 b0d436c739
			
		
	
	
	b0d436c739
	
	
	
		
			
			Address some of the trivial sparse warnings in arch/powerpc. Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
		
			
				
	
	
		
			1979 lines
		
	
	
	
		
			48 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1979 lines
		
	
	
	
		
			48 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Performance event support - powerpc architecture code
 | |
|  *
 | |
|  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/reg.h>
 | |
| #include <asm/pmc.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/firmware.h>
 | |
| #include <asm/ptrace.h>
 | |
| #include <asm/code-patching.h>
 | |
| 
 | |
| #define BHRB_MAX_ENTRIES	32
 | |
| #define BHRB_TARGET		0x0000000000000002
 | |
| #define BHRB_PREDICTION		0x0000000000000001
 | |
| #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
 | |
| 
 | |
| struct cpu_hw_events {
 | |
| 	int n_events;
 | |
| 	int n_percpu;
 | |
| 	int disabled;
 | |
| 	int n_added;
 | |
| 	int n_limited;
 | |
| 	u8  pmcs_enabled;
 | |
| 	struct perf_event *event[MAX_HWEVENTS];
 | |
| 	u64 events[MAX_HWEVENTS];
 | |
| 	unsigned int flags[MAX_HWEVENTS];
 | |
| 	unsigned long mmcr[3];
 | |
| 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
 | |
| 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
 | |
| 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
 | |
| 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
 | |
| 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
 | |
| 
 | |
| 	unsigned int group_flag;
 | |
| 	int n_txn_start;
 | |
| 
 | |
| 	/* BHRB bits */
 | |
| 	u64				bhrb_filter;	/* BHRB HW branch filter */
 | |
| 	int				bhrb_users;
 | |
| 	void				*bhrb_context;
 | |
| 	struct	perf_branch_stack	bhrb_stack;
 | |
| 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
 | |
| };
 | |
| 
 | |
| DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
 | |
| 
 | |
| struct power_pmu *ppmu;
 | |
| 
 | |
| /*
 | |
|  * Normally, to ignore kernel events we set the FCS (freeze counters
 | |
|  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 | |
|  * hypervisor bit set in the MSR, or if we are running on a processor
 | |
|  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 | |
|  * then we need to use the FCHV bit to ignore kernel events.
 | |
|  */
 | |
| static unsigned int freeze_events_kernel = MMCR0_FCS;
 | |
| 
 | |
| /*
 | |
|  * 32-bit doesn't have MMCRA but does have an MMCR2,
 | |
|  * and a few other names are different.
 | |
|  */
 | |
| #ifdef CONFIG_PPC32
 | |
| 
 | |
| #define MMCR0_FCHV		0
 | |
| #define MMCR0_PMCjCE		MMCR0_PMCnCE
 | |
| #define MMCR0_FC56		0
 | |
| #define MMCR0_PMAO		0
 | |
| #define MMCR0_EBE		0
 | |
| #define MMCR0_PMCC		0
 | |
| #define MMCR0_PMCC_U6		0
 | |
| 
 | |
| #define SPRN_MMCRA		SPRN_MMCR2
 | |
| #define MMCRA_SAMPLE_ENABLE	0
 | |
| 
 | |
| static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
 | |
| static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline void perf_read_regs(struct pt_regs *regs)
 | |
| {
 | |
| 	regs->result = 0;
 | |
| }
 | |
| static inline int perf_intr_is_nmi(struct pt_regs *regs)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int siar_valid(struct pt_regs *regs)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static bool is_ebb_event(struct perf_event *event) { return false; }
 | |
| static int ebb_event_check(struct perf_event *event) { return 0; }
 | |
| static void ebb_event_add(struct perf_event *event) { }
 | |
| static void ebb_switch_out(unsigned long mmcr0) { }
 | |
| static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
 | |
| {
 | |
| 	return mmcr0;
 | |
| }
 | |
| 
 | |
| static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
 | |
| static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
 | |
| void power_pmu_flush_branch_stack(void) {}
 | |
| static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
 | |
| #endif /* CONFIG_PPC32 */
 | |
| 
 | |
| static bool regs_use_siar(struct pt_regs *regs)
 | |
| {
 | |
| 	return !!regs->result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Things that are specific to 64-bit implementations.
 | |
|  */
 | |
| #ifdef CONFIG_PPC64
 | |
| 
 | |
| static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long mmcra = regs->dsisr;
 | |
| 
 | |
| 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
 | |
| 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
 | |
| 		if (slot > 1)
 | |
| 			return 4 * (slot - 1);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The user wants a data address recorded.
 | |
|  * If we're not doing instruction sampling, give them the SDAR
 | |
|  * (sampled data address).  If we are doing instruction sampling, then
 | |
|  * only give them the SDAR if it corresponds to the instruction
 | |
|  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 | |
|  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
 | |
|  */
 | |
| static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
 | |
| {
 | |
| 	unsigned long mmcra = regs->dsisr;
 | |
| 	bool sdar_valid;
 | |
| 
 | |
| 	if (ppmu->flags & PPMU_HAS_SIER)
 | |
| 		sdar_valid = regs->dar & SIER_SDAR_VALID;
 | |
| 	else {
 | |
| 		unsigned long sdsync;
 | |
| 
 | |
| 		if (ppmu->flags & PPMU_SIAR_VALID)
 | |
| 			sdsync = POWER7P_MMCRA_SDAR_VALID;
 | |
| 		else if (ppmu->flags & PPMU_ALT_SIPR)
 | |
| 			sdsync = POWER6_MMCRA_SDSYNC;
 | |
| 		else
 | |
| 			sdsync = MMCRA_SDSYNC;
 | |
| 
 | |
| 		sdar_valid = mmcra & sdsync;
 | |
| 	}
 | |
| 
 | |
| 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
 | |
| 		*addrp = mfspr(SPRN_SDAR);
 | |
| }
 | |
| 
 | |
| static bool regs_sihv(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long sihv = MMCRA_SIHV;
 | |
| 
 | |
| 	if (ppmu->flags & PPMU_HAS_SIER)
 | |
| 		return !!(regs->dar & SIER_SIHV);
 | |
| 
 | |
| 	if (ppmu->flags & PPMU_ALT_SIPR)
 | |
| 		sihv = POWER6_MMCRA_SIHV;
 | |
| 
 | |
| 	return !!(regs->dsisr & sihv);
 | |
| }
 | |
| 
 | |
| static bool regs_sipr(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long sipr = MMCRA_SIPR;
 | |
| 
 | |
| 	if (ppmu->flags & PPMU_HAS_SIER)
 | |
| 		return !!(regs->dar & SIER_SIPR);
 | |
| 
 | |
| 	if (ppmu->flags & PPMU_ALT_SIPR)
 | |
| 		sipr = POWER6_MMCRA_SIPR;
 | |
| 
 | |
| 	return !!(regs->dsisr & sipr);
 | |
| }
 | |
| 
 | |
| static inline u32 perf_flags_from_msr(struct pt_regs *regs)
 | |
| {
 | |
| 	if (regs->msr & MSR_PR)
 | |
| 		return PERF_RECORD_MISC_USER;
 | |
| 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
 | |
| 		return PERF_RECORD_MISC_HYPERVISOR;
 | |
| 	return PERF_RECORD_MISC_KERNEL;
 | |
| }
 | |
| 
 | |
| static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 | |
| {
 | |
| 	bool use_siar = regs_use_siar(regs);
 | |
| 
 | |
| 	if (!use_siar)
 | |
| 		return perf_flags_from_msr(regs);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we don't have flags in MMCRA, rather than using
 | |
| 	 * the MSR, we intuit the flags from the address in
 | |
| 	 * SIAR which should give slightly more reliable
 | |
| 	 * results
 | |
| 	 */
 | |
| 	if (ppmu->flags & PPMU_NO_SIPR) {
 | |
| 		unsigned long siar = mfspr(SPRN_SIAR);
 | |
| 		if (siar >= PAGE_OFFSET)
 | |
| 			return PERF_RECORD_MISC_KERNEL;
 | |
| 		return PERF_RECORD_MISC_USER;
 | |
| 	}
 | |
| 
 | |
| 	/* PR has priority over HV, so order below is important */
 | |
| 	if (regs_sipr(regs))
 | |
| 		return PERF_RECORD_MISC_USER;
 | |
| 
 | |
| 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
 | |
| 		return PERF_RECORD_MISC_HYPERVISOR;
 | |
| 
 | |
| 	return PERF_RECORD_MISC_KERNEL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Overload regs->dsisr to store MMCRA so we only need to read it once
 | |
|  * on each interrupt.
 | |
|  * Overload regs->dar to store SIER if we have it.
 | |
|  * Overload regs->result to specify whether we should use the MSR (result
 | |
|  * is zero) or the SIAR (result is non zero).
 | |
|  */
 | |
| static inline void perf_read_regs(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long mmcra = mfspr(SPRN_MMCRA);
 | |
| 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 | |
| 	int use_siar;
 | |
| 
 | |
| 	regs->dsisr = mmcra;
 | |
| 
 | |
| 	if (ppmu->flags & PPMU_HAS_SIER)
 | |
| 		regs->dar = mfspr(SPRN_SIER);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this isn't a PMU exception (eg a software event) the SIAR is
 | |
| 	 * not valid. Use pt_regs.
 | |
| 	 *
 | |
| 	 * If it is a marked event use the SIAR.
 | |
| 	 *
 | |
| 	 * If the PMU doesn't update the SIAR for non marked events use
 | |
| 	 * pt_regs.
 | |
| 	 *
 | |
| 	 * If the PMU has HV/PR flags then check to see if they
 | |
| 	 * place the exception in userspace. If so, use pt_regs. In
 | |
| 	 * continuous sampling mode the SIAR and the PMU exception are
 | |
| 	 * not synchronised, so they may be many instructions apart.
 | |
| 	 * This can result in confusing backtraces. We still want
 | |
| 	 * hypervisor samples as well as samples in the kernel with
 | |
| 	 * interrupts off hence the userspace check.
 | |
| 	 */
 | |
| 	if (TRAP(regs) != 0xf00)
 | |
| 		use_siar = 0;
 | |
| 	else if (marked)
 | |
| 		use_siar = 1;
 | |
| 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
 | |
| 		use_siar = 0;
 | |
| 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
 | |
| 		use_siar = 0;
 | |
| 	else
 | |
| 		use_siar = 1;
 | |
| 
 | |
| 	regs->result = use_siar;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 | |
|  * it as an NMI.
 | |
|  */
 | |
| static inline int perf_intr_is_nmi(struct pt_regs *regs)
 | |
| {
 | |
| 	return !regs->softe;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 | |
|  * must be sampled only if the SIAR-valid bit is set.
 | |
|  *
 | |
|  * For unmarked instructions and for processors that don't have the SIAR-Valid
 | |
|  * bit, assume that SIAR is valid.
 | |
|  */
 | |
| static inline int siar_valid(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long mmcra = regs->dsisr;
 | |
| 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 | |
| 
 | |
| 	if (marked) {
 | |
| 		if (ppmu->flags & PPMU_HAS_SIER)
 | |
| 			return regs->dar & SIER_SIAR_VALID;
 | |
| 
 | |
| 		if (ppmu->flags & PPMU_SIAR_VALID)
 | |
| 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Reset all possible BHRB entries */
 | |
| static void power_pmu_bhrb_reset(void)
 | |
| {
 | |
| 	asm volatile(PPC_CLRBHRB);
 | |
| }
 | |
| 
 | |
| static void power_pmu_bhrb_enable(struct perf_event *event)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 | |
| 
 | |
| 	if (!ppmu->bhrb_nr)
 | |
| 		return;
 | |
| 
 | |
| 	/* Clear BHRB if we changed task context to avoid data leaks */
 | |
| 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
 | |
| 		power_pmu_bhrb_reset();
 | |
| 		cpuhw->bhrb_context = event->ctx;
 | |
| 	}
 | |
| 	cpuhw->bhrb_users++;
 | |
| }
 | |
| 
 | |
| static void power_pmu_bhrb_disable(struct perf_event *event)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 | |
| 
 | |
| 	if (!ppmu->bhrb_nr)
 | |
| 		return;
 | |
| 
 | |
| 	cpuhw->bhrb_users--;
 | |
| 	WARN_ON_ONCE(cpuhw->bhrb_users < 0);
 | |
| 
 | |
| 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
 | |
| 		/* BHRB cannot be turned off when other
 | |
| 		 * events are active on the PMU.
 | |
| 		 */
 | |
| 
 | |
| 		/* avoid stale pointer */
 | |
| 		cpuhw->bhrb_context = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Called from ctxsw to prevent one process's branch entries to
 | |
|  * mingle with the other process's entries during context switch.
 | |
|  */
 | |
| void power_pmu_flush_branch_stack(void)
 | |
| {
 | |
| 	if (ppmu->bhrb_nr)
 | |
| 		power_pmu_bhrb_reset();
 | |
| }
 | |
| /* Calculate the to address for a branch */
 | |
| static __u64 power_pmu_bhrb_to(u64 addr)
 | |
| {
 | |
| 	unsigned int instr;
 | |
| 	int ret;
 | |
| 	__u64 target;
 | |
| 
 | |
| 	if (is_kernel_addr(addr))
 | |
| 		return branch_target((unsigned int *)addr);
 | |
| 
 | |
| 	/* Userspace: need copy instruction here then translate it */
 | |
| 	pagefault_disable();
 | |
| 	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
 | |
| 	if (ret) {
 | |
| 		pagefault_enable();
 | |
| 		return 0;
 | |
| 	}
 | |
| 	pagefault_enable();
 | |
| 
 | |
| 	target = branch_target(&instr);
 | |
| 	if ((!target) || (instr & BRANCH_ABSOLUTE))
 | |
| 		return target;
 | |
| 
 | |
| 	/* Translate relative branch target from kernel to user address */
 | |
| 	return target - (unsigned long)&instr + addr;
 | |
| }
 | |
| 
 | |
| /* Processing BHRB entries */
 | |
| void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
 | |
| {
 | |
| 	u64 val;
 | |
| 	u64 addr;
 | |
| 	int r_index, u_index, pred;
 | |
| 
 | |
| 	r_index = 0;
 | |
| 	u_index = 0;
 | |
| 	while (r_index < ppmu->bhrb_nr) {
 | |
| 		/* Assembly read function */
 | |
| 		val = read_bhrb(r_index++);
 | |
| 		if (!val)
 | |
| 			/* Terminal marker: End of valid BHRB entries */
 | |
| 			break;
 | |
| 		else {
 | |
| 			addr = val & BHRB_EA;
 | |
| 			pred = val & BHRB_PREDICTION;
 | |
| 
 | |
| 			if (!addr)
 | |
| 				/* invalid entry */
 | |
| 				continue;
 | |
| 
 | |
| 			/* Branches are read most recent first (ie. mfbhrb 0 is
 | |
| 			 * the most recent branch).
 | |
| 			 * There are two types of valid entries:
 | |
| 			 * 1) a target entry which is the to address of a
 | |
| 			 *    computed goto like a blr,bctr,btar.  The next
 | |
| 			 *    entry read from the bhrb will be branch
 | |
| 			 *    corresponding to this target (ie. the actual
 | |
| 			 *    blr/bctr/btar instruction).
 | |
| 			 * 2) a from address which is an actual branch.  If a
 | |
| 			 *    target entry proceeds this, then this is the
 | |
| 			 *    matching branch for that target.  If this is not
 | |
| 			 *    following a target entry, then this is a branch
 | |
| 			 *    where the target is given as an immediate field
 | |
| 			 *    in the instruction (ie. an i or b form branch).
 | |
| 			 *    In this case we need to read the instruction from
 | |
| 			 *    memory to determine the target/to address.
 | |
| 			 */
 | |
| 
 | |
| 			if (val & BHRB_TARGET) {
 | |
| 				/* Target branches use two entries
 | |
| 				 * (ie. computed gotos/XL form)
 | |
| 				 */
 | |
| 				cpuhw->bhrb_entries[u_index].to = addr;
 | |
| 				cpuhw->bhrb_entries[u_index].mispred = pred;
 | |
| 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
 | |
| 
 | |
| 				/* Get from address in next entry */
 | |
| 				val = read_bhrb(r_index++);
 | |
| 				addr = val & BHRB_EA;
 | |
| 				if (val & BHRB_TARGET) {
 | |
| 					/* Shouldn't have two targets in a
 | |
| 					   row.. Reset index and try again */
 | |
| 					r_index--;
 | |
| 					addr = 0;
 | |
| 				}
 | |
| 				cpuhw->bhrb_entries[u_index].from = addr;
 | |
| 			} else {
 | |
| 				/* Branches to immediate field 
 | |
| 				   (ie I or B form) */
 | |
| 				cpuhw->bhrb_entries[u_index].from = addr;
 | |
| 				cpuhw->bhrb_entries[u_index].to =
 | |
| 					power_pmu_bhrb_to(addr);
 | |
| 				cpuhw->bhrb_entries[u_index].mispred = pred;
 | |
| 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
 | |
| 			}
 | |
| 			u_index++;
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 	cpuhw->bhrb_stack.nr = u_index;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static bool is_ebb_event(struct perf_event *event)
 | |
| {
 | |
| 	/*
 | |
| 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
 | |
| 	 * check that the PMU supports EBB, meaning those that don't can still
 | |
| 	 * use bit 63 of the event code for something else if they wish.
 | |
| 	 */
 | |
| 	return (ppmu->flags & PPMU_EBB) &&
 | |
| 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
 | |
| }
 | |
| 
 | |
| static int ebb_event_check(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *leader = event->group_leader;
 | |
| 
 | |
| 	/* Event and group leader must agree on EBB */
 | |
| 	if (is_ebb_event(leader) != is_ebb_event(event))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (is_ebb_event(event)) {
 | |
| 		if (!(event->attach_state & PERF_ATTACH_TASK))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (!leader->attr.pinned || !leader->attr.exclusive)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (event->attr.inherit || event->attr.sample_period ||
 | |
| 		    event->attr.enable_on_exec || event->attr.freq)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ebb_event_add(struct perf_event *event)
 | |
| {
 | |
| 	if (!is_ebb_event(event) || current->thread.used_ebb)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * IFF this is the first time we've added an EBB event, set
 | |
| 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
 | |
| 	 * userspace. We need this so that we can context switch while
 | |
| 	 * userspace is in the EBB handler (where PMXE is 0).
 | |
| 	 */
 | |
| 	current->thread.used_ebb = 1;
 | |
| 	current->thread.mmcr0 |= MMCR0_PMXE;
 | |
| }
 | |
| 
 | |
| static void ebb_switch_out(unsigned long mmcr0)
 | |
| {
 | |
| 	if (!(mmcr0 & MMCR0_EBE))
 | |
| 		return;
 | |
| 
 | |
| 	current->thread.siar  = mfspr(SPRN_SIAR);
 | |
| 	current->thread.sier  = mfspr(SPRN_SIER);
 | |
| 	current->thread.sdar  = mfspr(SPRN_SDAR);
 | |
| 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
 | |
| 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
 | |
| }
 | |
| 
 | |
| static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
 | |
| {
 | |
| 	if (!ebb)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Enable EBB and read/write to all 6 PMCs for userspace */
 | |
| 	mmcr0 |= MMCR0_EBE | MMCR0_PMCC_U6;
 | |
| 
 | |
| 	/* Add any bits from the user reg, FC or PMAO */
 | |
| 	mmcr0 |= current->thread.mmcr0;
 | |
| 
 | |
| 	/* Be careful not to set PMXE if userspace had it cleared */
 | |
| 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
 | |
| 		mmcr0 &= ~MMCR0_PMXE;
 | |
| 
 | |
| 	mtspr(SPRN_SIAR, current->thread.siar);
 | |
| 	mtspr(SPRN_SIER, current->thread.sier);
 | |
| 	mtspr(SPRN_SDAR, current->thread.sdar);
 | |
| 	mtspr(SPRN_MMCR2, current->thread.mmcr2);
 | |
| out:
 | |
| 	return mmcr0;
 | |
| }
 | |
| #endif /* CONFIG_PPC64 */
 | |
| 
 | |
| static void perf_event_interrupt(struct pt_regs *regs);
 | |
| 
 | |
| void perf_event_print_debug(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read one performance monitor counter (PMC).
 | |
|  */
 | |
| static unsigned long read_pmc(int idx)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	switch (idx) {
 | |
| 	case 1:
 | |
| 		val = mfspr(SPRN_PMC1);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		val = mfspr(SPRN_PMC2);
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		val = mfspr(SPRN_PMC3);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		val = mfspr(SPRN_PMC4);
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		val = mfspr(SPRN_PMC5);
 | |
| 		break;
 | |
| 	case 6:
 | |
| 		val = mfspr(SPRN_PMC6);
 | |
| 		break;
 | |
| #ifdef CONFIG_PPC64
 | |
| 	case 7:
 | |
| 		val = mfspr(SPRN_PMC7);
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		val = mfspr(SPRN_PMC8);
 | |
| 		break;
 | |
| #endif /* CONFIG_PPC64 */
 | |
| 	default:
 | |
| 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 | |
| 		val = 0;
 | |
| 	}
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write one PMC.
 | |
|  */
 | |
| static void write_pmc(int idx, unsigned long val)
 | |
| {
 | |
| 	switch (idx) {
 | |
| 	case 1:
 | |
| 		mtspr(SPRN_PMC1, val);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		mtspr(SPRN_PMC2, val);
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		mtspr(SPRN_PMC3, val);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		mtspr(SPRN_PMC4, val);
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		mtspr(SPRN_PMC5, val);
 | |
| 		break;
 | |
| 	case 6:
 | |
| 		mtspr(SPRN_PMC6, val);
 | |
| 		break;
 | |
| #ifdef CONFIG_PPC64
 | |
| 	case 7:
 | |
| 		mtspr(SPRN_PMC7, val);
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		mtspr(SPRN_PMC8, val);
 | |
| 		break;
 | |
| #endif /* CONFIG_PPC64 */
 | |
| 	default:
 | |
| 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if a set of events can all go on the PMU at once.
 | |
|  * If they can't, this will look at alternative codes for the events
 | |
|  * and see if any combination of alternative codes is feasible.
 | |
|  * The feasible set is returned in event_id[].
 | |
|  */
 | |
| static int power_check_constraints(struct cpu_hw_events *cpuhw,
 | |
| 				   u64 event_id[], unsigned int cflags[],
 | |
| 				   int n_ev)
 | |
| {
 | |
| 	unsigned long mask, value, nv;
 | |
| 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
 | |
| 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
 | |
| 	int i, j;
 | |
| 	unsigned long addf = ppmu->add_fields;
 | |
| 	unsigned long tadd = ppmu->test_adder;
 | |
| 
 | |
| 	if (n_ev > ppmu->n_counter)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* First see if the events will go on as-is */
 | |
| 	for (i = 0; i < n_ev; ++i) {
 | |
| 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
 | |
| 		    && !ppmu->limited_pmc_event(event_id[i])) {
 | |
| 			ppmu->get_alternatives(event_id[i], cflags[i],
 | |
| 					       cpuhw->alternatives[i]);
 | |
| 			event_id[i] = cpuhw->alternatives[i][0];
 | |
| 		}
 | |
| 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
 | |
| 					 &cpuhw->avalues[i][0]))
 | |
| 			return -1;
 | |
| 	}
 | |
| 	value = mask = 0;
 | |
| 	for (i = 0; i < n_ev; ++i) {
 | |
| 		nv = (value | cpuhw->avalues[i][0]) +
 | |
| 			(value & cpuhw->avalues[i][0] & addf);
 | |
| 		if ((((nv + tadd) ^ value) & mask) != 0 ||
 | |
| 		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
 | |
| 		     cpuhw->amasks[i][0]) != 0)
 | |
| 			break;
 | |
| 		value = nv;
 | |
| 		mask |= cpuhw->amasks[i][0];
 | |
| 	}
 | |
| 	if (i == n_ev)
 | |
| 		return 0;	/* all OK */
 | |
| 
 | |
| 	/* doesn't work, gather alternatives... */
 | |
| 	if (!ppmu->get_alternatives)
 | |
| 		return -1;
 | |
| 	for (i = 0; i < n_ev; ++i) {
 | |
| 		choice[i] = 0;
 | |
| 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
 | |
| 						  cpuhw->alternatives[i]);
 | |
| 		for (j = 1; j < n_alt[i]; ++j)
 | |
| 			ppmu->get_constraint(cpuhw->alternatives[i][j],
 | |
| 					     &cpuhw->amasks[i][j],
 | |
| 					     &cpuhw->avalues[i][j]);
 | |
| 	}
 | |
| 
 | |
| 	/* enumerate all possibilities and see if any will work */
 | |
| 	i = 0;
 | |
| 	j = -1;
 | |
| 	value = mask = nv = 0;
 | |
| 	while (i < n_ev) {
 | |
| 		if (j >= 0) {
 | |
| 			/* we're backtracking, restore context */
 | |
| 			value = svalues[i];
 | |
| 			mask = smasks[i];
 | |
| 			j = choice[i];
 | |
| 		}
 | |
| 		/*
 | |
| 		 * See if any alternative k for event_id i,
 | |
| 		 * where k > j, will satisfy the constraints.
 | |
| 		 */
 | |
| 		while (++j < n_alt[i]) {
 | |
| 			nv = (value | cpuhw->avalues[i][j]) +
 | |
| 				(value & cpuhw->avalues[i][j] & addf);
 | |
| 			if ((((nv + tadd) ^ value) & mask) == 0 &&
 | |
| 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
 | |
| 			     & cpuhw->amasks[i][j]) == 0)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (j >= n_alt[i]) {
 | |
| 			/*
 | |
| 			 * No feasible alternative, backtrack
 | |
| 			 * to event_id i-1 and continue enumerating its
 | |
| 			 * alternatives from where we got up to.
 | |
| 			 */
 | |
| 			if (--i < 0)
 | |
| 				return -1;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Found a feasible alternative for event_id i,
 | |
| 			 * remember where we got up to with this event_id,
 | |
| 			 * go on to the next event_id, and start with
 | |
| 			 * the first alternative for it.
 | |
| 			 */
 | |
| 			choice[i] = j;
 | |
| 			svalues[i] = value;
 | |
| 			smasks[i] = mask;
 | |
| 			value = nv;
 | |
| 			mask |= cpuhw->amasks[i][j];
 | |
| 			++i;
 | |
| 			j = -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* OK, we have a feasible combination, tell the caller the solution */
 | |
| 	for (i = 0; i < n_ev; ++i)
 | |
| 		event_id[i] = cpuhw->alternatives[i][choice[i]];
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if newly-added events have consistent settings for
 | |
|  * exclude_{user,kernel,hv} with each other and any previously
 | |
|  * added events.
 | |
|  */
 | |
| static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
 | |
| 			  int n_prev, int n_new)
 | |
| {
 | |
| 	int eu = 0, ek = 0, eh = 0;
 | |
| 	int i, n, first;
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	n = n_prev + n_new;
 | |
| 	if (n <= 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	first = 1;
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
 | |
| 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
 | |
| 			continue;
 | |
| 		}
 | |
| 		event = ctrs[i];
 | |
| 		if (first) {
 | |
| 			eu = event->attr.exclude_user;
 | |
| 			ek = event->attr.exclude_kernel;
 | |
| 			eh = event->attr.exclude_hv;
 | |
| 			first = 0;
 | |
| 		} else if (event->attr.exclude_user != eu ||
 | |
| 			   event->attr.exclude_kernel != ek ||
 | |
| 			   event->attr.exclude_hv != eh) {
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (eu || ek || eh)
 | |
| 		for (i = 0; i < n; ++i)
 | |
| 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
 | |
| 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 check_and_compute_delta(u64 prev, u64 val)
 | |
| {
 | |
| 	u64 delta = (val - prev) & 0xfffffffful;
 | |
| 
 | |
| 	/*
 | |
| 	 * POWER7 can roll back counter values, if the new value is smaller
 | |
| 	 * than the previous value it will cause the delta and the counter to
 | |
| 	 * have bogus values unless we rolled a counter over.  If a coutner is
 | |
| 	 * rolled back, it will be smaller, but within 256, which is the maximum
 | |
| 	 * number of events to rollback at once.  If we dectect a rollback
 | |
| 	 * return 0.  This can lead to a small lack of precision in the
 | |
| 	 * counters.
 | |
| 	 */
 | |
| 	if (prev > val && (prev - val) < 256)
 | |
| 		delta = 0;
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| 
 | |
| static void power_pmu_read(struct perf_event *event)
 | |
| {
 | |
| 	s64 val, delta, prev;
 | |
| 
 | |
| 	if (event->hw.state & PERF_HES_STOPPED)
 | |
| 		return;
 | |
| 
 | |
| 	if (!event->hw.idx)
 | |
| 		return;
 | |
| 
 | |
| 	if (is_ebb_event(event)) {
 | |
| 		val = read_pmc(event->hw.idx);
 | |
| 		local64_set(&event->hw.prev_count, val);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Performance monitor interrupts come even when interrupts
 | |
| 	 * are soft-disabled, as long as interrupts are hard-enabled.
 | |
| 	 * Therefore we treat them like NMIs.
 | |
| 	 */
 | |
| 	do {
 | |
| 		prev = local64_read(&event->hw.prev_count);
 | |
| 		barrier();
 | |
| 		val = read_pmc(event->hw.idx);
 | |
| 		delta = check_and_compute_delta(prev, val);
 | |
| 		if (!delta)
 | |
| 			return;
 | |
| 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
 | |
| 
 | |
| 	local64_add(delta, &event->count);
 | |
| 	local64_sub(delta, &event->hw.period_left);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On some machines, PMC5 and PMC6 can't be written, don't respect
 | |
|  * the freeze conditions, and don't generate interrupts.  This tells
 | |
|  * us if `event' is using such a PMC.
 | |
|  */
 | |
| static int is_limited_pmc(int pmcnum)
 | |
| {
 | |
| 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
 | |
| 		&& (pmcnum == 5 || pmcnum == 6);
 | |
| }
 | |
| 
 | |
| static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
 | |
| 				    unsigned long pmc5, unsigned long pmc6)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 	u64 val, prev, delta;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < cpuhw->n_limited; ++i) {
 | |
| 		event = cpuhw->limited_counter[i];
 | |
| 		if (!event->hw.idx)
 | |
| 			continue;
 | |
| 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
 | |
| 		prev = local64_read(&event->hw.prev_count);
 | |
| 		event->hw.idx = 0;
 | |
| 		delta = check_and_compute_delta(prev, val);
 | |
| 		if (delta)
 | |
| 			local64_add(delta, &event->count);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
 | |
| 				  unsigned long pmc5, unsigned long pmc6)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 	u64 val, prev;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < cpuhw->n_limited; ++i) {
 | |
| 		event = cpuhw->limited_counter[i];
 | |
| 		event->hw.idx = cpuhw->limited_hwidx[i];
 | |
| 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
 | |
| 		prev = local64_read(&event->hw.prev_count);
 | |
| 		if (check_and_compute_delta(prev, val))
 | |
| 			local64_set(&event->hw.prev_count, val);
 | |
| 		perf_event_update_userpage(event);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Since limited events don't respect the freeze conditions, we
 | |
|  * have to read them immediately after freezing or unfreezing the
 | |
|  * other events.  We try to keep the values from the limited
 | |
|  * events as consistent as possible by keeping the delay (in
 | |
|  * cycles and instructions) between freezing/unfreezing and reading
 | |
|  * the limited events as small and consistent as possible.
 | |
|  * Therefore, if any limited events are in use, we read them
 | |
|  * both, and always in the same order, to minimize variability,
 | |
|  * and do it inside the same asm that writes MMCR0.
 | |
|  */
 | |
| static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
 | |
| {
 | |
| 	unsigned long pmc5, pmc6;
 | |
| 
 | |
| 	if (!cpuhw->n_limited) {
 | |
| 		mtspr(SPRN_MMCR0, mmcr0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
 | |
| 	 * To ensure we don't get a performance monitor interrupt
 | |
| 	 * between writing MMCR0 and freezing/thawing the limited
 | |
| 	 * events, we first write MMCR0 with the event overflow
 | |
| 	 * interrupt enable bits turned off.
 | |
| 	 */
 | |
| 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
 | |
| 		     : "=&r" (pmc5), "=&r" (pmc6)
 | |
| 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
 | |
| 		       "i" (SPRN_MMCR0),
 | |
| 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
 | |
| 
 | |
| 	if (mmcr0 & MMCR0_FC)
 | |
| 		freeze_limited_counters(cpuhw, pmc5, pmc6);
 | |
| 	else
 | |
| 		thaw_limited_counters(cpuhw, pmc5, pmc6);
 | |
| 
 | |
| 	/*
 | |
| 	 * Write the full MMCR0 including the event overflow interrupt
 | |
| 	 * enable bits, if necessary.
 | |
| 	 */
 | |
| 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
 | |
| 		mtspr(SPRN_MMCR0, mmcr0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Disable all events to prevent PMU interrupts and to allow
 | |
|  * events to be added or removed.
 | |
|  */
 | |
| static void power_pmu_disable(struct pmu *pmu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuhw;
 | |
| 	unsigned long flags, mmcr0, val;
 | |
| 
 | |
| 	if (!ppmu)
 | |
| 		return;
 | |
| 	local_irq_save(flags);
 | |
| 	cpuhw = &__get_cpu_var(cpu_hw_events);
 | |
| 
 | |
| 	if (!cpuhw->disabled) {
 | |
| 		/*
 | |
| 		 * Check if we ever enabled the PMU on this cpu.
 | |
| 		 */
 | |
| 		if (!cpuhw->pmcs_enabled) {
 | |
| 			ppc_enable_pmcs();
 | |
| 			cpuhw->pmcs_enabled = 1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Set the 'freeze counters' bit, clear EBE/PMCC/PMAO/FC56.
 | |
| 		 */
 | |
| 		val  = mmcr0 = mfspr(SPRN_MMCR0);
 | |
| 		val |= MMCR0_FC;
 | |
| 		val &= ~(MMCR0_EBE | MMCR0_PMCC | MMCR0_PMAO | MMCR0_FC56);
 | |
| 
 | |
| 		/*
 | |
| 		 * The barrier is to make sure the mtspr has been
 | |
| 		 * executed and the PMU has frozen the events etc.
 | |
| 		 * before we return.
 | |
| 		 */
 | |
| 		write_mmcr0(cpuhw, val);
 | |
| 		mb();
 | |
| 
 | |
| 		/*
 | |
| 		 * Disable instruction sampling if it was enabled
 | |
| 		 */
 | |
| 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
 | |
| 			mtspr(SPRN_MMCRA,
 | |
| 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
 | |
| 			mb();
 | |
| 		}
 | |
| 
 | |
| 		cpuhw->disabled = 1;
 | |
| 		cpuhw->n_added = 0;
 | |
| 
 | |
| 		ebb_switch_out(mmcr0);
 | |
| 	}
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Re-enable all events if disable == 0.
 | |
|  * If we were previously disabled and events were added, then
 | |
|  * put the new config on the PMU.
 | |
|  */
 | |
| static void power_pmu_enable(struct pmu *pmu)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 	struct cpu_hw_events *cpuhw;
 | |
| 	unsigned long flags;
 | |
| 	long i;
 | |
| 	unsigned long val, mmcr0;
 | |
| 	s64 left;
 | |
| 	unsigned int hwc_index[MAX_HWEVENTS];
 | |
| 	int n_lim;
 | |
| 	int idx;
 | |
| 	bool ebb;
 | |
| 
 | |
| 	if (!ppmu)
 | |
| 		return;
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	cpuhw = &__get_cpu_var(cpu_hw_events);
 | |
| 	if (!cpuhw->disabled)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (cpuhw->n_events == 0) {
 | |
| 		ppc_set_pmu_inuse(0);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	cpuhw->disabled = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * EBB requires an exclusive group and all events must have the EBB
 | |
| 	 * flag set, or not set, so we can just check a single event. Also we
 | |
| 	 * know we have at least one event.
 | |
| 	 */
 | |
| 	ebb = is_ebb_event(cpuhw->event[0]);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we didn't change anything, or only removed events,
 | |
| 	 * no need to recalculate MMCR* settings and reset the PMCs.
 | |
| 	 * Just reenable the PMU with the current MMCR* settings
 | |
| 	 * (possibly updated for removal of events).
 | |
| 	 */
 | |
| 	if (!cpuhw->n_added) {
 | |
| 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
 | |
| 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
 | |
| 		goto out_enable;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute MMCR* values for the new set of events
 | |
| 	 */
 | |
| 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
 | |
| 			       cpuhw->mmcr)) {
 | |
| 		/* shouldn't ever get here */
 | |
| 		printk(KERN_ERR "oops compute_mmcr failed\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Add in MMCR0 freeze bits corresponding to the
 | |
| 	 * attr.exclude_* bits for the first event.
 | |
| 	 * We have already checked that all events have the
 | |
| 	 * same values for these bits as the first event.
 | |
| 	 */
 | |
| 	event = cpuhw->event[0];
 | |
| 	if (event->attr.exclude_user)
 | |
| 		cpuhw->mmcr[0] |= MMCR0_FCP;
 | |
| 	if (event->attr.exclude_kernel)
 | |
| 		cpuhw->mmcr[0] |= freeze_events_kernel;
 | |
| 	if (event->attr.exclude_hv)
 | |
| 		cpuhw->mmcr[0] |= MMCR0_FCHV;
 | |
| 
 | |
| 	/*
 | |
| 	 * Write the new configuration to MMCR* with the freeze
 | |
| 	 * bit set and set the hardware events to their initial values.
 | |
| 	 * Then unfreeze the events.
 | |
| 	 */
 | |
| 	ppc_set_pmu_inuse(1);
 | |
| 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
 | |
| 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
 | |
| 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
 | |
| 				| MMCR0_FC);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read off any pre-existing events that need to move
 | |
| 	 * to another PMC.
 | |
| 	 */
 | |
| 	for (i = 0; i < cpuhw->n_events; ++i) {
 | |
| 		event = cpuhw->event[i];
 | |
| 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
 | |
| 			power_pmu_read(event);
 | |
| 			write_pmc(event->hw.idx, 0);
 | |
| 			event->hw.idx = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the PMCs for all the new and moved events.
 | |
| 	 */
 | |
| 	cpuhw->n_limited = n_lim = 0;
 | |
| 	for (i = 0; i < cpuhw->n_events; ++i) {
 | |
| 		event = cpuhw->event[i];
 | |
| 		if (event->hw.idx)
 | |
| 			continue;
 | |
| 		idx = hwc_index[i] + 1;
 | |
| 		if (is_limited_pmc(idx)) {
 | |
| 			cpuhw->limited_counter[n_lim] = event;
 | |
| 			cpuhw->limited_hwidx[n_lim] = idx;
 | |
| 			++n_lim;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (ebb)
 | |
| 			val = local64_read(&event->hw.prev_count);
 | |
| 		else {
 | |
| 			val = 0;
 | |
| 			if (event->hw.sample_period) {
 | |
| 				left = local64_read(&event->hw.period_left);
 | |
| 				if (left < 0x80000000L)
 | |
| 					val = 0x80000000L - left;
 | |
| 			}
 | |
| 			local64_set(&event->hw.prev_count, val);
 | |
| 		}
 | |
| 
 | |
| 		event->hw.idx = idx;
 | |
| 		if (event->hw.state & PERF_HES_STOPPED)
 | |
| 			val = 0;
 | |
| 		write_pmc(idx, val);
 | |
| 
 | |
| 		perf_event_update_userpage(event);
 | |
| 	}
 | |
| 	cpuhw->n_limited = n_lim;
 | |
| 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
 | |
| 
 | |
|  out_enable:
 | |
| 	mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]);
 | |
| 
 | |
| 	mb();
 | |
| 	write_mmcr0(cpuhw, mmcr0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable instruction sampling if necessary
 | |
| 	 */
 | |
| 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
 | |
| 		mb();
 | |
| 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
 | |
| 	}
 | |
| 
 | |
|  out:
 | |
| 	if (cpuhw->bhrb_users)
 | |
| 		ppmu->config_bhrb(cpuhw->bhrb_filter);
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static int collect_events(struct perf_event *group, int max_count,
 | |
| 			  struct perf_event *ctrs[], u64 *events,
 | |
| 			  unsigned int *flags)
 | |
| {
 | |
| 	int n = 0;
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	if (!is_software_event(group)) {
 | |
| 		if (n >= max_count)
 | |
| 			return -1;
 | |
| 		ctrs[n] = group;
 | |
| 		flags[n] = group->hw.event_base;
 | |
| 		events[n++] = group->hw.config;
 | |
| 	}
 | |
| 	list_for_each_entry(event, &group->sibling_list, group_entry) {
 | |
| 		if (!is_software_event(event) &&
 | |
| 		    event->state != PERF_EVENT_STATE_OFF) {
 | |
| 			if (n >= max_count)
 | |
| 				return -1;
 | |
| 			ctrs[n] = event;
 | |
| 			flags[n] = event->hw.event_base;
 | |
| 			events[n++] = event->hw.config;
 | |
| 		}
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a event to the PMU.
 | |
|  * If all events are not already frozen, then we disable and
 | |
|  * re-enable the PMU in order to get hw_perf_enable to do the
 | |
|  * actual work of reconfiguring the PMU.
 | |
|  */
 | |
| static int power_pmu_add(struct perf_event *event, int ef_flags)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuhw;
 | |
| 	unsigned long flags;
 | |
| 	int n0;
 | |
| 	int ret = -EAGAIN;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	perf_pmu_disable(event->pmu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Add the event to the list (if there is room)
 | |
| 	 * and check whether the total set is still feasible.
 | |
| 	 */
 | |
| 	cpuhw = &__get_cpu_var(cpu_hw_events);
 | |
| 	n0 = cpuhw->n_events;
 | |
| 	if (n0 >= ppmu->n_counter)
 | |
| 		goto out;
 | |
| 	cpuhw->event[n0] = event;
 | |
| 	cpuhw->events[n0] = event->hw.config;
 | |
| 	cpuhw->flags[n0] = event->hw.event_base;
 | |
| 
 | |
| 	/*
 | |
| 	 * This event may have been disabled/stopped in record_and_restart()
 | |
| 	 * because we exceeded the ->event_limit. If re-starting the event,
 | |
| 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
 | |
| 	 * notification is re-enabled.
 | |
| 	 */
 | |
| 	if (!(ef_flags & PERF_EF_START))
 | |
| 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 | |
| 	else
 | |
| 		event->hw.state = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If group events scheduling transaction was started,
 | |
| 	 * skip the schedulability test here, it will be performed
 | |
| 	 * at commit time(->commit_txn) as a whole
 | |
| 	 */
 | |
| 	if (cpuhw->group_flag & PERF_EVENT_TXN)
 | |
| 		goto nocheck;
 | |
| 
 | |
| 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
 | |
| 		goto out;
 | |
| 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
 | |
| 		goto out;
 | |
| 	event->hw.config = cpuhw->events[n0];
 | |
| 
 | |
| nocheck:
 | |
| 	ebb_event_add(event);
 | |
| 
 | |
| 	++cpuhw->n_events;
 | |
| 	++cpuhw->n_added;
 | |
| 
 | |
| 	ret = 0;
 | |
|  out:
 | |
| 	if (has_branch_stack(event)) {
 | |
| 		power_pmu_bhrb_enable(event);
 | |
| 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
 | |
| 					event->attr.branch_sample_type);
 | |
| 	}
 | |
| 
 | |
| 	perf_pmu_enable(event->pmu);
 | |
| 	local_irq_restore(flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a event from the PMU.
 | |
|  */
 | |
| static void power_pmu_del(struct perf_event *event, int ef_flags)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuhw;
 | |
| 	long i;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	perf_pmu_disable(event->pmu);
 | |
| 
 | |
| 	power_pmu_read(event);
 | |
| 
 | |
| 	cpuhw = &__get_cpu_var(cpu_hw_events);
 | |
| 	for (i = 0; i < cpuhw->n_events; ++i) {
 | |
| 		if (event == cpuhw->event[i]) {
 | |
| 			while (++i < cpuhw->n_events) {
 | |
| 				cpuhw->event[i-1] = cpuhw->event[i];
 | |
| 				cpuhw->events[i-1] = cpuhw->events[i];
 | |
| 				cpuhw->flags[i-1] = cpuhw->flags[i];
 | |
| 			}
 | |
| 			--cpuhw->n_events;
 | |
| 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
 | |
| 			if (event->hw.idx) {
 | |
| 				write_pmc(event->hw.idx, 0);
 | |
| 				event->hw.idx = 0;
 | |
| 			}
 | |
| 			perf_event_update_userpage(event);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	for (i = 0; i < cpuhw->n_limited; ++i)
 | |
| 		if (event == cpuhw->limited_counter[i])
 | |
| 			break;
 | |
| 	if (i < cpuhw->n_limited) {
 | |
| 		while (++i < cpuhw->n_limited) {
 | |
| 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
 | |
| 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
 | |
| 		}
 | |
| 		--cpuhw->n_limited;
 | |
| 	}
 | |
| 	if (cpuhw->n_events == 0) {
 | |
| 		/* disable exceptions if no events are running */
 | |
| 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
 | |
| 	}
 | |
| 
 | |
| 	if (has_branch_stack(event))
 | |
| 		power_pmu_bhrb_disable(event);
 | |
| 
 | |
| 	perf_pmu_enable(event->pmu);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * POWER-PMU does not support disabling individual counters, hence
 | |
|  * program their cycle counter to their max value and ignore the interrupts.
 | |
|  */
 | |
| 
 | |
| static void power_pmu_start(struct perf_event *event, int ef_flags)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	s64 left;
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	if (!event->hw.idx || !event->hw.sample_period)
 | |
| 		return;
 | |
| 
 | |
| 	if (!(event->hw.state & PERF_HES_STOPPED))
 | |
| 		return;
 | |
| 
 | |
| 	if (ef_flags & PERF_EF_RELOAD)
 | |
| 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	perf_pmu_disable(event->pmu);
 | |
| 
 | |
| 	event->hw.state = 0;
 | |
| 	left = local64_read(&event->hw.period_left);
 | |
| 
 | |
| 	val = 0;
 | |
| 	if (left < 0x80000000L)
 | |
| 		val = 0x80000000L - left;
 | |
| 
 | |
| 	write_pmc(event->hw.idx, val);
 | |
| 
 | |
| 	perf_event_update_userpage(event);
 | |
| 	perf_pmu_enable(event->pmu);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static void power_pmu_stop(struct perf_event *event, int ef_flags)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!event->hw.idx || !event->hw.sample_period)
 | |
| 		return;
 | |
| 
 | |
| 	if (event->hw.state & PERF_HES_STOPPED)
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	perf_pmu_disable(event->pmu);
 | |
| 
 | |
| 	power_pmu_read(event);
 | |
| 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 | |
| 	write_pmc(event->hw.idx, 0);
 | |
| 
 | |
| 	perf_event_update_userpage(event);
 | |
| 	perf_pmu_enable(event->pmu);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start group events scheduling transaction
 | |
|  * Set the flag to make pmu::enable() not perform the
 | |
|  * schedulability test, it will be performed at commit time
 | |
|  */
 | |
| void power_pmu_start_txn(struct pmu *pmu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 | |
| 
 | |
| 	perf_pmu_disable(pmu);
 | |
| 	cpuhw->group_flag |= PERF_EVENT_TXN;
 | |
| 	cpuhw->n_txn_start = cpuhw->n_events;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stop group events scheduling transaction
 | |
|  * Clear the flag and pmu::enable() will perform the
 | |
|  * schedulability test.
 | |
|  */
 | |
| void power_pmu_cancel_txn(struct pmu *pmu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 | |
| 
 | |
| 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
 | |
| 	perf_pmu_enable(pmu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Commit group events scheduling transaction
 | |
|  * Perform the group schedulability test as a whole
 | |
|  * Return 0 if success
 | |
|  */
 | |
| int power_pmu_commit_txn(struct pmu *pmu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuhw;
 | |
| 	long i, n;
 | |
| 
 | |
| 	if (!ppmu)
 | |
| 		return -EAGAIN;
 | |
| 	cpuhw = &__get_cpu_var(cpu_hw_events);
 | |
| 	n = cpuhw->n_events;
 | |
| 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
 | |
| 		return -EAGAIN;
 | |
| 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
 | |
| 	if (i < 0)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	for (i = cpuhw->n_txn_start; i < n; ++i)
 | |
| 		cpuhw->event[i]->hw.config = cpuhw->events[i];
 | |
| 
 | |
| 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
 | |
| 	perf_pmu_enable(pmu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 1 if we might be able to put event on a limited PMC,
 | |
|  * or 0 if not.
 | |
|  * A event can only go on a limited PMC if it counts something
 | |
|  * that a limited PMC can count, doesn't require interrupts, and
 | |
|  * doesn't exclude any processor mode.
 | |
|  */
 | |
| static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
 | |
| 				 unsigned int flags)
 | |
| {
 | |
| 	int n;
 | |
| 	u64 alt[MAX_EVENT_ALTERNATIVES];
 | |
| 
 | |
| 	if (event->attr.exclude_user
 | |
| 	    || event->attr.exclude_kernel
 | |
| 	    || event->attr.exclude_hv
 | |
| 	    || event->attr.sample_period)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (ppmu->limited_pmc_event(ev))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * The requested event_id isn't on a limited PMC already;
 | |
| 	 * see if any alternative code goes on a limited PMC.
 | |
| 	 */
 | |
| 	if (!ppmu->get_alternatives)
 | |
| 		return 0;
 | |
| 
 | |
| 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
 | |
| 	n = ppmu->get_alternatives(ev, flags, alt);
 | |
| 
 | |
| 	return n > 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find an alternative event_id that goes on a normal PMC, if possible,
 | |
|  * and return the event_id code, or 0 if there is no such alternative.
 | |
|  * (Note: event_id code 0 is "don't count" on all machines.)
 | |
|  */
 | |
| static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
 | |
| {
 | |
| 	u64 alt[MAX_EVENT_ALTERNATIVES];
 | |
| 	int n;
 | |
| 
 | |
| 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
 | |
| 	n = ppmu->get_alternatives(ev, flags, alt);
 | |
| 	if (!n)
 | |
| 		return 0;
 | |
| 	return alt[0];
 | |
| }
 | |
| 
 | |
| /* Number of perf_events counting hardware events */
 | |
| static atomic_t num_events;
 | |
| /* Used to avoid races in calling reserve/release_pmc_hardware */
 | |
| static DEFINE_MUTEX(pmc_reserve_mutex);
 | |
| 
 | |
| /*
 | |
|  * Release the PMU if this is the last perf_event.
 | |
|  */
 | |
| static void hw_perf_event_destroy(struct perf_event *event)
 | |
| {
 | |
| 	if (!atomic_add_unless(&num_events, -1, 1)) {
 | |
| 		mutex_lock(&pmc_reserve_mutex);
 | |
| 		if (atomic_dec_return(&num_events) == 0)
 | |
| 			release_pmc_hardware();
 | |
| 		mutex_unlock(&pmc_reserve_mutex);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Translate a generic cache event_id config to a raw event_id code.
 | |
|  */
 | |
| static int hw_perf_cache_event(u64 config, u64 *eventp)
 | |
| {
 | |
| 	unsigned long type, op, result;
 | |
| 	int ev;
 | |
| 
 | |
| 	if (!ppmu->cache_events)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* unpack config */
 | |
| 	type = config & 0xff;
 | |
| 	op = (config >> 8) & 0xff;
 | |
| 	result = (config >> 16) & 0xff;
 | |
| 
 | |
| 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
 | |
| 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
 | |
| 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ev = (*ppmu->cache_events)[type][op][result];
 | |
| 	if (ev == 0)
 | |
| 		return -EOPNOTSUPP;
 | |
| 	if (ev == -1)
 | |
| 		return -EINVAL;
 | |
| 	*eventp = ev;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int power_pmu_event_init(struct perf_event *event)
 | |
| {
 | |
| 	u64 ev;
 | |
| 	unsigned long flags;
 | |
| 	struct perf_event *ctrs[MAX_HWEVENTS];
 | |
| 	u64 events[MAX_HWEVENTS];
 | |
| 	unsigned int cflags[MAX_HWEVENTS];
 | |
| 	int n;
 | |
| 	int err;
 | |
| 	struct cpu_hw_events *cpuhw;
 | |
| 
 | |
| 	if (!ppmu)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (has_branch_stack(event)) {
 | |
| 	        /* PMU has BHRB enabled */
 | |
| 		if (!(ppmu->flags & PPMU_BHRB))
 | |
| 			return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	switch (event->attr.type) {
 | |
| 	case PERF_TYPE_HARDWARE:
 | |
| 		ev = event->attr.config;
 | |
| 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
 | |
| 			return -EOPNOTSUPP;
 | |
| 		ev = ppmu->generic_events[ev];
 | |
| 		break;
 | |
| 	case PERF_TYPE_HW_CACHE:
 | |
| 		err = hw_perf_cache_event(event->attr.config, &ev);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		break;
 | |
| 	case PERF_TYPE_RAW:
 | |
| 		ev = event->attr.config;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	event->hw.config_base = ev;
 | |
| 	event->hw.idx = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are not running on a hypervisor, force the
 | |
| 	 * exclude_hv bit to 0 so that we don't care what
 | |
| 	 * the user set it to.
 | |
| 	 */
 | |
| 	if (!firmware_has_feature(FW_FEATURE_LPAR))
 | |
| 		event->attr.exclude_hv = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a per-task event, then we can use
 | |
| 	 * PM_RUN_* events interchangeably with their non RUN_*
 | |
| 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
 | |
| 	 * XXX we should check if the task is an idle task.
 | |
| 	 */
 | |
| 	flags = 0;
 | |
| 	if (event->attach_state & PERF_ATTACH_TASK)
 | |
| 		flags |= PPMU_ONLY_COUNT_RUN;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this machine has limited events, check whether this
 | |
| 	 * event_id could go on a limited event.
 | |
| 	 */
 | |
| 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
 | |
| 		if (can_go_on_limited_pmc(event, ev, flags)) {
 | |
| 			flags |= PPMU_LIMITED_PMC_OK;
 | |
| 		} else if (ppmu->limited_pmc_event(ev)) {
 | |
| 			/*
 | |
| 			 * The requested event_id is on a limited PMC,
 | |
| 			 * but we can't use a limited PMC; see if any
 | |
| 			 * alternative goes on a normal PMC.
 | |
| 			 */
 | |
| 			ev = normal_pmc_alternative(ev, flags);
 | |
| 			if (!ev)
 | |
| 				return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Extra checks for EBB */
 | |
| 	err = ebb_event_check(event);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is in a group, check if it can go on with all the
 | |
| 	 * other hardware events in the group.  We assume the event
 | |
| 	 * hasn't been linked into its leader's sibling list at this point.
 | |
| 	 */
 | |
| 	n = 0;
 | |
| 	if (event->group_leader != event) {
 | |
| 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
 | |
| 				   ctrs, events, cflags);
 | |
| 		if (n < 0)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 	events[n] = ev;
 | |
| 	ctrs[n] = event;
 | |
| 	cflags[n] = flags;
 | |
| 	if (check_excludes(ctrs, cflags, n, 1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cpuhw = &get_cpu_var(cpu_hw_events);
 | |
| 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
 | |
| 
 | |
| 	if (has_branch_stack(event)) {
 | |
| 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
 | |
| 					event->attr.branch_sample_type);
 | |
| 
 | |
| 		if(cpuhw->bhrb_filter == -1)
 | |
| 			return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	put_cpu_var(cpu_hw_events);
 | |
| 	if (err)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	event->hw.config = events[n];
 | |
| 	event->hw.event_base = cflags[n];
 | |
| 	event->hw.last_period = event->hw.sample_period;
 | |
| 	local64_set(&event->hw.period_left, event->hw.last_period);
 | |
| 
 | |
| 	/*
 | |
| 	 * For EBB events we just context switch the PMC value, we don't do any
 | |
| 	 * of the sample_period logic. We use hw.prev_count for this.
 | |
| 	 */
 | |
| 	if (is_ebb_event(event))
 | |
| 		local64_set(&event->hw.prev_count, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * See if we need to reserve the PMU.
 | |
| 	 * If no events are currently in use, then we have to take a
 | |
| 	 * mutex to ensure that we don't race with another task doing
 | |
| 	 * reserve_pmc_hardware or release_pmc_hardware.
 | |
| 	 */
 | |
| 	err = 0;
 | |
| 	if (!atomic_inc_not_zero(&num_events)) {
 | |
| 		mutex_lock(&pmc_reserve_mutex);
 | |
| 		if (atomic_read(&num_events) == 0 &&
 | |
| 		    reserve_pmc_hardware(perf_event_interrupt))
 | |
| 			err = -EBUSY;
 | |
| 		else
 | |
| 			atomic_inc(&num_events);
 | |
| 		mutex_unlock(&pmc_reserve_mutex);
 | |
| 	}
 | |
| 	event->destroy = hw_perf_event_destroy;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int power_pmu_event_idx(struct perf_event *event)
 | |
| {
 | |
| 	return event->hw.idx;
 | |
| }
 | |
| 
 | |
| ssize_t power_events_sysfs_show(struct device *dev,
 | |
| 				struct device_attribute *attr, char *page)
 | |
| {
 | |
| 	struct perf_pmu_events_attr *pmu_attr;
 | |
| 
 | |
| 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
 | |
| 
 | |
| 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
 | |
| }
 | |
| 
 | |
| struct pmu power_pmu = {
 | |
| 	.pmu_enable	= power_pmu_enable,
 | |
| 	.pmu_disable	= power_pmu_disable,
 | |
| 	.event_init	= power_pmu_event_init,
 | |
| 	.add		= power_pmu_add,
 | |
| 	.del		= power_pmu_del,
 | |
| 	.start		= power_pmu_start,
 | |
| 	.stop		= power_pmu_stop,
 | |
| 	.read		= power_pmu_read,
 | |
| 	.start_txn	= power_pmu_start_txn,
 | |
| 	.cancel_txn	= power_pmu_cancel_txn,
 | |
| 	.commit_txn	= power_pmu_commit_txn,
 | |
| 	.event_idx	= power_pmu_event_idx,
 | |
| 	.flush_branch_stack = power_pmu_flush_branch_stack,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * A counter has overflowed; update its count and record
 | |
|  * things if requested.  Note that interrupts are hard-disabled
 | |
|  * here so there is no possibility of being interrupted.
 | |
|  */
 | |
| static void record_and_restart(struct perf_event *event, unsigned long val,
 | |
| 			       struct pt_regs *regs)
 | |
| {
 | |
| 	u64 period = event->hw.sample_period;
 | |
| 	s64 prev, delta, left;
 | |
| 	int record = 0;
 | |
| 
 | |
| 	if (event->hw.state & PERF_HES_STOPPED) {
 | |
| 		write_pmc(event->hw.idx, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* we don't have to worry about interrupts here */
 | |
| 	prev = local64_read(&event->hw.prev_count);
 | |
| 	delta = check_and_compute_delta(prev, val);
 | |
| 	local64_add(delta, &event->count);
 | |
| 
 | |
| 	/*
 | |
| 	 * See if the total period for this event has expired,
 | |
| 	 * and update for the next period.
 | |
| 	 */
 | |
| 	val = 0;
 | |
| 	left = local64_read(&event->hw.period_left) - delta;
 | |
| 	if (delta == 0)
 | |
| 		left++;
 | |
| 	if (period) {
 | |
| 		if (left <= 0) {
 | |
| 			left += period;
 | |
| 			if (left <= 0)
 | |
| 				left = period;
 | |
| 			record = siar_valid(regs);
 | |
| 			event->hw.last_period = event->hw.sample_period;
 | |
| 		}
 | |
| 		if (left < 0x80000000LL)
 | |
| 			val = 0x80000000LL - left;
 | |
| 	}
 | |
| 
 | |
| 	write_pmc(event->hw.idx, val);
 | |
| 	local64_set(&event->hw.prev_count, val);
 | |
| 	local64_set(&event->hw.period_left, left);
 | |
| 	perf_event_update_userpage(event);
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally record data if requested.
 | |
| 	 */
 | |
| 	if (record) {
 | |
| 		struct perf_sample_data data;
 | |
| 
 | |
| 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
 | |
| 
 | |
| 		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
 | |
| 			perf_get_data_addr(regs, &data.addr);
 | |
| 
 | |
| 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
 | |
| 			struct cpu_hw_events *cpuhw;
 | |
| 			cpuhw = &__get_cpu_var(cpu_hw_events);
 | |
| 			power_pmu_bhrb_read(cpuhw);
 | |
| 			data.br_stack = &cpuhw->bhrb_stack;
 | |
| 		}
 | |
| 
 | |
| 		if (perf_event_overflow(event, &data, regs))
 | |
| 			power_pmu_stop(event, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from generic code to get the misc flags (i.e. processor mode)
 | |
|  * for an event_id.
 | |
|  */
 | |
| unsigned long perf_misc_flags(struct pt_regs *regs)
 | |
| {
 | |
| 	u32 flags = perf_get_misc_flags(regs);
 | |
| 
 | |
| 	if (flags)
 | |
| 		return flags;
 | |
| 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
 | |
| 		PERF_RECORD_MISC_KERNEL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from generic code to get the instruction pointer
 | |
|  * for an event_id.
 | |
|  */
 | |
| unsigned long perf_instruction_pointer(struct pt_regs *regs)
 | |
| {
 | |
| 	bool use_siar = regs_use_siar(regs);
 | |
| 
 | |
| 	if (use_siar && siar_valid(regs))
 | |
| 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
 | |
| 	else if (use_siar)
 | |
| 		return 0;		// no valid instruction pointer
 | |
| 	else
 | |
| 		return regs->nip;
 | |
| }
 | |
| 
 | |
| static bool pmc_overflow_power7(unsigned long val)
 | |
| {
 | |
| 	/*
 | |
| 	 * Events on POWER7 can roll back if a speculative event doesn't
 | |
| 	 * eventually complete. Unfortunately in some rare cases they will
 | |
| 	 * raise a performance monitor exception. We need to catch this to
 | |
| 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
 | |
| 	 * cycles from overflow.
 | |
| 	 *
 | |
| 	 * We only do this if the first pass fails to find any overflowing
 | |
| 	 * PMCs because a user might set a period of less than 256 and we
 | |
| 	 * don't want to mistakenly reset them.
 | |
| 	 */
 | |
| 	if ((0x80000000 - val) <= 256)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool pmc_overflow(unsigned long val)
 | |
| {
 | |
| 	if ((int)val < 0)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Performance monitor interrupt stuff
 | |
|  */
 | |
| static void perf_event_interrupt(struct pt_regs *regs)
 | |
| {
 | |
| 	int i, j;
 | |
| 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 | |
| 	struct perf_event *event;
 | |
| 	unsigned long val[8];
 | |
| 	int found, active;
 | |
| 	int nmi;
 | |
| 
 | |
| 	if (cpuhw->n_limited)
 | |
| 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
 | |
| 					mfspr(SPRN_PMC6));
 | |
| 
 | |
| 	perf_read_regs(regs);
 | |
| 
 | |
| 	nmi = perf_intr_is_nmi(regs);
 | |
| 	if (nmi)
 | |
| 		nmi_enter();
 | |
| 	else
 | |
| 		irq_enter();
 | |
| 
 | |
| 	/* Read all the PMCs since we'll need them a bunch of times */
 | |
| 	for (i = 0; i < ppmu->n_counter; ++i)
 | |
| 		val[i] = read_pmc(i + 1);
 | |
| 
 | |
| 	/* Try to find what caused the IRQ */
 | |
| 	found = 0;
 | |
| 	for (i = 0; i < ppmu->n_counter; ++i) {
 | |
| 		if (!pmc_overflow(val[i]))
 | |
| 			continue;
 | |
| 		if (is_limited_pmc(i + 1))
 | |
| 			continue; /* these won't generate IRQs */
 | |
| 		/*
 | |
| 		 * We've found one that's overflowed.  For active
 | |
| 		 * counters we need to log this.  For inactive
 | |
| 		 * counters, we need to reset it anyway
 | |
| 		 */
 | |
| 		found = 1;
 | |
| 		active = 0;
 | |
| 		for (j = 0; j < cpuhw->n_events; ++j) {
 | |
| 			event = cpuhw->event[j];
 | |
| 			if (event->hw.idx == (i + 1)) {
 | |
| 				active = 1;
 | |
| 				record_and_restart(event, val[i], regs);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!active)
 | |
| 			/* reset non active counters that have overflowed */
 | |
| 			write_pmc(i + 1, 0);
 | |
| 	}
 | |
| 	if (!found && pvr_version_is(PVR_POWER7)) {
 | |
| 		/* check active counters for special buggy p7 overflow */
 | |
| 		for (i = 0; i < cpuhw->n_events; ++i) {
 | |
| 			event = cpuhw->event[i];
 | |
| 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
 | |
| 				continue;
 | |
| 			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
 | |
| 				/* event has overflowed in a buggy way*/
 | |
| 				found = 1;
 | |
| 				record_and_restart(event,
 | |
| 						   val[event->hw.idx - 1],
 | |
| 						   regs);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (!found && !nmi && printk_ratelimit())
 | |
| 		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset MMCR0 to its normal value.  This will set PMXE and
 | |
| 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
 | |
| 	 * and thus allow interrupts to occur again.
 | |
| 	 * XXX might want to use MSR.PM to keep the events frozen until
 | |
| 	 * we get back out of this interrupt.
 | |
| 	 */
 | |
| 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
 | |
| 
 | |
| 	if (nmi)
 | |
| 		nmi_exit();
 | |
| 	else
 | |
| 		irq_exit();
 | |
| }
 | |
| 
 | |
| static void power_pmu_setup(int cpu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
 | |
| 
 | |
| 	if (!ppmu)
 | |
| 		return;
 | |
| 	memset(cpuhw, 0, sizeof(*cpuhw));
 | |
| 	cpuhw->mmcr[0] = MMCR0_FC;
 | |
| }
 | |
| 
 | |
| static int
 | |
| power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
 | |
| {
 | |
| 	unsigned int cpu = (long)hcpu;
 | |
| 
 | |
| 	switch (action & ~CPU_TASKS_FROZEN) {
 | |
| 	case CPU_UP_PREPARE:
 | |
| 		power_pmu_setup(cpu);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| int register_power_pmu(struct power_pmu *pmu)
 | |
| {
 | |
| 	if (ppmu)
 | |
| 		return -EBUSY;		/* something's already registered */
 | |
| 
 | |
| 	ppmu = pmu;
 | |
| 	pr_info("%s performance monitor hardware support registered\n",
 | |
| 		pmu->name);
 | |
| 
 | |
| 	power_pmu.attr_groups = ppmu->attr_groups;
 | |
| 
 | |
| #ifdef MSR_HV
 | |
| 	/*
 | |
| 	 * Use FCHV to ignore kernel events if MSR.HV is set.
 | |
| 	 */
 | |
| 	if (mfmsr() & MSR_HV)
 | |
| 		freeze_events_kernel = MMCR0_FCHV;
 | |
| #endif /* CONFIG_PPC64 */
 | |
| 
 | |
| 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
 | |
| 	perf_cpu_notifier(power_pmu_notifier);
 | |
| 
 | |
| 	return 0;
 | |
| }
 |