dct_base and dct_limit obtain 32 bit register values when they read their respective pci config space registers. A left shift beyond 32 bits will cause them to wrap around. Similar case for chan_addr as can be seen from the bug report (link below). In the patch, we rectify this by casting chan_addr to u64 and by comparing dct_base and dct_limit against properly shifted sys_addr in order to compare the correct bits. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com> Link: http://lkml.kernel.org/r/20130819132302.GA12171@elgon.mountain Signed-off-by: Borislav Petkov <bp@suse.de>
		
			
				
	
	
		
			2951 lines
		
	
	
	
		
			75 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2951 lines
		
	
	
	
		
			75 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
#include "amd64_edac.h"
 | 
						|
#include <asm/amd_nb.h>
 | 
						|
 | 
						|
static struct edac_pci_ctl_info *amd64_ctl_pci;
 | 
						|
 | 
						|
static int report_gart_errors;
 | 
						|
module_param(report_gart_errors, int, 0644);
 | 
						|
 | 
						|
/*
 | 
						|
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 | 
						|
 * cleared to prevent re-enabling the hardware by this driver.
 | 
						|
 */
 | 
						|
static int ecc_enable_override;
 | 
						|
module_param(ecc_enable_override, int, 0644);
 | 
						|
 | 
						|
static struct msr __percpu *msrs;
 | 
						|
 | 
						|
/*
 | 
						|
 * count successfully initialized driver instances for setup_pci_device()
 | 
						|
 */
 | 
						|
static atomic_t drv_instances = ATOMIC_INIT(0);
 | 
						|
 | 
						|
/* Per-node driver instances */
 | 
						|
static struct mem_ctl_info **mcis;
 | 
						|
static struct ecc_settings **ecc_stngs;
 | 
						|
 | 
						|
/*
 | 
						|
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 | 
						|
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 | 
						|
 * or higher value'.
 | 
						|
 *
 | 
						|
 *FIXME: Produce a better mapping/linearisation.
 | 
						|
 */
 | 
						|
static const struct scrubrate {
 | 
						|
       u32 scrubval;           /* bit pattern for scrub rate */
 | 
						|
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
 | 
						|
} scrubrates[] = {
 | 
						|
	{ 0x01, 1600000000UL},
 | 
						|
	{ 0x02, 800000000UL},
 | 
						|
	{ 0x03, 400000000UL},
 | 
						|
	{ 0x04, 200000000UL},
 | 
						|
	{ 0x05, 100000000UL},
 | 
						|
	{ 0x06, 50000000UL},
 | 
						|
	{ 0x07, 25000000UL},
 | 
						|
	{ 0x08, 12284069UL},
 | 
						|
	{ 0x09, 6274509UL},
 | 
						|
	{ 0x0A, 3121951UL},
 | 
						|
	{ 0x0B, 1560975UL},
 | 
						|
	{ 0x0C, 781440UL},
 | 
						|
	{ 0x0D, 390720UL},
 | 
						|
	{ 0x0E, 195300UL},
 | 
						|
	{ 0x0F, 97650UL},
 | 
						|
	{ 0x10, 48854UL},
 | 
						|
	{ 0x11, 24427UL},
 | 
						|
	{ 0x12, 12213UL},
 | 
						|
	{ 0x13, 6101UL},
 | 
						|
	{ 0x14, 3051UL},
 | 
						|
	{ 0x15, 1523UL},
 | 
						|
	{ 0x16, 761UL},
 | 
						|
	{ 0x00, 0UL},        /* scrubbing off */
 | 
						|
};
 | 
						|
 | 
						|
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
 | 
						|
			       u32 *val, const char *func)
 | 
						|
{
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	err = pci_read_config_dword(pdev, offset, val);
 | 
						|
	if (err)
 | 
						|
		amd64_warn("%s: error reading F%dx%03x.\n",
 | 
						|
			   func, PCI_FUNC(pdev->devfn), offset);
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
 | 
						|
				u32 val, const char *func)
 | 
						|
{
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	err = pci_write_config_dword(pdev, offset, val);
 | 
						|
	if (err)
 | 
						|
		amd64_warn("%s: error writing to F%dx%03x.\n",
 | 
						|
			   func, PCI_FUNC(pdev->devfn), offset);
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *
 | 
						|
 * Depending on the family, F2 DCT reads need special handling:
 | 
						|
 *
 | 
						|
 * K8: has a single DCT only
 | 
						|
 *
 | 
						|
 * F10h: each DCT has its own set of regs
 | 
						|
 *	DCT0 -> F2x040..
 | 
						|
 *	DCT1 -> F2x140..
 | 
						|
 *
 | 
						|
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
 | 
						|
 *
 | 
						|
 * F16h: has only 1 DCT
 | 
						|
 */
 | 
						|
static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
 | 
						|
			       const char *func)
 | 
						|
{
 | 
						|
	if (addr >= 0x100)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
 | 
						|
}
 | 
						|
 | 
						|
static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
 | 
						|
				 const char *func)
 | 
						|
{
 | 
						|
	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Select DCT to which PCI cfg accesses are routed
 | 
						|
 */
 | 
						|
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
 | 
						|
{
 | 
						|
	u32 reg = 0;
 | 
						|
 | 
						|
	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®);
 | 
						|
	reg &= (pvt->model >= 0x30) ? ~3 : ~1;
 | 
						|
	reg |= dct;
 | 
						|
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
 | 
						|
}
 | 
						|
 | 
						|
static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
 | 
						|
				 const char *func)
 | 
						|
{
 | 
						|
	u8 dct  = 0;
 | 
						|
 | 
						|
	/* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */
 | 
						|
	if (addr >= 0x140 && addr <= 0x1a0) {
 | 
						|
		dct   = (pvt->model >= 0x30) ? 3 : 1;
 | 
						|
		addr -= 0x100;
 | 
						|
	}
 | 
						|
 | 
						|
	f15h_select_dct(pvt, dct);
 | 
						|
 | 
						|
	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 | 
						|
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 | 
						|
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 | 
						|
 * functionality.
 | 
						|
 *
 | 
						|
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 | 
						|
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 | 
						|
 * bytes/sec for the setting.
 | 
						|
 *
 | 
						|
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 | 
						|
 * other archs, we might not have access to the caches directly.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 | 
						|
 * issue. If requested is too big, then use last maximum value found.
 | 
						|
 */
 | 
						|
static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
 | 
						|
{
 | 
						|
	u32 scrubval;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * map the configured rate (new_bw) to a value specific to the AMD64
 | 
						|
	 * memory controller and apply to register. Search for the first
 | 
						|
	 * bandwidth entry that is greater or equal than the setting requested
 | 
						|
	 * and program that. If at last entry, turn off DRAM scrubbing.
 | 
						|
	 *
 | 
						|
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
 | 
						|
	 * by falling back to the last element in scrubrates[].
 | 
						|
	 */
 | 
						|
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
 | 
						|
		/*
 | 
						|
		 * skip scrub rates which aren't recommended
 | 
						|
		 * (see F10 BKDG, F3x58)
 | 
						|
		 */
 | 
						|
		if (scrubrates[i].scrubval < min_rate)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (scrubrates[i].bandwidth <= new_bw)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	scrubval = scrubrates[i].scrubval;
 | 
						|
 | 
						|
	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
 | 
						|
 | 
						|
	if (scrubval)
 | 
						|
		return scrubrates[i].bandwidth;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
 | 
						|
{
 | 
						|
	struct amd64_pvt *pvt = mci->pvt_info;
 | 
						|
	u32 min_scrubrate = 0x5;
 | 
						|
 | 
						|
	if (pvt->fam == 0xf)
 | 
						|
		min_scrubrate = 0x0;
 | 
						|
 | 
						|
	/* Erratum #505 */
 | 
						|
	if (pvt->fam == 0x15 && pvt->model < 0x10)
 | 
						|
		f15h_select_dct(pvt, 0);
 | 
						|
 | 
						|
	return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
 | 
						|
}
 | 
						|
 | 
						|
static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
 | 
						|
{
 | 
						|
	struct amd64_pvt *pvt = mci->pvt_info;
 | 
						|
	u32 scrubval = 0;
 | 
						|
	int i, retval = -EINVAL;
 | 
						|
 | 
						|
	/* Erratum #505 */
 | 
						|
	if (pvt->fam == 0x15 && pvt->model < 0x10)
 | 
						|
		f15h_select_dct(pvt, 0);
 | 
						|
 | 
						|
	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
 | 
						|
 | 
						|
	scrubval = scrubval & 0x001F;
 | 
						|
 | 
						|
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
 | 
						|
		if (scrubrates[i].scrubval == scrubval) {
 | 
						|
			retval = scrubrates[i].bandwidth;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * returns true if the SysAddr given by sys_addr matches the
 | 
						|
 * DRAM base/limit associated with node_id
 | 
						|
 */
 | 
						|
static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
 | 
						|
				   u8 nid)
 | 
						|
{
 | 
						|
	u64 addr;
 | 
						|
 | 
						|
	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
 | 
						|
	 * all ones if the most significant implemented address bit is 1.
 | 
						|
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
 | 
						|
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
 | 
						|
	 * Application Programming.
 | 
						|
	 */
 | 
						|
	addr = sys_addr & 0x000000ffffffffffull;
 | 
						|
 | 
						|
	return ((addr >= get_dram_base(pvt, nid)) &&
 | 
						|
		(addr <= get_dram_limit(pvt, nid)));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 | 
						|
 * mem_ctl_info structure for the node that the SysAddr maps to.
 | 
						|
 *
 | 
						|
 * On failure, return NULL.
 | 
						|
 */
 | 
						|
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
 | 
						|
						u64 sys_addr)
 | 
						|
{
 | 
						|
	struct amd64_pvt *pvt;
 | 
						|
	u8 node_id;
 | 
						|
	u32 intlv_en, bits;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
 | 
						|
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
 | 
						|
	 */
 | 
						|
	pvt = mci->pvt_info;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The value of this field should be the same for all DRAM Base
 | 
						|
	 * registers.  Therefore we arbitrarily choose to read it from the
 | 
						|
	 * register for node 0.
 | 
						|
	 */
 | 
						|
	intlv_en = dram_intlv_en(pvt, 0);
 | 
						|
 | 
						|
	if (intlv_en == 0) {
 | 
						|
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
 | 
						|
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
 | 
						|
				goto found;
 | 
						|
		}
 | 
						|
		goto err_no_match;
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely((intlv_en != 0x01) &&
 | 
						|
		     (intlv_en != 0x03) &&
 | 
						|
		     (intlv_en != 0x07))) {
 | 
						|
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	bits = (((u32) sys_addr) >> 12) & intlv_en;
 | 
						|
 | 
						|
	for (node_id = 0; ; ) {
 | 
						|
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
 | 
						|
			break;	/* intlv_sel field matches */
 | 
						|
 | 
						|
		if (++node_id >= DRAM_RANGES)
 | 
						|
			goto err_no_match;
 | 
						|
	}
 | 
						|
 | 
						|
	/* sanity test for sys_addr */
 | 
						|
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
 | 
						|
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
 | 
						|
			   "range for node %d with node interleaving enabled.\n",
 | 
						|
			   __func__, sys_addr, node_id);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
found:
 | 
						|
	return edac_mc_find((int)node_id);
 | 
						|
 | 
						|
err_no_match:
 | 
						|
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
 | 
						|
		 (unsigned long)sys_addr);
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 | 
						|
 * For details see F2x[5C:40] in the processor's BKDG
 | 
						|
 */
 | 
						|
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
 | 
						|
				 u64 *base, u64 *mask)
 | 
						|
{
 | 
						|
	u64 csbase, csmask, base_bits, mask_bits;
 | 
						|
	u8 addr_shift;
 | 
						|
 | 
						|
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
 | 
						|
		csbase		= pvt->csels[dct].csbases[csrow];
 | 
						|
		csmask		= pvt->csels[dct].csmasks[csrow];
 | 
						|
		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
 | 
						|
		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
 | 
						|
		addr_shift	= 4;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * F16h and F15h, models 30h and later need two addr_shift values:
 | 
						|
	 * 8 for high and 6 for low (cf. F16h BKDG).
 | 
						|
	 */
 | 
						|
	} else if (pvt->fam == 0x16 ||
 | 
						|
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
 | 
						|
		csbase          = pvt->csels[dct].csbases[csrow];
 | 
						|
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];
 | 
						|
 | 
						|
		*base  = (csbase & GENMASK(5,  15)) << 6;
 | 
						|
		*base |= (csbase & GENMASK(19, 30)) << 8;
 | 
						|
 | 
						|
		*mask = ~0ULL;
 | 
						|
		/* poke holes for the csmask */
 | 
						|
		*mask &= ~((GENMASK(5, 15)  << 6) |
 | 
						|
			   (GENMASK(19, 30) << 8));
 | 
						|
 | 
						|
		*mask |= (csmask & GENMASK(5, 15))  << 6;
 | 
						|
		*mask |= (csmask & GENMASK(19, 30)) << 8;
 | 
						|
 | 
						|
		return;
 | 
						|
	} else {
 | 
						|
		csbase		= pvt->csels[dct].csbases[csrow];
 | 
						|
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
 | 
						|
		addr_shift	= 8;
 | 
						|
 | 
						|
		if (pvt->fam == 0x15)
 | 
						|
			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
 | 
						|
		else
 | 
						|
			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
 | 
						|
	}
 | 
						|
 | 
						|
	*base  = (csbase & base_bits) << addr_shift;
 | 
						|
 | 
						|
	*mask  = ~0ULL;
 | 
						|
	/* poke holes for the csmask */
 | 
						|
	*mask &= ~(mask_bits << addr_shift);
 | 
						|
	/* OR them in */
 | 
						|
	*mask |= (csmask & mask_bits) << addr_shift;
 | 
						|
}
 | 
						|
 | 
						|
#define for_each_chip_select(i, dct, pvt) \
 | 
						|
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)
 | 
						|
 | 
						|
#define chip_select_base(i, dct, pvt) \
 | 
						|
	pvt->csels[dct].csbases[i]
 | 
						|
 | 
						|
#define for_each_chip_select_mask(i, dct, pvt) \
 | 
						|
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)
 | 
						|
 | 
						|
/*
 | 
						|
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 | 
						|
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 | 
						|
 */
 | 
						|
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
 | 
						|
{
 | 
						|
	struct amd64_pvt *pvt;
 | 
						|
	int csrow;
 | 
						|
	u64 base, mask;
 | 
						|
 | 
						|
	pvt = mci->pvt_info;
 | 
						|
 | 
						|
	for_each_chip_select(csrow, 0, pvt) {
 | 
						|
		if (!csrow_enabled(csrow, 0, pvt))
 | 
						|
			continue;
 | 
						|
 | 
						|
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
 | 
						|
 | 
						|
		mask = ~mask;
 | 
						|
 | 
						|
		if ((input_addr & mask) == (base & mask)) {
 | 
						|
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
 | 
						|
				 (unsigned long)input_addr, csrow,
 | 
						|
				 pvt->mc_node_id);
 | 
						|
 | 
						|
			return csrow;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
 | 
						|
		 (unsigned long)input_addr, pvt->mc_node_id);
 | 
						|
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 | 
						|
 * for the node represented by mci. Info is passed back in *hole_base,
 | 
						|
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 | 
						|
 * info is invalid. Info may be invalid for either of the following reasons:
 | 
						|
 *
 | 
						|
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 | 
						|
 *   Address Register does not exist.
 | 
						|
 *
 | 
						|
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 | 
						|
 *   indicating that its contents are not valid.
 | 
						|
 *
 | 
						|
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 | 
						|
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 | 
						|
 * only represent bits 31-24 of the base and offset values.
 | 
						|
 */
 | 
						|
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
 | 
						|
			     u64 *hole_offset, u64 *hole_size)
 | 
						|
{
 | 
						|
	struct amd64_pvt *pvt = mci->pvt_info;
 | 
						|
 | 
						|
	/* only revE and later have the DRAM Hole Address Register */
 | 
						|
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
 | 
						|
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
 | 
						|
			 pvt->ext_model, pvt->mc_node_id);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* valid for Fam10h and above */
 | 
						|
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
 | 
						|
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!dhar_valid(pvt)) {
 | 
						|
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
 | 
						|
			 pvt->mc_node_id);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* This node has Memory Hoisting */
 | 
						|
 | 
						|
	/* +------------------+--------------------+--------------------+-----
 | 
						|
	 * | memory           | DRAM hole          | relocated          |
 | 
						|
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
 | 
						|
	 * |                  |                    | DRAM hole          |
 | 
						|
	 * |                  |                    | [0x100000000,      |
 | 
						|
	 * |                  |                    |  (0x100000000+     |
 | 
						|
	 * |                  |                    |   (0xffffffff-x))] |
 | 
						|
	 * +------------------+--------------------+--------------------+-----
 | 
						|
	 *
 | 
						|
	 * Above is a diagram of physical memory showing the DRAM hole and the
 | 
						|
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
 | 
						|
	 * starts at address x (the base address) and extends through address
 | 
						|
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
 | 
						|
	 * addresses in the hole so that they start at 0x100000000.
 | 
						|
	 */
 | 
						|
 | 
						|
	*hole_base = dhar_base(pvt);
 | 
						|
	*hole_size = (1ULL << 32) - *hole_base;
 | 
						|
 | 
						|
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
 | 
						|
					: k8_dhar_offset(pvt);
 | 
						|
 | 
						|
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
 | 
						|
		 pvt->mc_node_id, (unsigned long)*hole_base,
 | 
						|
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 | 
						|
 * assumed that sys_addr maps to the node given by mci.
 | 
						|
 *
 | 
						|
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 | 
						|
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 | 
						|
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 | 
						|
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 | 
						|
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 | 
						|
 * These parts of the documentation are unclear. I interpret them as follows:
 | 
						|
 *
 | 
						|
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 | 
						|
 *
 | 
						|
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 | 
						|
 *    Limit registers for node n. If the SysAddr is not within the range
 | 
						|
 *    specified by the base and limit values, then node n ignores the Sysaddr
 | 
						|
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 | 
						|
 *
 | 
						|
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 | 
						|
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 | 
						|
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 | 
						|
 *    hole. If not, skip to step 3 below. Else get the value of the
 | 
						|
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 | 
						|
 *    offset defined by this value from the SysAddr.
 | 
						|
 *
 | 
						|
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 | 
						|
 *    Base register for node n. To obtain the DramAddr, subtract the base
 | 
						|
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 | 
						|
 */
 | 
						|
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
 | 
						|
{
 | 
						|
	struct amd64_pvt *pvt = mci->pvt_info;
 | 
						|
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
 | 
						|
 | 
						|
	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
 | 
						|
				      &hole_size);
 | 
						|
	if (!ret) {
 | 
						|
		if ((sys_addr >= (1ULL << 32)) &&
 | 
						|
		    (sys_addr < ((1ULL << 32) + hole_size))) {
 | 
						|
			/* use DHAR to translate SysAddr to DramAddr */
 | 
						|
			dram_addr = sys_addr - hole_offset;
 | 
						|
 | 
						|
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
 | 
						|
				 (unsigned long)sys_addr,
 | 
						|
				 (unsigned long)dram_addr);
 | 
						|
 | 
						|
			return dram_addr;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Translate the SysAddr to a DramAddr as shown near the start of
 | 
						|
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
 | 
						|
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
 | 
						|
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
 | 
						|
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
 | 
						|
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
 | 
						|
	 * Programmer's Manual Volume 1 Application Programming.
 | 
						|
	 */
 | 
						|
	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
 | 
						|
 | 
						|
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
 | 
						|
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
 | 
						|
	return dram_addr;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 | 
						|
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 | 
						|
 * for node interleaving.
 | 
						|
 */
 | 
						|
static int num_node_interleave_bits(unsigned intlv_en)
 | 
						|
{
 | 
						|
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
 | 
						|
	int n;
 | 
						|
 | 
						|
	BUG_ON(intlv_en > 7);
 | 
						|
	n = intlv_shift_table[intlv_en];
 | 
						|
	return n;
 | 
						|
}
 | 
						|
 | 
						|
/* Translate the DramAddr given by @dram_addr to an InputAddr. */
 | 
						|
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
 | 
						|
{
 | 
						|
	struct amd64_pvt *pvt;
 | 
						|
	int intlv_shift;
 | 
						|
	u64 input_addr;
 | 
						|
 | 
						|
	pvt = mci->pvt_info;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
 | 
						|
	 * concerning translating a DramAddr to an InputAddr.
 | 
						|
	 */
 | 
						|
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
 | 
						|
	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
 | 
						|
		      (dram_addr & 0xfff);
 | 
						|
 | 
						|
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
 | 
						|
		 intlv_shift, (unsigned long)dram_addr,
 | 
						|
		 (unsigned long)input_addr);
 | 
						|
 | 
						|
	return input_addr;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 | 
						|
 * assumed that @sys_addr maps to the node given by mci.
 | 
						|
 */
 | 
						|
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
 | 
						|
{
 | 
						|
	u64 input_addr;
 | 
						|
 | 
						|
	input_addr =
 | 
						|
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
 | 
						|
 | 
						|
	edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
 | 
						|
		 (unsigned long)sys_addr, (unsigned long)input_addr);
 | 
						|
 | 
						|
	return input_addr;
 | 
						|
}
 | 
						|
 | 
						|
/* Map the Error address to a PAGE and PAGE OFFSET. */
 | 
						|
static inline void error_address_to_page_and_offset(u64 error_address,
 | 
						|
						    struct err_info *err)
 | 
						|
{
 | 
						|
	err->page = (u32) (error_address >> PAGE_SHIFT);
 | 
						|
	err->offset = ((u32) error_address) & ~PAGE_MASK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 | 
						|
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 | 
						|
 * of a node that detected an ECC memory error.  mci represents the node that
 | 
						|
 * the error address maps to (possibly different from the node that detected
 | 
						|
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 | 
						|
 * error.
 | 
						|
 */
 | 
						|
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
 | 
						|
{
 | 
						|
	int csrow;
 | 
						|
 | 
						|
	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
 | 
						|
 | 
						|
	if (csrow == -1)
 | 
						|
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
 | 
						|
				  "address 0x%lx\n", (unsigned long)sys_addr);
 | 
						|
	return csrow;
 | 
						|
}
 | 
						|
 | 
						|
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 | 
						|
 * are ECC capable.
 | 
						|
 */
 | 
						|
static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
 | 
						|
{
 | 
						|
	u8 bit;
 | 
						|
	unsigned long edac_cap = EDAC_FLAG_NONE;
 | 
						|
 | 
						|
	bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
 | 
						|
		? 19
 | 
						|
		: 17;
 | 
						|
 | 
						|
	if (pvt->dclr0 & BIT(bit))
 | 
						|
		edac_cap = EDAC_FLAG_SECDED;
 | 
						|
 | 
						|
	return edac_cap;
 | 
						|
}
 | 
						|
 | 
						|
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
 | 
						|
 | 
						|
static void amd64_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
 | 
						|
{
 | 
						|
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
 | 
						|
 | 
						|
	edac_dbg(1, "  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
 | 
						|
		 (dclr & BIT(16)) ?  "un" : "",
 | 
						|
		 (dclr & BIT(19)) ? "yes" : "no");
 | 
						|
 | 
						|
	edac_dbg(1, "  PAR/ERR parity: %s\n",
 | 
						|
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
 | 
						|
 | 
						|
	if (pvt->fam == 0x10)
 | 
						|
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
 | 
						|
			 (dclr & BIT(11)) ?  "128b" : "64b");
 | 
						|
 | 
						|
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
 | 
						|
		 (dclr & BIT(12)) ?  "yes" : "no",
 | 
						|
		 (dclr & BIT(13)) ?  "yes" : "no",
 | 
						|
		 (dclr & BIT(14)) ?  "yes" : "no",
 | 
						|
		 (dclr & BIT(15)) ?  "yes" : "no");
 | 
						|
}
 | 
						|
 | 
						|
/* Display and decode various NB registers for debug purposes. */
 | 
						|
static void dump_misc_regs(struct amd64_pvt *pvt)
 | 
						|
{
 | 
						|
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
 | 
						|
 | 
						|
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
 | 
						|
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
 | 
						|
 | 
						|
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
 | 
						|
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
 | 
						|
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
 | 
						|
 | 
						|
	amd64_dump_dramcfg_low(pvt, pvt->dclr0, 0);
 | 
						|
 | 
						|
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
 | 
						|
 | 
						|
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
 | 
						|
		 pvt->dhar, dhar_base(pvt),
 | 
						|
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
 | 
						|
				   : f10_dhar_offset(pvt));
 | 
						|
 | 
						|
	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
 | 
						|
 | 
						|
	amd64_debug_display_dimm_sizes(pvt, 0);
 | 
						|
 | 
						|
	/* everything below this point is Fam10h and above */
 | 
						|
	if (pvt->fam == 0xf)
 | 
						|
		return;
 | 
						|
 | 
						|
	amd64_debug_display_dimm_sizes(pvt, 1);
 | 
						|
 | 
						|
	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
 | 
						|
 | 
						|
	/* Only if NOT ganged does dclr1 have valid info */
 | 
						|
	if (!dct_ganging_enabled(pvt))
 | 
						|
		amd64_dump_dramcfg_low(pvt, pvt->dclr1, 1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
 | 
						|
 */
 | 
						|
static void prep_chip_selects(struct amd64_pvt *pvt)
 | 
						|
{
 | 
						|
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
 | 
						|
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
 | 
						|
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
 | 
						|
	} else if (pvt->fam == 0x15 && pvt->model >= 0x30) {
 | 
						|
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
 | 
						|
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
 | 
						|
	} else {
 | 
						|
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
 | 
						|
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
 | 
						|
 */
 | 
						|
static void read_dct_base_mask(struct amd64_pvt *pvt)
 | 
						|
{
 | 
						|
	int cs;
 | 
						|
 | 
						|
	prep_chip_selects(pvt);
 | 
						|
 | 
						|
	for_each_chip_select(cs, 0, pvt) {
 | 
						|
		int reg0   = DCSB0 + (cs * 4);
 | 
						|
		int reg1   = DCSB1 + (cs * 4);
 | 
						|
		u32 *base0 = &pvt->csels[0].csbases[cs];
 | 
						|
		u32 *base1 = &pvt->csels[1].csbases[cs];
 | 
						|
 | 
						|
		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
 | 
						|
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
 | 
						|
				 cs, *base0, reg0);
 | 
						|
 | 
						|
		if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
 | 
						|
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
 | 
						|
				 cs, *base1, reg1);
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_chip_select_mask(cs, 0, pvt) {
 | 
						|
		int reg0   = DCSM0 + (cs * 4);
 | 
						|
		int reg1   = DCSM1 + (cs * 4);
 | 
						|
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
 | 
						|
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
 | 
						|
 | 
						|
		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
 | 
						|
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
 | 
						|
				 cs, *mask0, reg0);
 | 
						|
 | 
						|
		if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
 | 
						|
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
 | 
						|
				 cs, *mask1, reg1);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
 | 
						|
{
 | 
						|
	enum mem_type type;
 | 
						|
 | 
						|
	/* F15h supports only DDR3 */
 | 
						|
	if (pvt->fam >= 0x15)
 | 
						|
		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
 | 
						|
	else if (pvt->fam == 0x10 || pvt->ext_model >= K8_REV_F) {
 | 
						|
		if (pvt->dchr0 & DDR3_MODE)
 | 
						|
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
 | 
						|
		else
 | 
						|
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
 | 
						|
	} else {
 | 
						|
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
 | 
						|
	}
 | 
						|
 | 
						|
	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
 | 
						|
 | 
						|
	return type;
 | 
						|
}
 | 
						|
 | 
						|
/* Get the number of DCT channels the memory controller is using. */
 | 
						|
static int k8_early_channel_count(struct amd64_pvt *pvt)
 | 
						|
{
 | 
						|
	int flag;
 | 
						|
 | 
						|
	if (pvt->ext_model >= K8_REV_F)
 | 
						|
		/* RevF (NPT) and later */
 | 
						|
		flag = pvt->dclr0 & WIDTH_128;
 | 
						|
	else
 | 
						|
		/* RevE and earlier */
 | 
						|
		flag = pvt->dclr0 & REVE_WIDTH_128;
 | 
						|
 | 
						|
	/* not used */
 | 
						|
	pvt->dclr1 = 0;
 | 
						|
 | 
						|
	return (flag) ? 2 : 1;
 | 
						|
}
 | 
						|
 | 
						|
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
 | 
						|
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
 | 
						|
{
 | 
						|
	u64 addr;
 | 
						|
	u8 start_bit = 1;
 | 
						|
	u8 end_bit   = 47;
 | 
						|
 | 
						|
	if (pvt->fam == 0xf) {
 | 
						|
		start_bit = 3;
 | 
						|
		end_bit   = 39;
 | 
						|
	}
 | 
						|
 | 
						|
	addr = m->addr & GENMASK(start_bit, end_bit);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Erratum 637 workaround
 | 
						|
	 */
 | 
						|
	if (pvt->fam == 0x15) {
 | 
						|
		struct amd64_pvt *pvt;
 | 
						|
		u64 cc6_base, tmp_addr;
 | 
						|
		u32 tmp;
 | 
						|
		u16 mce_nid;
 | 
						|
		u8 intlv_en;
 | 
						|
 | 
						|
		if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
 | 
						|
			return addr;
 | 
						|
 | 
						|
		mce_nid	= amd_get_nb_id(m->extcpu);
 | 
						|
		pvt	= mcis[mce_nid]->pvt_info;
 | 
						|
 | 
						|
		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
 | 
						|
		intlv_en = tmp >> 21 & 0x7;
 | 
						|
 | 
						|
		/* add [47:27] + 3 trailing bits */
 | 
						|
		cc6_base  = (tmp & GENMASK(0, 20)) << 3;
 | 
						|
 | 
						|
		/* reverse and add DramIntlvEn */
 | 
						|
		cc6_base |= intlv_en ^ 0x7;
 | 
						|
 | 
						|
		/* pin at [47:24] */
 | 
						|
		cc6_base <<= 24;
 | 
						|
 | 
						|
		if (!intlv_en)
 | 
						|
			return cc6_base | (addr & GENMASK(0, 23));
 | 
						|
 | 
						|
		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
 | 
						|
 | 
						|
							/* faster log2 */
 | 
						|
		tmp_addr  = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
 | 
						|
 | 
						|
		/* OR DramIntlvSel into bits [14:12] */
 | 
						|
		tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
 | 
						|
 | 
						|
		/* add remaining [11:0] bits from original MC4_ADDR */
 | 
						|
		tmp_addr |= addr & GENMASK(0, 11);
 | 
						|
 | 
						|
		return cc6_base | tmp_addr;
 | 
						|
	}
 | 
						|
 | 
						|
	return addr;
 | 
						|
}
 | 
						|
 | 
						|
static struct pci_dev *pci_get_related_function(unsigned int vendor,
 | 
						|
						unsigned int device,
 | 
						|
						struct pci_dev *related)
 | 
						|
{
 | 
						|
	struct pci_dev *dev = NULL;
 | 
						|
 | 
						|
	while ((dev = pci_get_device(vendor, device, dev))) {
 | 
						|
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
 | 
						|
		    (dev->bus->number == related->bus->number) &&
 | 
						|
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return dev;
 | 
						|
}
 | 
						|
 | 
						|
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
 | 
						|
{
 | 
						|
	struct amd_northbridge *nb;
 | 
						|
	struct pci_dev *f1 = NULL;
 | 
						|
	unsigned int pci_func;
 | 
						|
	int off = range << 3;
 | 
						|
	u32 llim;
 | 
						|
 | 
						|
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
 | 
						|
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
 | 
						|
 | 
						|
	if (pvt->fam == 0xf)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!dram_rw(pvt, range))
 | 
						|
		return;
 | 
						|
 | 
						|
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
 | 
						|
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
 | 
						|
 | 
						|
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
 | 
						|
	if (pvt->fam != 0x15)
 | 
						|
		return;
 | 
						|
 | 
						|
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
 | 
						|
	if (WARN_ON(!nb))
 | 
						|
		return;
 | 
						|
 | 
						|
	pci_func = (pvt->model == 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
 | 
						|
					: PCI_DEVICE_ID_AMD_15H_NB_F1;
 | 
						|
 | 
						|
	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
 | 
						|
	if (WARN_ON(!f1))
 | 
						|
		return;
 | 
						|
 | 
						|
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
 | 
						|
 | 
						|
	pvt->ranges[range].lim.lo &= GENMASK(0, 15);
 | 
						|
 | 
						|
				    /* {[39:27],111b} */
 | 
						|
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
 | 
						|
 | 
						|
	pvt->ranges[range].lim.hi &= GENMASK(0, 7);
 | 
						|
 | 
						|
				    /* [47:40] */
 | 
						|
	pvt->ranges[range].lim.hi |= llim >> 13;
 | 
						|
 | 
						|
	pci_dev_put(f1);
 | 
						|
}
 | 
						|
 | 
						|
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
 | 
						|
				    struct err_info *err)
 | 
						|
{
 | 
						|
	struct amd64_pvt *pvt = mci->pvt_info;
 | 
						|
 | 
						|
	error_address_to_page_and_offset(sys_addr, err);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find out which node the error address belongs to. This may be
 | 
						|
	 * different from the node that detected the error.
 | 
						|
	 */
 | 
						|
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
 | 
						|
	if (!err->src_mci) {
 | 
						|
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
 | 
						|
			     (unsigned long)sys_addr);
 | 
						|
		err->err_code = ERR_NODE;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Now map the sys_addr to a CSROW */
 | 
						|
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
 | 
						|
	if (err->csrow < 0) {
 | 
						|
		err->err_code = ERR_CSROW;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* CHIPKILL enabled */
 | 
						|
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
 | 
						|
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
 | 
						|
		if (err->channel < 0) {
 | 
						|
			/*
 | 
						|
			 * Syndrome didn't map, so we don't know which of the
 | 
						|
			 * 2 DIMMs is in error. So we need to ID 'both' of them
 | 
						|
			 * as suspect.
 | 
						|
			 */
 | 
						|
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
 | 
						|
				      "possible error reporting race\n",
 | 
						|
				      err->syndrome);
 | 
						|
			err->err_code = ERR_CHANNEL;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * non-chipkill ecc mode
 | 
						|
		 *
 | 
						|
		 * The k8 documentation is unclear about how to determine the
 | 
						|
		 * channel number when using non-chipkill memory.  This method
 | 
						|
		 * was obtained from email communication with someone at AMD.
 | 
						|
		 * (Wish the email was placed in this comment - norsk)
 | 
						|
		 */
 | 
						|
		err->channel = ((sys_addr & BIT(3)) != 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int ddr2_cs_size(unsigned i, bool dct_width)
 | 
						|
{
 | 
						|
	unsigned shift = 0;
 | 
						|
 | 
						|
	if (i <= 2)
 | 
						|
		shift = i;
 | 
						|
	else if (!(i & 0x1))
 | 
						|
		shift = i >> 1;
 | 
						|
	else
 | 
						|
		shift = (i + 1) >> 1;
 | 
						|
 | 
						|
	return 128 << (shift + !!dct_width);
 | 
						|
}
 | 
						|
 | 
						|
static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
 | 
						|
				  unsigned cs_mode)
 | 
						|
{
 | 
						|
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
 | 
						|
 | 
						|
	if (pvt->ext_model >= K8_REV_F) {
 | 
						|
		WARN_ON(cs_mode > 11);
 | 
						|
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
 | 
						|
	}
 | 
						|
	else if (pvt->ext_model >= K8_REV_D) {
 | 
						|
		unsigned diff;
 | 
						|
		WARN_ON(cs_mode > 10);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * the below calculation, besides trying to win an obfuscated C
 | 
						|
		 * contest, maps cs_mode values to DIMM chip select sizes. The
 | 
						|
		 * mappings are:
 | 
						|
		 *
 | 
						|
		 * cs_mode	CS size (mb)
 | 
						|
		 * =======	============
 | 
						|
		 * 0		32
 | 
						|
		 * 1		64
 | 
						|
		 * 2		128
 | 
						|
		 * 3		128
 | 
						|
		 * 4		256
 | 
						|
		 * 5		512
 | 
						|
		 * 6		256
 | 
						|
		 * 7		512
 | 
						|
		 * 8		1024
 | 
						|
		 * 9		1024
 | 
						|
		 * 10		2048
 | 
						|
		 *
 | 
						|
		 * Basically, it calculates a value with which to shift the
 | 
						|
		 * smallest CS size of 32MB.
 | 
						|
		 *
 | 
						|
		 * ddr[23]_cs_size have a similar purpose.
 | 
						|
		 */
 | 
						|
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);
 | 
						|
 | 
						|
		return 32 << (cs_mode - diff);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		WARN_ON(cs_mode > 6);
 | 
						|
		return 32 << cs_mode;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the number of DCT channels in use.
 | 
						|
 *
 | 
						|
 * Return:
 | 
						|
 *	number of Memory Channels in operation
 | 
						|
 * Pass back:
 | 
						|
 *	contents of the DCL0_LOW register
 | 
						|
 */
 | 
						|
static int f1x_early_channel_count(struct amd64_pvt *pvt)
 | 
						|
{
 | 
						|
	int i, j, channels = 0;
 | 
						|
 | 
						|
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
 | 
						|
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
 | 
						|
		return 2;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Need to check if in unganged mode: In such, there are 2 channels,
 | 
						|
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
 | 
						|
	 * bit will be OFF.
 | 
						|
	 *
 | 
						|
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
 | 
						|
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
 | 
						|
	 */
 | 
						|
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
 | 
						|
	 * is more than just one DIMM present in unganged mode. Need to check
 | 
						|
	 * both controllers since DIMMs can be placed in either one.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < 2; i++) {
 | 
						|
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
 | 
						|
 | 
						|
		for (j = 0; j < 4; j++) {
 | 
						|
			if (DBAM_DIMM(j, dbam) > 0) {
 | 
						|
				channels++;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (channels > 2)
 | 
						|
		channels = 2;
 | 
						|
 | 
						|
	amd64_info("MCT channel count: %d\n", channels);
 | 
						|
 | 
						|
	return channels;
 | 
						|
}
 | 
						|
 | 
						|
static int ddr3_cs_size(unsigned i, bool dct_width)
 | 
						|
{
 | 
						|
	unsigned shift = 0;
 | 
						|
	int cs_size = 0;
 | 
						|
 | 
						|
	if (i == 0 || i == 3 || i == 4)
 | 
						|
		cs_size = -1;
 | 
						|
	else if (i <= 2)
 | 
						|
		shift = i;
 | 
						|
	else if (i == 12)
 | 
						|
		shift = 7;
 | 
						|
	else if (!(i & 0x1))
 | 
						|
		shift = i >> 1;
 | 
						|
	else
 | 
						|
		shift = (i + 1) >> 1;
 | 
						|
 | 
						|
	if (cs_size != -1)
 | 
						|
		cs_size = (128 * (1 << !!dct_width)) << shift;
 | 
						|
 | 
						|
	return cs_size;
 | 
						|
}
 | 
						|
 | 
						|
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
 | 
						|
				   unsigned cs_mode)
 | 
						|
{
 | 
						|
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
 | 
						|
 | 
						|
	WARN_ON(cs_mode > 11);
 | 
						|
 | 
						|
	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
 | 
						|
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
 | 
						|
	else
 | 
						|
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * F15h supports only 64bit DCT interfaces
 | 
						|
 */
 | 
						|
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
 | 
						|
				   unsigned cs_mode)
 | 
						|
{
 | 
						|
	WARN_ON(cs_mode > 12);
 | 
						|
 | 
						|
	return ddr3_cs_size(cs_mode, false);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * F16h and F15h model 30h have only limited cs_modes.
 | 
						|
 */
 | 
						|
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
 | 
						|
				unsigned cs_mode)
 | 
						|
{
 | 
						|
	WARN_ON(cs_mode > 12);
 | 
						|
 | 
						|
	if (cs_mode == 6 || cs_mode == 8 ||
 | 
						|
	    cs_mode == 9 || cs_mode == 12)
 | 
						|
		return -1;
 | 
						|
	else
 | 
						|
		return ddr3_cs_size(cs_mode, false);
 | 
						|
}
 | 
						|
 | 
						|
static void read_dram_ctl_register(struct amd64_pvt *pvt)
 | 
						|
{
 | 
						|
 | 
						|
	if (pvt->fam == 0xf)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
 | 
						|
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
 | 
						|
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
 | 
						|
 | 
						|
		edac_dbg(0, "  DCTs operate in %s mode\n",
 | 
						|
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
 | 
						|
 | 
						|
		if (!dct_ganging_enabled(pvt))
 | 
						|
			edac_dbg(0, "  Address range split per DCT: %s\n",
 | 
						|
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
 | 
						|
 | 
						|
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
 | 
						|
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
 | 
						|
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
 | 
						|
 | 
						|
		edac_dbg(0, "  channel interleave: %s, "
 | 
						|
			 "interleave bits selector: 0x%x\n",
 | 
						|
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
 | 
						|
			 dct_sel_interleave_addr(pvt));
 | 
						|
	}
 | 
						|
 | 
						|
	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 | 
						|
 * 2.10.12 Memory Interleaving Modes).
 | 
						|
 */
 | 
						|
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
 | 
						|
				     u8 intlv_en, int num_dcts_intlv,
 | 
						|
				     u32 dct_sel)
 | 
						|
{
 | 
						|
	u8 channel = 0;
 | 
						|
	u8 select;
 | 
						|
 | 
						|
	if (!(intlv_en))
 | 
						|
		return (u8)(dct_sel);
 | 
						|
 | 
						|
	if (num_dcts_intlv == 2) {
 | 
						|
		select = (sys_addr >> 8) & 0x3;
 | 
						|
		channel = select ? 0x3 : 0;
 | 
						|
	} else if (num_dcts_intlv == 4)
 | 
						|
		channel = (sys_addr >> 8) & 0x7;
 | 
						|
 | 
						|
	return channel;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
 | 
						|
 * Interleaving Modes.
 | 
						|
 */
 | 
						|
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
 | 
						|
				bool hi_range_sel, u8 intlv_en)
 | 
						|
{
 | 
						|
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
 | 
						|
 | 
						|
	if (dct_ganging_enabled(pvt))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (hi_range_sel)
 | 
						|
		return dct_sel_high;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
 | 
						|
	 */
 | 
						|
	if (dct_interleave_enabled(pvt)) {
 | 
						|
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
 | 
						|
 | 
						|
		/* return DCT select function: 0=DCT0, 1=DCT1 */
 | 
						|
		if (!intlv_addr)
 | 
						|
			return sys_addr >> 6 & 1;
 | 
						|
 | 
						|
		if (intlv_addr & 0x2) {
 | 
						|
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
 | 
						|
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
 | 
						|
 | 
						|
			return ((sys_addr >> shift) & 1) ^ temp;
 | 
						|
		}
 | 
						|
 | 
						|
		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (dct_high_range_enabled(pvt))
 | 
						|
		return ~dct_sel_high & 1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Convert the sys_addr to the normalized DCT address */
 | 
						|
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
 | 
						|
				 u64 sys_addr, bool hi_rng,
 | 
						|
				 u32 dct_sel_base_addr)
 | 
						|
{
 | 
						|
	u64 chan_off;
 | 
						|
	u64 dram_base		= get_dram_base(pvt, range);
 | 
						|
	u64 hole_off		= f10_dhar_offset(pvt);
 | 
						|
	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
 | 
						|
 | 
						|
	if (hi_rng) {
 | 
						|
		/*
 | 
						|
		 * if
 | 
						|
		 * base address of high range is below 4Gb
 | 
						|
		 * (bits [47:27] at [31:11])
 | 
						|
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
 | 
						|
		 * sys_addr > 4Gb
 | 
						|
		 *
 | 
						|
		 *	remove hole offset from sys_addr
 | 
						|
		 * else
 | 
						|
		 *	remove high range offset from sys_addr
 | 
						|
		 */
 | 
						|
		if ((!(dct_sel_base_addr >> 16) ||
 | 
						|
		     dct_sel_base_addr < dhar_base(pvt)) &&
 | 
						|
		    dhar_valid(pvt) &&
 | 
						|
		    (sys_addr >= BIT_64(32)))
 | 
						|
			chan_off = hole_off;
 | 
						|
		else
 | 
						|
			chan_off = dct_sel_base_off;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * if
 | 
						|
		 * we have a valid hole		&&
 | 
						|
		 * sys_addr > 4Gb
 | 
						|
		 *
 | 
						|
		 *	remove hole
 | 
						|
		 * else
 | 
						|
		 *	remove dram base to normalize to DCT address
 | 
						|
		 */
 | 
						|
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
 | 
						|
			chan_off = hole_off;
 | 
						|
		else
 | 
						|
			chan_off = dram_base;
 | 
						|
	}
 | 
						|
 | 
						|
	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 | 
						|
 * spare row
 | 
						|
 */
 | 
						|
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
 | 
						|
{
 | 
						|
	int tmp_cs;
 | 
						|
 | 
						|
	if (online_spare_swap_done(pvt, dct) &&
 | 
						|
	    csrow == online_spare_bad_dramcs(pvt, dct)) {
 | 
						|
 | 
						|
		for_each_chip_select(tmp_cs, dct, pvt) {
 | 
						|
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
 | 
						|
				csrow = tmp_cs;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return csrow;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 | 
						|
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 | 
						|
 *
 | 
						|
 * Return:
 | 
						|
 *	-EINVAL:  NOT FOUND
 | 
						|
 *	0..csrow = Chip-Select Row
 | 
						|
 */
 | 
						|
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
 | 
						|
{
 | 
						|
	struct mem_ctl_info *mci;
 | 
						|
	struct amd64_pvt *pvt;
 | 
						|
	u64 cs_base, cs_mask;
 | 
						|
	int cs_found = -EINVAL;
 | 
						|
	int csrow;
 | 
						|
 | 
						|
	mci = mcis[nid];
 | 
						|
	if (!mci)
 | 
						|
		return cs_found;
 | 
						|
 | 
						|
	pvt = mci->pvt_info;
 | 
						|
 | 
						|
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
 | 
						|
 | 
						|
	for_each_chip_select(csrow, dct, pvt) {
 | 
						|
		if (!csrow_enabled(csrow, dct, pvt))
 | 
						|
			continue;
 | 
						|
 | 
						|
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
 | 
						|
 | 
						|
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
 | 
						|
			 csrow, cs_base, cs_mask);
 | 
						|
 | 
						|
		cs_mask = ~cs_mask;
 | 
						|
 | 
						|
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
 | 
						|
			 (in_addr & cs_mask), (cs_base & cs_mask));
 | 
						|
 | 
						|
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
 | 
						|
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
 | 
						|
				cs_found =  csrow;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
 | 
						|
 | 
						|
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return cs_found;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 | 
						|
 * swapped with a region located at the bottom of memory so that the GPU can use
 | 
						|
 * the interleaved region and thus two channels.
 | 
						|
 */
 | 
						|
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
 | 
						|
{
 | 
						|
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
 | 
						|
 | 
						|
	if (pvt->fam == 0x10) {
 | 
						|
		/* only revC3 and revE have that feature */
 | 
						|
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
 | 
						|
			return sys_addr;
 | 
						|
	}
 | 
						|
 | 
						|
	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
 | 
						|
 | 
						|
	if (!(swap_reg & 0x1))
 | 
						|
		return sys_addr;
 | 
						|
 | 
						|
	swap_base	= (swap_reg >> 3) & 0x7f;
 | 
						|
	swap_limit	= (swap_reg >> 11) & 0x7f;
 | 
						|
	rgn_size	= (swap_reg >> 20) & 0x7f;
 | 
						|
	tmp_addr	= sys_addr >> 27;
 | 
						|
 | 
						|
	if (!(sys_addr >> 34) &&
 | 
						|
	    (((tmp_addr >= swap_base) &&
 | 
						|
	     (tmp_addr <= swap_limit)) ||
 | 
						|
	     (tmp_addr < rgn_size)))
 | 
						|
		return sys_addr ^ (u64)swap_base << 27;
 | 
						|
 | 
						|
	return sys_addr;
 | 
						|
}
 | 
						|
 | 
						|
/* For a given @dram_range, check if @sys_addr falls within it. */
 | 
						|
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
 | 
						|
				  u64 sys_addr, int *chan_sel)
 | 
						|
{
 | 
						|
	int cs_found = -EINVAL;
 | 
						|
	u64 chan_addr;
 | 
						|
	u32 dct_sel_base;
 | 
						|
	u8 channel;
 | 
						|
	bool high_range = false;
 | 
						|
 | 
						|
	u8 node_id    = dram_dst_node(pvt, range);
 | 
						|
	u8 intlv_en   = dram_intlv_en(pvt, range);
 | 
						|
	u32 intlv_sel = dram_intlv_sel(pvt, range);
 | 
						|
 | 
						|
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
 | 
						|
		 range, sys_addr, get_dram_limit(pvt, range));
 | 
						|
 | 
						|
	if (dhar_valid(pvt) &&
 | 
						|
	    dhar_base(pvt) <= sys_addr &&
 | 
						|
	    sys_addr < BIT_64(32)) {
 | 
						|
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
 | 
						|
			    sys_addr);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
 | 
						|
 | 
						|
	dct_sel_base = dct_sel_baseaddr(pvt);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
 | 
						|
	 * select between DCT0 and DCT1.
 | 
						|
	 */
 | 
						|
	if (dct_high_range_enabled(pvt) &&
 | 
						|
	   !dct_ganging_enabled(pvt) &&
 | 
						|
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
 | 
						|
		high_range = true;
 | 
						|
 | 
						|
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
 | 
						|
 | 
						|
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
 | 
						|
					  high_range, dct_sel_base);
 | 
						|
 | 
						|
	/* Remove node interleaving, see F1x120 */
 | 
						|
	if (intlv_en)
 | 
						|
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
 | 
						|
			    (chan_addr & 0xfff);
 | 
						|
 | 
						|
	/* remove channel interleave */
 | 
						|
	if (dct_interleave_enabled(pvt) &&
 | 
						|
	   !dct_high_range_enabled(pvt) &&
 | 
						|
	   !dct_ganging_enabled(pvt)) {
 | 
						|
 | 
						|
		if (dct_sel_interleave_addr(pvt) != 1) {
 | 
						|
			if (dct_sel_interleave_addr(pvt) == 0x3)
 | 
						|
				/* hash 9 */
 | 
						|
				chan_addr = ((chan_addr >> 10) << 9) |
 | 
						|
					     (chan_addr & 0x1ff);
 | 
						|
			else
 | 
						|
				/* A[6] or hash 6 */
 | 
						|
				chan_addr = ((chan_addr >> 7) << 6) |
 | 
						|
					     (chan_addr & 0x3f);
 | 
						|
		} else
 | 
						|
			/* A[12] */
 | 
						|
			chan_addr = ((chan_addr >> 13) << 12) |
 | 
						|
				     (chan_addr & 0xfff);
 | 
						|
	}
 | 
						|
 | 
						|
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
 | 
						|
 | 
						|
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
 | 
						|
 | 
						|
	if (cs_found >= 0)
 | 
						|
		*chan_sel = channel;
 | 
						|
 | 
						|
	return cs_found;
 | 
						|
}
 | 
						|
 | 
						|
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
 | 
						|
					u64 sys_addr, int *chan_sel)
 | 
						|
{
 | 
						|
	int cs_found = -EINVAL;
 | 
						|
	int num_dcts_intlv = 0;
 | 
						|
	u64 chan_addr, chan_offset;
 | 
						|
	u64 dct_base, dct_limit;
 | 
						|
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
 | 
						|
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
 | 
						|
 | 
						|
	u64 dhar_offset		= f10_dhar_offset(pvt);
 | 
						|
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
 | 
						|
	u8 node_id		= dram_dst_node(pvt, range);
 | 
						|
	u8 intlv_en		= dram_intlv_en(pvt, range);
 | 
						|
 | 
						|
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
 | 
						|
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
 | 
						|
 | 
						|
	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
 | 
						|
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);
 | 
						|
 | 
						|
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
 | 
						|
		 range, sys_addr, get_dram_limit(pvt, range));
 | 
						|
 | 
						|
	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
 | 
						|
	    !(get_dram_limit(pvt, range) >= sys_addr))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (dhar_valid(pvt) &&
 | 
						|
	    dhar_base(pvt) <= sys_addr &&
 | 
						|
	    sys_addr < BIT_64(32)) {
 | 
						|
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
 | 
						|
			    sys_addr);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Verify sys_addr is within DCT Range. */
 | 
						|
	dct_base = (u64) dct_sel_baseaddr(pvt);
 | 
						|
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
 | 
						|
 | 
						|
	if (!(dct_cont_base_reg & BIT(0)) &&
 | 
						|
	    !(dct_base <= (sys_addr >> 27) &&
 | 
						|
	      dct_limit >= (sys_addr >> 27)))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* Verify number of dct's that participate in channel interleaving. */
 | 
						|
	num_dcts_intlv = (int) hweight8(intlv_en);
 | 
						|
 | 
						|
	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
 | 
						|
					     num_dcts_intlv, dct_sel);
 | 
						|
 | 
						|
	/* Verify we stay within the MAX number of channels allowed */
 | 
						|
	if (channel > 4 || channel < 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
 | 
						|
 | 
						|
	/* Get normalized DCT addr */
 | 
						|
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
 | 
						|
		chan_offset = dhar_offset;
 | 
						|
	else
 | 
						|
		chan_offset = dct_base << 27;
 | 
						|
 | 
						|
	chan_addr = sys_addr - chan_offset;
 | 
						|
 | 
						|
	/* remove channel interleave */
 | 
						|
	if (num_dcts_intlv == 2) {
 | 
						|
		if (intlv_addr == 0x4)
 | 
						|
			chan_addr = ((chan_addr >> 9) << 8) |
 | 
						|
						(chan_addr & 0xff);
 | 
						|
		else if (intlv_addr == 0x5)
 | 
						|
			chan_addr = ((chan_addr >> 10) << 9) |
 | 
						|
						(chan_addr & 0x1ff);
 | 
						|
		else
 | 
						|
			return -EINVAL;
 | 
						|
 | 
						|
	} else if (num_dcts_intlv == 4) {
 | 
						|
		if (intlv_addr == 0x4)
 | 
						|
			chan_addr = ((chan_addr >> 10) << 8) |
 | 
						|
							(chan_addr & 0xff);
 | 
						|
		else if (intlv_addr == 0x5)
 | 
						|
			chan_addr = ((chan_addr >> 11) << 9) |
 | 
						|
							(chan_addr & 0x1ff);
 | 
						|
		else
 | 
						|
			return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (dct_offset_en) {
 | 
						|
		amd64_read_pci_cfg(pvt->F1,
 | 
						|
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
 | 
						|
				   &tmp);
 | 
						|
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
 | 
						|
	}
 | 
						|
 | 
						|
	f15h_select_dct(pvt, channel);
 | 
						|
 | 
						|
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find Chip select:
 | 
						|
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
 | 
						|
	 * there is support for 4 DCT's, but only 2 are currently functional.
 | 
						|
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
 | 
						|
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
 | 
						|
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
 | 
						|
	 */
 | 
						|
	alias_channel =  (channel == 3) ? 1 : channel;
 | 
						|
 | 
						|
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
 | 
						|
 | 
						|
	if (cs_found >= 0)
 | 
						|
		*chan_sel = alias_channel;
 | 
						|
 | 
						|
	return cs_found;
 | 
						|
}
 | 
						|
 | 
						|
static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
 | 
						|
					u64 sys_addr,
 | 
						|
					int *chan_sel)
 | 
						|
{
 | 
						|
	int cs_found = -EINVAL;
 | 
						|
	unsigned range;
 | 
						|
 | 
						|
	for (range = 0; range < DRAM_RANGES; range++) {
 | 
						|
		if (!dram_rw(pvt, range))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
 | 
						|
			cs_found = f15_m30h_match_to_this_node(pvt, range,
 | 
						|
							       sys_addr,
 | 
						|
							       chan_sel);
 | 
						|
 | 
						|
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
 | 
						|
			 (get_dram_limit(pvt, range) >= sys_addr)) {
 | 
						|
			cs_found = f1x_match_to_this_node(pvt, range,
 | 
						|
							  sys_addr, chan_sel);
 | 
						|
			if (cs_found >= 0)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return cs_found;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 | 
						|
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
 | 
						|
 *
 | 
						|
 * The @sys_addr is usually an error address received from the hardware
 | 
						|
 * (MCX_ADDR).
 | 
						|
 */
 | 
						|
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
 | 
						|
				     struct err_info *err)
 | 
						|
{
 | 
						|
	struct amd64_pvt *pvt = mci->pvt_info;
 | 
						|
 | 
						|
	error_address_to_page_and_offset(sys_addr, err);
 | 
						|
 | 
						|
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
 | 
						|
	if (err->csrow < 0) {
 | 
						|
		err->err_code = ERR_CSROW;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We need the syndromes for channel detection only when we're
 | 
						|
	 * ganged. Otherwise @chan should already contain the channel at
 | 
						|
	 * this point.
 | 
						|
	 */
 | 
						|
	if (dct_ganging_enabled(pvt))
 | 
						|
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * debug routine to display the memory sizes of all logical DIMMs and its
 | 
						|
 * CSROWs
 | 
						|
 */
 | 
						|
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
 | 
						|
{
 | 
						|
	int dimm, size0, size1;
 | 
						|
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
 | 
						|
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
 | 
						|
 | 
						|
	if (pvt->fam == 0xf) {
 | 
						|
		/* K8 families < revF not supported yet */
 | 
						|
	       if (pvt->ext_model < K8_REV_F)
 | 
						|
			return;
 | 
						|
	       else
 | 
						|
		       WARN_ON(ctrl != 0);
 | 
						|
	}
 | 
						|
 | 
						|
	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
 | 
						|
	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
 | 
						|
						   : pvt->csels[0].csbases;
 | 
						|
 | 
						|
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
 | 
						|
		 ctrl, dbam);
 | 
						|
 | 
						|
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
 | 
						|
 | 
						|
	/* Dump memory sizes for DIMM and its CSROWs */
 | 
						|
	for (dimm = 0; dimm < 4; dimm++) {
 | 
						|
 | 
						|
		size0 = 0;
 | 
						|
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
 | 
						|
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
 | 
						|
						     DBAM_DIMM(dimm, dbam));
 | 
						|
 | 
						|
		size1 = 0;
 | 
						|
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
 | 
						|
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
 | 
						|
						     DBAM_DIMM(dimm, dbam));
 | 
						|
 | 
						|
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
 | 
						|
				dimm * 2,     size0,
 | 
						|
				dimm * 2 + 1, size1);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static struct amd64_family_type amd64_family_types[] = {
 | 
						|
	[K8_CPUS] = {
 | 
						|
		.ctl_name = "K8",
 | 
						|
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
 | 
						|
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
 | 
						|
		.ops = {
 | 
						|
			.early_channel_count	= k8_early_channel_count,
 | 
						|
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
 | 
						|
			.dbam_to_cs		= k8_dbam_to_chip_select,
 | 
						|
			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
 | 
						|
		}
 | 
						|
	},
 | 
						|
	[F10_CPUS] = {
 | 
						|
		.ctl_name = "F10h",
 | 
						|
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
 | 
						|
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
 | 
						|
		.ops = {
 | 
						|
			.early_channel_count	= f1x_early_channel_count,
 | 
						|
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
 | 
						|
			.dbam_to_cs		= f10_dbam_to_chip_select,
 | 
						|
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
 | 
						|
		}
 | 
						|
	},
 | 
						|
	[F15_CPUS] = {
 | 
						|
		.ctl_name = "F15h",
 | 
						|
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
 | 
						|
		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
 | 
						|
		.ops = {
 | 
						|
			.early_channel_count	= f1x_early_channel_count,
 | 
						|
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
 | 
						|
			.dbam_to_cs		= f15_dbam_to_chip_select,
 | 
						|
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
 | 
						|
		}
 | 
						|
	},
 | 
						|
	[F15_M30H_CPUS] = {
 | 
						|
		.ctl_name = "F15h_M30h",
 | 
						|
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
 | 
						|
		.f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
 | 
						|
		.ops = {
 | 
						|
			.early_channel_count	= f1x_early_channel_count,
 | 
						|
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
 | 
						|
			.dbam_to_cs		= f16_dbam_to_chip_select,
 | 
						|
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
 | 
						|
		}
 | 
						|
	},
 | 
						|
	[F16_CPUS] = {
 | 
						|
		.ctl_name = "F16h",
 | 
						|
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
 | 
						|
		.f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
 | 
						|
		.ops = {
 | 
						|
			.early_channel_count	= f1x_early_channel_count,
 | 
						|
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
 | 
						|
			.dbam_to_cs		= f16_dbam_to_chip_select,
 | 
						|
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
 | 
						|
		}
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * These are tables of eigenvectors (one per line) which can be used for the
 | 
						|
 * construction of the syndrome tables. The modified syndrome search algorithm
 | 
						|
 * uses those to find the symbol in error and thus the DIMM.
 | 
						|
 *
 | 
						|
 * Algorithm courtesy of Ross LaFetra from AMD.
 | 
						|
 */
 | 
						|
static const u16 x4_vectors[] = {
 | 
						|
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
 | 
						|
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
 | 
						|
	0x0001, 0x0002, 0x0004, 0x0008,
 | 
						|
	0x1013, 0x3032, 0x4044, 0x8088,
 | 
						|
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
 | 
						|
	0x4857, 0xc4fe, 0x13cc, 0x3288,
 | 
						|
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
 | 
						|
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
 | 
						|
	0x15c1, 0x2a42, 0x89ac, 0x4758,
 | 
						|
	0x2b03, 0x1602, 0x4f0c, 0xca08,
 | 
						|
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
 | 
						|
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
 | 
						|
	0x2b87, 0x164e, 0x642c, 0xdc18,
 | 
						|
	0x40b9, 0x80de, 0x1094, 0x20e8,
 | 
						|
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
 | 
						|
	0x11c1, 0x2242, 0x84ac, 0x4c58,
 | 
						|
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
 | 
						|
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
 | 
						|
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
 | 
						|
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
 | 
						|
	0x16b3, 0x3d62, 0x4f34, 0x8518,
 | 
						|
	0x1e2f, 0x391a, 0x5cac, 0xf858,
 | 
						|
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
 | 
						|
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
 | 
						|
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
 | 
						|
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
 | 
						|
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
 | 
						|
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
 | 
						|
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
 | 
						|
	0x185d, 0x2ca6, 0x7914, 0x9e28,
 | 
						|
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
 | 
						|
	0x4199, 0x82ee, 0x19f4, 0x2e58,
 | 
						|
	0x4807, 0xc40e, 0x130c, 0x3208,
 | 
						|
	0x1905, 0x2e0a, 0x5804, 0xac08,
 | 
						|
	0x213f, 0x132a, 0xadfc, 0x5ba8,
 | 
						|
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
 | 
						|
};
 | 
						|
 | 
						|
static const u16 x8_vectors[] = {
 | 
						|
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
 | 
						|
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
 | 
						|
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
 | 
						|
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
 | 
						|
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
 | 
						|
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
 | 
						|
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
 | 
						|
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
 | 
						|
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
 | 
						|
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
 | 
						|
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
 | 
						|
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
 | 
						|
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
 | 
						|
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
 | 
						|
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
 | 
						|
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
 | 
						|
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
 | 
						|
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
 | 
						|
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
 | 
						|
};
 | 
						|
 | 
						|
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
 | 
						|
			   unsigned v_dim)
 | 
						|
{
 | 
						|
	unsigned int i, err_sym;
 | 
						|
 | 
						|
	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
 | 
						|
		u16 s = syndrome;
 | 
						|
		unsigned v_idx =  err_sym * v_dim;
 | 
						|
		unsigned v_end = (err_sym + 1) * v_dim;
 | 
						|
 | 
						|
		/* walk over all 16 bits of the syndrome */
 | 
						|
		for (i = 1; i < (1U << 16); i <<= 1) {
 | 
						|
 | 
						|
			/* if bit is set in that eigenvector... */
 | 
						|
			if (v_idx < v_end && vectors[v_idx] & i) {
 | 
						|
				u16 ev_comp = vectors[v_idx++];
 | 
						|
 | 
						|
				/* ... and bit set in the modified syndrome, */
 | 
						|
				if (s & i) {
 | 
						|
					/* remove it. */
 | 
						|
					s ^= ev_comp;
 | 
						|
 | 
						|
					if (!s)
 | 
						|
						return err_sym;
 | 
						|
				}
 | 
						|
 | 
						|
			} else if (s & i)
 | 
						|
				/* can't get to zero, move to next symbol */
 | 
						|
				break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
static int map_err_sym_to_channel(int err_sym, int sym_size)
 | 
						|
{
 | 
						|
	if (sym_size == 4)
 | 
						|
		switch (err_sym) {
 | 
						|
		case 0x20:
 | 
						|
		case 0x21:
 | 
						|
			return 0;
 | 
						|
			break;
 | 
						|
		case 0x22:
 | 
						|
		case 0x23:
 | 
						|
			return 1;
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			return err_sym >> 4;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	/* x8 symbols */
 | 
						|
	else
 | 
						|
		switch (err_sym) {
 | 
						|
		/* imaginary bits not in a DIMM */
 | 
						|
		case 0x10:
 | 
						|
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
 | 
						|
					  err_sym);
 | 
						|
			return -1;
 | 
						|
			break;
 | 
						|
 | 
						|
		case 0x11:
 | 
						|
			return 0;
 | 
						|
			break;
 | 
						|
		case 0x12:
 | 
						|
			return 1;
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			return err_sym >> 3;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
 | 
						|
{
 | 
						|
	struct amd64_pvt *pvt = mci->pvt_info;
 | 
						|
	int err_sym = -1;
 | 
						|
 | 
						|
	if (pvt->ecc_sym_sz == 8)
 | 
						|
		err_sym = decode_syndrome(syndrome, x8_vectors,
 | 
						|
					  ARRAY_SIZE(x8_vectors),
 | 
						|
					  pvt->ecc_sym_sz);
 | 
						|
	else if (pvt->ecc_sym_sz == 4)
 | 
						|
		err_sym = decode_syndrome(syndrome, x4_vectors,
 | 
						|
					  ARRAY_SIZE(x4_vectors),
 | 
						|
					  pvt->ecc_sym_sz);
 | 
						|
	else {
 | 
						|
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
 | 
						|
		return err_sym;
 | 
						|
	}
 | 
						|
 | 
						|
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
 | 
						|
}
 | 
						|
 | 
						|
static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
 | 
						|
			    u8 ecc_type)
 | 
						|
{
 | 
						|
	enum hw_event_mc_err_type err_type;
 | 
						|
	const char *string;
 | 
						|
 | 
						|
	if (ecc_type == 2)
 | 
						|
		err_type = HW_EVENT_ERR_CORRECTED;
 | 
						|
	else if (ecc_type == 1)
 | 
						|
		err_type = HW_EVENT_ERR_UNCORRECTED;
 | 
						|
	else {
 | 
						|
		WARN(1, "Something is rotten in the state of Denmark.\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	switch (err->err_code) {
 | 
						|
	case DECODE_OK:
 | 
						|
		string = "";
 | 
						|
		break;
 | 
						|
	case ERR_NODE:
 | 
						|
		string = "Failed to map error addr to a node";
 | 
						|
		break;
 | 
						|
	case ERR_CSROW:
 | 
						|
		string = "Failed to map error addr to a csrow";
 | 
						|
		break;
 | 
						|
	case ERR_CHANNEL:
 | 
						|
		string = "unknown syndrome - possible error reporting race";
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		string = "WTF error";
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	edac_mc_handle_error(err_type, mci, 1,
 | 
						|
			     err->page, err->offset, err->syndrome,
 | 
						|
			     err->csrow, err->channel, -1,
 | 
						|
			     string, "");
 | 
						|
}
 | 
						|
 | 
						|
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
 | 
						|
					    struct mce *m)
 | 
						|
{
 | 
						|
	struct amd64_pvt *pvt = mci->pvt_info;
 | 
						|
	u8 ecc_type = (m->status >> 45) & 0x3;
 | 
						|
	u8 xec = XEC(m->status, 0x1f);
 | 
						|
	u16 ec = EC(m->status);
 | 
						|
	u64 sys_addr;
 | 
						|
	struct err_info err;
 | 
						|
 | 
						|
	/* Bail out early if this was an 'observed' error */
 | 
						|
	if (PP(ec) == NBSL_PP_OBS)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Do only ECC errors */
 | 
						|
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
 | 
						|
		return;
 | 
						|
 | 
						|
	memset(&err, 0, sizeof(err));
 | 
						|
 | 
						|
	sys_addr = get_error_address(pvt, m);
 | 
						|
 | 
						|
	if (ecc_type == 2)
 | 
						|
		err.syndrome = extract_syndrome(m->status);
 | 
						|
 | 
						|
	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
 | 
						|
 | 
						|
	__log_bus_error(mci, &err, ecc_type);
 | 
						|
}
 | 
						|
 | 
						|
void amd64_decode_bus_error(int node_id, struct mce *m)
 | 
						|
{
 | 
						|
	__amd64_decode_bus_error(mcis[node_id], m);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
 | 
						|
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
 | 
						|
 */
 | 
						|
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
 | 
						|
{
 | 
						|
	/* Reserve the ADDRESS MAP Device */
 | 
						|
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
 | 
						|
	if (!pvt->F1) {
 | 
						|
		amd64_err("error address map device not found: "
 | 
						|
			  "vendor %x device 0x%x (broken BIOS?)\n",
 | 
						|
			  PCI_VENDOR_ID_AMD, f1_id);
 | 
						|
		return -ENODEV;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Reserve the MISC Device */
 | 
						|
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
 | 
						|
	if (!pvt->F3) {
 | 
						|
		pci_dev_put(pvt->F1);
 | 
						|
		pvt->F1 = NULL;
 | 
						|
 | 
						|
		amd64_err("error F3 device not found: "
 | 
						|
			  "vendor %x device 0x%x (broken BIOS?)\n",
 | 
						|
			  PCI_VENDOR_ID_AMD, f3_id);
 | 
						|
 | 
						|
		return -ENODEV;
 | 
						|
	}
 | 
						|
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
 | 
						|
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
 | 
						|
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
 | 
						|
{
 | 
						|
	pci_dev_put(pvt->F1);
 | 
						|
	pci_dev_put(pvt->F3);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Retrieve the hardware registers of the memory controller (this includes the
 | 
						|
 * 'Address Map' and 'Misc' device regs)
 | 
						|
 */
 | 
						|
static void read_mc_regs(struct amd64_pvt *pvt)
 | 
						|
{
 | 
						|
	unsigned range;
 | 
						|
	u64 msr_val;
 | 
						|
	u32 tmp;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
 | 
						|
	 * those are Read-As-Zero
 | 
						|
	 */
 | 
						|
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
 | 
						|
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
 | 
						|
 | 
						|
	/* check first whether TOP_MEM2 is enabled */
 | 
						|
	rdmsrl(MSR_K8_SYSCFG, msr_val);
 | 
						|
	if (msr_val & (1U << 21)) {
 | 
						|
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
 | 
						|
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
 | 
						|
	} else
 | 
						|
		edac_dbg(0, "  TOP_MEM2 disabled\n");
 | 
						|
 | 
						|
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
 | 
						|
 | 
						|
	read_dram_ctl_register(pvt);
 | 
						|
 | 
						|
	for (range = 0; range < DRAM_RANGES; range++) {
 | 
						|
		u8 rw;
 | 
						|
 | 
						|
		/* read settings for this DRAM range */
 | 
						|
		read_dram_base_limit_regs(pvt, range);
 | 
						|
 | 
						|
		rw = dram_rw(pvt, range);
 | 
						|
		if (!rw)
 | 
						|
			continue;
 | 
						|
 | 
						|
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
 | 
						|
			 range,
 | 
						|
			 get_dram_base(pvt, range),
 | 
						|
			 get_dram_limit(pvt, range));
 | 
						|
 | 
						|
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
 | 
						|
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
 | 
						|
			 (rw & 0x1) ? "R" : "-",
 | 
						|
			 (rw & 0x2) ? "W" : "-",
 | 
						|
			 dram_intlv_sel(pvt, range),
 | 
						|
			 dram_dst_node(pvt, range));
 | 
						|
	}
 | 
						|
 | 
						|
	read_dct_base_mask(pvt);
 | 
						|
 | 
						|
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
 | 
						|
	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
 | 
						|
 | 
						|
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
 | 
						|
 | 
						|
	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
 | 
						|
	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
 | 
						|
 | 
						|
	if (!dct_ganging_enabled(pvt)) {
 | 
						|
		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
 | 
						|
		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
 | 
						|
	}
 | 
						|
 | 
						|
	pvt->ecc_sym_sz = 4;
 | 
						|
 | 
						|
	if (pvt->fam >= 0x10) {
 | 
						|
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
 | 
						|
		if (pvt->fam != 0x16)
 | 
						|
			/* F16h has only DCT0 */
 | 
						|
			amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
 | 
						|
 | 
						|
		/* F10h, revD and later can do x8 ECC too */
 | 
						|
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
 | 
						|
			pvt->ecc_sym_sz = 8;
 | 
						|
	}
 | 
						|
	dump_misc_regs(pvt);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * NOTE: CPU Revision Dependent code
 | 
						|
 *
 | 
						|
 * Input:
 | 
						|
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
 | 
						|
 *	k8 private pointer to -->
 | 
						|
 *			DRAM Bank Address mapping register
 | 
						|
 *			node_id
 | 
						|
 *			DCL register where dual_channel_active is
 | 
						|
 *
 | 
						|
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 | 
						|
 *
 | 
						|
 * Bits:	CSROWs
 | 
						|
 * 0-3		CSROWs 0 and 1
 | 
						|
 * 4-7		CSROWs 2 and 3
 | 
						|
 * 8-11		CSROWs 4 and 5
 | 
						|
 * 12-15	CSROWs 6 and 7
 | 
						|
 *
 | 
						|
 * Values range from: 0 to 15
 | 
						|
 * The meaning of the values depends on CPU revision and dual-channel state,
 | 
						|
 * see relevant BKDG more info.
 | 
						|
 *
 | 
						|
 * The memory controller provides for total of only 8 CSROWs in its current
 | 
						|
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 | 
						|
 * single channel or two (2) DIMMs in dual channel mode.
 | 
						|
 *
 | 
						|
 * The following code logic collapses the various tables for CSROW based on CPU
 | 
						|
 * revision.
 | 
						|
 *
 | 
						|
 * Returns:
 | 
						|
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 | 
						|
 *	encompasses
 | 
						|
 *
 | 
						|
 */
 | 
						|
static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
 | 
						|
{
 | 
						|
	u32 cs_mode, nr_pages;
 | 
						|
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
 | 
						|
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The math on this doesn't look right on the surface because x/2*4 can
 | 
						|
	 * be simplified to x*2 but this expression makes use of the fact that
 | 
						|
	 * it is integral math where 1/2=0. This intermediate value becomes the
 | 
						|
	 * number of bits to shift the DBAM register to extract the proper CSROW
 | 
						|
	 * field.
 | 
						|
	 */
 | 
						|
	cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
 | 
						|
 | 
						|
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
 | 
						|
 | 
						|
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
 | 
						|
		    csrow_nr, dct,  cs_mode);
 | 
						|
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
 | 
						|
 | 
						|
	return nr_pages;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize the array of csrow attribute instances, based on the values
 | 
						|
 * from pci config hardware registers.
 | 
						|
 */
 | 
						|
static int init_csrows(struct mem_ctl_info *mci)
 | 
						|
{
 | 
						|
	struct amd64_pvt *pvt = mci->pvt_info;
 | 
						|
	struct csrow_info *csrow;
 | 
						|
	struct dimm_info *dimm;
 | 
						|
	enum edac_type edac_mode;
 | 
						|
	enum mem_type mtype;
 | 
						|
	int i, j, empty = 1;
 | 
						|
	int nr_pages = 0;
 | 
						|
	u32 val;
 | 
						|
 | 
						|
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
 | 
						|
 | 
						|
	pvt->nbcfg = val;
 | 
						|
 | 
						|
	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
 | 
						|
		 pvt->mc_node_id, val,
 | 
						|
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
 | 
						|
	 */
 | 
						|
	for_each_chip_select(i, 0, pvt) {
 | 
						|
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
 | 
						|
		bool row_dct1 = false;
 | 
						|
 | 
						|
		if (pvt->fam != 0xf)
 | 
						|
			row_dct1 = !!csrow_enabled(i, 1, pvt);
 | 
						|
 | 
						|
		if (!row_dct0 && !row_dct1)
 | 
						|
			continue;
 | 
						|
 | 
						|
		csrow = mci->csrows[i];
 | 
						|
		empty = 0;
 | 
						|
 | 
						|
		edac_dbg(1, "MC node: %d, csrow: %d\n",
 | 
						|
			    pvt->mc_node_id, i);
 | 
						|
 | 
						|
		if (row_dct0) {
 | 
						|
			nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
 | 
						|
			csrow->channels[0]->dimm->nr_pages = nr_pages;
 | 
						|
		}
 | 
						|
 | 
						|
		/* K8 has only one DCT */
 | 
						|
		if (pvt->fam != 0xf && row_dct1) {
 | 
						|
			int row_dct1_pages = amd64_csrow_nr_pages(pvt, 1, i);
 | 
						|
 | 
						|
			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
 | 
						|
			nr_pages += row_dct1_pages;
 | 
						|
		}
 | 
						|
 | 
						|
		mtype = amd64_determine_memory_type(pvt, i);
 | 
						|
 | 
						|
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
 | 
						|
		 */
 | 
						|
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
 | 
						|
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
 | 
						|
				    EDAC_S4ECD4ED : EDAC_SECDED;
 | 
						|
		else
 | 
						|
			edac_mode = EDAC_NONE;
 | 
						|
 | 
						|
		for (j = 0; j < pvt->channel_count; j++) {
 | 
						|
			dimm = csrow->channels[j]->dimm;
 | 
						|
			dimm->mtype = mtype;
 | 
						|
			dimm->edac_mode = edac_mode;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return empty;
 | 
						|
}
 | 
						|
 | 
						|
/* get all cores on this DCT */
 | 
						|
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	for_each_online_cpu(cpu)
 | 
						|
		if (amd_get_nb_id(cpu) == nid)
 | 
						|
			cpumask_set_cpu(cpu, mask);
 | 
						|
}
 | 
						|
 | 
						|
/* check MCG_CTL on all the cpus on this node */
 | 
						|
static bool amd64_nb_mce_bank_enabled_on_node(u16 nid)
 | 
						|
{
 | 
						|
	cpumask_var_t mask;
 | 
						|
	int cpu, nbe;
 | 
						|
	bool ret = false;
 | 
						|
 | 
						|
	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
 | 
						|
		amd64_warn("%s: Error allocating mask\n", __func__);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	get_cpus_on_this_dct_cpumask(mask, nid);
 | 
						|
 | 
						|
	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
 | 
						|
 | 
						|
	for_each_cpu(cpu, mask) {
 | 
						|
		struct msr *reg = per_cpu_ptr(msrs, cpu);
 | 
						|
		nbe = reg->l & MSR_MCGCTL_NBE;
 | 
						|
 | 
						|
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
 | 
						|
			 cpu, reg->q,
 | 
						|
			 (nbe ? "enabled" : "disabled"));
 | 
						|
 | 
						|
		if (!nbe)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
	ret = true;
 | 
						|
 | 
						|
out:
 | 
						|
	free_cpumask_var(mask);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
 | 
						|
{
 | 
						|
	cpumask_var_t cmask;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
 | 
						|
		amd64_warn("%s: error allocating mask\n", __func__);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	get_cpus_on_this_dct_cpumask(cmask, nid);
 | 
						|
 | 
						|
	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
 | 
						|
 | 
						|
	for_each_cpu(cpu, cmask) {
 | 
						|
 | 
						|
		struct msr *reg = per_cpu_ptr(msrs, cpu);
 | 
						|
 | 
						|
		if (on) {
 | 
						|
			if (reg->l & MSR_MCGCTL_NBE)
 | 
						|
				s->flags.nb_mce_enable = 1;
 | 
						|
 | 
						|
			reg->l |= MSR_MCGCTL_NBE;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * Turn off NB MCE reporting only when it was off before
 | 
						|
			 */
 | 
						|
			if (!s->flags.nb_mce_enable)
 | 
						|
				reg->l &= ~MSR_MCGCTL_NBE;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
 | 
						|
 | 
						|
	free_cpumask_var(cmask);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
 | 
						|
				       struct pci_dev *F3)
 | 
						|
{
 | 
						|
	bool ret = true;
 | 
						|
	u32 value, mask = 0x3;		/* UECC/CECC enable */
 | 
						|
 | 
						|
	if (toggle_ecc_err_reporting(s, nid, ON)) {
 | 
						|
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	amd64_read_pci_cfg(F3, NBCTL, &value);
 | 
						|
 | 
						|
	s->old_nbctl   = value & mask;
 | 
						|
	s->nbctl_valid = true;
 | 
						|
 | 
						|
	value |= mask;
 | 
						|
	amd64_write_pci_cfg(F3, NBCTL, value);
 | 
						|
 | 
						|
	amd64_read_pci_cfg(F3, NBCFG, &value);
 | 
						|
 | 
						|
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
 | 
						|
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
 | 
						|
 | 
						|
	if (!(value & NBCFG_ECC_ENABLE)) {
 | 
						|
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
 | 
						|
 | 
						|
		s->flags.nb_ecc_prev = 0;
 | 
						|
 | 
						|
		/* Attempt to turn on DRAM ECC Enable */
 | 
						|
		value |= NBCFG_ECC_ENABLE;
 | 
						|
		amd64_write_pci_cfg(F3, NBCFG, value);
 | 
						|
 | 
						|
		amd64_read_pci_cfg(F3, NBCFG, &value);
 | 
						|
 | 
						|
		if (!(value & NBCFG_ECC_ENABLE)) {
 | 
						|
			amd64_warn("Hardware rejected DRAM ECC enable,"
 | 
						|
				   "check memory DIMM configuration.\n");
 | 
						|
			ret = false;
 | 
						|
		} else {
 | 
						|
			amd64_info("Hardware accepted DRAM ECC Enable\n");
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		s->flags.nb_ecc_prev = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
 | 
						|
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
 | 
						|
					struct pci_dev *F3)
 | 
						|
{
 | 
						|
	u32 value, mask = 0x3;		/* UECC/CECC enable */
 | 
						|
 | 
						|
 | 
						|
	if (!s->nbctl_valid)
 | 
						|
		return;
 | 
						|
 | 
						|
	amd64_read_pci_cfg(F3, NBCTL, &value);
 | 
						|
	value &= ~mask;
 | 
						|
	value |= s->old_nbctl;
 | 
						|
 | 
						|
	amd64_write_pci_cfg(F3, NBCTL, value);
 | 
						|
 | 
						|
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
 | 
						|
	if (!s->flags.nb_ecc_prev) {
 | 
						|
		amd64_read_pci_cfg(F3, NBCFG, &value);
 | 
						|
		value &= ~NBCFG_ECC_ENABLE;
 | 
						|
		amd64_write_pci_cfg(F3, NBCFG, value);
 | 
						|
	}
 | 
						|
 | 
						|
	/* restore the NB Enable MCGCTL bit */
 | 
						|
	if (toggle_ecc_err_reporting(s, nid, OFF))
 | 
						|
		amd64_warn("Error restoring NB MCGCTL settings!\n");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * EDAC requires that the BIOS have ECC enabled before
 | 
						|
 * taking over the processing of ECC errors. A command line
 | 
						|
 * option allows to force-enable hardware ECC later in
 | 
						|
 * enable_ecc_error_reporting().
 | 
						|
 */
 | 
						|
static const char *ecc_msg =
 | 
						|
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
 | 
						|
	" Either enable ECC checking or force module loading by setting "
 | 
						|
	"'ecc_enable_override'.\n"
 | 
						|
	" (Note that use of the override may cause unknown side effects.)\n";
 | 
						|
 | 
						|
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
 | 
						|
{
 | 
						|
	u32 value;
 | 
						|
	u8 ecc_en = 0;
 | 
						|
	bool nb_mce_en = false;
 | 
						|
 | 
						|
	amd64_read_pci_cfg(F3, NBCFG, &value);
 | 
						|
 | 
						|
	ecc_en = !!(value & NBCFG_ECC_ENABLE);
 | 
						|
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
 | 
						|
 | 
						|
	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
 | 
						|
	if (!nb_mce_en)
 | 
						|
		amd64_notice("NB MCE bank disabled, set MSR "
 | 
						|
			     "0x%08x[4] on node %d to enable.\n",
 | 
						|
			     MSR_IA32_MCG_CTL, nid);
 | 
						|
 | 
						|
	if (!ecc_en || !nb_mce_en) {
 | 
						|
		amd64_notice("%s", ecc_msg);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
 | 
						|
{
 | 
						|
	struct amd64_pvt *pvt = mci->pvt_info;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	rc = amd64_create_sysfs_dbg_files(mci);
 | 
						|
	if (rc < 0)
 | 
						|
		return rc;
 | 
						|
 | 
						|
	if (pvt->fam >= 0x10) {
 | 
						|
		rc = amd64_create_sysfs_inject_files(mci);
 | 
						|
		if (rc < 0)
 | 
						|
			return rc;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
 | 
						|
{
 | 
						|
	struct amd64_pvt *pvt = mci->pvt_info;
 | 
						|
 | 
						|
	amd64_remove_sysfs_dbg_files(mci);
 | 
						|
 | 
						|
	if (pvt->fam >= 0x10)
 | 
						|
		amd64_remove_sysfs_inject_files(mci);
 | 
						|
}
 | 
						|
 | 
						|
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
 | 
						|
				 struct amd64_family_type *fam)
 | 
						|
{
 | 
						|
	struct amd64_pvt *pvt = mci->pvt_info;
 | 
						|
 | 
						|
	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
 | 
						|
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
 | 
						|
 | 
						|
	if (pvt->nbcap & NBCAP_SECDED)
 | 
						|
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
 | 
						|
 | 
						|
	if (pvt->nbcap & NBCAP_CHIPKILL)
 | 
						|
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
 | 
						|
 | 
						|
	mci->edac_cap		= amd64_determine_edac_cap(pvt);
 | 
						|
	mci->mod_name		= EDAC_MOD_STR;
 | 
						|
	mci->mod_ver		= EDAC_AMD64_VERSION;
 | 
						|
	mci->ctl_name		= fam->ctl_name;
 | 
						|
	mci->dev_name		= pci_name(pvt->F2);
 | 
						|
	mci->ctl_page_to_phys	= NULL;
 | 
						|
 | 
						|
	/* memory scrubber interface */
 | 
						|
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
 | 
						|
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * returns a pointer to the family descriptor on success, NULL otherwise.
 | 
						|
 */
 | 
						|
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
 | 
						|
{
 | 
						|
	struct amd64_family_type *fam_type = NULL;
 | 
						|
 | 
						|
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
 | 
						|
	pvt->stepping	= boot_cpu_data.x86_mask;
 | 
						|
	pvt->model	= boot_cpu_data.x86_model;
 | 
						|
	pvt->fam	= boot_cpu_data.x86;
 | 
						|
 | 
						|
	switch (pvt->fam) {
 | 
						|
	case 0xf:
 | 
						|
		fam_type		= &amd64_family_types[K8_CPUS];
 | 
						|
		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
 | 
						|
		break;
 | 
						|
 | 
						|
	case 0x10:
 | 
						|
		fam_type		= &amd64_family_types[F10_CPUS];
 | 
						|
		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
 | 
						|
		break;
 | 
						|
 | 
						|
	case 0x15:
 | 
						|
		if (pvt->model == 0x30) {
 | 
						|
			fam_type	= &amd64_family_types[F15_M30H_CPUS];
 | 
						|
			pvt->ops	= &amd64_family_types[F15_M30H_CPUS].ops;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		fam_type		= &amd64_family_types[F15_CPUS];
 | 
						|
		pvt->ops		= &amd64_family_types[F15_CPUS].ops;
 | 
						|
		break;
 | 
						|
 | 
						|
	case 0x16:
 | 
						|
		fam_type		= &amd64_family_types[F16_CPUS];
 | 
						|
		pvt->ops		= &amd64_family_types[F16_CPUS].ops;
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		amd64_err("Unsupported family!\n");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
 | 
						|
		     (pvt->fam == 0xf ?
 | 
						|
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
 | 
						|
							     : "revE or earlier ")
 | 
						|
				 : ""), pvt->mc_node_id);
 | 
						|
	return fam_type;
 | 
						|
}
 | 
						|
 | 
						|
static int amd64_init_one_instance(struct pci_dev *F2)
 | 
						|
{
 | 
						|
	struct amd64_pvt *pvt = NULL;
 | 
						|
	struct amd64_family_type *fam_type = NULL;
 | 
						|
	struct mem_ctl_info *mci = NULL;
 | 
						|
	struct edac_mc_layer layers[2];
 | 
						|
	int err = 0, ret;
 | 
						|
	u16 nid = amd_get_node_id(F2);
 | 
						|
 | 
						|
	ret = -ENOMEM;
 | 
						|
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
 | 
						|
	if (!pvt)
 | 
						|
		goto err_ret;
 | 
						|
 | 
						|
	pvt->mc_node_id	= nid;
 | 
						|
	pvt->F2 = F2;
 | 
						|
 | 
						|
	ret = -EINVAL;
 | 
						|
	fam_type = amd64_per_family_init(pvt);
 | 
						|
	if (!fam_type)
 | 
						|
		goto err_free;
 | 
						|
 | 
						|
	ret = -ENODEV;
 | 
						|
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
 | 
						|
	if (err)
 | 
						|
		goto err_free;
 | 
						|
 | 
						|
	read_mc_regs(pvt);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We need to determine how many memory channels there are. Then use
 | 
						|
	 * that information for calculating the size of the dynamic instance
 | 
						|
	 * tables in the 'mci' structure.
 | 
						|
	 */
 | 
						|
	ret = -EINVAL;
 | 
						|
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
 | 
						|
	if (pvt->channel_count < 0)
 | 
						|
		goto err_siblings;
 | 
						|
 | 
						|
	ret = -ENOMEM;
 | 
						|
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
 | 
						|
	layers[0].size = pvt->csels[0].b_cnt;
 | 
						|
	layers[0].is_virt_csrow = true;
 | 
						|
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Always allocate two channels since we can have setups with DIMMs on
 | 
						|
	 * only one channel. Also, this simplifies handling later for the price
 | 
						|
	 * of a couple of KBs tops.
 | 
						|
	 */
 | 
						|
	layers[1].size = 2;
 | 
						|
	layers[1].is_virt_csrow = false;
 | 
						|
 | 
						|
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
 | 
						|
	if (!mci)
 | 
						|
		goto err_siblings;
 | 
						|
 | 
						|
	mci->pvt_info = pvt;
 | 
						|
	mci->pdev = &pvt->F2->dev;
 | 
						|
 | 
						|
	setup_mci_misc_attrs(mci, fam_type);
 | 
						|
 | 
						|
	if (init_csrows(mci))
 | 
						|
		mci->edac_cap = EDAC_FLAG_NONE;
 | 
						|
 | 
						|
	ret = -ENODEV;
 | 
						|
	if (edac_mc_add_mc(mci)) {
 | 
						|
		edac_dbg(1, "failed edac_mc_add_mc()\n");
 | 
						|
		goto err_add_mc;
 | 
						|
	}
 | 
						|
	if (set_mc_sysfs_attrs(mci)) {
 | 
						|
		edac_dbg(1, "failed edac_mc_add_mc()\n");
 | 
						|
		goto err_add_sysfs;
 | 
						|
	}
 | 
						|
 | 
						|
	/* register stuff with EDAC MCE */
 | 
						|
	if (report_gart_errors)
 | 
						|
		amd_report_gart_errors(true);
 | 
						|
 | 
						|
	amd_register_ecc_decoder(amd64_decode_bus_error);
 | 
						|
 | 
						|
	mcis[nid] = mci;
 | 
						|
 | 
						|
	atomic_inc(&drv_instances);
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
err_add_sysfs:
 | 
						|
	edac_mc_del_mc(mci->pdev);
 | 
						|
err_add_mc:
 | 
						|
	edac_mc_free(mci);
 | 
						|
 | 
						|
err_siblings:
 | 
						|
	free_mc_sibling_devs(pvt);
 | 
						|
 | 
						|
err_free:
 | 
						|
	kfree(pvt);
 | 
						|
 | 
						|
err_ret:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int amd64_probe_one_instance(struct pci_dev *pdev,
 | 
						|
				    const struct pci_device_id *mc_type)
 | 
						|
{
 | 
						|
	u16 nid = amd_get_node_id(pdev);
 | 
						|
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
 | 
						|
	struct ecc_settings *s;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	ret = pci_enable_device(pdev);
 | 
						|
	if (ret < 0) {
 | 
						|
		edac_dbg(0, "ret=%d\n", ret);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = -ENOMEM;
 | 
						|
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
 | 
						|
	if (!s)
 | 
						|
		goto err_out;
 | 
						|
 | 
						|
	ecc_stngs[nid] = s;
 | 
						|
 | 
						|
	if (!ecc_enabled(F3, nid)) {
 | 
						|
		ret = -ENODEV;
 | 
						|
 | 
						|
		if (!ecc_enable_override)
 | 
						|
			goto err_enable;
 | 
						|
 | 
						|
		amd64_warn("Forcing ECC on!\n");
 | 
						|
 | 
						|
		if (!enable_ecc_error_reporting(s, nid, F3))
 | 
						|
			goto err_enable;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = amd64_init_one_instance(pdev);
 | 
						|
	if (ret < 0) {
 | 
						|
		amd64_err("Error probing instance: %d\n", nid);
 | 
						|
		restore_ecc_error_reporting(s, nid, F3);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
 | 
						|
err_enable:
 | 
						|
	kfree(s);
 | 
						|
	ecc_stngs[nid] = NULL;
 | 
						|
 | 
						|
err_out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void amd64_remove_one_instance(struct pci_dev *pdev)
 | 
						|
{
 | 
						|
	struct mem_ctl_info *mci;
 | 
						|
	struct amd64_pvt *pvt;
 | 
						|
	u16 nid = amd_get_node_id(pdev);
 | 
						|
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
 | 
						|
	struct ecc_settings *s = ecc_stngs[nid];
 | 
						|
 | 
						|
	mci = find_mci_by_dev(&pdev->dev);
 | 
						|
	WARN_ON(!mci);
 | 
						|
 | 
						|
	del_mc_sysfs_attrs(mci);
 | 
						|
	/* Remove from EDAC CORE tracking list */
 | 
						|
	mci = edac_mc_del_mc(&pdev->dev);
 | 
						|
	if (!mci)
 | 
						|
		return;
 | 
						|
 | 
						|
	pvt = mci->pvt_info;
 | 
						|
 | 
						|
	restore_ecc_error_reporting(s, nid, F3);
 | 
						|
 | 
						|
	free_mc_sibling_devs(pvt);
 | 
						|
 | 
						|
	/* unregister from EDAC MCE */
 | 
						|
	amd_report_gart_errors(false);
 | 
						|
	amd_unregister_ecc_decoder(amd64_decode_bus_error);
 | 
						|
 | 
						|
	kfree(ecc_stngs[nid]);
 | 
						|
	ecc_stngs[nid] = NULL;
 | 
						|
 | 
						|
	/* Free the EDAC CORE resources */
 | 
						|
	mci->pvt_info = NULL;
 | 
						|
	mcis[nid] = NULL;
 | 
						|
 | 
						|
	kfree(pvt);
 | 
						|
	edac_mc_free(mci);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This table is part of the interface for loading drivers for PCI devices. The
 | 
						|
 * PCI core identifies what devices are on a system during boot, and then
 | 
						|
 * inquiry this table to see if this driver is for a given device found.
 | 
						|
 */
 | 
						|
static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
 | 
						|
	{
 | 
						|
		.vendor		= PCI_VENDOR_ID_AMD,
 | 
						|
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
 | 
						|
		.subvendor	= PCI_ANY_ID,
 | 
						|
		.subdevice	= PCI_ANY_ID,
 | 
						|
		.class		= 0,
 | 
						|
		.class_mask	= 0,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.vendor		= PCI_VENDOR_ID_AMD,
 | 
						|
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
 | 
						|
		.subvendor	= PCI_ANY_ID,
 | 
						|
		.subdevice	= PCI_ANY_ID,
 | 
						|
		.class		= 0,
 | 
						|
		.class_mask	= 0,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.vendor		= PCI_VENDOR_ID_AMD,
 | 
						|
		.device		= PCI_DEVICE_ID_AMD_15H_NB_F2,
 | 
						|
		.subvendor	= PCI_ANY_ID,
 | 
						|
		.subdevice	= PCI_ANY_ID,
 | 
						|
		.class		= 0,
 | 
						|
		.class_mask	= 0,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.vendor		= PCI_VENDOR_ID_AMD,
 | 
						|
		.device		= PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
 | 
						|
		.subvendor	= PCI_ANY_ID,
 | 
						|
		.subdevice	= PCI_ANY_ID,
 | 
						|
		.class		= 0,
 | 
						|
		.class_mask	= 0,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.vendor		= PCI_VENDOR_ID_AMD,
 | 
						|
		.device		= PCI_DEVICE_ID_AMD_16H_NB_F2,
 | 
						|
		.subvendor	= PCI_ANY_ID,
 | 
						|
		.subdevice	= PCI_ANY_ID,
 | 
						|
		.class		= 0,
 | 
						|
		.class_mask	= 0,
 | 
						|
	},
 | 
						|
 | 
						|
	{0, }
 | 
						|
};
 | 
						|
MODULE_DEVICE_TABLE(pci, amd64_pci_table);
 | 
						|
 | 
						|
static struct pci_driver amd64_pci_driver = {
 | 
						|
	.name		= EDAC_MOD_STR,
 | 
						|
	.probe		= amd64_probe_one_instance,
 | 
						|
	.remove		= amd64_remove_one_instance,
 | 
						|
	.id_table	= amd64_pci_table,
 | 
						|
};
 | 
						|
 | 
						|
static void setup_pci_device(void)
 | 
						|
{
 | 
						|
	struct mem_ctl_info *mci;
 | 
						|
	struct amd64_pvt *pvt;
 | 
						|
 | 
						|
	if (amd64_ctl_pci)
 | 
						|
		return;
 | 
						|
 | 
						|
	mci = mcis[0];
 | 
						|
	if (mci) {
 | 
						|
 | 
						|
		pvt = mci->pvt_info;
 | 
						|
		amd64_ctl_pci =
 | 
						|
			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
 | 
						|
 | 
						|
		if (!amd64_ctl_pci) {
 | 
						|
			pr_warning("%s(): Unable to create PCI control\n",
 | 
						|
				   __func__);
 | 
						|
 | 
						|
			pr_warning("%s(): PCI error report via EDAC not set\n",
 | 
						|
				   __func__);
 | 
						|
			}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int __init amd64_edac_init(void)
 | 
						|
{
 | 
						|
	int err = -ENODEV;
 | 
						|
 | 
						|
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
 | 
						|
 | 
						|
	opstate_init();
 | 
						|
 | 
						|
	if (amd_cache_northbridges() < 0)
 | 
						|
		goto err_ret;
 | 
						|
 | 
						|
	err = -ENOMEM;
 | 
						|
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
 | 
						|
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
 | 
						|
	if (!(mcis && ecc_stngs))
 | 
						|
		goto err_free;
 | 
						|
 | 
						|
	msrs = msrs_alloc();
 | 
						|
	if (!msrs)
 | 
						|
		goto err_free;
 | 
						|
 | 
						|
	err = pci_register_driver(&amd64_pci_driver);
 | 
						|
	if (err)
 | 
						|
		goto err_pci;
 | 
						|
 | 
						|
	err = -ENODEV;
 | 
						|
	if (!atomic_read(&drv_instances))
 | 
						|
		goto err_no_instances;
 | 
						|
 | 
						|
	setup_pci_device();
 | 
						|
	return 0;
 | 
						|
 | 
						|
err_no_instances:
 | 
						|
	pci_unregister_driver(&amd64_pci_driver);
 | 
						|
 | 
						|
err_pci:
 | 
						|
	msrs_free(msrs);
 | 
						|
	msrs = NULL;
 | 
						|
 | 
						|
err_free:
 | 
						|
	kfree(mcis);
 | 
						|
	mcis = NULL;
 | 
						|
 | 
						|
	kfree(ecc_stngs);
 | 
						|
	ecc_stngs = NULL;
 | 
						|
 | 
						|
err_ret:
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static void __exit amd64_edac_exit(void)
 | 
						|
{
 | 
						|
	if (amd64_ctl_pci)
 | 
						|
		edac_pci_release_generic_ctl(amd64_ctl_pci);
 | 
						|
 | 
						|
	pci_unregister_driver(&amd64_pci_driver);
 | 
						|
 | 
						|
	kfree(ecc_stngs);
 | 
						|
	ecc_stngs = NULL;
 | 
						|
 | 
						|
	kfree(mcis);
 | 
						|
	mcis = NULL;
 | 
						|
 | 
						|
	msrs_free(msrs);
 | 
						|
	msrs = NULL;
 | 
						|
}
 | 
						|
 | 
						|
module_init(amd64_edac_init);
 | 
						|
module_exit(amd64_edac_exit);
 | 
						|
 | 
						|
MODULE_LICENSE("GPL");
 | 
						|
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
 | 
						|
		"Dave Peterson, Thayne Harbaugh");
 | 
						|
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
 | 
						|
		EDAC_AMD64_VERSION);
 | 
						|
 | 
						|
module_param(edac_op_state, int, 0444);
 | 
						|
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
 |