 * A constructor could be added for stable state like the lists,
 | |
| 	 * but it is probably not worth it because of the cache nature
 | |
| 	 * of the dcache. 
 | |
| 	 */
 | |
| 	dentry_cache = KMEM_CACHE(dentry,
 | |
| 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
 | |
| 
 | |
| 	/* Hash may have been set up in dcache_init_early */
 | |
| 	if (!hashdist)
 | |
| 		return;
 | |
| 
 | |
| 	dentry_hashtable =
 | |
| 		alloc_large_system_hash("Dentry cache",
 | |
| 					sizeof(struct hlist_bl_head),
 | |
| 					dhash_entries,
 | |
| 					13,
 | |
| 					0,
 | |
| 					&d_hash_shift,
 | |
| 					&d_hash_mask,
 | |
| 					0,
 | |
| 					0);
 | |
| 
 | |
| 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
 | |
| 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
 | |
| }
 | |
| 
 | |
| /* SLAB cache for __getname() consumers */
 | |
| struct kmem_cache *names_cachep __read_mostly;
 | |
| EXPORT_SYMBOL(names_cachep);
 | |
| 
 | |
| EXPORT_SYMBOL(d_genocide);
 | |
| 
 | |
| void __init vfs_caches_init_early(void)
 | |
| {
 | |
| 	dcache_init_early();
 | |
| 	inode_init_early();
 | |
| }
 | |
| 
 | |
| void __init vfs_caches_init(unsigned long mempages)
 | |
| {
 | |
| 	unsigned long reserve;
 | |
| 
 | |
| 	/* Base hash sizes on available memory, with a reserve equal to
 | |
|            150% of current kernel size */
 | |
| 
 | |
| 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
 | |
| 	mempages -= reserve;
 | |
| 
 | |
| 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
 | |
| 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
 | |
| 
 | |
| 	dcache_init();
 | |
| 	inode_init();
 | |
| 	files_init(mempages);
 | |
| 	mnt_init();
 | |
| 	bdev_cache_init();
 | |
| 	chrdev_init();
 | |
| }
 |