 2e03285224
			
		
	
	
	2e03285224
	
	
	
		
			
			Pull ARM updates from Russell King: "This set includes adding support for Neon acceleration of RAID6 XOR code from Ard Biesheuvel, cache flushing and barrier updates from Will Deacon, and a cleanup to the ARM debug code which reduces the amount of code by about 500 lines. A few other cleanups, such as constifying the machine descriptors which already shouldn't be written to, cleaning up the printing of the L2 cache size" * 'for-linus' of git://git.linaro.org/people/rmk/linux-arm: (55 commits) ARM: 7826/1: debug: support debug ll on hisilicon soc ARM: 7830/1: delay: don't bother reporting bogomips in /proc/cpuinfo ARM: 7829/1: Add ".text.unlikely" and ".text.hot" to arm unwind tables ARM: 7828/1: ARMv7-M: implement restart routine common to all v7-M machines ARM: 7827/1: highbank: fix debug uart virtual address for LPAE ARM: 7823/1: errata: workaround Cortex-A15 erratum 773022 ARM: 7806/1: allow DEBUG_UNCOMPRESS for Tegra ARM: 7793/1: debug: use generic option for ep93xx PL10x debug port ARM: debug: move SPEAr debug to generic PL01x code ARM: debug: move davinci debug to generic 8250 code ARM: debug: move keystone debug to generic 8250 code ARM: debug: remove DEBUG_ROCKCHIP_UART ARM: debug: provide generic option choices for 8250 and PL01x ports ARM: debug: move PL01X debug include into arch/arm/include/debug/ ARM: debug: provide PL01x debug uart phys/virt address configuration options ARM: debug: add support for word accesses to debug/8250.S ARM: debug: move 8250 debug include into arch/arm/include/debug/ ARM: debug: provide 8250 debug uart phys/virt address configuration options ARM: debug: provide 8250 debug uart register shift configuration option ARM: debug: provide 8250 debug uart flow control configuration option ...
		
			
				
	
	
		
			1954 lines
		
	
	
	
		
			51 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1954 lines
		
	
	
	
		
			51 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/arm/mm/dma-mapping.c
 | |
|  *
 | |
|  *  Copyright (C) 2000-2004 Russell King
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  *  DMA uncached mapping support.
 | |
|  */
 | |
| #include <linux/module.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/dma-contiguous.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/iommu.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/sizes.h>
 | |
| 
 | |
| #include <asm/memory.h>
 | |
| #include <asm/highmem.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/mach/arch.h>
 | |
| #include <asm/dma-iommu.h>
 | |
| #include <asm/mach/map.h>
 | |
| #include <asm/system_info.h>
 | |
| #include <asm/dma-contiguous.h>
 | |
| 
 | |
| #include "mm.h"
 | |
| 
 | |
| /*
 | |
|  * The DMA API is built upon the notion of "buffer ownership".  A buffer
 | |
|  * is either exclusively owned by the CPU (and therefore may be accessed
 | |
|  * by it) or exclusively owned by the DMA device.  These helper functions
 | |
|  * represent the transitions between these two ownership states.
 | |
|  *
 | |
|  * Note, however, that on later ARMs, this notion does not work due to
 | |
|  * speculative prefetches.  We model our approach on the assumption that
 | |
|  * the CPU does do speculative prefetches, which means we clean caches
 | |
|  * before transfers and delay cache invalidation until transfer completion.
 | |
|  *
 | |
|  */
 | |
| static void __dma_page_cpu_to_dev(struct page *, unsigned long,
 | |
| 		size_t, enum dma_data_direction);
 | |
| static void __dma_page_dev_to_cpu(struct page *, unsigned long,
 | |
| 		size_t, enum dma_data_direction);
 | |
| 
 | |
| /**
 | |
|  * arm_dma_map_page - map a portion of a page for streaming DMA
 | |
|  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 | |
|  * @page: page that buffer resides in
 | |
|  * @offset: offset into page for start of buffer
 | |
|  * @size: size of buffer to map
 | |
|  * @dir: DMA transfer direction
 | |
|  *
 | |
|  * Ensure that any data held in the cache is appropriately discarded
 | |
|  * or written back.
 | |
|  *
 | |
|  * The device owns this memory once this call has completed.  The CPU
 | |
|  * can regain ownership by calling dma_unmap_page().
 | |
|  */
 | |
| static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
 | |
| 	     unsigned long offset, size_t size, enum dma_data_direction dir,
 | |
| 	     struct dma_attrs *attrs)
 | |
| {
 | |
| 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 | |
| 		__dma_page_cpu_to_dev(page, offset, size, dir);
 | |
| 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 | |
| }
 | |
| 
 | |
| static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
 | |
| 	     unsigned long offset, size_t size, enum dma_data_direction dir,
 | |
| 	     struct dma_attrs *attrs)
 | |
| {
 | |
| 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 | |
|  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 | |
|  * @handle: DMA address of buffer
 | |
|  * @size: size of buffer (same as passed to dma_map_page)
 | |
|  * @dir: DMA transfer direction (same as passed to dma_map_page)
 | |
|  *
 | |
|  * Unmap a page streaming mode DMA translation.  The handle and size
 | |
|  * must match what was provided in the previous dma_map_page() call.
 | |
|  * All other usages are undefined.
 | |
|  *
 | |
|  * After this call, reads by the CPU to the buffer are guaranteed to see
 | |
|  * whatever the device wrote there.
 | |
|  */
 | |
| static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 | |
| 		size_t size, enum dma_data_direction dir,
 | |
| 		struct dma_attrs *attrs)
 | |
| {
 | |
| 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 | |
| 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 | |
| 				      handle & ~PAGE_MASK, size, dir);
 | |
| }
 | |
| 
 | |
| static void arm_dma_sync_single_for_cpu(struct device *dev,
 | |
| 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	unsigned int offset = handle & (PAGE_SIZE - 1);
 | |
| 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 | |
| 	__dma_page_dev_to_cpu(page, offset, size, dir);
 | |
| }
 | |
| 
 | |
| static void arm_dma_sync_single_for_device(struct device *dev,
 | |
| 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	unsigned int offset = handle & (PAGE_SIZE - 1);
 | |
| 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 | |
| 	__dma_page_cpu_to_dev(page, offset, size, dir);
 | |
| }
 | |
| 
 | |
| struct dma_map_ops arm_dma_ops = {
 | |
| 	.alloc			= arm_dma_alloc,
 | |
| 	.free			= arm_dma_free,
 | |
| 	.mmap			= arm_dma_mmap,
 | |
| 	.get_sgtable		= arm_dma_get_sgtable,
 | |
| 	.map_page		= arm_dma_map_page,
 | |
| 	.unmap_page		= arm_dma_unmap_page,
 | |
| 	.map_sg			= arm_dma_map_sg,
 | |
| 	.unmap_sg		= arm_dma_unmap_sg,
 | |
| 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
 | |
| 	.sync_single_for_device	= arm_dma_sync_single_for_device,
 | |
| 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
 | |
| 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
 | |
| 	.set_dma_mask		= arm_dma_set_mask,
 | |
| };
 | |
| EXPORT_SYMBOL(arm_dma_ops);
 | |
| 
 | |
| static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 | |
| 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
 | |
| static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 | |
| 				  dma_addr_t handle, struct dma_attrs *attrs);
 | |
| 
 | |
| struct dma_map_ops arm_coherent_dma_ops = {
 | |
| 	.alloc			= arm_coherent_dma_alloc,
 | |
| 	.free			= arm_coherent_dma_free,
 | |
| 	.mmap			= arm_dma_mmap,
 | |
| 	.get_sgtable		= arm_dma_get_sgtable,
 | |
| 	.map_page		= arm_coherent_dma_map_page,
 | |
| 	.map_sg			= arm_dma_map_sg,
 | |
| 	.set_dma_mask		= arm_dma_set_mask,
 | |
| };
 | |
| EXPORT_SYMBOL(arm_coherent_dma_ops);
 | |
| 
 | |
| static u64 get_coherent_dma_mask(struct device *dev)
 | |
| {
 | |
| 	u64 mask = (u64)arm_dma_limit;
 | |
| 
 | |
| 	if (dev) {
 | |
| 		mask = dev->coherent_dma_mask;
 | |
| 
 | |
| 		/*
 | |
| 		 * Sanity check the DMA mask - it must be non-zero, and
 | |
| 		 * must be able to be satisfied by a DMA allocation.
 | |
| 		 */
 | |
| 		if (mask == 0) {
 | |
| 			dev_warn(dev, "coherent DMA mask is unset\n");
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if ((~mask) & (u64)arm_dma_limit) {
 | |
| 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
 | |
| 				 "than system GFP_DMA mask %#llx\n",
 | |
| 				 mask, (u64)arm_dma_limit);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| static void __dma_clear_buffer(struct page *page, size_t size)
 | |
| {
 | |
| 	/*
 | |
| 	 * Ensure that the allocated pages are zeroed, and that any data
 | |
| 	 * lurking in the kernel direct-mapped region is invalidated.
 | |
| 	 */
 | |
| 	if (PageHighMem(page)) {
 | |
| 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 | |
| 		phys_addr_t end = base + size;
 | |
| 		while (size > 0) {
 | |
| 			void *ptr = kmap_atomic(page);
 | |
| 			memset(ptr, 0, PAGE_SIZE);
 | |
| 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
 | |
| 			kunmap_atomic(ptr);
 | |
| 			page++;
 | |
| 			size -= PAGE_SIZE;
 | |
| 		}
 | |
| 		outer_flush_range(base, end);
 | |
| 	} else {
 | |
| 		void *ptr = page_address(page);
 | |
| 		memset(ptr, 0, size);
 | |
| 		dmac_flush_range(ptr, ptr + size);
 | |
| 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a DMA buffer for 'dev' of size 'size' using the
 | |
|  * specified gfp mask.  Note that 'size' must be page aligned.
 | |
|  */
 | |
| static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 | |
| {
 | |
| 	unsigned long order = get_order(size);
 | |
| 	struct page *page, *p, *e;
 | |
| 
 | |
| 	page = alloc_pages(gfp, order);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now split the huge page and free the excess pages
 | |
| 	 */
 | |
| 	split_page(page, order);
 | |
| 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 | |
| 		__free_page(p);
 | |
| 
 | |
| 	__dma_clear_buffer(page, size);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a DMA buffer.  'size' must be page aligned.
 | |
|  */
 | |
| static void __dma_free_buffer(struct page *page, size_t size)
 | |
| {
 | |
| 	struct page *e = page + (size >> PAGE_SHIFT);
 | |
| 
 | |
| 	while (page < e) {
 | |
| 		__free_page(page);
 | |
| 		page++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| #warning ARM Coherent DMA allocator does not (yet) support huge TLB
 | |
| #endif
 | |
| 
 | |
| static void *__alloc_from_contiguous(struct device *dev, size_t size,
 | |
| 				     pgprot_t prot, struct page **ret_page,
 | |
| 				     const void *caller);
 | |
| 
 | |
| static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 | |
| 				 pgprot_t prot, struct page **ret_page,
 | |
| 				 const void *caller);
 | |
| 
 | |
| static void *
 | |
| __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
 | |
| 	const void *caller)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * DMA allocation can be mapped to user space, so lets
 | |
| 	 * set VM_USERMAP flags too.
 | |
| 	 */
 | |
| 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
 | |
| 				  caller);
 | |
| 	if (!area)
 | |
| 		return NULL;
 | |
| 	addr = (unsigned long)area->addr;
 | |
| 	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
 | |
| 
 | |
| 	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
 | |
| 		vunmap((void *)addr);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return (void *)addr;
 | |
| }
 | |
| 
 | |
| static void __dma_free_remap(void *cpu_addr, size_t size)
 | |
| {
 | |
| 	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
 | |
| 	struct vm_struct *area = find_vm_area(cpu_addr);
 | |
| 	if (!area || (area->flags & flags) != flags) {
 | |
| 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
 | |
| 		return;
 | |
| 	}
 | |
| 	unmap_kernel_range((unsigned long)cpu_addr, size);
 | |
| 	vunmap(cpu_addr);
 | |
| }
 | |
| 
 | |
| #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 | |
| 
 | |
| struct dma_pool {
 | |
| 	size_t size;
 | |
| 	spinlock_t lock;
 | |
| 	unsigned long *bitmap;
 | |
| 	unsigned long nr_pages;
 | |
| 	void *vaddr;
 | |
| 	struct page **pages;
 | |
| };
 | |
| 
 | |
| static struct dma_pool atomic_pool = {
 | |
| 	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
 | |
| };
 | |
| 
 | |
| static int __init early_coherent_pool(char *p)
 | |
| {
 | |
| 	atomic_pool.size = memparse(p, &p);
 | |
| 	return 0;
 | |
| }
 | |
| early_param("coherent_pool", early_coherent_pool);
 | |
| 
 | |
| void __init init_dma_coherent_pool_size(unsigned long size)
 | |
| {
 | |
| 	/*
 | |
| 	 * Catch any attempt to set the pool size too late.
 | |
| 	 */
 | |
| 	BUG_ON(atomic_pool.vaddr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set architecture specific coherent pool size only if
 | |
| 	 * it has not been changed by kernel command line parameter.
 | |
| 	 */
 | |
| 	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
 | |
| 		atomic_pool.size = size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialise the coherent pool for atomic allocations.
 | |
|  */
 | |
| static int __init atomic_pool_init(void)
 | |
| {
 | |
| 	struct dma_pool *pool = &atomic_pool;
 | |
| 	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
 | |
| 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 | |
| 	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
 | |
| 	unsigned long *bitmap;
 | |
| 	struct page *page;
 | |
| 	struct page **pages;
 | |
| 	void *ptr;
 | |
| 	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
 | |
| 
 | |
| 	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
 | |
| 	if (!bitmap)
 | |
| 		goto no_bitmap;
 | |
| 
 | |
| 	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
 | |
| 	if (!pages)
 | |
| 		goto no_pages;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_DMA_CMA))
 | |
| 		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
 | |
| 					      atomic_pool_init);
 | |
| 	else
 | |
| 		ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
 | |
| 					   atomic_pool_init);
 | |
| 	if (ptr) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < nr_pages; i++)
 | |
| 			pages[i] = page + i;
 | |
| 
 | |
| 		spin_lock_init(&pool->lock);
 | |
| 		pool->vaddr = ptr;
 | |
| 		pool->pages = pages;
 | |
| 		pool->bitmap = bitmap;
 | |
| 		pool->nr_pages = nr_pages;
 | |
| 		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
 | |
| 		       (unsigned)pool->size / 1024);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	kfree(pages);
 | |
| no_pages:
 | |
| 	kfree(bitmap);
 | |
| no_bitmap:
 | |
| 	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
 | |
| 	       (unsigned)pool->size / 1024);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| /*
 | |
|  * CMA is activated by core_initcall, so we must be called after it.
 | |
|  */
 | |
| postcore_initcall(atomic_pool_init);
 | |
| 
 | |
| struct dma_contig_early_reserve {
 | |
| 	phys_addr_t base;
 | |
| 	unsigned long size;
 | |
| };
 | |
| 
 | |
| static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 | |
| 
 | |
| static int dma_mmu_remap_num __initdata;
 | |
| 
 | |
| void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 | |
| {
 | |
| 	dma_mmu_remap[dma_mmu_remap_num].base = base;
 | |
| 	dma_mmu_remap[dma_mmu_remap_num].size = size;
 | |
| 	dma_mmu_remap_num++;
 | |
| }
 | |
| 
 | |
| void __init dma_contiguous_remap(void)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < dma_mmu_remap_num; i++) {
 | |
| 		phys_addr_t start = dma_mmu_remap[i].base;
 | |
| 		phys_addr_t end = start + dma_mmu_remap[i].size;
 | |
| 		struct map_desc map;
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		if (end > arm_lowmem_limit)
 | |
| 			end = arm_lowmem_limit;
 | |
| 		if (start >= end)
 | |
| 			continue;
 | |
| 
 | |
| 		map.pfn = __phys_to_pfn(start);
 | |
| 		map.virtual = __phys_to_virt(start);
 | |
| 		map.length = end - start;
 | |
| 		map.type = MT_MEMORY_DMA_READY;
 | |
| 
 | |
| 		/*
 | |
| 		 * Clear previous low-memory mapping
 | |
| 		 */
 | |
| 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 | |
| 		     addr += PMD_SIZE)
 | |
| 			pmd_clear(pmd_off_k(addr));
 | |
| 
 | |
| 		iotable_init(&map, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
 | |
| 			    void *data)
 | |
| {
 | |
| 	struct page *page = virt_to_page(addr);
 | |
| 	pgprot_t prot = *(pgprot_t *)data;
 | |
| 
 | |
| 	set_pte_ext(pte, mk_pte(page, prot), 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 | |
| {
 | |
| 	unsigned long start = (unsigned long) page_address(page);
 | |
| 	unsigned end = start + size;
 | |
| 
 | |
| 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 | |
| 	flush_tlb_kernel_range(start, end);
 | |
| }
 | |
| 
 | |
| static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 | |
| 				 pgprot_t prot, struct page **ret_page,
 | |
| 				 const void *caller)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	void *ptr;
 | |
| 	page = __dma_alloc_buffer(dev, size, gfp);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
 | |
| 	if (!ptr) {
 | |
| 		__dma_free_buffer(page, size);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	*ret_page = page;
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static void *__alloc_from_pool(size_t size, struct page **ret_page)
 | |
| {
 | |
| 	struct dma_pool *pool = &atomic_pool;
 | |
| 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 | |
| 	unsigned int pageno;
 | |
| 	unsigned long flags;
 | |
| 	void *ptr = NULL;
 | |
| 	unsigned long align_mask;
 | |
| 
 | |
| 	if (!pool->vaddr) {
 | |
| 		WARN(1, "coherent pool not initialised!\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Align the region allocation - allocations from pool are rather
 | |
| 	 * small, so align them to their order in pages, minimum is a page
 | |
| 	 * size. This helps reduce fragmentation of the DMA space.
 | |
| 	 */
 | |
| 	align_mask = (1 << get_order(size)) - 1;
 | |
| 
 | |
| 	spin_lock_irqsave(&pool->lock, flags);
 | |
| 	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
 | |
| 					    0, count, align_mask);
 | |
| 	if (pageno < pool->nr_pages) {
 | |
| 		bitmap_set(pool->bitmap, pageno, count);
 | |
| 		ptr = pool->vaddr + PAGE_SIZE * pageno;
 | |
| 		*ret_page = pool->pages[pageno];
 | |
| 	} else {
 | |
| 		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
 | |
| 			    "Please increase it with coherent_pool= kernel parameter!\n",
 | |
| 			    (unsigned)pool->size / 1024);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&pool->lock, flags);
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static bool __in_atomic_pool(void *start, size_t size)
 | |
| {
 | |
| 	struct dma_pool *pool = &atomic_pool;
 | |
| 	void *end = start + size;
 | |
| 	void *pool_start = pool->vaddr;
 | |
| 	void *pool_end = pool->vaddr + pool->size;
 | |
| 
 | |
| 	if (start < pool_start || start >= pool_end)
 | |
| 		return false;
 | |
| 
 | |
| 	if (end <= pool_end)
 | |
| 		return true;
 | |
| 
 | |
| 	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
 | |
| 	     start, end - 1, pool_start, pool_end - 1);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int __free_from_pool(void *start, size_t size)
 | |
| {
 | |
| 	struct dma_pool *pool = &atomic_pool;
 | |
| 	unsigned long pageno, count;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!__in_atomic_pool(start, size))
 | |
| 		return 0;
 | |
| 
 | |
| 	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
 | |
| 	count = size >> PAGE_SHIFT;
 | |
| 
 | |
| 	spin_lock_irqsave(&pool->lock, flags);
 | |
| 	bitmap_clear(pool->bitmap, pageno, count);
 | |
| 	spin_unlock_irqrestore(&pool->lock, flags);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void *__alloc_from_contiguous(struct device *dev, size_t size,
 | |
| 				     pgprot_t prot, struct page **ret_page,
 | |
| 				     const void *caller)
 | |
| {
 | |
| 	unsigned long order = get_order(size);
 | |
| 	size_t count = size >> PAGE_SHIFT;
 | |
| 	struct page *page;
 | |
| 	void *ptr;
 | |
| 
 | |
| 	page = dma_alloc_from_contiguous(dev, count, order);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	__dma_clear_buffer(page, size);
 | |
| 
 | |
| 	if (PageHighMem(page)) {
 | |
| 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
 | |
| 		if (!ptr) {
 | |
| 			dma_release_from_contiguous(dev, page, count);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		__dma_remap(page, size, prot);
 | |
| 		ptr = page_address(page);
 | |
| 	}
 | |
| 	*ret_page = page;
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static void __free_from_contiguous(struct device *dev, struct page *page,
 | |
| 				   void *cpu_addr, size_t size)
 | |
| {
 | |
| 	if (PageHighMem(page))
 | |
| 		__dma_free_remap(cpu_addr, size);
 | |
| 	else
 | |
| 		__dma_remap(page, size, pgprot_kernel);
 | |
| 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
 | |
| {
 | |
| 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
 | |
| 			    pgprot_writecombine(prot) :
 | |
| 			    pgprot_dmacoherent(prot);
 | |
| 	return prot;
 | |
| }
 | |
| 
 | |
| #define nommu() 0
 | |
| 
 | |
| #else	/* !CONFIG_MMU */
 | |
| 
 | |
| #define nommu() 1
 | |
| 
 | |
| #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
 | |
| #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
 | |
| #define __alloc_from_pool(size, ret_page)			NULL
 | |
| #define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
 | |
| #define __free_from_pool(cpu_addr, size)			0
 | |
| #define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
 | |
| #define __dma_free_remap(cpu_addr, size)			do { } while (0)
 | |
| 
 | |
| #endif	/* CONFIG_MMU */
 | |
| 
 | |
| static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 | |
| 				   struct page **ret_page)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	page = __dma_alloc_buffer(dev, size, gfp);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	*ret_page = page;
 | |
| 	return page_address(page);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 | |
| 			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
 | |
| {
 | |
| 	u64 mask = get_coherent_dma_mask(dev);
 | |
| 	struct page *page = NULL;
 | |
| 	void *addr;
 | |
| 
 | |
| #ifdef CONFIG_DMA_API_DEBUG
 | |
| 	u64 limit = (mask + 1) & ~mask;
 | |
| 	if (limit && size >= limit) {
 | |
| 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 | |
| 			size, mask);
 | |
| 		return NULL;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (!mask)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (mask < 0xffffffffULL)
 | |
| 		gfp |= GFP_DMA;
 | |
| 
 | |
| 	/*
 | |
| 	 * Following is a work-around (a.k.a. hack) to prevent pages
 | |
| 	 * with __GFP_COMP being passed to split_page() which cannot
 | |
| 	 * handle them.  The real problem is that this flag probably
 | |
| 	 * should be 0 on ARM as it is not supported on this
 | |
| 	 * platform; see CONFIG_HUGETLBFS.
 | |
| 	 */
 | |
| 	gfp &= ~(__GFP_COMP);
 | |
| 
 | |
| 	*handle = DMA_ERROR_CODE;
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 
 | |
| 	if (is_coherent || nommu())
 | |
| 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
 | |
| 	else if (!(gfp & __GFP_WAIT))
 | |
| 		addr = __alloc_from_pool(size, &page);
 | |
| 	else if (!IS_ENABLED(CONFIG_DMA_CMA))
 | |
| 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
 | |
| 	else
 | |
| 		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
 | |
| 
 | |
| 	if (addr)
 | |
| 		*handle = pfn_to_dma(dev, page_to_pfn(page));
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate DMA-coherent memory space and return both the kernel remapped
 | |
|  * virtual and bus address for that space.
 | |
|  */
 | |
| void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 | |
| 		    gfp_t gfp, struct dma_attrs *attrs)
 | |
| {
 | |
| 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
 | |
| 	void *memory;
 | |
| 
 | |
| 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
 | |
| 		return memory;
 | |
| 
 | |
| 	return __dma_alloc(dev, size, handle, gfp, prot, false,
 | |
| 			   __builtin_return_address(0));
 | |
| }
 | |
| 
 | |
| static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 | |
| 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
 | |
| {
 | |
| 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
 | |
| 	void *memory;
 | |
| 
 | |
| 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
 | |
| 		return memory;
 | |
| 
 | |
| 	return __dma_alloc(dev, size, handle, gfp, prot, true,
 | |
| 			   __builtin_return_address(0));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create userspace mapping for the DMA-coherent memory.
 | |
|  */
 | |
| int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 | |
| 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 | |
| 		 struct dma_attrs *attrs)
 | |
| {
 | |
| 	int ret = -ENXIO;
 | |
| #ifdef CONFIG_MMU
 | |
| 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 | |
| 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 | |
| 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
 | |
| 	unsigned long off = vma->vm_pgoff;
 | |
| 
 | |
| 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 | |
| 
 | |
| 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 | |
| 		return ret;
 | |
| 
 | |
| 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 | |
| 		ret = remap_pfn_range(vma, vma->vm_start,
 | |
| 				      pfn + off,
 | |
| 				      vma->vm_end - vma->vm_start,
 | |
| 				      vma->vm_page_prot);
 | |
| 	}
 | |
| #endif	/* CONFIG_MMU */
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a buffer as defined by the above mapping.
 | |
|  */
 | |
| static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 | |
| 			   dma_addr_t handle, struct dma_attrs *attrs,
 | |
| 			   bool is_coherent)
 | |
| {
 | |
| 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 | |
| 
 | |
| 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
 | |
| 		return;
 | |
| 
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 
 | |
| 	if (is_coherent || nommu()) {
 | |
| 		__dma_free_buffer(page, size);
 | |
| 	} else if (__free_from_pool(cpu_addr, size)) {
 | |
| 		return;
 | |
| 	} else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
 | |
| 		__dma_free_remap(cpu_addr, size);
 | |
| 		__dma_free_buffer(page, size);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Non-atomic allocations cannot be freed with IRQs disabled
 | |
| 		 */
 | |
| 		WARN_ON(irqs_disabled());
 | |
| 		__free_from_contiguous(dev, page, cpu_addr, size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 | |
| 		  dma_addr_t handle, struct dma_attrs *attrs)
 | |
| {
 | |
| 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 | |
| }
 | |
| 
 | |
| static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 | |
| 				  dma_addr_t handle, struct dma_attrs *attrs)
 | |
| {
 | |
| 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 | |
| }
 | |
| 
 | |
| int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 | |
| 		 void *cpu_addr, dma_addr_t handle, size_t size,
 | |
| 		 struct dma_attrs *attrs)
 | |
| {
 | |
| 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 | |
| 	if (unlikely(ret))
 | |
| 		return ret;
 | |
| 
 | |
| 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dma_cache_maint_page(struct page *page, unsigned long offset,
 | |
| 	size_t size, enum dma_data_direction dir,
 | |
| 	void (*op)(const void *, size_t, int))
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 	size_t left = size;
 | |
| 
 | |
| 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 | |
| 	offset %= PAGE_SIZE;
 | |
| 
 | |
| 	/*
 | |
| 	 * A single sg entry may refer to multiple physically contiguous
 | |
| 	 * pages.  But we still need to process highmem pages individually.
 | |
| 	 * If highmem is not configured then the bulk of this loop gets
 | |
| 	 * optimized out.
 | |
| 	 */
 | |
| 	do {
 | |
| 		size_t len = left;
 | |
| 		void *vaddr;
 | |
| 
 | |
| 		page = pfn_to_page(pfn);
 | |
| 
 | |
| 		if (PageHighMem(page)) {
 | |
| 			if (len + offset > PAGE_SIZE)
 | |
| 				len = PAGE_SIZE - offset;
 | |
| 
 | |
| 			if (cache_is_vipt_nonaliasing()) {
 | |
| 				vaddr = kmap_atomic(page);
 | |
| 				op(vaddr + offset, len, dir);
 | |
| 				kunmap_atomic(vaddr);
 | |
| 			} else {
 | |
| 				vaddr = kmap_high_get(page);
 | |
| 				if (vaddr) {
 | |
| 					op(vaddr + offset, len, dir);
 | |
| 					kunmap_high(page);
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			vaddr = page_address(page) + offset;
 | |
| 			op(vaddr, len, dir);
 | |
| 		}
 | |
| 		offset = 0;
 | |
| 		pfn++;
 | |
| 		left -= len;
 | |
| 	} while (left);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Make an area consistent for devices.
 | |
|  * Note: Drivers should NOT use this function directly, as it will break
 | |
|  * platforms with CONFIG_DMABOUNCE.
 | |
|  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 | |
|  */
 | |
| static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 | |
| 	size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	unsigned long paddr;
 | |
| 
 | |
| 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 | |
| 
 | |
| 	paddr = page_to_phys(page) + off;
 | |
| 	if (dir == DMA_FROM_DEVICE) {
 | |
| 		outer_inv_range(paddr, paddr + size);
 | |
| 	} else {
 | |
| 		outer_clean_range(paddr, paddr + size);
 | |
| 	}
 | |
| 	/* FIXME: non-speculating: flush on bidirectional mappings? */
 | |
| }
 | |
| 
 | |
| static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 | |
| 	size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	unsigned long paddr = page_to_phys(page) + off;
 | |
| 
 | |
| 	/* FIXME: non-speculating: not required */
 | |
| 	/* don't bother invalidating if DMA to device */
 | |
| 	if (dir != DMA_TO_DEVICE)
 | |
| 		outer_inv_range(paddr, paddr + size);
 | |
| 
 | |
| 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark the D-cache clean for these pages to avoid extra flushing.
 | |
| 	 */
 | |
| 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 | |
| 		unsigned long pfn;
 | |
| 		size_t left = size;
 | |
| 
 | |
| 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
 | |
| 		off %= PAGE_SIZE;
 | |
| 		if (off) {
 | |
| 			pfn++;
 | |
| 			left -= PAGE_SIZE - off;
 | |
| 		}
 | |
| 		while (left >= PAGE_SIZE) {
 | |
| 			page = pfn_to_page(pfn++);
 | |
| 			set_bit(PG_dcache_clean, &page->flags);
 | |
| 			left -= PAGE_SIZE;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 | |
|  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 | |
|  * @sg: list of buffers
 | |
|  * @nents: number of buffers to map
 | |
|  * @dir: DMA transfer direction
 | |
|  *
 | |
|  * Map a set of buffers described by scatterlist in streaming mode for DMA.
 | |
|  * This is the scatter-gather version of the dma_map_single interface.
 | |
|  * Here the scatter gather list elements are each tagged with the
 | |
|  * appropriate dma address and length.  They are obtained via
 | |
|  * sg_dma_{address,length}.
 | |
|  *
 | |
|  * Device ownership issues as mentioned for dma_map_single are the same
 | |
|  * here.
 | |
|  */
 | |
| int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 | |
| 		enum dma_data_direction dir, struct dma_attrs *attrs)
 | |
| {
 | |
| 	struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 	struct scatterlist *s;
 | |
| 	int i, j;
 | |
| 
 | |
| 	for_each_sg(sg, s, nents, i) {
 | |
| #ifdef CONFIG_NEED_SG_DMA_LENGTH
 | |
| 		s->dma_length = s->length;
 | |
| #endif
 | |
| 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
 | |
| 						s->length, dir, attrs);
 | |
| 		if (dma_mapping_error(dev, s->dma_address))
 | |
| 			goto bad_mapping;
 | |
| 	}
 | |
| 	return nents;
 | |
| 
 | |
|  bad_mapping:
 | |
| 	for_each_sg(sg, s, i, j)
 | |
| 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 | |
|  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 | |
|  * @sg: list of buffers
 | |
|  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 | |
|  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 | |
|  *
 | |
|  * Unmap a set of streaming mode DMA translations.  Again, CPU access
 | |
|  * rules concerning calls here are the same as for dma_unmap_single().
 | |
|  */
 | |
| void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 | |
| 		enum dma_data_direction dir, struct dma_attrs *attrs)
 | |
| {
 | |
| 	struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 	struct scatterlist *s;
 | |
| 
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_sg(sg, s, nents, i)
 | |
| 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_dma_sync_sg_for_cpu
 | |
|  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 | |
|  * @sg: list of buffers
 | |
|  * @nents: number of buffers to map (returned from dma_map_sg)
 | |
|  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 | |
|  */
 | |
| void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 | |
| 			int nents, enum dma_data_direction dir)
 | |
| {
 | |
| 	struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 	struct scatterlist *s;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_sg(sg, s, nents, i)
 | |
| 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
 | |
| 					 dir);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_dma_sync_sg_for_device
 | |
|  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 | |
|  * @sg: list of buffers
 | |
|  * @nents: number of buffers to map (returned from dma_map_sg)
 | |
|  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 | |
|  */
 | |
| void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 | |
| 			int nents, enum dma_data_direction dir)
 | |
| {
 | |
| 	struct dma_map_ops *ops = get_dma_ops(dev);
 | |
| 	struct scatterlist *s;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_sg(sg, s, nents, i)
 | |
| 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
 | |
| 					    dir);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return whether the given device DMA address mask can be supported
 | |
|  * properly.  For example, if your device can only drive the low 24-bits
 | |
|  * during bus mastering, then you would pass 0x00ffffff as the mask
 | |
|  * to this function.
 | |
|  */
 | |
| int dma_supported(struct device *dev, u64 mask)
 | |
| {
 | |
| 	if (mask < (u64)arm_dma_limit)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_supported);
 | |
| 
 | |
| int arm_dma_set_mask(struct device *dev, u64 dma_mask)
 | |
| {
 | |
| 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	*dev->dma_mask = dma_mask;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define PREALLOC_DMA_DEBUG_ENTRIES	4096
 | |
| 
 | |
| static int __init dma_debug_do_init(void)
 | |
| {
 | |
| 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
 | |
| 	return 0;
 | |
| }
 | |
| fs_initcall(dma_debug_do_init);
 | |
| 
 | |
| #ifdef CONFIG_ARM_DMA_USE_IOMMU
 | |
| 
 | |
| /* IOMMU */
 | |
| 
 | |
| static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
 | |
| 				      size_t size)
 | |
| {
 | |
| 	unsigned int order = get_order(size);
 | |
| 	unsigned int align = 0;
 | |
| 	unsigned int count, start;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
 | |
| 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
 | |
| 
 | |
| 	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
 | |
| 		 (1 << mapping->order) - 1) >> mapping->order;
 | |
| 
 | |
| 	if (order > mapping->order)
 | |
| 		align = (1 << (order - mapping->order)) - 1;
 | |
| 
 | |
| 	spin_lock_irqsave(&mapping->lock, flags);
 | |
| 	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
 | |
| 					   count, align);
 | |
| 	if (start > mapping->bits) {
 | |
| 		spin_unlock_irqrestore(&mapping->lock, flags);
 | |
| 		return DMA_ERROR_CODE;
 | |
| 	}
 | |
| 
 | |
| 	bitmap_set(mapping->bitmap, start, count);
 | |
| 	spin_unlock_irqrestore(&mapping->lock, flags);
 | |
| 
 | |
| 	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
 | |
| }
 | |
| 
 | |
| static inline void __free_iova(struct dma_iommu_mapping *mapping,
 | |
| 			       dma_addr_t addr, size_t size)
 | |
| {
 | |
| 	unsigned int start = (addr - mapping->base) >>
 | |
| 			     (mapping->order + PAGE_SHIFT);
 | |
| 	unsigned int count = ((size >> PAGE_SHIFT) +
 | |
| 			      (1 << mapping->order) - 1) >> mapping->order;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&mapping->lock, flags);
 | |
| 	bitmap_clear(mapping->bitmap, start, count);
 | |
| 	spin_unlock_irqrestore(&mapping->lock, flags);
 | |
| }
 | |
| 
 | |
| static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
 | |
| 					  gfp_t gfp, struct dma_attrs *attrs)
 | |
| {
 | |
| 	struct page **pages;
 | |
| 	int count = size >> PAGE_SHIFT;
 | |
| 	int array_size = count * sizeof(struct page *);
 | |
| 	int i = 0;
 | |
| 
 | |
| 	if (array_size <= PAGE_SIZE)
 | |
| 		pages = kzalloc(array_size, gfp);
 | |
| 	else
 | |
| 		pages = vzalloc(array_size);
 | |
| 	if (!pages)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
 | |
| 	{
 | |
| 		unsigned long order = get_order(size);
 | |
| 		struct page *page;
 | |
| 
 | |
| 		page = dma_alloc_from_contiguous(dev, count, order);
 | |
| 		if (!page)
 | |
| 			goto error;
 | |
| 
 | |
| 		__dma_clear_buffer(page, size);
 | |
| 
 | |
| 		for (i = 0; i < count; i++)
 | |
| 			pages[i] = page + i;
 | |
| 
 | |
| 		return pages;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * IOMMU can map any pages, so himem can also be used here
 | |
| 	 */
 | |
| 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
 | |
| 
 | |
| 	while (count) {
 | |
| 		int j, order = __fls(count);
 | |
| 
 | |
| 		pages[i] = alloc_pages(gfp, order);
 | |
| 		while (!pages[i] && order)
 | |
| 			pages[i] = alloc_pages(gfp, --order);
 | |
| 		if (!pages[i])
 | |
| 			goto error;
 | |
| 
 | |
| 		if (order) {
 | |
| 			split_page(pages[i], order);
 | |
| 			j = 1 << order;
 | |
| 			while (--j)
 | |
| 				pages[i + j] = pages[i] + j;
 | |
| 		}
 | |
| 
 | |
| 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
 | |
| 		i += 1 << order;
 | |
| 		count -= 1 << order;
 | |
| 	}
 | |
| 
 | |
| 	return pages;
 | |
| error:
 | |
| 	while (i--)
 | |
| 		if (pages[i])
 | |
| 			__free_pages(pages[i], 0);
 | |
| 	if (array_size <= PAGE_SIZE)
 | |
| 		kfree(pages);
 | |
| 	else
 | |
| 		vfree(pages);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int __iommu_free_buffer(struct device *dev, struct page **pages,
 | |
| 			       size_t size, struct dma_attrs *attrs)
 | |
| {
 | |
| 	int count = size >> PAGE_SHIFT;
 | |
| 	int array_size = count * sizeof(struct page *);
 | |
| 	int i;
 | |
| 
 | |
| 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
 | |
| 		dma_release_from_contiguous(dev, pages[0], count);
 | |
| 	} else {
 | |
| 		for (i = 0; i < count; i++)
 | |
| 			if (pages[i])
 | |
| 				__free_pages(pages[i], 0);
 | |
| 	}
 | |
| 
 | |
| 	if (array_size <= PAGE_SIZE)
 | |
| 		kfree(pages);
 | |
| 	else
 | |
| 		vfree(pages);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a CPU mapping for a specified pages
 | |
|  */
 | |
| static void *
 | |
| __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
 | |
| 		    const void *caller)
 | |
| {
 | |
| 	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 | |
| 	struct vm_struct *area;
 | |
| 	unsigned long p;
 | |
| 
 | |
| 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
 | |
| 				  caller);
 | |
| 	if (!area)
 | |
| 		return NULL;
 | |
| 
 | |
| 	area->pages = pages;
 | |
| 	area->nr_pages = nr_pages;
 | |
| 	p = (unsigned long)area->addr;
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
 | |
| 		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
 | |
| 			goto err;
 | |
| 		p += PAGE_SIZE;
 | |
| 	}
 | |
| 	return area->addr;
 | |
| err:
 | |
| 	unmap_kernel_range((unsigned long)area->addr, size);
 | |
| 	vunmap(area->addr);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a mapping in device IO address space for specified pages
 | |
|  */
 | |
| static dma_addr_t
 | |
| __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
 | |
| {
 | |
| 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
 | |
| 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 | |
| 	dma_addr_t dma_addr, iova;
 | |
| 	int i, ret = DMA_ERROR_CODE;
 | |
| 
 | |
| 	dma_addr = __alloc_iova(mapping, size);
 | |
| 	if (dma_addr == DMA_ERROR_CODE)
 | |
| 		return dma_addr;
 | |
| 
 | |
| 	iova = dma_addr;
 | |
| 	for (i = 0; i < count; ) {
 | |
| 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
 | |
| 		phys_addr_t phys = page_to_phys(pages[i]);
 | |
| 		unsigned int len, j;
 | |
| 
 | |
| 		for (j = i + 1; j < count; j++, next_pfn++)
 | |
| 			if (page_to_pfn(pages[j]) != next_pfn)
 | |
| 				break;
 | |
| 
 | |
| 		len = (j - i) << PAGE_SHIFT;
 | |
| 		ret = iommu_map(mapping->domain, iova, phys, len, 0);
 | |
| 		if (ret < 0)
 | |
| 			goto fail;
 | |
| 		iova += len;
 | |
| 		i = j;
 | |
| 	}
 | |
| 	return dma_addr;
 | |
| fail:
 | |
| 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
 | |
| 	__free_iova(mapping, dma_addr, size);
 | |
| 	return DMA_ERROR_CODE;
 | |
| }
 | |
| 
 | |
| static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
 | |
| {
 | |
| 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
 | |
| 
 | |
| 	/*
 | |
| 	 * add optional in-page offset from iova to size and align
 | |
| 	 * result to page size
 | |
| 	 */
 | |
| 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
 | |
| 	iova &= PAGE_MASK;
 | |
| 
 | |
| 	iommu_unmap(mapping->domain, iova, size);
 | |
| 	__free_iova(mapping, iova, size);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct page **__atomic_get_pages(void *addr)
 | |
| {
 | |
| 	struct dma_pool *pool = &atomic_pool;
 | |
| 	struct page **pages = pool->pages;
 | |
| 	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
 | |
| 
 | |
| 	return pages + offs;
 | |
| }
 | |
| 
 | |
| static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 
 | |
| 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
 | |
| 		return __atomic_get_pages(cpu_addr);
 | |
| 
 | |
| 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
 | |
| 		return cpu_addr;
 | |
| 
 | |
| 	area = find_vm_area(cpu_addr);
 | |
| 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
 | |
| 		return area->pages;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void *__iommu_alloc_atomic(struct device *dev, size_t size,
 | |
| 				  dma_addr_t *handle)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	void *addr;
 | |
| 
 | |
| 	addr = __alloc_from_pool(size, &page);
 | |
| 	if (!addr)
 | |
| 		return NULL;
 | |
| 
 | |
| 	*handle = __iommu_create_mapping(dev, &page, size);
 | |
| 	if (*handle == DMA_ERROR_CODE)
 | |
| 		goto err_mapping;
 | |
| 
 | |
| 	return addr;
 | |
| 
 | |
| err_mapping:
 | |
| 	__free_from_pool(addr, size);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
 | |
| 				dma_addr_t handle, size_t size)
 | |
| {
 | |
| 	__iommu_remove_mapping(dev, handle, size);
 | |
| 	__free_from_pool(cpu_addr, size);
 | |
| }
 | |
| 
 | |
| static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
 | |
| 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
 | |
| {
 | |
| 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
 | |
| 	struct page **pages;
 | |
| 	void *addr = NULL;
 | |
| 
 | |
| 	*handle = DMA_ERROR_CODE;
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 
 | |
| 	if (gfp & GFP_ATOMIC)
 | |
| 		return __iommu_alloc_atomic(dev, size, handle);
 | |
| 
 | |
| 	/*
 | |
| 	 * Following is a work-around (a.k.a. hack) to prevent pages
 | |
| 	 * with __GFP_COMP being passed to split_page() which cannot
 | |
| 	 * handle them.  The real problem is that this flag probably
 | |
| 	 * should be 0 on ARM as it is not supported on this
 | |
| 	 * platform; see CONFIG_HUGETLBFS.
 | |
| 	 */
 | |
| 	gfp &= ~(__GFP_COMP);
 | |
| 
 | |
| 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
 | |
| 	if (!pages)
 | |
| 		return NULL;
 | |
| 
 | |
| 	*handle = __iommu_create_mapping(dev, pages, size);
 | |
| 	if (*handle == DMA_ERROR_CODE)
 | |
| 		goto err_buffer;
 | |
| 
 | |
| 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
 | |
| 		return pages;
 | |
| 
 | |
| 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
 | |
| 				   __builtin_return_address(0));
 | |
| 	if (!addr)
 | |
| 		goto err_mapping;
 | |
| 
 | |
| 	return addr;
 | |
| 
 | |
| err_mapping:
 | |
| 	__iommu_remove_mapping(dev, *handle, size);
 | |
| err_buffer:
 | |
| 	__iommu_free_buffer(dev, pages, size, attrs);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
 | |
| 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
 | |
| 		    struct dma_attrs *attrs)
 | |
| {
 | |
| 	unsigned long uaddr = vma->vm_start;
 | |
| 	unsigned long usize = vma->vm_end - vma->vm_start;
 | |
| 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
 | |
| 
 | |
| 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 | |
| 
 | |
| 	if (!pages)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	do {
 | |
| 		int ret = vm_insert_page(vma, uaddr, *pages++);
 | |
| 		if (ret) {
 | |
| 			pr_err("Remapping memory failed: %d\n", ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		uaddr += PAGE_SIZE;
 | |
| 		usize -= PAGE_SIZE;
 | |
| 	} while (usize > 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * free a page as defined by the above mapping.
 | |
|  * Must not be called with IRQs disabled.
 | |
|  */
 | |
| void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
 | |
| 			  dma_addr_t handle, struct dma_attrs *attrs)
 | |
| {
 | |
| 	struct page **pages;
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 
 | |
| 	if (__in_atomic_pool(cpu_addr, size)) {
 | |
| 		__iommu_free_atomic(dev, cpu_addr, handle, size);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pages = __iommu_get_pages(cpu_addr, attrs);
 | |
| 	if (!pages) {
 | |
| 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
 | |
| 		unmap_kernel_range((unsigned long)cpu_addr, size);
 | |
| 		vunmap(cpu_addr);
 | |
| 	}
 | |
| 
 | |
| 	__iommu_remove_mapping(dev, handle, size);
 | |
| 	__iommu_free_buffer(dev, pages, size, attrs);
 | |
| }
 | |
| 
 | |
| static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
 | |
| 				 void *cpu_addr, dma_addr_t dma_addr,
 | |
| 				 size_t size, struct dma_attrs *attrs)
 | |
| {
 | |
| 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 | |
| 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
 | |
| 
 | |
| 	if (!pages)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
 | |
| 					 GFP_KERNEL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Map a part of the scatter-gather list into contiguous io address space
 | |
|  */
 | |
| static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
 | |
| 			  size_t size, dma_addr_t *handle,
 | |
| 			  enum dma_data_direction dir, struct dma_attrs *attrs,
 | |
| 			  bool is_coherent)
 | |
| {
 | |
| 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
 | |
| 	dma_addr_t iova, iova_base;
 | |
| 	int ret = 0;
 | |
| 	unsigned int count;
 | |
| 	struct scatterlist *s;
 | |
| 
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 	*handle = DMA_ERROR_CODE;
 | |
| 
 | |
| 	iova_base = iova = __alloc_iova(mapping, size);
 | |
| 	if (iova == DMA_ERROR_CODE)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
 | |
| 		phys_addr_t phys = page_to_phys(sg_page(s));
 | |
| 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
 | |
| 
 | |
| 		if (!is_coherent &&
 | |
| 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 | |
| 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
 | |
| 
 | |
| 		ret = iommu_map(mapping->domain, iova, phys, len, 0);
 | |
| 		if (ret < 0)
 | |
| 			goto fail;
 | |
| 		count += len >> PAGE_SHIFT;
 | |
| 		iova += len;
 | |
| 	}
 | |
| 	*handle = iova_base;
 | |
| 
 | |
| 	return 0;
 | |
| fail:
 | |
| 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
 | |
| 	__free_iova(mapping, iova_base, size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 | |
| 		     enum dma_data_direction dir, struct dma_attrs *attrs,
 | |
| 		     bool is_coherent)
 | |
| {
 | |
| 	struct scatterlist *s = sg, *dma = sg, *start = sg;
 | |
| 	int i, count = 0;
 | |
| 	unsigned int offset = s->offset;
 | |
| 	unsigned int size = s->offset + s->length;
 | |
| 	unsigned int max = dma_get_max_seg_size(dev);
 | |
| 
 | |
| 	for (i = 1; i < nents; i++) {
 | |
| 		s = sg_next(s);
 | |
| 
 | |
| 		s->dma_address = DMA_ERROR_CODE;
 | |
| 		s->dma_length = 0;
 | |
| 
 | |
| 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
 | |
| 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
 | |
| 			    dir, attrs, is_coherent) < 0)
 | |
| 				goto bad_mapping;
 | |
| 
 | |
| 			dma->dma_address += offset;
 | |
| 			dma->dma_length = size - offset;
 | |
| 
 | |
| 			size = offset = s->offset;
 | |
| 			start = s;
 | |
| 			dma = sg_next(dma);
 | |
| 			count += 1;
 | |
| 		}
 | |
| 		size += s->length;
 | |
| 	}
 | |
| 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
 | |
| 		is_coherent) < 0)
 | |
| 		goto bad_mapping;
 | |
| 
 | |
| 	dma->dma_address += offset;
 | |
| 	dma->dma_length = size - offset;
 | |
| 
 | |
| 	return count+1;
 | |
| 
 | |
| bad_mapping:
 | |
| 	for_each_sg(sg, s, count, i)
 | |
| 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
 | |
|  * @dev: valid struct device pointer
 | |
|  * @sg: list of buffers
 | |
|  * @nents: number of buffers to map
 | |
|  * @dir: DMA transfer direction
 | |
|  *
 | |
|  * Map a set of i/o coherent buffers described by scatterlist in streaming
 | |
|  * mode for DMA. The scatter gather list elements are merged together (if
 | |
|  * possible) and tagged with the appropriate dma address and length. They are
 | |
|  * obtained via sg_dma_{address,length}.
 | |
|  */
 | |
| int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
 | |
| 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
 | |
| {
 | |
| 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
 | |
|  * @dev: valid struct device pointer
 | |
|  * @sg: list of buffers
 | |
|  * @nents: number of buffers to map
 | |
|  * @dir: DMA transfer direction
 | |
|  *
 | |
|  * Map a set of buffers described by scatterlist in streaming mode for DMA.
 | |
|  * The scatter gather list elements are merged together (if possible) and
 | |
|  * tagged with the appropriate dma address and length. They are obtained via
 | |
|  * sg_dma_{address,length}.
 | |
|  */
 | |
| int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
 | |
| 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
 | |
| {
 | |
| 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
 | |
| }
 | |
| 
 | |
| static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
 | |
| 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
 | |
| 		bool is_coherent)
 | |
| {
 | |
| 	struct scatterlist *s;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_sg(sg, s, nents, i) {
 | |
| 		if (sg_dma_len(s))
 | |
| 			__iommu_remove_mapping(dev, sg_dma_address(s),
 | |
| 					       sg_dma_len(s));
 | |
| 		if (!is_coherent &&
 | |
| 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 | |
| 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
 | |
| 					      s->length, dir);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 | |
|  * @dev: valid struct device pointer
 | |
|  * @sg: list of buffers
 | |
|  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 | |
|  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 | |
|  *
 | |
|  * Unmap a set of streaming mode DMA translations.  Again, CPU access
 | |
|  * rules concerning calls here are the same as for dma_unmap_single().
 | |
|  */
 | |
| void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
 | |
| 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
 | |
| {
 | |
| 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 | |
|  * @dev: valid struct device pointer
 | |
|  * @sg: list of buffers
 | |
|  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 | |
|  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 | |
|  *
 | |
|  * Unmap a set of streaming mode DMA translations.  Again, CPU access
 | |
|  * rules concerning calls here are the same as for dma_unmap_single().
 | |
|  */
 | |
| void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 | |
| 			enum dma_data_direction dir, struct dma_attrs *attrs)
 | |
| {
 | |
| 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_iommu_sync_sg_for_cpu
 | |
|  * @dev: valid struct device pointer
 | |
|  * @sg: list of buffers
 | |
|  * @nents: number of buffers to map (returned from dma_map_sg)
 | |
|  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 | |
|  */
 | |
| void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 | |
| 			int nents, enum dma_data_direction dir)
 | |
| {
 | |
| 	struct scatterlist *s;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_sg(sg, s, nents, i)
 | |
| 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_iommu_sync_sg_for_device
 | |
|  * @dev: valid struct device pointer
 | |
|  * @sg: list of buffers
 | |
|  * @nents: number of buffers to map (returned from dma_map_sg)
 | |
|  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 | |
|  */
 | |
| void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 | |
| 			int nents, enum dma_data_direction dir)
 | |
| {
 | |
| 	struct scatterlist *s;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_sg(sg, s, nents, i)
 | |
| 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * arm_coherent_iommu_map_page
 | |
|  * @dev: valid struct device pointer
 | |
|  * @page: page that buffer resides in
 | |
|  * @offset: offset into page for start of buffer
 | |
|  * @size: size of buffer to map
 | |
|  * @dir: DMA transfer direction
 | |
|  *
 | |
|  * Coherent IOMMU aware version of arm_dma_map_page()
 | |
|  */
 | |
| static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
 | |
| 	     unsigned long offset, size_t size, enum dma_data_direction dir,
 | |
| 	     struct dma_attrs *attrs)
 | |
| {
 | |
| 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
 | |
| 	dma_addr_t dma_addr;
 | |
| 	int ret, prot, len = PAGE_ALIGN(size + offset);
 | |
| 
 | |
| 	dma_addr = __alloc_iova(mapping, len);
 | |
| 	if (dma_addr == DMA_ERROR_CODE)
 | |
| 		return dma_addr;
 | |
| 
 | |
| 	switch (dir) {
 | |
| 	case DMA_BIDIRECTIONAL:
 | |
| 		prot = IOMMU_READ | IOMMU_WRITE;
 | |
| 		break;
 | |
| 	case DMA_TO_DEVICE:
 | |
| 		prot = IOMMU_READ;
 | |
| 		break;
 | |
| 	case DMA_FROM_DEVICE:
 | |
| 		prot = IOMMU_WRITE;
 | |
| 		break;
 | |
| 	default:
 | |
| 		prot = 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
 | |
| 	if (ret < 0)
 | |
| 		goto fail;
 | |
| 
 | |
| 	return dma_addr + offset;
 | |
| fail:
 | |
| 	__free_iova(mapping, dma_addr, len);
 | |
| 	return DMA_ERROR_CODE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_iommu_map_page
 | |
|  * @dev: valid struct device pointer
 | |
|  * @page: page that buffer resides in
 | |
|  * @offset: offset into page for start of buffer
 | |
|  * @size: size of buffer to map
 | |
|  * @dir: DMA transfer direction
 | |
|  *
 | |
|  * IOMMU aware version of arm_dma_map_page()
 | |
|  */
 | |
| static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
 | |
| 	     unsigned long offset, size_t size, enum dma_data_direction dir,
 | |
| 	     struct dma_attrs *attrs)
 | |
| {
 | |
| 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 | |
| 		__dma_page_cpu_to_dev(page, offset, size, dir);
 | |
| 
 | |
| 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_coherent_iommu_unmap_page
 | |
|  * @dev: valid struct device pointer
 | |
|  * @handle: DMA address of buffer
 | |
|  * @size: size of buffer (same as passed to dma_map_page)
 | |
|  * @dir: DMA transfer direction (same as passed to dma_map_page)
 | |
|  *
 | |
|  * Coherent IOMMU aware version of arm_dma_unmap_page()
 | |
|  */
 | |
| static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
 | |
| 		size_t size, enum dma_data_direction dir,
 | |
| 		struct dma_attrs *attrs)
 | |
| {
 | |
| 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
 | |
| 	dma_addr_t iova = handle & PAGE_MASK;
 | |
| 	int offset = handle & ~PAGE_MASK;
 | |
| 	int len = PAGE_ALIGN(size + offset);
 | |
| 
 | |
| 	if (!iova)
 | |
| 		return;
 | |
| 
 | |
| 	iommu_unmap(mapping->domain, iova, len);
 | |
| 	__free_iova(mapping, iova, len);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_iommu_unmap_page
 | |
|  * @dev: valid struct device pointer
 | |
|  * @handle: DMA address of buffer
 | |
|  * @size: size of buffer (same as passed to dma_map_page)
 | |
|  * @dir: DMA transfer direction (same as passed to dma_map_page)
 | |
|  *
 | |
|  * IOMMU aware version of arm_dma_unmap_page()
 | |
|  */
 | |
| static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
 | |
| 		size_t size, enum dma_data_direction dir,
 | |
| 		struct dma_attrs *attrs)
 | |
| {
 | |
| 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
 | |
| 	dma_addr_t iova = handle & PAGE_MASK;
 | |
| 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
 | |
| 	int offset = handle & ~PAGE_MASK;
 | |
| 	int len = PAGE_ALIGN(size + offset);
 | |
| 
 | |
| 	if (!iova)
 | |
| 		return;
 | |
| 
 | |
| 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 | |
| 		__dma_page_dev_to_cpu(page, offset, size, dir);
 | |
| 
 | |
| 	iommu_unmap(mapping->domain, iova, len);
 | |
| 	__free_iova(mapping, iova, len);
 | |
| }
 | |
| 
 | |
| static void arm_iommu_sync_single_for_cpu(struct device *dev,
 | |
| 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
 | |
| 	dma_addr_t iova = handle & PAGE_MASK;
 | |
| 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
 | |
| 	unsigned int offset = handle & ~PAGE_MASK;
 | |
| 
 | |
| 	if (!iova)
 | |
| 		return;
 | |
| 
 | |
| 	__dma_page_dev_to_cpu(page, offset, size, dir);
 | |
| }
 | |
| 
 | |
| static void arm_iommu_sync_single_for_device(struct device *dev,
 | |
| 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
 | |
| 	dma_addr_t iova = handle & PAGE_MASK;
 | |
| 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
 | |
| 	unsigned int offset = handle & ~PAGE_MASK;
 | |
| 
 | |
| 	if (!iova)
 | |
| 		return;
 | |
| 
 | |
| 	__dma_page_cpu_to_dev(page, offset, size, dir);
 | |
| }
 | |
| 
 | |
| struct dma_map_ops iommu_ops = {
 | |
| 	.alloc		= arm_iommu_alloc_attrs,
 | |
| 	.free		= arm_iommu_free_attrs,
 | |
| 	.mmap		= arm_iommu_mmap_attrs,
 | |
| 	.get_sgtable	= arm_iommu_get_sgtable,
 | |
| 
 | |
| 	.map_page		= arm_iommu_map_page,
 | |
| 	.unmap_page		= arm_iommu_unmap_page,
 | |
| 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
 | |
| 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
 | |
| 
 | |
| 	.map_sg			= arm_iommu_map_sg,
 | |
| 	.unmap_sg		= arm_iommu_unmap_sg,
 | |
| 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
 | |
| 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
 | |
| 
 | |
| 	.set_dma_mask		= arm_dma_set_mask,
 | |
| };
 | |
| 
 | |
| struct dma_map_ops iommu_coherent_ops = {
 | |
| 	.alloc		= arm_iommu_alloc_attrs,
 | |
| 	.free		= arm_iommu_free_attrs,
 | |
| 	.mmap		= arm_iommu_mmap_attrs,
 | |
| 	.get_sgtable	= arm_iommu_get_sgtable,
 | |
| 
 | |
| 	.map_page	= arm_coherent_iommu_map_page,
 | |
| 	.unmap_page	= arm_coherent_iommu_unmap_page,
 | |
| 
 | |
| 	.map_sg		= arm_coherent_iommu_map_sg,
 | |
| 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
 | |
| 
 | |
| 	.set_dma_mask	= arm_dma_set_mask,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * arm_iommu_create_mapping
 | |
|  * @bus: pointer to the bus holding the client device (for IOMMU calls)
 | |
|  * @base: start address of the valid IO address space
 | |
|  * @size: size of the valid IO address space
 | |
|  * @order: accuracy of the IO addresses allocations
 | |
|  *
 | |
|  * Creates a mapping structure which holds information about used/unused
 | |
|  * IO address ranges, which is required to perform memory allocation and
 | |
|  * mapping with IOMMU aware functions.
 | |
|  *
 | |
|  * The client device need to be attached to the mapping with
 | |
|  * arm_iommu_attach_device function.
 | |
|  */
 | |
| struct dma_iommu_mapping *
 | |
| arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
 | |
| 			 int order)
 | |
| {
 | |
| 	unsigned int count = size >> (PAGE_SHIFT + order);
 | |
| 	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
 | |
| 	struct dma_iommu_mapping *mapping;
 | |
| 	int err = -ENOMEM;
 | |
| 
 | |
| 	if (!count)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
 | |
| 	if (!mapping)
 | |
| 		goto err;
 | |
| 
 | |
| 	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
 | |
| 	if (!mapping->bitmap)
 | |
| 		goto err2;
 | |
| 
 | |
| 	mapping->base = base;
 | |
| 	mapping->bits = BITS_PER_BYTE * bitmap_size;
 | |
| 	mapping->order = order;
 | |
| 	spin_lock_init(&mapping->lock);
 | |
| 
 | |
| 	mapping->domain = iommu_domain_alloc(bus);
 | |
| 	if (!mapping->domain)
 | |
| 		goto err3;
 | |
| 
 | |
| 	kref_init(&mapping->kref);
 | |
| 	return mapping;
 | |
| err3:
 | |
| 	kfree(mapping->bitmap);
 | |
| err2:
 | |
| 	kfree(mapping);
 | |
| err:
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
 | |
| 
 | |
| static void release_iommu_mapping(struct kref *kref)
 | |
| {
 | |
| 	struct dma_iommu_mapping *mapping =
 | |
| 		container_of(kref, struct dma_iommu_mapping, kref);
 | |
| 
 | |
| 	iommu_domain_free(mapping->domain);
 | |
| 	kfree(mapping->bitmap);
 | |
| 	kfree(mapping);
 | |
| }
 | |
| 
 | |
| void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
 | |
| {
 | |
| 	if (mapping)
 | |
| 		kref_put(&mapping->kref, release_iommu_mapping);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
 | |
| 
 | |
| /**
 | |
|  * arm_iommu_attach_device
 | |
|  * @dev: valid struct device pointer
 | |
|  * @mapping: io address space mapping structure (returned from
 | |
|  *	arm_iommu_create_mapping)
 | |
|  *
 | |
|  * Attaches specified io address space mapping to the provided device,
 | |
|  * this replaces the dma operations (dma_map_ops pointer) with the
 | |
|  * IOMMU aware version. More than one client might be attached to
 | |
|  * the same io address space mapping.
 | |
|  */
 | |
| int arm_iommu_attach_device(struct device *dev,
 | |
| 			    struct dma_iommu_mapping *mapping)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = iommu_attach_device(mapping->domain, dev);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	kref_get(&mapping->kref);
 | |
| 	dev->archdata.mapping = mapping;
 | |
| 	set_dma_ops(dev, &iommu_ops);
 | |
| 
 | |
| 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
 | |
| 
 | |
| /**
 | |
|  * arm_iommu_detach_device
 | |
|  * @dev: valid struct device pointer
 | |
|  *
 | |
|  * Detaches the provided device from a previously attached map.
 | |
|  * This voids the dma operations (dma_map_ops pointer)
 | |
|  */
 | |
| void arm_iommu_detach_device(struct device *dev)
 | |
| {
 | |
| 	struct dma_iommu_mapping *mapping;
 | |
| 
 | |
| 	mapping = to_dma_iommu_mapping(dev);
 | |
| 	if (!mapping) {
 | |
| 		dev_warn(dev, "Not attached\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	iommu_detach_device(mapping->domain, dev);
 | |
| 	kref_put(&mapping->kref, release_iommu_mapping);
 | |
| 	dev->archdata.mapping = NULL;
 | |
| 	set_dma_ops(dev, NULL);
 | |
| 
 | |
| 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
 | |
| 
 | |
| #endif
 |