 ff1e768341
			
		
	
	
	ff1e768341
	
	
	
		
			
			Building with CONFIG_TRANSPARENT_HUGEPAGE disabled causes the following build wearnings; powerpc/arch/powerpc/include/asm/mmu-hash64.h: In function ‘__hash_page_thp’: powerpc/arch/powerpc/include/asm/mmu-hash64.h:354: warning: no return statement in function returning non-void This patch adds a return -1 to the static inline for __hash_page_thp() to correct the warnings. Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
		
			
				
	
	
		
			612 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			612 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef _ASM_POWERPC_MMU_HASH64_H_
 | |
| #define _ASM_POWERPC_MMU_HASH64_H_
 | |
| /*
 | |
|  * PowerPC64 memory management structures
 | |
|  *
 | |
|  * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
 | |
|  *   PPC64 rework.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <asm/asm-compat.h>
 | |
| #include <asm/page.h>
 | |
| 
 | |
| /*
 | |
|  * This is necessary to get the definition of PGTABLE_RANGE which we
 | |
|  * need for various slices related matters. Note that this isn't the
 | |
|  * complete pgtable.h but only a portion of it.
 | |
|  */
 | |
| #include <asm/pgtable-ppc64.h>
 | |
| #include <asm/bug.h>
 | |
| 
 | |
| /*
 | |
|  * Segment table
 | |
|  */
 | |
| 
 | |
| #define STE_ESID_V	0x80
 | |
| #define STE_ESID_KS	0x20
 | |
| #define STE_ESID_KP	0x10
 | |
| #define STE_ESID_N	0x08
 | |
| 
 | |
| #define STE_VSID_SHIFT	12
 | |
| 
 | |
| /* Location of cpu0's segment table */
 | |
| #define STAB0_PAGE	0x8
 | |
| #define STAB0_OFFSET	(STAB0_PAGE << 12)
 | |
| #define STAB0_PHYS_ADDR	(STAB0_OFFSET + PHYSICAL_START)
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| extern char initial_stab[];
 | |
| #endif /* ! __ASSEMBLY */
 | |
| 
 | |
| /*
 | |
|  * SLB
 | |
|  */
 | |
| 
 | |
| #define SLB_NUM_BOLTED		3
 | |
| #define SLB_CACHE_ENTRIES	8
 | |
| #define SLB_MIN_SIZE		32
 | |
| 
 | |
| /* Bits in the SLB ESID word */
 | |
| #define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */
 | |
| 
 | |
| /* Bits in the SLB VSID word */
 | |
| #define SLB_VSID_SHIFT		12
 | |
| #define SLB_VSID_SHIFT_1T	24
 | |
| #define SLB_VSID_SSIZE_SHIFT	62
 | |
| #define SLB_VSID_B		ASM_CONST(0xc000000000000000)
 | |
| #define SLB_VSID_B_256M		ASM_CONST(0x0000000000000000)
 | |
| #define SLB_VSID_B_1T		ASM_CONST(0x4000000000000000)
 | |
| #define SLB_VSID_KS		ASM_CONST(0x0000000000000800)
 | |
| #define SLB_VSID_KP		ASM_CONST(0x0000000000000400)
 | |
| #define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */
 | |
| #define SLB_VSID_L		ASM_CONST(0x0000000000000100)
 | |
| #define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */
 | |
| #define SLB_VSID_LP		ASM_CONST(0x0000000000000030)
 | |
| #define SLB_VSID_LP_00		ASM_CONST(0x0000000000000000)
 | |
| #define SLB_VSID_LP_01		ASM_CONST(0x0000000000000010)
 | |
| #define SLB_VSID_LP_10		ASM_CONST(0x0000000000000020)
 | |
| #define SLB_VSID_LP_11		ASM_CONST(0x0000000000000030)
 | |
| #define SLB_VSID_LLP		(SLB_VSID_L|SLB_VSID_LP)
 | |
| 
 | |
| #define SLB_VSID_KERNEL		(SLB_VSID_KP)
 | |
| #define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
 | |
| 
 | |
| #define SLBIE_C			(0x08000000)
 | |
| #define SLBIE_SSIZE_SHIFT	25
 | |
| 
 | |
| /*
 | |
|  * Hash table
 | |
|  */
 | |
| 
 | |
| #define HPTES_PER_GROUP 8
 | |
| 
 | |
| #define HPTE_V_SSIZE_SHIFT	62
 | |
| #define HPTE_V_AVPN_SHIFT	7
 | |
| #define HPTE_V_AVPN		ASM_CONST(0x3fffffffffffff80)
 | |
| #define HPTE_V_AVPN_VAL(x)	(((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
 | |
| #define HPTE_V_COMPARE(x,y)	(!(((x) ^ (y)) & 0xffffffffffffff80UL))
 | |
| #define HPTE_V_BOLTED		ASM_CONST(0x0000000000000010)
 | |
| #define HPTE_V_LOCK		ASM_CONST(0x0000000000000008)
 | |
| #define HPTE_V_LARGE		ASM_CONST(0x0000000000000004)
 | |
| #define HPTE_V_SECONDARY	ASM_CONST(0x0000000000000002)
 | |
| #define HPTE_V_VALID		ASM_CONST(0x0000000000000001)
 | |
| 
 | |
| #define HPTE_R_PP0		ASM_CONST(0x8000000000000000)
 | |
| #define HPTE_R_TS		ASM_CONST(0x4000000000000000)
 | |
| #define HPTE_R_KEY_HI		ASM_CONST(0x3000000000000000)
 | |
| #define HPTE_R_RPN_SHIFT	12
 | |
| #define HPTE_R_RPN		ASM_CONST(0x0ffffffffffff000)
 | |
| #define HPTE_R_PP		ASM_CONST(0x0000000000000003)
 | |
| #define HPTE_R_N		ASM_CONST(0x0000000000000004)
 | |
| #define HPTE_R_G		ASM_CONST(0x0000000000000008)
 | |
| #define HPTE_R_M		ASM_CONST(0x0000000000000010)
 | |
| #define HPTE_R_I		ASM_CONST(0x0000000000000020)
 | |
| #define HPTE_R_W		ASM_CONST(0x0000000000000040)
 | |
| #define HPTE_R_WIMG		ASM_CONST(0x0000000000000078)
 | |
| #define HPTE_R_C		ASM_CONST(0x0000000000000080)
 | |
| #define HPTE_R_R		ASM_CONST(0x0000000000000100)
 | |
| #define HPTE_R_KEY_LO		ASM_CONST(0x0000000000000e00)
 | |
| 
 | |
| #define HPTE_V_1TB_SEG		ASM_CONST(0x4000000000000000)
 | |
| #define HPTE_V_VRMA_MASK	ASM_CONST(0x4001ffffff000000)
 | |
| 
 | |
| /* Values for PP (assumes Ks=0, Kp=1) */
 | |
| #define PP_RWXX	0	/* Supervisor read/write, User none */
 | |
| #define PP_RWRX 1	/* Supervisor read/write, User read */
 | |
| #define PP_RWRW 2	/* Supervisor read/write, User read/write */
 | |
| #define PP_RXRX 3	/* Supervisor read,       User read */
 | |
| #define PP_RXXX	(HPTE_R_PP0 | 2)	/* Supervisor read, user none */
 | |
| 
 | |
| /* Fields for tlbiel instruction in architecture 2.06 */
 | |
| #define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
 | |
| #define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
 | |
| #define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
 | |
| #define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
 | |
| #define TLBIEL_INVAL_SET_MASK	0xfff000	/* set number to inval. */
 | |
| #define TLBIEL_INVAL_SET_SHIFT	12
 | |
| 
 | |
| #define POWER7_TLB_SETS		128	/* # sets in POWER7 TLB */
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| 
 | |
| struct hash_pte {
 | |
| 	unsigned long v;
 | |
| 	unsigned long r;
 | |
| };
 | |
| 
 | |
| extern struct hash_pte *htab_address;
 | |
| extern unsigned long htab_size_bytes;
 | |
| extern unsigned long htab_hash_mask;
 | |
| 
 | |
| /*
 | |
|  * Page size definition
 | |
|  *
 | |
|  *    shift : is the "PAGE_SHIFT" value for that page size
 | |
|  *    sllp  : is a bit mask with the value of SLB L || LP to be or'ed
 | |
|  *            directly to a slbmte "vsid" value
 | |
|  *    penc  : is the HPTE encoding mask for the "LP" field:
 | |
|  *
 | |
|  */
 | |
| struct mmu_psize_def
 | |
| {
 | |
| 	unsigned int	shift;	/* number of bits */
 | |
| 	int		penc[MMU_PAGE_COUNT];	/* HPTE encoding */
 | |
| 	unsigned int	tlbiel;	/* tlbiel supported for that page size */
 | |
| 	unsigned long	avpnm;	/* bits to mask out in AVPN in the HPTE */
 | |
| 	unsigned long	sllp;	/* SLB L||LP (exact mask to use in slbmte) */
 | |
| };
 | |
| extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
 | |
| 
 | |
| static inline int shift_to_mmu_psize(unsigned int shift)
 | |
| {
 | |
| 	int psize;
 | |
| 
 | |
| 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
 | |
| 		if (mmu_psize_defs[psize].shift == shift)
 | |
| 			return psize;
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
 | |
| {
 | |
| 	if (mmu_psize_defs[mmu_psize].shift)
 | |
| 		return mmu_psize_defs[mmu_psize].shift;
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| #endif /* __ASSEMBLY__ */
 | |
| 
 | |
| /*
 | |
|  * Segment sizes.
 | |
|  * These are the values used by hardware in the B field of
 | |
|  * SLB entries and the first dword of MMU hashtable entries.
 | |
|  * The B field is 2 bits; the values 2 and 3 are unused and reserved.
 | |
|  */
 | |
| #define MMU_SEGSIZE_256M	0
 | |
| #define MMU_SEGSIZE_1T		1
 | |
| 
 | |
| /*
 | |
|  * encode page number shift.
 | |
|  * in order to fit the 78 bit va in a 64 bit variable we shift the va by
 | |
|  * 12 bits. This enable us to address upto 76 bit va.
 | |
|  * For hpt hash from a va we can ignore the page size bits of va and for
 | |
|  * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
 | |
|  * we work in all cases including 4k page size.
 | |
|  */
 | |
| #define VPN_SHIFT	12
 | |
| 
 | |
| /*
 | |
|  * HPTE Large Page (LP) details
 | |
|  */
 | |
| #define LP_SHIFT	12
 | |
| #define LP_BITS		8
 | |
| #define LP_MASK(i)	((0xFF >> (i)) << LP_SHIFT)
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| 
 | |
| static inline int segment_shift(int ssize)
 | |
| {
 | |
| 	if (ssize == MMU_SEGSIZE_256M)
 | |
| 		return SID_SHIFT;
 | |
| 	return SID_SHIFT_1T;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The current system page and segment sizes
 | |
|  */
 | |
| extern int mmu_linear_psize;
 | |
| extern int mmu_virtual_psize;
 | |
| extern int mmu_vmalloc_psize;
 | |
| extern int mmu_vmemmap_psize;
 | |
| extern int mmu_io_psize;
 | |
| extern int mmu_kernel_ssize;
 | |
| extern int mmu_highuser_ssize;
 | |
| extern u16 mmu_slb_size;
 | |
| extern unsigned long tce_alloc_start, tce_alloc_end;
 | |
| 
 | |
| /*
 | |
|  * If the processor supports 64k normal pages but not 64k cache
 | |
|  * inhibited pages, we have to be prepared to switch processes
 | |
|  * to use 4k pages when they create cache-inhibited mappings.
 | |
|  * If this is the case, mmu_ci_restrictions will be set to 1.
 | |
|  */
 | |
| extern int mmu_ci_restrictions;
 | |
| 
 | |
| /*
 | |
|  * This computes the AVPN and B fields of the first dword of a HPTE,
 | |
|  * for use when we want to match an existing PTE.  The bottom 7 bits
 | |
|  * of the returned value are zero.
 | |
|  */
 | |
| static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
 | |
| 					     int ssize)
 | |
| {
 | |
| 	unsigned long v;
 | |
| 	/*
 | |
| 	 * The AVA field omits the low-order 23 bits of the 78 bits VA.
 | |
| 	 * These bits are not needed in the PTE, because the
 | |
| 	 * low-order b of these bits are part of the byte offset
 | |
| 	 * into the virtual page and, if b < 23, the high-order
 | |
| 	 * 23-b of these bits are always used in selecting the
 | |
| 	 * PTEGs to be searched
 | |
| 	 */
 | |
| 	v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
 | |
| 	v <<= HPTE_V_AVPN_SHIFT;
 | |
| 	v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function sets the AVPN and L fields of the HPTE  appropriately
 | |
|  * using the base page size and actual page size.
 | |
|  */
 | |
| static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
 | |
| 					  int actual_psize, int ssize)
 | |
| {
 | |
| 	unsigned long v;
 | |
| 	v = hpte_encode_avpn(vpn, base_psize, ssize);
 | |
| 	if (actual_psize != MMU_PAGE_4K)
 | |
| 		v |= HPTE_V_LARGE;
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function sets the ARPN, and LP fields of the HPTE appropriately
 | |
|  * for the page size. We assume the pa is already "clean" that is properly
 | |
|  * aligned for the requested page size
 | |
|  */
 | |
| static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
 | |
| 					  int actual_psize)
 | |
| {
 | |
| 	/* A 4K page needs no special encoding */
 | |
| 	if (actual_psize == MMU_PAGE_4K)
 | |
| 		return pa & HPTE_R_RPN;
 | |
| 	else {
 | |
| 		unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
 | |
| 		unsigned int shift = mmu_psize_defs[actual_psize].shift;
 | |
| 		return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
 | |
|  */
 | |
| static inline unsigned long hpt_vpn(unsigned long ea,
 | |
| 				    unsigned long vsid, int ssize)
 | |
| {
 | |
| 	unsigned long mask;
 | |
| 	int s_shift = segment_shift(ssize);
 | |
| 
 | |
| 	mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
 | |
| 	return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This hashes a virtual address
 | |
|  */
 | |
| static inline unsigned long hpt_hash(unsigned long vpn,
 | |
| 				     unsigned int shift, int ssize)
 | |
| {
 | |
| 	int mask;
 | |
| 	unsigned long hash, vsid;
 | |
| 
 | |
| 	/* VPN_SHIFT can be atmost 12 */
 | |
| 	if (ssize == MMU_SEGSIZE_256M) {
 | |
| 		mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
 | |
| 		hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
 | |
| 			((vpn & mask) >> (shift - VPN_SHIFT));
 | |
| 	} else {
 | |
| 		mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
 | |
| 		vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
 | |
| 		hash = vsid ^ (vsid << 25) ^
 | |
| 			((vpn & mask) >> (shift - VPN_SHIFT)) ;
 | |
| 	}
 | |
| 	return hash & 0x7fffffffffUL;
 | |
| }
 | |
| 
 | |
| extern int __hash_page_4K(unsigned long ea, unsigned long access,
 | |
| 			  unsigned long vsid, pte_t *ptep, unsigned long trap,
 | |
| 			  unsigned int local, int ssize, int subpage_prot);
 | |
| extern int __hash_page_64K(unsigned long ea, unsigned long access,
 | |
| 			   unsigned long vsid, pte_t *ptep, unsigned long trap,
 | |
| 			   unsigned int local, int ssize);
 | |
| struct mm_struct;
 | |
| unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
 | |
| extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
 | |
| int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
 | |
| 		     pte_t *ptep, unsigned long trap, int local, int ssize,
 | |
| 		     unsigned int shift, unsigned int mmu_psize);
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| extern int __hash_page_thp(unsigned long ea, unsigned long access,
 | |
| 			   unsigned long vsid, pmd_t *pmdp, unsigned long trap,
 | |
| 			   int local, int ssize, unsigned int psize);
 | |
| #else
 | |
| static inline int __hash_page_thp(unsigned long ea, unsigned long access,
 | |
| 				  unsigned long vsid, pmd_t *pmdp,
 | |
| 				  unsigned long trap, int local,
 | |
| 				  int ssize, unsigned int psize)
 | |
| {
 | |
| 	BUG();
 | |
| 	return -1;
 | |
| }
 | |
| #endif
 | |
| extern void hash_failure_debug(unsigned long ea, unsigned long access,
 | |
| 			       unsigned long vsid, unsigned long trap,
 | |
| 			       int ssize, int psize, int lpsize,
 | |
| 			       unsigned long pte);
 | |
| extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 | |
| 			     unsigned long pstart, unsigned long prot,
 | |
| 			     int psize, int ssize);
 | |
| extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
 | |
| extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
 | |
| 
 | |
| extern void hpte_init_native(void);
 | |
| extern void hpte_init_lpar(void);
 | |
| extern void hpte_init_beat(void);
 | |
| extern void hpte_init_beat_v3(void);
 | |
| 
 | |
| extern void stabs_alloc(void);
 | |
| extern void slb_initialize(void);
 | |
| extern void slb_flush_and_rebolt(void);
 | |
| extern void stab_initialize(unsigned long stab);
 | |
| 
 | |
| extern void slb_vmalloc_update(void);
 | |
| extern void slb_set_size(u16 size);
 | |
| #endif /* __ASSEMBLY__ */
 | |
| 
 | |
| /*
 | |
|  * VSID allocation (256MB segment)
 | |
|  *
 | |
|  * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
 | |
|  * from mmu context id and effective segment id of the address.
 | |
|  *
 | |
|  * For user processes max context id is limited to ((1ul << 19) - 5)
 | |
|  * for kernel space, we use the top 4 context ids to map address as below
 | |
|  * NOTE: each context only support 64TB now.
 | |
|  * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
 | |
|  * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
 | |
|  * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
 | |
|  * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
 | |
|  *
 | |
|  * The proto-VSIDs are then scrambled into real VSIDs with the
 | |
|  * multiplicative hash:
 | |
|  *
 | |
|  *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
 | |
|  *
 | |
|  * VSID_MULTIPLIER is prime, so in particular it is
 | |
|  * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
 | |
|  * Because the modulus is 2^n-1 we can compute it efficiently without
 | |
|  * a divide or extra multiply (see below). The scramble function gives
 | |
|  * robust scattering in the hash table (at least based on some initial
 | |
|  * results).
 | |
|  *
 | |
|  * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
 | |
|  * bad address. This enables us to consolidate bad address handling in
 | |
|  * hash_page.
 | |
|  *
 | |
|  * We also need to avoid the last segment of the last context, because that
 | |
|  * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
 | |
|  * because of the modulo operation in vsid scramble. But the vmemmap
 | |
|  * (which is what uses region 0xf) will never be close to 64TB in size
 | |
|  * (it's 56 bytes per page of system memory).
 | |
|  */
 | |
| 
 | |
| #define CONTEXT_BITS		19
 | |
| #define ESID_BITS		18
 | |
| #define ESID_BITS_1T		6
 | |
| 
 | |
| /*
 | |
|  * 256MB segment
 | |
|  * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
 | |
|  * available for user + kernel mapping. The top 4 contexts are used for
 | |
|  * kernel mapping. Each segment contains 2^28 bytes. Each
 | |
|  * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
 | |
|  * (19 == 37 + 28 - 46).
 | |
|  */
 | |
| #define MAX_USER_CONTEXT	((ASM_CONST(1) << CONTEXT_BITS) - 5)
 | |
| 
 | |
| /*
 | |
|  * This should be computed such that protovosid * vsid_mulitplier
 | |
|  * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
 | |
|  */
 | |
| #define VSID_MULTIPLIER_256M	ASM_CONST(12538073)	/* 24-bit prime */
 | |
| #define VSID_BITS_256M		(CONTEXT_BITS + ESID_BITS)
 | |
| #define VSID_MODULUS_256M	((1UL<<VSID_BITS_256M)-1)
 | |
| 
 | |
| #define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
 | |
| #define VSID_BITS_1T		(CONTEXT_BITS + ESID_BITS_1T)
 | |
| #define VSID_MODULUS_1T		((1UL<<VSID_BITS_1T)-1)
 | |
| 
 | |
| 
 | |
| #define USER_VSID_RANGE	(1UL << (ESID_BITS + SID_SHIFT))
 | |
| 
 | |
| /*
 | |
|  * This macro generates asm code to compute the VSID scramble
 | |
|  * function.  Used in slb_allocate() and do_stab_bolted.  The function
 | |
|  * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
 | |
|  *
 | |
|  *	rt = register continaing the proto-VSID and into which the
 | |
|  *		VSID will be stored
 | |
|  *	rx = scratch register (clobbered)
 | |
|  *
 | |
|  * 	- rt and rx must be different registers
 | |
|  * 	- The answer will end up in the low VSID_BITS bits of rt.  The higher
 | |
|  * 	  bits may contain other garbage, so you may need to mask the
 | |
|  * 	  result.
 | |
|  */
 | |
| #define ASM_VSID_SCRAMBLE(rt, rx, size)					\
 | |
| 	lis	rx,VSID_MULTIPLIER_##size@h;				\
 | |
| 	ori	rx,rx,VSID_MULTIPLIER_##size@l;				\
 | |
| 	mulld	rt,rt,rx;		/* rt = rt * MULTIPLIER */	\
 | |
| 									\
 | |
| 	srdi	rx,rt,VSID_BITS_##size;					\
 | |
| 	clrldi	rt,rt,(64-VSID_BITS_##size);				\
 | |
| 	add	rt,rt,rx;		/* add high and low bits */	\
 | |
| 	/* NOTE: explanation based on VSID_BITS_##size = 36		\
 | |
| 	 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
 | |
| 	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\
 | |
| 	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\
 | |
| 	 * the bit clear, r3 already has the answer we want, if it	\
 | |
| 	 * doesn't, the answer is the low 36 bits of r3+1.  So in all	\
 | |
| 	 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
 | |
| 	addi	rx,rt,1;						\
 | |
| 	srdi	rx,rx,VSID_BITS_##size;	/* extract 2^VSID_BITS bit */	\
 | |
| 	add	rt,rt,rx
 | |
| 
 | |
| /* 4 bits per slice and we have one slice per 1TB */
 | |
| #define SLICE_ARRAY_SIZE  (PGTABLE_RANGE >> 41)
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| 
 | |
| #ifdef CONFIG_PPC_SUBPAGE_PROT
 | |
| /*
 | |
|  * For the sub-page protection option, we extend the PGD with one of
 | |
|  * these.  Basically we have a 3-level tree, with the top level being
 | |
|  * the protptrs array.  To optimize speed and memory consumption when
 | |
|  * only addresses < 4GB are being protected, pointers to the first
 | |
|  * four pages of sub-page protection words are stored in the low_prot
 | |
|  * array.
 | |
|  * Each page of sub-page protection words protects 1GB (4 bytes
 | |
|  * protects 64k).  For the 3-level tree, each page of pointers then
 | |
|  * protects 8TB.
 | |
|  */
 | |
| struct subpage_prot_table {
 | |
| 	unsigned long maxaddr;	/* only addresses < this are protected */
 | |
| 	unsigned int **protptrs[2];
 | |
| 	unsigned int *low_prot[4];
 | |
| };
 | |
| 
 | |
| #define SBP_L1_BITS		(PAGE_SHIFT - 2)
 | |
| #define SBP_L2_BITS		(PAGE_SHIFT - 3)
 | |
| #define SBP_L1_COUNT		(1 << SBP_L1_BITS)
 | |
| #define SBP_L2_COUNT		(1 << SBP_L2_BITS)
 | |
| #define SBP_L2_SHIFT		(PAGE_SHIFT + SBP_L1_BITS)
 | |
| #define SBP_L3_SHIFT		(SBP_L2_SHIFT + SBP_L2_BITS)
 | |
| 
 | |
| extern void subpage_prot_free(struct mm_struct *mm);
 | |
| extern void subpage_prot_init_new_context(struct mm_struct *mm);
 | |
| #else
 | |
| static inline void subpage_prot_free(struct mm_struct *mm) {}
 | |
| static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
 | |
| #endif /* CONFIG_PPC_SUBPAGE_PROT */
 | |
| 
 | |
| typedef unsigned long mm_context_id_t;
 | |
| struct spinlock;
 | |
| 
 | |
| typedef struct {
 | |
| 	mm_context_id_t id;
 | |
| 	u16 user_psize;		/* page size index */
 | |
| 
 | |
| #ifdef CONFIG_PPC_MM_SLICES
 | |
| 	u64 low_slices_psize;	/* SLB page size encodings */
 | |
| 	unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
 | |
| #else
 | |
| 	u16 sllp;		/* SLB page size encoding */
 | |
| #endif
 | |
| 	unsigned long vdso_base;
 | |
| #ifdef CONFIG_PPC_SUBPAGE_PROT
 | |
| 	struct subpage_prot_table spt;
 | |
| #endif /* CONFIG_PPC_SUBPAGE_PROT */
 | |
| #ifdef CONFIG_PPC_ICSWX
 | |
| 	struct spinlock *cop_lockp; /* guard acop and cop_pid */
 | |
| 	unsigned long acop;	/* mask of enabled coprocessor types */
 | |
| 	unsigned int cop_pid;	/* pid value used with coprocessors */
 | |
| #endif /* CONFIG_PPC_ICSWX */
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| 	/* for 4K PTE fragment support */
 | |
| 	void *pte_frag;
 | |
| #endif
 | |
| } mm_context_t;
 | |
| 
 | |
| 
 | |
| #if 0
 | |
| /*
 | |
|  * The code below is equivalent to this function for arguments
 | |
|  * < 2^VSID_BITS, which is all this should ever be called
 | |
|  * with.  However gcc is not clever enough to compute the
 | |
|  * modulus (2^n-1) without a second multiply.
 | |
|  */
 | |
| #define vsid_scramble(protovsid, size) \
 | |
| 	((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
 | |
| 
 | |
| #else /* 1 */
 | |
| #define vsid_scramble(protovsid, size) \
 | |
| 	({								 \
 | |
| 		unsigned long x;					 \
 | |
| 		x = (protovsid) * VSID_MULTIPLIER_##size;		 \
 | |
| 		x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
 | |
| 		(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
 | |
| 	})
 | |
| #endif /* 1 */
 | |
| 
 | |
| /* Returns the segment size indicator for a user address */
 | |
| static inline int user_segment_size(unsigned long addr)
 | |
| {
 | |
| 	/* Use 1T segments if possible for addresses >= 1T */
 | |
| 	if (addr >= (1UL << SID_SHIFT_1T))
 | |
| 		return mmu_highuser_ssize;
 | |
| 	return MMU_SEGSIZE_256M;
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
 | |
| 				     int ssize)
 | |
| {
 | |
| 	/*
 | |
| 	 * Bad address. We return VSID 0 for that
 | |
| 	 */
 | |
| 	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (ssize == MMU_SEGSIZE_256M)
 | |
| 		return vsid_scramble((context << ESID_BITS)
 | |
| 				     | (ea >> SID_SHIFT), 256M);
 | |
| 	return vsid_scramble((context << ESID_BITS_1T)
 | |
| 			     | (ea >> SID_SHIFT_1T), 1T);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is only valid for addresses >= PAGE_OFFSET
 | |
|  *
 | |
|  * For kernel space, we use the top 4 context ids to map address as below
 | |
|  * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
 | |
|  * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
 | |
|  * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
 | |
|  * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
 | |
|  */
 | |
| static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
 | |
| {
 | |
| 	unsigned long context;
 | |
| 
 | |
| 	/*
 | |
| 	 * kernel take the top 4 context from the available range
 | |
| 	 */
 | |
| 	context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
 | |
| 	return get_vsid(context, ea, ssize);
 | |
| }
 | |
| #endif /* __ASSEMBLY__ */
 | |
| 
 | |
| #endif /* _ASM_POWERPC_MMU_HASH64_H_ */
 |