 ff69a4c855
			
		
	
	
	ff69a4c855
	
	
	
		
			
			struct machine_desc records are defined everywhere as a 'const' structure, but unfortuantely it loses its const-ness through the use of linker magic - the symbols which surround the section are not declared const so it becomes possible not to use 'const' for pointers to these const structures. Let's fix this oversight - all pointers to these structures should be marked const too. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
		
			
				
	
	
		
			372 lines
		
	
	
	
		
			9.7 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			372 lines
		
	
	
	
		
			9.7 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/arm/mm/nommu.c
 | |
|  *
 | |
|  * ARM uCLinux supporting functions.
 | |
|  */
 | |
| #include <linux/module.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/kernel.h>
 | |
| 
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/traps.h>
 | |
| #include <asm/mach/arch.h>
 | |
| #include <asm/cputype.h>
 | |
| #include <asm/mpu.h>
 | |
| 
 | |
| #include "mm.h"
 | |
| 
 | |
| #ifdef CONFIG_ARM_MPU
 | |
| struct mpu_rgn_info mpu_rgn_info;
 | |
| 
 | |
| /* Region number */
 | |
| static void rgnr_write(u32 v)
 | |
| {
 | |
| 	asm("mcr        p15, 0, %0, c6, c2, 0" : : "r" (v));
 | |
| }
 | |
| 
 | |
| /* Data-side / unified region attributes */
 | |
| 
 | |
| /* Region access control register */
 | |
| static void dracr_write(u32 v)
 | |
| {
 | |
| 	asm("mcr        p15, 0, %0, c6, c1, 4" : : "r" (v));
 | |
| }
 | |
| 
 | |
| /* Region size register */
 | |
| static void drsr_write(u32 v)
 | |
| {
 | |
| 	asm("mcr        p15, 0, %0, c6, c1, 2" : : "r" (v));
 | |
| }
 | |
| 
 | |
| /* Region base address register */
 | |
| static void drbar_write(u32 v)
 | |
| {
 | |
| 	asm("mcr        p15, 0, %0, c6, c1, 0" : : "r" (v));
 | |
| }
 | |
| 
 | |
| static u32 drbar_read(void)
 | |
| {
 | |
| 	u32 v;
 | |
| 	asm("mrc        p15, 0, %0, c6, c1, 0" : "=r" (v));
 | |
| 	return v;
 | |
| }
 | |
| /* Optional instruction-side region attributes */
 | |
| 
 | |
| /* I-side Region access control register */
 | |
| static void iracr_write(u32 v)
 | |
| {
 | |
| 	asm("mcr        p15, 0, %0, c6, c1, 5" : : "r" (v));
 | |
| }
 | |
| 
 | |
| /* I-side Region size register */
 | |
| static void irsr_write(u32 v)
 | |
| {
 | |
| 	asm("mcr        p15, 0, %0, c6, c1, 3" : : "r" (v));
 | |
| }
 | |
| 
 | |
| /* I-side Region base address register */
 | |
| static void irbar_write(u32 v)
 | |
| {
 | |
| 	asm("mcr        p15, 0, %0, c6, c1, 1" : : "r" (v));
 | |
| }
 | |
| 
 | |
| static unsigned long irbar_read(void)
 | |
| {
 | |
| 	unsigned long v;
 | |
| 	asm("mrc        p15, 0, %0, c6, c1, 1" : "=r" (v));
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| /* MPU initialisation functions */
 | |
| void __init sanity_check_meminfo_mpu(void)
 | |
| {
 | |
| 	int i;
 | |
| 	struct membank *bank = meminfo.bank;
 | |
| 	phys_addr_t phys_offset = PHYS_OFFSET;
 | |
| 	phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
 | |
| 
 | |
| 	/* Initially only use memory continuous from PHYS_OFFSET */
 | |
| 	if (bank_phys_start(&bank[0]) != phys_offset)
 | |
| 		panic("First memory bank must be contiguous from PHYS_OFFSET");
 | |
| 
 | |
| 	/* Banks have already been sorted by start address */
 | |
| 	for (i = 1; i < meminfo.nr_banks; i++) {
 | |
| 		if (bank[i].start <= bank_phys_end(&bank[0]) &&
 | |
| 		    bank_phys_end(&bank[i]) > bank_phys_end(&bank[0])) {
 | |
| 			bank[0].size = bank_phys_end(&bank[i]) - bank[0].start;
 | |
| 		} else {
 | |
| 			pr_notice("Ignoring RAM after 0x%.8lx. "
 | |
| 			"First non-contiguous (ignored) bank start: 0x%.8lx\n",
 | |
| 				(unsigned long)bank_phys_end(&bank[0]),
 | |
| 				(unsigned long)bank_phys_start(&bank[i]));
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	/* All contiguous banks are now merged in to the first bank */
 | |
| 	meminfo.nr_banks = 1;
 | |
| 	specified_mem_size = bank[0].size;
 | |
| 
 | |
| 	/*
 | |
| 	 * MPU has curious alignment requirements: Size must be power of 2, and
 | |
| 	 * region start must be aligned to the region size
 | |
| 	 */
 | |
| 	if (phys_offset != 0)
 | |
| 		pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * Maximum aligned region might overflow phys_addr_t if phys_offset is
 | |
| 	 * 0. Hence we keep everything below 4G until we take the smaller of
 | |
| 	 * the aligned_region_size and rounded_mem_size, one of which is
 | |
| 	 * guaranteed to be smaller than the maximum physical address.
 | |
| 	 */
 | |
| 	aligned_region_size = (phys_offset - 1) ^ (phys_offset);
 | |
| 	/* Find the max power-of-two sized region that fits inside our bank */
 | |
| 	rounded_mem_size = (1 <<  __fls(bank[0].size)) - 1;
 | |
| 
 | |
| 	/* The actual region size is the smaller of the two */
 | |
| 	aligned_region_size = aligned_region_size < rounded_mem_size
 | |
| 				? aligned_region_size + 1
 | |
| 				: rounded_mem_size + 1;
 | |
| 
 | |
| 	if (aligned_region_size != specified_mem_size)
 | |
| 		pr_warn("Truncating memory from 0x%.8lx to 0x%.8lx (MPU region constraints)",
 | |
| 				(unsigned long)specified_mem_size,
 | |
| 				(unsigned long)aligned_region_size);
 | |
| 
 | |
| 	meminfo.bank[0].size = aligned_region_size;
 | |
| 	pr_debug("MPU Region from 0x%.8lx size 0x%.8lx (end 0x%.8lx))\n",
 | |
| 		(unsigned long)phys_offset,
 | |
| 		(unsigned long)aligned_region_size,
 | |
| 		(unsigned long)bank_phys_end(&bank[0]));
 | |
| 
 | |
| }
 | |
| 
 | |
| static int mpu_present(void)
 | |
| {
 | |
| 	return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
 | |
| }
 | |
| 
 | |
| static int mpu_max_regions(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * We don't support a different number of I/D side regions so if we
 | |
| 	 * have separate instruction and data memory maps then return
 | |
| 	 * whichever side has a smaller number of supported regions.
 | |
| 	 */
 | |
| 	u32 dregions, iregions, mpuir;
 | |
| 	mpuir = read_cpuid(CPUID_MPUIR);
 | |
| 
 | |
| 	dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
 | |
| 
 | |
| 	/* Check for separate d-side and i-side memory maps */
 | |
| 	if (mpuir & MPUIR_nU)
 | |
| 		iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
 | |
| 
 | |
| 	/* Use the smallest of the two maxima */
 | |
| 	return min(dregions, iregions);
 | |
| }
 | |
| 
 | |
| static int mpu_iside_independent(void)
 | |
| {
 | |
| 	/* MPUIR.nU specifies whether there is *not* a unified memory map */
 | |
| 	return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
 | |
| }
 | |
| 
 | |
| static int mpu_min_region_order(void)
 | |
| {
 | |
| 	u32 drbar_result, irbar_result;
 | |
| 	/* We've kept a region free for this probing */
 | |
| 	rgnr_write(MPU_PROBE_REGION);
 | |
| 	isb();
 | |
| 	/*
 | |
| 	 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
 | |
| 	 * region order
 | |
| 	*/
 | |
| 	drbar_write(0xFFFFFFFC);
 | |
| 	drbar_result = irbar_result = drbar_read();
 | |
| 	drbar_write(0x0);
 | |
| 	/* If the MPU is non-unified, we use the larger of the two minima*/
 | |
| 	if (mpu_iside_independent()) {
 | |
| 		irbar_write(0xFFFFFFFC);
 | |
| 		irbar_result = irbar_read();
 | |
| 		irbar_write(0x0);
 | |
| 	}
 | |
| 	isb(); /* Ensure that MPU region operations have completed */
 | |
| 	/* Return whichever result is larger */
 | |
| 	return __ffs(max(drbar_result, irbar_result));
 | |
| }
 | |
| 
 | |
| static int mpu_setup_region(unsigned int number, phys_addr_t start,
 | |
| 			unsigned int size_order, unsigned int properties)
 | |
| {
 | |
| 	u32 size_data;
 | |
| 
 | |
| 	/* We kept a region free for probing resolution of MPU regions*/
 | |
| 	if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (size_order > 32)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (size_order < mpu_min_region_order())
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */
 | |
| 	size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
 | |
| 
 | |
| 	dsb(); /* Ensure all previous data accesses occur with old mappings */
 | |
| 	rgnr_write(number);
 | |
| 	isb();
 | |
| 	drbar_write(start);
 | |
| 	dracr_write(properties);
 | |
| 	isb(); /* Propagate properties before enabling region */
 | |
| 	drsr_write(size_data);
 | |
| 
 | |
| 	/* Check for independent I-side registers */
 | |
| 	if (mpu_iside_independent()) {
 | |
| 		irbar_write(start);
 | |
| 		iracr_write(properties);
 | |
| 		isb();
 | |
| 		irsr_write(size_data);
 | |
| 	}
 | |
| 	isb();
 | |
| 
 | |
| 	/* Store region info (we treat i/d side the same, so only store d) */
 | |
| 	mpu_rgn_info.rgns[number].dracr = properties;
 | |
| 	mpu_rgn_info.rgns[number].drbar = start;
 | |
| 	mpu_rgn_info.rgns[number].drsr = size_data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| * Set up default MPU regions, doing nothing if there is no MPU
 | |
| */
 | |
| void __init mpu_setup(void)
 | |
| {
 | |
| 	int region_err;
 | |
| 	if (!mpu_present())
 | |
| 		return;
 | |
| 
 | |
| 	region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
 | |
| 					ilog2(meminfo.bank[0].size),
 | |
| 					MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
 | |
| 	if (region_err) {
 | |
| 		panic("MPU region initialization failure! %d", region_err);
 | |
| 	} else {
 | |
| 		pr_info("Using ARMv7 PMSA Compliant MPU. "
 | |
| 			 "Region independence: %s, Max regions: %d\n",
 | |
| 			mpu_iside_independent() ? "Yes" : "No",
 | |
| 			mpu_max_regions());
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static void sanity_check_meminfo_mpu(void) {}
 | |
| static void __init mpu_setup(void) {}
 | |
| #endif /* CONFIG_ARM_MPU */
 | |
| 
 | |
| void __init arm_mm_memblock_reserve(void)
 | |
| {
 | |
| #ifndef CONFIG_CPU_V7M
 | |
| 	/*
 | |
| 	 * Register the exception vector page.
 | |
| 	 * some architectures which the DRAM is the exception vector to trap,
 | |
| 	 * alloc_page breaks with error, although it is not NULL, but "0."
 | |
| 	 */
 | |
| 	memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE);
 | |
| #else /* ifndef CONFIG_CPU_V7M */
 | |
| 	/*
 | |
| 	 * There is no dedicated vector page on V7-M. So nothing needs to be
 | |
| 	 * reserved here.
 | |
| 	 */
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void __init sanity_check_meminfo(void)
 | |
| {
 | |
| 	phys_addr_t end;
 | |
| 	sanity_check_meminfo_mpu();
 | |
| 	end = bank_phys_end(&meminfo.bank[meminfo.nr_banks - 1]);
 | |
| 	high_memory = __va(end - 1) + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * paging_init() sets up the page tables, initialises the zone memory
 | |
|  * maps, and sets up the zero page, bad page and bad page tables.
 | |
|  */
 | |
| void __init paging_init(const struct machine_desc *mdesc)
 | |
| {
 | |
| 	early_trap_init((void *)CONFIG_VECTORS_BASE);
 | |
| 	mpu_setup();
 | |
| 	bootmem_init();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We don't need to do anything here for nommu machines.
 | |
|  */
 | |
| void setup_mm_for_reboot(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| void flush_dcache_page(struct page *page)
 | |
| {
 | |
| 	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
 | |
| }
 | |
| EXPORT_SYMBOL(flush_dcache_page);
 | |
| 
 | |
| void flush_kernel_dcache_page(struct page *page)
 | |
| {
 | |
| 	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
 | |
| }
 | |
| EXPORT_SYMBOL(flush_kernel_dcache_page);
 | |
| 
 | |
| void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
 | |
| 		       unsigned long uaddr, void *dst, const void *src,
 | |
| 		       unsigned long len)
 | |
| {
 | |
| 	memcpy(dst, src, len);
 | |
| 	if (vma->vm_flags & VM_EXEC)
 | |
| 		__cpuc_coherent_user_range(uaddr, uaddr + len);
 | |
| }
 | |
| 
 | |
| void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
 | |
| 				size_t size, unsigned int mtype)
 | |
| {
 | |
| 	if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
 | |
| 		return NULL;
 | |
| 	return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
 | |
| }
 | |
| EXPORT_SYMBOL(__arm_ioremap_pfn);
 | |
| 
 | |
| void __iomem *__arm_ioremap_pfn_caller(unsigned long pfn, unsigned long offset,
 | |
| 			   size_t size, unsigned int mtype, void *caller)
 | |
| {
 | |
| 	return __arm_ioremap_pfn(pfn, offset, size, mtype);
 | |
| }
 | |
| 
 | |
| void __iomem *__arm_ioremap(phys_addr_t phys_addr, size_t size,
 | |
| 			    unsigned int mtype)
 | |
| {
 | |
| 	return (void __iomem *)phys_addr;
 | |
| }
 | |
| EXPORT_SYMBOL(__arm_ioremap);
 | |
| 
 | |
| void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
 | |
| 
 | |
| void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
 | |
| 				   unsigned int mtype, void *caller)
 | |
| {
 | |
| 	return __arm_ioremap(phys_addr, size, mtype);
 | |
| }
 | |
| 
 | |
| void (*arch_iounmap)(volatile void __iomem *);
 | |
| 
 | |
| void __arm_iounmap(volatile void __iomem *addr)
 | |
| {
 | |
| }
 | |
| EXPORT_SYMBOL(__arm_iounmap);
 |