 ffe6c42aa3
			
		
	
	
	ffe6c42aa3
	
	
	
		
			
			It's been unused for ages, and contains bugs (e.g. incorrect shifts in lsl64()). Reported-by: Jonathan Elchison <jelchison@gmail.com> Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
		
			
				
	
	
		
			289 lines
		
	
	
	
		
			8.8 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			289 lines
		
	
	
	
		
			8.8 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* multi_arith.h: multi-precision integer arithmetic functions, needed
 | |
|    to do extended-precision floating point.
 | |
| 
 | |
|    (c) 1998 David Huggins-Daines.
 | |
| 
 | |
|    Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c)
 | |
|    David Mosberger-Tang.
 | |
| 
 | |
|    You may copy, modify, and redistribute this file under the terms of
 | |
|    the GNU General Public License, version 2, or any later version, at
 | |
|    your convenience. */
 | |
| 
 | |
| /* Note:
 | |
| 
 | |
|    These are not general multi-precision math routines.  Rather, they
 | |
|    implement the subset of integer arithmetic that we need in order to
 | |
|    multiply, divide, and normalize 128-bit unsigned mantissae.  */
 | |
| 
 | |
| #ifndef MULTI_ARITH_H
 | |
| #define MULTI_ARITH_H
 | |
| 
 | |
| static inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt)
 | |
| {
 | |
| 	reg->exp += cnt;
 | |
| 
 | |
| 	switch (cnt) {
 | |
| 	case 0 ... 8:
 | |
| 		reg->lowmant = reg->mant.m32[1] << (8 - cnt);
 | |
| 		reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
 | |
| 				   (reg->mant.m32[0] << (32 - cnt));
 | |
| 		reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
 | |
| 		break;
 | |
| 	case 9 ... 32:
 | |
| 		reg->lowmant = reg->mant.m32[1] >> (cnt - 8);
 | |
| 		if (reg->mant.m32[1] << (40 - cnt))
 | |
| 			reg->lowmant |= 1;
 | |
| 		reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
 | |
| 				   (reg->mant.m32[0] << (32 - cnt));
 | |
| 		reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
 | |
| 		break;
 | |
| 	case 33 ... 39:
 | |
| 		asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant)
 | |
| 			: "m" (reg->mant.m32[0]), "d" (64 - cnt));
 | |
| 		if (reg->mant.m32[1] << (40 - cnt))
 | |
| 			reg->lowmant |= 1;
 | |
| 		reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
 | |
| 		reg->mant.m32[0] = 0;
 | |
| 		break;
 | |
| 	case 40 ... 71:
 | |
| 		reg->lowmant = reg->mant.m32[0] >> (cnt - 40);
 | |
| 		if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1])
 | |
| 			reg->lowmant |= 1;
 | |
| 		reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
 | |
| 		reg->mant.m32[0] = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1];
 | |
| 		reg->mant.m32[0] = 0;
 | |
| 		reg->mant.m32[1] = 0;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int fp_overnormalize(struct fp_ext *reg)
 | |
| {
 | |
| 	int shift;
 | |
| 
 | |
| 	if (reg->mant.m32[0]) {
 | |
| 		asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0]));
 | |
| 		reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift));
 | |
| 		reg->mant.m32[1] = (reg->mant.m32[1] << shift);
 | |
| 	} else {
 | |
| 		asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1]));
 | |
| 		reg->mant.m32[0] = (reg->mant.m32[1] << shift);
 | |
| 		reg->mant.m32[1] = 0;
 | |
| 		shift += 32;
 | |
| 	}
 | |
| 
 | |
| 	return shift;
 | |
| }
 | |
| 
 | |
| static inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	int carry;
 | |
| 
 | |
| 	/* we assume here, gcc only insert move and a clr instr */
 | |
| 	asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant)
 | |
| 		: "g,d" (src->lowmant), "0,0" (dest->lowmant));
 | |
| 	asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1])
 | |
| 		: "d" (src->mant.m32[1]), "0" (dest->mant.m32[1]));
 | |
| 	asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0])
 | |
| 		: "d" (src->mant.m32[0]), "0" (dest->mant.m32[0]));
 | |
| 	asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0));
 | |
| 
 | |
| 	return carry;
 | |
| }
 | |
| 
 | |
| static inline int fp_addcarry(struct fp_ext *reg)
 | |
| {
 | |
| 	if (++reg->exp == 0x7fff) {
 | |
| 		if (reg->mant.m64)
 | |
| 			fp_set_sr(FPSR_EXC_INEX2);
 | |
| 		reg->mant.m64 = 0;
 | |
| 		fp_set_sr(FPSR_EXC_OVFL);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0);
 | |
| 	reg->mant.m32[1] = (reg->mant.m32[1] >> 1) |
 | |
| 			   (reg->mant.m32[0] << 31);
 | |
| 	reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1,
 | |
| 			      struct fp_ext *src2)
 | |
| {
 | |
| 	/* we assume here, gcc only insert move and a clr instr */
 | |
| 	asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant)
 | |
| 		: "g,d" (src2->lowmant), "0,0" (src1->lowmant));
 | |
| 	asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1])
 | |
| 		: "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1]));
 | |
| 	asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0])
 | |
| 		: "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0]));
 | |
| }
 | |
| 
 | |
| #define fp_mul64(desth, destl, src1, src2) ({				\
 | |
| 	asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth)		\
 | |
| 		: "dm" (src1), "0" (src2));				\
 | |
| })
 | |
| #define fp_div64(quot, rem, srch, srcl, div)				\
 | |
| 	asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem)		\
 | |
| 		: "dm" (div), "1" (srch), "0" (srcl))
 | |
| #define fp_add64(dest1, dest2, src1, src2) ({				\
 | |
| 	asm ("add.l %1,%0" : "=d,dm" (dest2)				\
 | |
| 		: "dm,d" (src2), "0,0" (dest2));			\
 | |
| 	asm ("addx.l %1,%0" : "=d" (dest1)				\
 | |
| 		: "d" (src1), "0" (dest1));				\
 | |
| })
 | |
| #define fp_addx96(dest, src) ({						\
 | |
| 	/* we assume here, gcc only insert move and a clr instr */	\
 | |
| 	asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2])		\
 | |
| 		: "g,d" (temp.m32[1]), "0,0" (dest->m32[2]));		\
 | |
| 	asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1])		\
 | |
| 		: "d" (temp.m32[0]), "0" (dest->m32[1]));		\
 | |
| 	asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0])		\
 | |
| 		: "d" (0), "0" (dest->m32[0]));				\
 | |
| })
 | |
| #define fp_sub64(dest, src) ({						\
 | |
| 	asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1])			\
 | |
| 		: "dm,d" (src.m32[1]), "0,0" (dest.m32[1]));		\
 | |
| 	asm ("subx.l %1,%0" : "=d" (dest.m32[0])			\
 | |
| 		: "d" (src.m32[0]), "0" (dest.m32[0]));			\
 | |
| })
 | |
| #define fp_sub96c(dest, srch, srcm, srcl) ({				\
 | |
| 	char carry;							\
 | |
| 	asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2])			\
 | |
| 		: "dm,d" (srcl), "0,0" (dest.m32[2]));			\
 | |
| 	asm ("subx.l %1,%0" : "=d" (dest.m32[1])			\
 | |
| 		: "d" (srcm), "0" (dest.m32[1]));			\
 | |
| 	asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0])	\
 | |
| 		: "d" (srch), "1" (dest.m32[0]));			\
 | |
| 	carry;								\
 | |
| })
 | |
| 
 | |
| static inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1,
 | |
| 				   struct fp_ext *src2)
 | |
| {
 | |
| 	union fp_mant64 temp;
 | |
| 
 | |
| 	fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]);
 | |
| 	fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]);
 | |
| 
 | |
| 	fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]);
 | |
| 	fp_addx96(dest, temp);
 | |
| 
 | |
| 	fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]);
 | |
| 	fp_addx96(dest, temp);
 | |
| }
 | |
| 
 | |
| static inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src,
 | |
| 				 struct fp_ext *div)
 | |
| {
 | |
| 	union fp_mant128 tmp;
 | |
| 	union fp_mant64 tmp64;
 | |
| 	unsigned long *mantp = dest->m32;
 | |
| 	unsigned long fix, rem, first, dummy;
 | |
| 	int i;
 | |
| 
 | |
| 	/* the algorithm below requires dest to be smaller than div,
 | |
| 	   but both have the high bit set */
 | |
| 	if (src->mant.m64 >= div->mant.m64) {
 | |
| 		fp_sub64(src->mant, div->mant);
 | |
| 		*mantp = 1;
 | |
| 	} else
 | |
| 		*mantp = 0;
 | |
| 	mantp++;
 | |
| 
 | |
| 	/* basic idea behind this algorithm: we can't divide two 64bit numbers
 | |
| 	   (AB/CD) directly, but we can calculate AB/C0, but this means this
 | |
| 	   quotient is off by C0/CD, so we have to multiply the first result
 | |
| 	   to fix the result, after that we have nearly the correct result
 | |
| 	   and only a few corrections are needed. */
 | |
| 
 | |
| 	/* C0/CD can be precalculated, but it's an 64bit division again, but
 | |
| 	   we can make it a bit easier, by dividing first through C so we get
 | |
| 	   10/1D and now only a single shift and the value fits into 32bit. */
 | |
| 	fix = 0x80000000;
 | |
| 	dummy = div->mant.m32[1] / div->mant.m32[0] + 1;
 | |
| 	dummy = (dummy >> 1) | fix;
 | |
| 	fp_div64(fix, dummy, fix, 0, dummy);
 | |
| 	fix--;
 | |
| 
 | |
| 	for (i = 0; i < 3; i++, mantp++) {
 | |
| 		if (src->mant.m32[0] == div->mant.m32[0]) {
 | |
| 			fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]);
 | |
| 
 | |
| 			fp_mul64(*mantp, dummy, first, fix);
 | |
| 			*mantp += fix;
 | |
| 		} else {
 | |
| 			fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]);
 | |
| 
 | |
| 			fp_mul64(*mantp, dummy, first, fix);
 | |
| 		}
 | |
| 
 | |
| 		fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp);
 | |
| 		fp_add64(tmp.m32[0], tmp.m32[1], 0, rem);
 | |
| 		tmp.m32[2] = 0;
 | |
| 
 | |
| 		fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]);
 | |
| 		fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]);
 | |
| 
 | |
| 		src->mant.m32[0] = tmp.m32[1];
 | |
| 		src->mant.m32[1] = tmp.m32[2];
 | |
| 
 | |
| 		while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) {
 | |
| 			src->mant.m32[0] = tmp.m32[1];
 | |
| 			src->mant.m32[1] = tmp.m32[2];
 | |
| 			*mantp += 1;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src,
 | |
| 				 int shift)
 | |
| {
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	switch (shift) {
 | |
| 	case 0:
 | |
| 		dest->mant.m64 = src->m64[0];
 | |
| 		dest->lowmant = src->m32[2] >> 24;
 | |
| 		if (src->m32[3] || (src->m32[2] << 8))
 | |
| 			dest->lowmant |= 1;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		asm volatile ("lsl.l #1,%0"
 | |
| 			: "=d" (tmp) : "0" (src->m32[2]));
 | |
| 		asm volatile ("roxl.l #1,%0"
 | |
| 			: "=d" (dest->mant.m32[1]) : "0" (src->m32[1]));
 | |
| 		asm volatile ("roxl.l #1,%0"
 | |
| 			: "=d" (dest->mant.m32[0]) : "0" (src->m32[0]));
 | |
| 		dest->lowmant = tmp >> 24;
 | |
| 		if (src->m32[3] || (tmp << 8))
 | |
| 			dest->lowmant |= 1;
 | |
| 		break;
 | |
| 	case 31:
 | |
| 		asm volatile ("lsr.l #1,%1; roxr.l #1,%0"
 | |
| 			: "=d" (dest->mant.m32[0])
 | |
| 			: "d" (src->m32[0]), "0" (src->m32[1]));
 | |
| 		asm volatile ("roxr.l #1,%0"
 | |
| 			: "=d" (dest->mant.m32[1]) : "0" (src->m32[2]));
 | |
| 		asm volatile ("roxr.l #1,%0"
 | |
| 			: "=d" (tmp) : "0" (src->m32[3]));
 | |
| 		dest->lowmant = tmp >> 24;
 | |
| 		if (src->m32[3] << 7)
 | |
| 			dest->lowmant |= 1;
 | |
| 		break;
 | |
| 	case 32:
 | |
| 		dest->mant.m32[0] = src->m32[1];
 | |
| 		dest->mant.m32[1] = src->m32[2];
 | |
| 		dest->lowmant = src->m32[3] >> 24;
 | |
| 		if (src->m32[3] << 8)
 | |
| 			dest->lowmant |= 1;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif	/* MULTI_ARITH_H */
 |