 2a475501b8
			
		
	
	
	2a475501b8
	
	
	
		
			
			Pull x86/asmlinkage changes from Ingo Molnar:
 "As a preparation for Andi Kleen's LTO patchset (link time
  optimizations using GCC's -flto which build time optimization has
  steadily increased in quality over the past few years and might
  eventually be usable for the kernel too) this tree includes a handful
  of preparatory patches that make function calling convention
  annotations consistent again:
   - Mark every function without arguments (or 64bit only) that is used
     by assembly code with asmlinkage()
   - Mark every function with parameters or variables that is used by
     assembly code as __visible.
  For the vanilla kernel this has documentation, consistency and
  debuggability advantages, for the time being"
* 'x86-asmlinkage-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/asmlinkage: Fix warning in xen asmlinkage change
  x86, asmlinkage, vdso: Mark vdso variables __visible
  x86, asmlinkage, power: Make various symbols used by the suspend asm code visible
  x86, asmlinkage: Make dump_stack visible
  x86, asmlinkage: Make 64bit checksum functions visible
  x86, asmlinkage, paravirt: Add __visible/asmlinkage to xen paravirt ops
  x86, asmlinkage, apm: Make APM data structure used from assembler visible
  x86, asmlinkage: Make syscall tables visible
  x86, asmlinkage: Make several variables used from assembler/linker script visible
  x86, asmlinkage: Make kprobes code visible and fix assembler code
  x86, asmlinkage: Make various syscalls asmlinkage
  x86, asmlinkage: Make 32bit/64bit __switch_to visible
  x86, asmlinkage: Make _*_start_kernel visible
  x86, asmlinkage: Make all interrupt handlers asmlinkage / __visible
  x86, asmlinkage: Change dotraplinkage into __visible on 32bit
  x86: Fix sys_call_table type in asm/syscall.h
		
	
			
		
			
				
	
	
		
			911 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			911 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <linux/export.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/elf.h>
 | |
| #include <linux/mm.h>
 | |
| 
 | |
| #include <linux/io.h>
 | |
| #include <linux/sched.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/apic.h>
 | |
| #include <asm/cpu.h>
 | |
| #include <asm/pci-direct.h>
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| # include <asm/mmconfig.h>
 | |
| # include <asm/cacheflush.h>
 | |
| #endif
 | |
| 
 | |
| #include "cpu.h"
 | |
| 
 | |
| static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
 | |
| {
 | |
| 	u32 gprs[8] = { 0 };
 | |
| 	int err;
 | |
| 
 | |
| 	WARN_ONCE((boot_cpu_data.x86 != 0xf),
 | |
| 		  "%s should only be used on K8!\n", __func__);
 | |
| 
 | |
| 	gprs[1] = msr;
 | |
| 	gprs[7] = 0x9c5a203a;
 | |
| 
 | |
| 	err = rdmsr_safe_regs(gprs);
 | |
| 
 | |
| 	*p = gprs[0] | ((u64)gprs[2] << 32);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val)
 | |
| {
 | |
| 	u32 gprs[8] = { 0 };
 | |
| 
 | |
| 	WARN_ONCE((boot_cpu_data.x86 != 0xf),
 | |
| 		  "%s should only be used on K8!\n", __func__);
 | |
| 
 | |
| 	gprs[0] = (u32)val;
 | |
| 	gprs[1] = msr;
 | |
| 	gprs[2] = val >> 32;
 | |
| 	gprs[7] = 0x9c5a203a;
 | |
| 
 | |
| 	return wrmsr_safe_regs(gprs);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| /*
 | |
|  *	B step AMD K6 before B 9730xxxx have hardware bugs that can cause
 | |
|  *	misexecution of code under Linux. Owners of such processors should
 | |
|  *	contact AMD for precise details and a CPU swap.
 | |
|  *
 | |
|  *	See	http://www.multimania.com/poulot/k6bug.html
 | |
|  *	and	section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6"
 | |
|  *		(Publication # 21266  Issue Date: August 1998)
 | |
|  *
 | |
|  *	The following test is erm.. interesting. AMD neglected to up
 | |
|  *	the chip setting when fixing the bug but they also tweaked some
 | |
|  *	performance at the same time..
 | |
|  */
 | |
| 
 | |
| extern __visible void vide(void);
 | |
| __asm__(".globl vide\n\t.align 4\nvide: ret");
 | |
| 
 | |
| static void init_amd_k5(struct cpuinfo_x86 *c)
 | |
| {
 | |
| /*
 | |
|  * General Systems BIOSen alias the cpu frequency registers
 | |
|  * of the Elan at 0x000df000. Unfortuantly, one of the Linux
 | |
|  * drivers subsequently pokes it, and changes the CPU speed.
 | |
|  * Workaround : Remove the unneeded alias.
 | |
|  */
 | |
| #define CBAR		(0xfffc) /* Configuration Base Address  (32-bit) */
 | |
| #define CBAR_ENB	(0x80000000)
 | |
| #define CBAR_KEY	(0X000000CB)
 | |
| 	if (c->x86_model == 9 || c->x86_model == 10) {
 | |
| 		if (inl(CBAR) & CBAR_ENB)
 | |
| 			outl(0 | CBAR_KEY, CBAR);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void init_amd_k6(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	u32 l, h;
 | |
| 	int mbytes = get_num_physpages() >> (20-PAGE_SHIFT);
 | |
| 
 | |
| 	if (c->x86_model < 6) {
 | |
| 		/* Based on AMD doc 20734R - June 2000 */
 | |
| 		if (c->x86_model == 0) {
 | |
| 			clear_cpu_cap(c, X86_FEATURE_APIC);
 | |
| 			set_cpu_cap(c, X86_FEATURE_PGE);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (c->x86_model == 6 && c->x86_mask == 1) {
 | |
| 		const int K6_BUG_LOOP = 1000000;
 | |
| 		int n;
 | |
| 		void (*f_vide)(void);
 | |
| 		unsigned long d, d2;
 | |
| 
 | |
| 		printk(KERN_INFO "AMD K6 stepping B detected - ");
 | |
| 
 | |
| 		/*
 | |
| 		 * It looks like AMD fixed the 2.6.2 bug and improved indirect
 | |
| 		 * calls at the same time.
 | |
| 		 */
 | |
| 
 | |
| 		n = K6_BUG_LOOP;
 | |
| 		f_vide = vide;
 | |
| 		rdtscl(d);
 | |
| 		while (n--)
 | |
| 			f_vide();
 | |
| 		rdtscl(d2);
 | |
| 		d = d2-d;
 | |
| 
 | |
| 		if (d > 20*K6_BUG_LOOP)
 | |
| 			printk(KERN_CONT
 | |
| 				"system stability may be impaired when more than 32 MB are used.\n");
 | |
| 		else
 | |
| 			printk(KERN_CONT "probably OK (after B9730xxxx).\n");
 | |
| 	}
 | |
| 
 | |
| 	/* K6 with old style WHCR */
 | |
| 	if (c->x86_model < 8 ||
 | |
| 	   (c->x86_model == 8 && c->x86_mask < 8)) {
 | |
| 		/* We can only write allocate on the low 508Mb */
 | |
| 		if (mbytes > 508)
 | |
| 			mbytes = 508;
 | |
| 
 | |
| 		rdmsr(MSR_K6_WHCR, l, h);
 | |
| 		if ((l&0x0000FFFF) == 0) {
 | |
| 			unsigned long flags;
 | |
| 			l = (1<<0)|((mbytes/4)<<1);
 | |
| 			local_irq_save(flags);
 | |
| 			wbinvd();
 | |
| 			wrmsr(MSR_K6_WHCR, l, h);
 | |
| 			local_irq_restore(flags);
 | |
| 			printk(KERN_INFO "Enabling old style K6 write allocation for %d Mb\n",
 | |
| 				mbytes);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((c->x86_model == 8 && c->x86_mask > 7) ||
 | |
| 	     c->x86_model == 9 || c->x86_model == 13) {
 | |
| 		/* The more serious chips .. */
 | |
| 
 | |
| 		if (mbytes > 4092)
 | |
| 			mbytes = 4092;
 | |
| 
 | |
| 		rdmsr(MSR_K6_WHCR, l, h);
 | |
| 		if ((l&0xFFFF0000) == 0) {
 | |
| 			unsigned long flags;
 | |
| 			l = ((mbytes>>2)<<22)|(1<<16);
 | |
| 			local_irq_save(flags);
 | |
| 			wbinvd();
 | |
| 			wrmsr(MSR_K6_WHCR, l, h);
 | |
| 			local_irq_restore(flags);
 | |
| 			printk(KERN_INFO "Enabling new style K6 write allocation for %d Mb\n",
 | |
| 				mbytes);
 | |
| 		}
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (c->x86_model == 10) {
 | |
| 		/* AMD Geode LX is model 10 */
 | |
| 		/* placeholder for any needed mods */
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void amd_k7_smp_check(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	/* calling is from identify_secondary_cpu() ? */
 | |
| 	if (!c->cpu_index)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Certain Athlons might work (for various values of 'work') in SMP
 | |
| 	 * but they are not certified as MP capable.
 | |
| 	 */
 | |
| 	/* Athlon 660/661 is valid. */
 | |
| 	if ((c->x86_model == 6) && ((c->x86_mask == 0) ||
 | |
| 	    (c->x86_mask == 1)))
 | |
| 		return;
 | |
| 
 | |
| 	/* Duron 670 is valid */
 | |
| 	if ((c->x86_model == 7) && (c->x86_mask == 0))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Athlon 662, Duron 671, and Athlon >model 7 have capability
 | |
| 	 * bit. It's worth noting that the A5 stepping (662) of some
 | |
| 	 * Athlon XP's have the MP bit set.
 | |
| 	 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
 | |
| 	 * more.
 | |
| 	 */
 | |
| 	if (((c->x86_model == 6) && (c->x86_mask >= 2)) ||
 | |
| 	    ((c->x86_model == 7) && (c->x86_mask >= 1)) ||
 | |
| 	     (c->x86_model > 7))
 | |
| 		if (cpu_has_mp)
 | |
| 			return;
 | |
| 
 | |
| 	/* If we get here, not a certified SMP capable AMD system. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't taint if we are running SMP kernel on a single non-MP
 | |
| 	 * approved Athlon
 | |
| 	 */
 | |
| 	WARN_ONCE(1, "WARNING: This combination of AMD"
 | |
| 		" processors is not suitable for SMP.\n");
 | |
| 	add_taint(TAINT_UNSAFE_SMP, LOCKDEP_NOW_UNRELIABLE);
 | |
| }
 | |
| 
 | |
| static void init_amd_k7(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	u32 l, h;
 | |
| 
 | |
| 	/*
 | |
| 	 * Bit 15 of Athlon specific MSR 15, needs to be 0
 | |
| 	 * to enable SSE on Palomino/Morgan/Barton CPU's.
 | |
| 	 * If the BIOS didn't enable it already, enable it here.
 | |
| 	 */
 | |
| 	if (c->x86_model >= 6 && c->x86_model <= 10) {
 | |
| 		if (!cpu_has(c, X86_FEATURE_XMM)) {
 | |
| 			printk(KERN_INFO "Enabling disabled K7/SSE Support.\n");
 | |
| 			rdmsr(MSR_K7_HWCR, l, h);
 | |
| 			l &= ~0x00008000;
 | |
| 			wrmsr(MSR_K7_HWCR, l, h);
 | |
| 			set_cpu_cap(c, X86_FEATURE_XMM);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It's been determined by AMD that Athlons since model 8 stepping 1
 | |
| 	 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx
 | |
| 	 * As per AMD technical note 27212 0.2
 | |
| 	 */
 | |
| 	if ((c->x86_model == 8 && c->x86_mask >= 1) || (c->x86_model > 8)) {
 | |
| 		rdmsr(MSR_K7_CLK_CTL, l, h);
 | |
| 		if ((l & 0xfff00000) != 0x20000000) {
 | |
| 			printk(KERN_INFO
 | |
| 			    "CPU: CLK_CTL MSR was %x. Reprogramming to %x\n",
 | |
| 					l, ((l & 0x000fffff)|0x20000000));
 | |
| 			wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	set_cpu_cap(c, X86_FEATURE_K7);
 | |
| 
 | |
| 	amd_k7_smp_check(c);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * To workaround broken NUMA config.  Read the comment in
 | |
|  * srat_detect_node().
 | |
|  */
 | |
| static int nearby_node(int apicid)
 | |
| {
 | |
| 	int i, node;
 | |
| 
 | |
| 	for (i = apicid - 1; i >= 0; i--) {
 | |
| 		node = __apicid_to_node[i];
 | |
| 		if (node != NUMA_NO_NODE && node_online(node))
 | |
| 			return node;
 | |
| 	}
 | |
| 	for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
 | |
| 		node = __apicid_to_node[i];
 | |
| 		if (node != NUMA_NO_NODE && node_online(node))
 | |
| 			return node;
 | |
| 	}
 | |
| 	return first_node(node_online_map); /* Shouldn't happen */
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Fixup core topology information for
 | |
|  * (1) AMD multi-node processors
 | |
|  *     Assumption: Number of cores in each internal node is the same.
 | |
|  * (2) AMD processors supporting compute units
 | |
|  */
 | |
| #ifdef CONFIG_X86_HT
 | |
| static void amd_get_topology(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	u32 nodes, cores_per_cu = 1;
 | |
| 	u8 node_id;
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	/* get information required for multi-node processors */
 | |
| 	if (cpu_has_topoext) {
 | |
| 		u32 eax, ebx, ecx, edx;
 | |
| 
 | |
| 		cpuid(0x8000001e, &eax, &ebx, &ecx, &edx);
 | |
| 		nodes = ((ecx >> 8) & 7) + 1;
 | |
| 		node_id = ecx & 7;
 | |
| 
 | |
| 		/* get compute unit information */
 | |
| 		smp_num_siblings = ((ebx >> 8) & 3) + 1;
 | |
| 		c->compute_unit_id = ebx & 0xff;
 | |
| 		cores_per_cu += ((ebx >> 8) & 3);
 | |
| 	} else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) {
 | |
| 		u64 value;
 | |
| 
 | |
| 		rdmsrl(MSR_FAM10H_NODE_ID, value);
 | |
| 		nodes = ((value >> 3) & 7) + 1;
 | |
| 		node_id = value & 7;
 | |
| 	} else
 | |
| 		return;
 | |
| 
 | |
| 	/* fixup multi-node processor information */
 | |
| 	if (nodes > 1) {
 | |
| 		u32 cores_per_node;
 | |
| 		u32 cus_per_node;
 | |
| 
 | |
| 		set_cpu_cap(c, X86_FEATURE_AMD_DCM);
 | |
| 		cores_per_node = c->x86_max_cores / nodes;
 | |
| 		cus_per_node = cores_per_node / cores_per_cu;
 | |
| 
 | |
| 		/* store NodeID, use llc_shared_map to store sibling info */
 | |
| 		per_cpu(cpu_llc_id, cpu) = node_id;
 | |
| 
 | |
| 		/* core id has to be in the [0 .. cores_per_node - 1] range */
 | |
| 		c->cpu_core_id %= cores_per_node;
 | |
| 		c->compute_unit_id %= cus_per_node;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
 | |
|  * Assumes number of cores is a power of two.
 | |
|  */
 | |
| static void amd_detect_cmp(struct cpuinfo_x86 *c)
 | |
| {
 | |
| #ifdef CONFIG_X86_HT
 | |
| 	unsigned bits;
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	bits = c->x86_coreid_bits;
 | |
| 	/* Low order bits define the core id (index of core in socket) */
 | |
| 	c->cpu_core_id = c->initial_apicid & ((1 << bits)-1);
 | |
| 	/* Convert the initial APIC ID into the socket ID */
 | |
| 	c->phys_proc_id = c->initial_apicid >> bits;
 | |
| 	/* use socket ID also for last level cache */
 | |
| 	per_cpu(cpu_llc_id, cpu) = c->phys_proc_id;
 | |
| 	amd_get_topology(c);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| u16 amd_get_nb_id(int cpu)
 | |
| {
 | |
| 	u16 id = 0;
 | |
| #ifdef CONFIG_SMP
 | |
| 	id = per_cpu(cpu_llc_id, cpu);
 | |
| #endif
 | |
| 	return id;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(amd_get_nb_id);
 | |
| 
 | |
| static void srat_detect_node(struct cpuinfo_x86 *c)
 | |
| {
 | |
| #ifdef CONFIG_NUMA
 | |
| 	int cpu = smp_processor_id();
 | |
| 	int node;
 | |
| 	unsigned apicid = c->apicid;
 | |
| 
 | |
| 	node = numa_cpu_node(cpu);
 | |
| 	if (node == NUMA_NO_NODE)
 | |
| 		node = per_cpu(cpu_llc_id, cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * On multi-fabric platform (e.g. Numascale NumaChip) a
 | |
| 	 * platform-specific handler needs to be called to fixup some
 | |
| 	 * IDs of the CPU.
 | |
| 	 */
 | |
| 	if (x86_cpuinit.fixup_cpu_id)
 | |
| 		x86_cpuinit.fixup_cpu_id(c, node);
 | |
| 
 | |
| 	if (!node_online(node)) {
 | |
| 		/*
 | |
| 		 * Two possibilities here:
 | |
| 		 *
 | |
| 		 * - The CPU is missing memory and no node was created.  In
 | |
| 		 *   that case try picking one from a nearby CPU.
 | |
| 		 *
 | |
| 		 * - The APIC IDs differ from the HyperTransport node IDs
 | |
| 		 *   which the K8 northbridge parsing fills in.  Assume
 | |
| 		 *   they are all increased by a constant offset, but in
 | |
| 		 *   the same order as the HT nodeids.  If that doesn't
 | |
| 		 *   result in a usable node fall back to the path for the
 | |
| 		 *   previous case.
 | |
| 		 *
 | |
| 		 * This workaround operates directly on the mapping between
 | |
| 		 * APIC ID and NUMA node, assuming certain relationship
 | |
| 		 * between APIC ID, HT node ID and NUMA topology.  As going
 | |
| 		 * through CPU mapping may alter the outcome, directly
 | |
| 		 * access __apicid_to_node[].
 | |
| 		 */
 | |
| 		int ht_nodeid = c->initial_apicid;
 | |
| 
 | |
| 		if (ht_nodeid >= 0 &&
 | |
| 		    __apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
 | |
| 			node = __apicid_to_node[ht_nodeid];
 | |
| 		/* Pick a nearby node */
 | |
| 		if (!node_online(node))
 | |
| 			node = nearby_node(apicid);
 | |
| 	}
 | |
| 	numa_set_node(cpu, node);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void early_init_amd_mc(struct cpuinfo_x86 *c)
 | |
| {
 | |
| #ifdef CONFIG_X86_HT
 | |
| 	unsigned bits, ecx;
 | |
| 
 | |
| 	/* Multi core CPU? */
 | |
| 	if (c->extended_cpuid_level < 0x80000008)
 | |
| 		return;
 | |
| 
 | |
| 	ecx = cpuid_ecx(0x80000008);
 | |
| 
 | |
| 	c->x86_max_cores = (ecx & 0xff) + 1;
 | |
| 
 | |
| 	/* CPU telling us the core id bits shift? */
 | |
| 	bits = (ecx >> 12) & 0xF;
 | |
| 
 | |
| 	/* Otherwise recompute */
 | |
| 	if (bits == 0) {
 | |
| 		while ((1 << bits) < c->x86_max_cores)
 | |
| 			bits++;
 | |
| 	}
 | |
| 
 | |
| 	c->x86_coreid_bits = bits;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void bsp_init_amd(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
 | |
| 
 | |
| 		if (c->x86 > 0x10 ||
 | |
| 		    (c->x86 == 0x10 && c->x86_model >= 0x2)) {
 | |
| 			u64 val;
 | |
| 
 | |
| 			rdmsrl(MSR_K7_HWCR, val);
 | |
| 			if (!(val & BIT(24)))
 | |
| 				printk(KERN_WARNING FW_BUG "TSC doesn't count "
 | |
| 					"with P0 frequency!\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (c->x86 == 0x15) {
 | |
| 		unsigned long upperbit;
 | |
| 		u32 cpuid, assoc;
 | |
| 
 | |
| 		cpuid	 = cpuid_edx(0x80000005);
 | |
| 		assoc	 = cpuid >> 16 & 0xff;
 | |
| 		upperbit = ((cpuid >> 24) << 10) / assoc;
 | |
| 
 | |
| 		va_align.mask	  = (upperbit - 1) & PAGE_MASK;
 | |
| 		va_align.flags    = ALIGN_VA_32 | ALIGN_VA_64;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void early_init_amd(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	early_init_amd_mc(c);
 | |
| 
 | |
| 	/*
 | |
| 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
 | |
| 	 * with P/T states and does not stop in deep C-states
 | |
| 	 */
 | |
| 	if (c->x86_power & (1 << 8)) {
 | |
| 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 | |
| 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
 | |
| 		if (!check_tsc_unstable())
 | |
| 			sched_clock_stable = 1;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	set_cpu_cap(c, X86_FEATURE_SYSCALL32);
 | |
| #else
 | |
| 	/*  Set MTRR capability flag if appropriate */
 | |
| 	if (c->x86 == 5)
 | |
| 		if (c->x86_model == 13 || c->x86_model == 9 ||
 | |
| 		    (c->x86_model == 8 && c->x86_mask >= 8))
 | |
| 			set_cpu_cap(c, X86_FEATURE_K6_MTRR);
 | |
| #endif
 | |
| #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI)
 | |
| 	/* check CPU config space for extended APIC ID */
 | |
| 	if (cpu_has_apic && c->x86 >= 0xf) {
 | |
| 		unsigned int val;
 | |
| 		val = read_pci_config(0, 24, 0, 0x68);
 | |
| 		if ((val & ((1 << 17) | (1 << 18))) == ((1 << 17) | (1 << 18)))
 | |
| 			set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static const int amd_erratum_383[];
 | |
| static const int amd_erratum_400[];
 | |
| static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum);
 | |
| 
 | |
| static void init_amd(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	u32 dummy;
 | |
| 	unsigned long long value;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * Disable TLB flush filter by setting HWCR.FFDIS on K8
 | |
| 	 * bit 6 of msr C001_0015
 | |
| 	 *
 | |
| 	 * Errata 63 for SH-B3 steppings
 | |
| 	 * Errata 122 for all steppings (F+ have it disabled by default)
 | |
| 	 */
 | |
| 	if (c->x86 == 0xf) {
 | |
| 		rdmsrl(MSR_K7_HWCR, value);
 | |
| 		value |= 1 << 6;
 | |
| 		wrmsrl(MSR_K7_HWCR, value);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	early_init_amd(c);
 | |
| 
 | |
| 	/*
 | |
| 	 * Bit 31 in normal CPUID used for nonstandard 3DNow ID;
 | |
| 	 * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway
 | |
| 	 */
 | |
| 	clear_cpu_cap(c, 0*32+31);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	/* On C+ stepping K8 rep microcode works well for copy/memset */
 | |
| 	if (c->x86 == 0xf) {
 | |
| 		u32 level;
 | |
| 
 | |
| 		level = cpuid_eax(1);
 | |
| 		if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
 | |
| 			set_cpu_cap(c, X86_FEATURE_REP_GOOD);
 | |
| 
 | |
| 		/*
 | |
| 		 * Some BIOSes incorrectly force this feature, but only K8
 | |
| 		 * revision D (model = 0x14) and later actually support it.
 | |
| 		 * (AMD Erratum #110, docId: 25759).
 | |
| 		 */
 | |
| 		if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) {
 | |
| 			clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
 | |
| 			if (!rdmsrl_amd_safe(0xc001100d, &value)) {
 | |
| 				value &= ~(1ULL << 32);
 | |
| 				wrmsrl_amd_safe(0xc001100d, value);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	if (c->x86 >= 0x10)
 | |
| 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
 | |
| 
 | |
| 	/* get apicid instead of initial apic id from cpuid */
 | |
| 	c->apicid = hard_smp_processor_id();
 | |
| #else
 | |
| 
 | |
| 	/*
 | |
| 	 *	FIXME: We should handle the K5 here. Set up the write
 | |
| 	 *	range and also turn on MSR 83 bits 4 and 31 (write alloc,
 | |
| 	 *	no bus pipeline)
 | |
| 	 */
 | |
| 
 | |
| 	switch (c->x86) {
 | |
| 	case 4:
 | |
| 		init_amd_k5(c);
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		init_amd_k6(c);
 | |
| 		break;
 | |
| 	case 6: /* An Athlon/Duron */
 | |
| 		init_amd_k7(c);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* K6s reports MCEs but don't actually have all the MSRs */
 | |
| 	if (c->x86 < 6)
 | |
| 		clear_cpu_cap(c, X86_FEATURE_MCE);
 | |
| #endif
 | |
| 
 | |
| 	/* Enable workaround for FXSAVE leak */
 | |
| 	if (c->x86 >= 6)
 | |
| 		set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
 | |
| 
 | |
| 	if (!c->x86_model_id[0]) {
 | |
| 		switch (c->x86) {
 | |
| 		case 0xf:
 | |
| 			/* Should distinguish Models here, but this is only
 | |
| 			   a fallback anyways. */
 | |
| 			strcpy(c->x86_model_id, "Hammer");
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* re-enable TopologyExtensions if switched off by BIOS */
 | |
| 	if ((c->x86 == 0x15) &&
 | |
| 	    (c->x86_model >= 0x10) && (c->x86_model <= 0x1f) &&
 | |
| 	    !cpu_has(c, X86_FEATURE_TOPOEXT)) {
 | |
| 
 | |
| 		if (!rdmsrl_safe(0xc0011005, &value)) {
 | |
| 			value |= 1ULL << 54;
 | |
| 			wrmsrl_safe(0xc0011005, value);
 | |
| 			rdmsrl(0xc0011005, value);
 | |
| 			if (value & (1ULL << 54)) {
 | |
| 				set_cpu_cap(c, X86_FEATURE_TOPOEXT);
 | |
| 				printk(KERN_INFO FW_INFO "CPU: Re-enabling "
 | |
| 				  "disabled Topology Extensions Support\n");
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The way access filter has a performance penalty on some workloads.
 | |
| 	 * Disable it on the affected CPUs.
 | |
| 	 */
 | |
| 	if ((c->x86 == 0x15) &&
 | |
| 	    (c->x86_model >= 0x02) && (c->x86_model < 0x20)) {
 | |
| 
 | |
| 		if (!rdmsrl_safe(0xc0011021, &value) && !(value & 0x1E)) {
 | |
| 			value |= 0x1E;
 | |
| 			wrmsrl_safe(0xc0011021, value);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cpu_detect_cache_sizes(c);
 | |
| 
 | |
| 	/* Multi core CPU? */
 | |
| 	if (c->extended_cpuid_level >= 0x80000008) {
 | |
| 		amd_detect_cmp(c);
 | |
| 		srat_detect_node(c);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	detect_ht(c);
 | |
| #endif
 | |
| 
 | |
| 	init_amd_cacheinfo(c);
 | |
| 
 | |
| 	if (c->x86 >= 0xf)
 | |
| 		set_cpu_cap(c, X86_FEATURE_K8);
 | |
| 
 | |
| 	if (cpu_has_xmm2) {
 | |
| 		/* MFENCE stops RDTSC speculation */
 | |
| 		set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (c->x86 == 0x10) {
 | |
| 		/* do this for boot cpu */
 | |
| 		if (c == &boot_cpu_data)
 | |
| 			check_enable_amd_mmconf_dmi();
 | |
| 
 | |
| 		fam10h_check_enable_mmcfg();
 | |
| 	}
 | |
| 
 | |
| 	if (c == &boot_cpu_data && c->x86 >= 0xf) {
 | |
| 		unsigned long long tseg;
 | |
| 
 | |
| 		/*
 | |
| 		 * Split up direct mapping around the TSEG SMM area.
 | |
| 		 * Don't do it for gbpages because there seems very little
 | |
| 		 * benefit in doing so.
 | |
| 		 */
 | |
| 		if (!rdmsrl_safe(MSR_K8_TSEG_ADDR, &tseg)) {
 | |
| 			unsigned long pfn = tseg >> PAGE_SHIFT;
 | |
| 
 | |
| 			printk(KERN_DEBUG "tseg: %010llx\n", tseg);
 | |
| 			if (pfn_range_is_mapped(pfn, pfn + 1))
 | |
| 				set_memory_4k((unsigned long)__va(tseg), 1);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Family 0x12 and above processors have APIC timer
 | |
| 	 * running in deep C states.
 | |
| 	 */
 | |
| 	if (c->x86 > 0x11)
 | |
| 		set_cpu_cap(c, X86_FEATURE_ARAT);
 | |
| 
 | |
| 	if (c->x86 == 0x10) {
 | |
| 		/*
 | |
| 		 * Disable GART TLB Walk Errors on Fam10h. We do this here
 | |
| 		 * because this is always needed when GART is enabled, even in a
 | |
| 		 * kernel which has no MCE support built in.
 | |
| 		 * BIOS should disable GartTlbWlk Errors themself. If
 | |
| 		 * it doesn't do it here as suggested by the BKDG.
 | |
| 		 *
 | |
| 		 * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012
 | |
| 		 */
 | |
| 		u64 mask;
 | |
| 		int err;
 | |
| 
 | |
| 		err = rdmsrl_safe(MSR_AMD64_MCx_MASK(4), &mask);
 | |
| 		if (err == 0) {
 | |
| 			mask |= (1 << 10);
 | |
| 			wrmsrl_safe(MSR_AMD64_MCx_MASK(4), mask);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * On family 10h BIOS may not have properly enabled WC+ support,
 | |
| 		 * causing it to be converted to CD memtype. This may result in
 | |
| 		 * performance degradation for certain nested-paging guests.
 | |
| 		 * Prevent this conversion by clearing bit 24 in
 | |
| 		 * MSR_AMD64_BU_CFG2.
 | |
| 		 *
 | |
| 		 * NOTE: we want to use the _safe accessors so as not to #GP kvm
 | |
| 		 * guests on older kvm hosts.
 | |
| 		 */
 | |
| 
 | |
| 		rdmsrl_safe(MSR_AMD64_BU_CFG2, &value);
 | |
| 		value &= ~(1ULL << 24);
 | |
| 		wrmsrl_safe(MSR_AMD64_BU_CFG2, value);
 | |
| 
 | |
| 		if (cpu_has_amd_erratum(c, amd_erratum_383))
 | |
| 			set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH);
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_has_amd_erratum(c, amd_erratum_400))
 | |
| 		set_cpu_bug(c, X86_BUG_AMD_APIC_C1E);
 | |
| 
 | |
| 	rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size)
 | |
| {
 | |
| 	/* AMD errata T13 (order #21922) */
 | |
| 	if ((c->x86 == 6)) {
 | |
| 		/* Duron Rev A0 */
 | |
| 		if (c->x86_model == 3 && c->x86_mask == 0)
 | |
| 			size = 64;
 | |
| 		/* Tbird rev A1/A2 */
 | |
| 		if (c->x86_model == 4 &&
 | |
| 			(c->x86_mask == 0 || c->x86_mask == 1))
 | |
| 			size = 256;
 | |
| 	}
 | |
| 	return size;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void cpu_set_tlb_flushall_shift(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	tlb_flushall_shift = 5;
 | |
| 
 | |
| 	if (c->x86 <= 0x11)
 | |
| 		tlb_flushall_shift = 4;
 | |
| }
 | |
| 
 | |
| static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	u32 ebx, eax, ecx, edx;
 | |
| 	u16 mask = 0xfff;
 | |
| 
 | |
| 	if (c->x86 < 0xf)
 | |
| 		return;
 | |
| 
 | |
| 	if (c->extended_cpuid_level < 0x80000006)
 | |
| 		return;
 | |
| 
 | |
| 	cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
 | |
| 
 | |
| 	tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask;
 | |
| 	tlb_lli_4k[ENTRIES] = ebx & mask;
 | |
| 
 | |
| 	/*
 | |
| 	 * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB
 | |
| 	 * characteristics from the CPUID function 0x80000005 instead.
 | |
| 	 */
 | |
| 	if (c->x86 == 0xf) {
 | |
| 		cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
 | |
| 		mask = 0xff;
 | |
| 	}
 | |
| 
 | |
| 	/* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
 | |
| 	if (!((eax >> 16) & mask)) {
 | |
| 		u32 a, b, c, d;
 | |
| 
 | |
| 		cpuid(0x80000005, &a, &b, &c, &d);
 | |
| 		tlb_lld_2m[ENTRIES] = (a >> 16) & 0xff;
 | |
| 	} else {
 | |
| 		tlb_lld_2m[ENTRIES] = (eax >> 16) & mask;
 | |
| 	}
 | |
| 
 | |
| 	/* a 4M entry uses two 2M entries */
 | |
| 	tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1;
 | |
| 
 | |
| 	/* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
 | |
| 	if (!(eax & mask)) {
 | |
| 		/* Erratum 658 */
 | |
| 		if (c->x86 == 0x15 && c->x86_model <= 0x1f) {
 | |
| 			tlb_lli_2m[ENTRIES] = 1024;
 | |
| 		} else {
 | |
| 			cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
 | |
| 			tlb_lli_2m[ENTRIES] = eax & 0xff;
 | |
| 		}
 | |
| 	} else
 | |
| 		tlb_lli_2m[ENTRIES] = eax & mask;
 | |
| 
 | |
| 	tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1;
 | |
| 
 | |
| 	cpu_set_tlb_flushall_shift(c);
 | |
| }
 | |
| 
 | |
| static const struct cpu_dev amd_cpu_dev = {
 | |
| 	.c_vendor	= "AMD",
 | |
| 	.c_ident	= { "AuthenticAMD" },
 | |
| #ifdef CONFIG_X86_32
 | |
| 	.c_models = {
 | |
| 		{ .vendor = X86_VENDOR_AMD, .family = 4, .model_names =
 | |
| 		  {
 | |
| 			  [3] = "486 DX/2",
 | |
| 			  [7] = "486 DX/2-WB",
 | |
| 			  [8] = "486 DX/4",
 | |
| 			  [9] = "486 DX/4-WB",
 | |
| 			  [14] = "Am5x86-WT",
 | |
| 			  [15] = "Am5x86-WB"
 | |
| 		  }
 | |
| 		},
 | |
| 	},
 | |
| 	.c_size_cache	= amd_size_cache,
 | |
| #endif
 | |
| 	.c_early_init   = early_init_amd,
 | |
| 	.c_detect_tlb	= cpu_detect_tlb_amd,
 | |
| 	.c_bsp_init	= bsp_init_amd,
 | |
| 	.c_init		= init_amd,
 | |
| 	.c_x86_vendor	= X86_VENDOR_AMD,
 | |
| };
 | |
| 
 | |
| cpu_dev_register(amd_cpu_dev);
 | |
| 
 | |
| /*
 | |
|  * AMD errata checking
 | |
|  *
 | |
|  * Errata are defined as arrays of ints using the AMD_LEGACY_ERRATUM() or
 | |
|  * AMD_OSVW_ERRATUM() macros. The latter is intended for newer errata that
 | |
|  * have an OSVW id assigned, which it takes as first argument. Both take a
 | |
|  * variable number of family-specific model-stepping ranges created by
 | |
|  * AMD_MODEL_RANGE().
 | |
|  *
 | |
|  * Example:
 | |
|  *
 | |
|  * const int amd_erratum_319[] =
 | |
|  *	AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0x4, 0x2),
 | |
|  *			   AMD_MODEL_RANGE(0x10, 0x8, 0x0, 0x8, 0x0),
 | |
|  *			   AMD_MODEL_RANGE(0x10, 0x9, 0x0, 0x9, 0x0));
 | |
|  */
 | |
| 
 | |
| #define AMD_LEGACY_ERRATUM(...)		{ -1, __VA_ARGS__, 0 }
 | |
| #define AMD_OSVW_ERRATUM(osvw_id, ...)	{ osvw_id, __VA_ARGS__, 0 }
 | |
| #define AMD_MODEL_RANGE(f, m_start, s_start, m_end, s_end) \
 | |
| 	((f << 24) | (m_start << 16) | (s_start << 12) | (m_end << 4) | (s_end))
 | |
| #define AMD_MODEL_RANGE_FAMILY(range)	(((range) >> 24) & 0xff)
 | |
| #define AMD_MODEL_RANGE_START(range)	(((range) >> 12) & 0xfff)
 | |
| #define AMD_MODEL_RANGE_END(range)	((range) & 0xfff)
 | |
| 
 | |
| static const int amd_erratum_400[] =
 | |
| 	AMD_OSVW_ERRATUM(1, AMD_MODEL_RANGE(0xf, 0x41, 0x2, 0xff, 0xf),
 | |
| 			    AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0xff, 0xf));
 | |
| 
 | |
| static const int amd_erratum_383[] =
 | |
| 	AMD_OSVW_ERRATUM(3, AMD_MODEL_RANGE(0x10, 0, 0, 0xff, 0xf));
 | |
| 
 | |
| 
 | |
| static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum)
 | |
| {
 | |
| 	int osvw_id = *erratum++;
 | |
| 	u32 range;
 | |
| 	u32 ms;
 | |
| 
 | |
| 	if (osvw_id >= 0 && osvw_id < 65536 &&
 | |
| 	    cpu_has(cpu, X86_FEATURE_OSVW)) {
 | |
| 		u64 osvw_len;
 | |
| 
 | |
| 		rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, osvw_len);
 | |
| 		if (osvw_id < osvw_len) {
 | |
| 			u64 osvw_bits;
 | |
| 
 | |
| 			rdmsrl(MSR_AMD64_OSVW_STATUS + (osvw_id >> 6),
 | |
| 			    osvw_bits);
 | |
| 			return osvw_bits & (1ULL << (osvw_id & 0x3f));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* OSVW unavailable or ID unknown, match family-model-stepping range */
 | |
| 	ms = (cpu->x86_model << 4) | cpu->x86_mask;
 | |
| 	while ((range = *erratum++))
 | |
| 		if ((cpu->x86 == AMD_MODEL_RANGE_FAMILY(range)) &&
 | |
| 		    (ms >= AMD_MODEL_RANGE_START(range)) &&
 | |
| 		    (ms <= AMD_MODEL_RANGE_END(range)))
 | |
| 			return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 |