We print 'ino_t' type using '%lu' printk() placeholder, but this results in many warnings when compiling for Alpha platform. Fix this by adding (unsingned long) casts. Fixes these warnings: fs/ubifs/journal.c:693: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/journal.c:1131: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/dir.c:163: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/tnc.c:2680: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/tnc.c:2700: warning: format '%lu' expects type 'long unsigned int', but argument 5 has type 'ino_t' fs/ubifs/replay.c:1066: warning: format '%lu' expects type 'long unsigned int', but argument 7 has type 'ino_t' fs/ubifs/orphan.c:108: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:135: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:142: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:154: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:159: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:451: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:539: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:612: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:843: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/orphan.c:856: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/recovery.c:1438: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/recovery.c:1443: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/recovery.c:1475: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/recovery.c:1495: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:105: warning: format '%lu' expects type 'long unsigned int', but argument 3 has type 'ino_t' fs/ubifs/debug.c:105: warning: format '%lu' expects type 'long unsigned int', but argument 3 has type 'ino_t' fs/ubifs/debug.c:110: warning: format '%lu' expects type 'long unsigned int', but argument 3 has type 'ino_t' fs/ubifs/debug.c:110: warning: format '%lu' expects type 'long unsigned int', but argument 3 has type 'ino_t' fs/ubifs/debug.c:114: warning: format '%lu' expects type 'long unsigned int', but argument 3 has type 'ino_t' fs/ubifs/debug.c:114: warning: format '%lu' expects type 'long unsigned int', but argument 3 has type 'ino_t' fs/ubifs/debug.c:118: warning: format '%lu' expects type 'long unsigned int', but argument 3 has type 'ino_t' fs/ubifs/debug.c:118: warning: format '%lu' expects type 'long unsigned int', but argument 3 has type 'ino_t' fs/ubifs/debug.c:1591: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1671: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1674: warning: format '%lu' expects type 'long unsigned int', but argument 5 has type 'ino_t' fs/ubifs/debug.c:1680: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1699: warning: format '%lu' expects type 'long unsigned int', but argument 5 has type 'ino_t' fs/ubifs/debug.c:1788: warning: format '%lu' expects type 'long unsigned int', but argument 5 has type 'ino_t' fs/ubifs/debug.c:1821: warning: format '%lu' expects type 'long unsigned int', but argument 5 has type 'ino_t' fs/ubifs/debug.c:1833: warning: format '%lu' expects type 'long unsigned int', but argument 5 has type 'ino_t' fs/ubifs/debug.c:1924: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1932: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1938: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1945: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1953: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1960: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1967: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1973: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1988: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'ino_t' fs/ubifs/debug.c:1991: warning: format '%lu' expects type 'long unsigned int', but argument 5 has type 'ino_t' fs/ubifs/debug.c:2009: warning: format '%lu' expects type 'long unsigned int', but argument 2 has type 'ino_t' Reported-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
		
			
				
	
	
		
			1520 lines
		
	
	
	
		
			38 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1520 lines
		
	
	
	
		
			38 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * This file is part of UBIFS.
 | 
						|
 *
 | 
						|
 * Copyright (C) 2006-2008 Nokia Corporation
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify it
 | 
						|
 * under the terms of the GNU General Public License version 2 as published by
 | 
						|
 * the Free Software Foundation.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
						|
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
						|
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
						|
 * more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License along with
 | 
						|
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
						|
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 *
 | 
						|
 * Authors: Adrian Hunter
 | 
						|
 *          Artem Bityutskiy (Битюцкий Артём)
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * This file implements functions needed to recover from unclean un-mounts.
 | 
						|
 * When UBIFS is mounted, it checks a flag on the master node to determine if
 | 
						|
 * an un-mount was completed sucessfully. If not, the process of mounting
 | 
						|
 * incorparates additional checking and fixing of on-flash data structures.
 | 
						|
 * UBIFS always cleans away all remnants of an unclean un-mount, so that
 | 
						|
 * errors do not accumulate. However UBIFS defers recovery if it is mounted
 | 
						|
 * read-only, and the flash is not modified in that case.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/crc32.h>
 | 
						|
#include "ubifs.h"
 | 
						|
 | 
						|
/**
 | 
						|
 * is_empty - determine whether a buffer is empty (contains all 0xff).
 | 
						|
 * @buf: buffer to clean
 | 
						|
 * @len: length of buffer
 | 
						|
 *
 | 
						|
 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
 | 
						|
 * %0 is returned.
 | 
						|
 */
 | 
						|
static int is_empty(void *buf, int len)
 | 
						|
{
 | 
						|
	uint8_t *p = buf;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < len; i++)
 | 
						|
		if (*p++ != 0xff)
 | 
						|
			return 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * get_master_node - get the last valid master node allowing for corruption.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @lnum: LEB number
 | 
						|
 * @pbuf: buffer containing the LEB read, is returned here
 | 
						|
 * @mst: master node, if found, is returned here
 | 
						|
 * @cor: corruption, if found, is returned here
 | 
						|
 *
 | 
						|
 * This function allocates a buffer, reads the LEB into it, and finds and
 | 
						|
 * returns the last valid master node allowing for one area of corruption.
 | 
						|
 * The corrupt area, if there is one, must be consistent with the assumption
 | 
						|
 * that it is the result of an unclean unmount while the master node was being
 | 
						|
 * written. Under those circumstances, it is valid to use the previously written
 | 
						|
 * master node.
 | 
						|
 *
 | 
						|
 * This function returns %0 on success and a negative error code on failure.
 | 
						|
 */
 | 
						|
static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
 | 
						|
			   struct ubifs_mst_node **mst, void **cor)
 | 
						|
{
 | 
						|
	const int sz = c->mst_node_alsz;
 | 
						|
	int err, offs, len;
 | 
						|
	void *sbuf, *buf;
 | 
						|
 | 
						|
	sbuf = vmalloc(c->leb_size);
 | 
						|
	if (!sbuf)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
 | 
						|
	if (err && err != -EBADMSG)
 | 
						|
		goto out_free;
 | 
						|
 | 
						|
	/* Find the first position that is definitely not a node */
 | 
						|
	offs = 0;
 | 
						|
	buf = sbuf;
 | 
						|
	len = c->leb_size;
 | 
						|
	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
 | 
						|
		struct ubifs_ch *ch = buf;
 | 
						|
 | 
						|
		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 | 
						|
			break;
 | 
						|
		offs += sz;
 | 
						|
		buf  += sz;
 | 
						|
		len  -= sz;
 | 
						|
	}
 | 
						|
	/* See if there was a valid master node before that */
 | 
						|
	if (offs) {
 | 
						|
		int ret;
 | 
						|
 | 
						|
		offs -= sz;
 | 
						|
		buf  -= sz;
 | 
						|
		len  += sz;
 | 
						|
		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 | 
						|
		if (ret != SCANNED_A_NODE && offs) {
 | 
						|
			/* Could have been corruption so check one place back */
 | 
						|
			offs -= sz;
 | 
						|
			buf  -= sz;
 | 
						|
			len  += sz;
 | 
						|
			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 | 
						|
			if (ret != SCANNED_A_NODE)
 | 
						|
				/*
 | 
						|
				 * We accept only one area of corruption because
 | 
						|
				 * we are assuming that it was caused while
 | 
						|
				 * trying to write a master node.
 | 
						|
				 */
 | 
						|
				goto out_err;
 | 
						|
		}
 | 
						|
		if (ret == SCANNED_A_NODE) {
 | 
						|
			struct ubifs_ch *ch = buf;
 | 
						|
 | 
						|
			if (ch->node_type != UBIFS_MST_NODE)
 | 
						|
				goto out_err;
 | 
						|
			dbg_rcvry("found a master node at %d:%d", lnum, offs);
 | 
						|
			*mst = buf;
 | 
						|
			offs += sz;
 | 
						|
			buf  += sz;
 | 
						|
			len  -= sz;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/* Check for corruption */
 | 
						|
	if (offs < c->leb_size) {
 | 
						|
		if (!is_empty(buf, min_t(int, len, sz))) {
 | 
						|
			*cor = buf;
 | 
						|
			dbg_rcvry("found corruption at %d:%d", lnum, offs);
 | 
						|
		}
 | 
						|
		offs += sz;
 | 
						|
		buf  += sz;
 | 
						|
		len  -= sz;
 | 
						|
	}
 | 
						|
	/* Check remaining empty space */
 | 
						|
	if (offs < c->leb_size)
 | 
						|
		if (!is_empty(buf, len))
 | 
						|
			goto out_err;
 | 
						|
	*pbuf = sbuf;
 | 
						|
	return 0;
 | 
						|
 | 
						|
out_err:
 | 
						|
	err = -EINVAL;
 | 
						|
out_free:
 | 
						|
	vfree(sbuf);
 | 
						|
	*mst = NULL;
 | 
						|
	*cor = NULL;
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * write_rcvrd_mst_node - write recovered master node.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @mst: master node
 | 
						|
 *
 | 
						|
 * This function returns %0 on success and a negative error code on failure.
 | 
						|
 */
 | 
						|
static int write_rcvrd_mst_node(struct ubifs_info *c,
 | 
						|
				struct ubifs_mst_node *mst)
 | 
						|
{
 | 
						|
	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
 | 
						|
	__le32 save_flags;
 | 
						|
 | 
						|
	dbg_rcvry("recovery");
 | 
						|
 | 
						|
	save_flags = mst->flags;
 | 
						|
	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
 | 
						|
 | 
						|
	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
 | 
						|
	err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
 | 
						|
	if (err)
 | 
						|
		goto out;
 | 
						|
	err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
 | 
						|
	if (err)
 | 
						|
		goto out;
 | 
						|
out:
 | 
						|
	mst->flags = save_flags;
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ubifs_recover_master_node - recover the master node.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 *
 | 
						|
 * This function recovers the master node from corruption that may occur due to
 | 
						|
 * an unclean unmount.
 | 
						|
 *
 | 
						|
 * This function returns %0 on success and a negative error code on failure.
 | 
						|
 */
 | 
						|
int ubifs_recover_master_node(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
 | 
						|
	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
 | 
						|
	const int sz = c->mst_node_alsz;
 | 
						|
	int err, offs1, offs2;
 | 
						|
 | 
						|
	dbg_rcvry("recovery");
 | 
						|
 | 
						|
	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
 | 
						|
	if (err)
 | 
						|
		goto out_free;
 | 
						|
 | 
						|
	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
 | 
						|
	if (err)
 | 
						|
		goto out_free;
 | 
						|
 | 
						|
	if (mst1) {
 | 
						|
		offs1 = (void *)mst1 - buf1;
 | 
						|
		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
 | 
						|
		    (offs1 == 0 && !cor1)) {
 | 
						|
			/*
 | 
						|
			 * mst1 was written by recovery at offset 0 with no
 | 
						|
			 * corruption.
 | 
						|
			 */
 | 
						|
			dbg_rcvry("recovery recovery");
 | 
						|
			mst = mst1;
 | 
						|
		} else if (mst2) {
 | 
						|
			offs2 = (void *)mst2 - buf2;
 | 
						|
			if (offs1 == offs2) {
 | 
						|
				/* Same offset, so must be the same */
 | 
						|
				if (memcmp((void *)mst1 + UBIFS_CH_SZ,
 | 
						|
					   (void *)mst2 + UBIFS_CH_SZ,
 | 
						|
					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
 | 
						|
					goto out_err;
 | 
						|
				mst = mst1;
 | 
						|
			} else if (offs2 + sz == offs1) {
 | 
						|
				/* 1st LEB was written, 2nd was not */
 | 
						|
				if (cor1)
 | 
						|
					goto out_err;
 | 
						|
				mst = mst1;
 | 
						|
			} else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
 | 
						|
				/* 1st LEB was unmapped and written, 2nd not */
 | 
						|
				if (cor1)
 | 
						|
					goto out_err;
 | 
						|
				mst = mst1;
 | 
						|
			} else
 | 
						|
				goto out_err;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * 2nd LEB was unmapped and about to be written, so
 | 
						|
			 * there must be only one master node in the first LEB
 | 
						|
			 * and no corruption.
 | 
						|
			 */
 | 
						|
			if (offs1 != 0 || cor1)
 | 
						|
				goto out_err;
 | 
						|
			mst = mst1;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		if (!mst2)
 | 
						|
			goto out_err;
 | 
						|
		/*
 | 
						|
		 * 1st LEB was unmapped and about to be written, so there must
 | 
						|
		 * be no room left in 2nd LEB.
 | 
						|
		 */
 | 
						|
		offs2 = (void *)mst2 - buf2;
 | 
						|
		if (offs2 + sz + sz <= c->leb_size)
 | 
						|
			goto out_err;
 | 
						|
		mst = mst2;
 | 
						|
	}
 | 
						|
 | 
						|
	dbg_rcvry("recovered master node from LEB %d",
 | 
						|
		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
 | 
						|
 | 
						|
	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
 | 
						|
 | 
						|
	if ((c->vfs_sb->s_flags & MS_RDONLY)) {
 | 
						|
		/* Read-only mode. Keep a copy for switching to rw mode */
 | 
						|
		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
 | 
						|
		if (!c->rcvrd_mst_node) {
 | 
						|
			err = -ENOMEM;
 | 
						|
			goto out_free;
 | 
						|
		}
 | 
						|
		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
 | 
						|
	} else {
 | 
						|
		/* Write the recovered master node */
 | 
						|
		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
 | 
						|
		err = write_rcvrd_mst_node(c, c->mst_node);
 | 
						|
		if (err)
 | 
						|
			goto out_free;
 | 
						|
	}
 | 
						|
 | 
						|
	vfree(buf2);
 | 
						|
	vfree(buf1);
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
out_err:
 | 
						|
	err = -EINVAL;
 | 
						|
out_free:
 | 
						|
	ubifs_err("failed to recover master node");
 | 
						|
	if (mst1) {
 | 
						|
		dbg_err("dumping first master node");
 | 
						|
		dbg_dump_node(c, mst1);
 | 
						|
	}
 | 
						|
	if (mst2) {
 | 
						|
		dbg_err("dumping second master node");
 | 
						|
		dbg_dump_node(c, mst2);
 | 
						|
	}
 | 
						|
	vfree(buf2);
 | 
						|
	vfree(buf1);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ubifs_write_rcvrd_mst_node - write the recovered master node.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 *
 | 
						|
 * This function writes the master node that was recovered during mounting in
 | 
						|
 * read-only mode and must now be written because we are remounting rw.
 | 
						|
 *
 | 
						|
 * This function returns %0 on success and a negative error code on failure.
 | 
						|
 */
 | 
						|
int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (!c->rcvrd_mst_node)
 | 
						|
		return 0;
 | 
						|
	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
 | 
						|
	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
 | 
						|
	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	kfree(c->rcvrd_mst_node);
 | 
						|
	c->rcvrd_mst_node = NULL;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * is_last_write - determine if an offset was in the last write to a LEB.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @buf: buffer to check
 | 
						|
 * @offs: offset to check
 | 
						|
 *
 | 
						|
 * This function returns %1 if @offs was in the last write to the LEB whose data
 | 
						|
 * is in @buf, otherwise %0 is returned.  The determination is made by checking
 | 
						|
 * for subsequent empty space starting from the next min_io_size boundary (or a
 | 
						|
 * bit less than the common header size if min_io_size is one).
 | 
						|
 */
 | 
						|
static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
 | 
						|
{
 | 
						|
	int empty_offs;
 | 
						|
	int check_len;
 | 
						|
	uint8_t *p;
 | 
						|
 | 
						|
	if (c->min_io_size == 1) {
 | 
						|
		check_len = c->leb_size - offs;
 | 
						|
		p = buf + check_len;
 | 
						|
		for (; check_len > 0; check_len--)
 | 
						|
			if (*--p != 0xff)
 | 
						|
				break;
 | 
						|
		/*
 | 
						|
		 * 'check_len' is the size of the corruption which cannot be
 | 
						|
		 * more than the size of 1 node if it was caused by an unclean
 | 
						|
		 * unmount.
 | 
						|
		 */
 | 
						|
		if (check_len > UBIFS_MAX_NODE_SZ)
 | 
						|
			return 0;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Round up to the next c->min_io_size boundary i.e. 'offs' is in the
 | 
						|
	 * last wbuf written. After that should be empty space.
 | 
						|
	 */
 | 
						|
	empty_offs = ALIGN(offs + 1, c->min_io_size);
 | 
						|
	check_len = c->leb_size - empty_offs;
 | 
						|
	p = buf + empty_offs - offs;
 | 
						|
 | 
						|
	for (; check_len > 0; check_len--)
 | 
						|
		if (*p++ != 0xff)
 | 
						|
			return 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * clean_buf - clean the data from an LEB sitting in a buffer.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @buf: buffer to clean
 | 
						|
 * @lnum: LEB number to clean
 | 
						|
 * @offs: offset from which to clean
 | 
						|
 * @len: length of buffer
 | 
						|
 *
 | 
						|
 * This function pads up to the next min_io_size boundary (if there is one) and
 | 
						|
 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
 | 
						|
 * min_io_size boundary (if there is one).
 | 
						|
 */
 | 
						|
static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
 | 
						|
		      int *offs, int *len)
 | 
						|
{
 | 
						|
	int empty_offs, pad_len;
 | 
						|
 | 
						|
	lnum = lnum;
 | 
						|
	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
 | 
						|
 | 
						|
	if (c->min_io_size == 1) {
 | 
						|
		memset(*buf, 0xff, c->leb_size - *offs);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	ubifs_assert(!(*offs & 7));
 | 
						|
	empty_offs = ALIGN(*offs, c->min_io_size);
 | 
						|
	pad_len = empty_offs - *offs;
 | 
						|
	ubifs_pad(c, *buf, pad_len);
 | 
						|
	*offs += pad_len;
 | 
						|
	*buf += pad_len;
 | 
						|
	*len -= pad_len;
 | 
						|
	memset(*buf, 0xff, c->leb_size - empty_offs);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * no_more_nodes - determine if there are no more nodes in a buffer.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @buf: buffer to check
 | 
						|
 * @len: length of buffer
 | 
						|
 * @lnum: LEB number of the LEB from which @buf was read
 | 
						|
 * @offs: offset from which @buf was read
 | 
						|
 *
 | 
						|
 * This function scans @buf for more nodes and returns %0 is a node is found and
 | 
						|
 * %1 if no more nodes are found.
 | 
						|
 */
 | 
						|
static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
 | 
						|
			int lnum, int offs)
 | 
						|
{
 | 
						|
	int skip, next_offs = 0;
 | 
						|
 | 
						|
	if (len > UBIFS_DATA_NODE_SZ) {
 | 
						|
		struct ubifs_ch *ch = buf;
 | 
						|
		int dlen = le32_to_cpu(ch->len);
 | 
						|
 | 
						|
		if (ch->node_type == UBIFS_DATA_NODE && dlen >= UBIFS_CH_SZ &&
 | 
						|
		    dlen <= UBIFS_MAX_DATA_NODE_SZ)
 | 
						|
			/* The corrupt node looks like a data node */
 | 
						|
			next_offs = ALIGN(offs + dlen, 8);
 | 
						|
	}
 | 
						|
 | 
						|
	if (c->min_io_size == 1)
 | 
						|
		skip = 8;
 | 
						|
	else
 | 
						|
		skip = ALIGN(offs + 1, c->min_io_size) - offs;
 | 
						|
 | 
						|
	offs += skip;
 | 
						|
	buf += skip;
 | 
						|
	len -= skip;
 | 
						|
	while (len > 8) {
 | 
						|
		struct ubifs_ch *ch = buf;
 | 
						|
		uint32_t magic = le32_to_cpu(ch->magic);
 | 
						|
		int ret;
 | 
						|
 | 
						|
		if (magic == UBIFS_NODE_MAGIC) {
 | 
						|
			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 | 
						|
			if (ret == SCANNED_A_NODE || ret > 0) {
 | 
						|
				/*
 | 
						|
				 * There is a small chance this is just data in
 | 
						|
				 * a data node, so check that possibility. e.g.
 | 
						|
				 * this is part of a file that itself contains
 | 
						|
				 * a UBIFS image.
 | 
						|
				 */
 | 
						|
				if (next_offs && offs + le32_to_cpu(ch->len) <=
 | 
						|
				    next_offs)
 | 
						|
					continue;
 | 
						|
				dbg_rcvry("unexpected node at %d:%d", lnum,
 | 
						|
					  offs);
 | 
						|
				return 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		offs += 8;
 | 
						|
		buf += 8;
 | 
						|
		len -= 8;
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * fix_unclean_leb - fix an unclean LEB.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @sleb: scanned LEB information
 | 
						|
 * @start: offset where scan started
 | 
						|
 */
 | 
						|
static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 | 
						|
			   int start)
 | 
						|
{
 | 
						|
	int lnum = sleb->lnum, endpt = start;
 | 
						|
 | 
						|
	/* Get the end offset of the last node we are keeping */
 | 
						|
	if (!list_empty(&sleb->nodes)) {
 | 
						|
		struct ubifs_scan_node *snod;
 | 
						|
 | 
						|
		snod = list_entry(sleb->nodes.prev,
 | 
						|
				  struct ubifs_scan_node, list);
 | 
						|
		endpt = snod->offs + snod->len;
 | 
						|
	}
 | 
						|
 | 
						|
	if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) {
 | 
						|
		/* Add to recovery list */
 | 
						|
		struct ubifs_unclean_leb *ucleb;
 | 
						|
 | 
						|
		dbg_rcvry("need to fix LEB %d start %d endpt %d",
 | 
						|
			  lnum, start, sleb->endpt);
 | 
						|
		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
 | 
						|
		if (!ucleb)
 | 
						|
			return -ENOMEM;
 | 
						|
		ucleb->lnum = lnum;
 | 
						|
		ucleb->endpt = endpt;
 | 
						|
		list_add_tail(&ucleb->list, &c->unclean_leb_list);
 | 
						|
	} else {
 | 
						|
		/* Write the fixed LEB back to flash */
 | 
						|
		int err;
 | 
						|
 | 
						|
		dbg_rcvry("fixing LEB %d start %d endpt %d",
 | 
						|
			  lnum, start, sleb->endpt);
 | 
						|
		if (endpt == 0) {
 | 
						|
			err = ubifs_leb_unmap(c, lnum);
 | 
						|
			if (err)
 | 
						|
				return err;
 | 
						|
		} else {
 | 
						|
			int len = ALIGN(endpt, c->min_io_size);
 | 
						|
 | 
						|
			if (start) {
 | 
						|
				err = ubi_read(c->ubi, lnum, sleb->buf, 0,
 | 
						|
					       start);
 | 
						|
				if (err)
 | 
						|
					return err;
 | 
						|
			}
 | 
						|
			/* Pad to min_io_size */
 | 
						|
			if (len > endpt) {
 | 
						|
				int pad_len = len - ALIGN(endpt, 8);
 | 
						|
 | 
						|
				if (pad_len > 0) {
 | 
						|
					void *buf = sleb->buf + len - pad_len;
 | 
						|
 | 
						|
					ubifs_pad(c, buf, pad_len);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			err = ubi_leb_change(c->ubi, lnum, sleb->buf, len,
 | 
						|
					     UBI_UNKNOWN);
 | 
						|
			if (err)
 | 
						|
				return err;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * drop_incomplete_group - drop nodes from an incomplete group.
 | 
						|
 * @sleb: scanned LEB information
 | 
						|
 * @offs: offset of dropped nodes is returned here
 | 
						|
 *
 | 
						|
 * This function returns %1 if nodes are dropped and %0 otherwise.
 | 
						|
 */
 | 
						|
static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
 | 
						|
{
 | 
						|
	int dropped = 0;
 | 
						|
 | 
						|
	while (!list_empty(&sleb->nodes)) {
 | 
						|
		struct ubifs_scan_node *snod;
 | 
						|
		struct ubifs_ch *ch;
 | 
						|
 | 
						|
		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
 | 
						|
				  list);
 | 
						|
		ch = snod->node;
 | 
						|
		if (ch->group_type != UBIFS_IN_NODE_GROUP)
 | 
						|
			return dropped;
 | 
						|
		dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
 | 
						|
		*offs = snod->offs;
 | 
						|
		list_del(&snod->list);
 | 
						|
		kfree(snod);
 | 
						|
		sleb->nodes_cnt -= 1;
 | 
						|
		dropped = 1;
 | 
						|
	}
 | 
						|
	return dropped;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ubifs_recover_leb - scan and recover a LEB.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @lnum: LEB number
 | 
						|
 * @offs: offset
 | 
						|
 * @sbuf: LEB-sized buffer to use
 | 
						|
 * @grouped: nodes may be grouped for recovery
 | 
						|
 *
 | 
						|
 * This function does a scan of a LEB, but caters for errors that might have
 | 
						|
 * been caused by the unclean unmount from which we are attempting to recover.
 | 
						|
 *
 | 
						|
 * This function returns %0 on success and a negative error code on failure.
 | 
						|
 */
 | 
						|
struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
 | 
						|
					 int offs, void *sbuf, int grouped)
 | 
						|
{
 | 
						|
	int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
 | 
						|
	int empty_chkd = 0, start = offs;
 | 
						|
	struct ubifs_scan_leb *sleb;
 | 
						|
	void *buf = sbuf + offs;
 | 
						|
 | 
						|
	dbg_rcvry("%d:%d", lnum, offs);
 | 
						|
 | 
						|
	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
 | 
						|
	if (IS_ERR(sleb))
 | 
						|
		return sleb;
 | 
						|
 | 
						|
	if (sleb->ecc)
 | 
						|
		need_clean = 1;
 | 
						|
 | 
						|
	while (len >= 8) {
 | 
						|
		int ret;
 | 
						|
 | 
						|
		dbg_scan("look at LEB %d:%d (%d bytes left)",
 | 
						|
			 lnum, offs, len);
 | 
						|
 | 
						|
		cond_resched();
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Scan quietly until there is an error from which we cannot
 | 
						|
		 * recover
 | 
						|
		 */
 | 
						|
		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
 | 
						|
 | 
						|
		if (ret == SCANNED_A_NODE) {
 | 
						|
			/* A valid node, and not a padding node */
 | 
						|
			struct ubifs_ch *ch = buf;
 | 
						|
			int node_len;
 | 
						|
 | 
						|
			err = ubifs_add_snod(c, sleb, buf, offs);
 | 
						|
			if (err)
 | 
						|
				goto error;
 | 
						|
			node_len = ALIGN(le32_to_cpu(ch->len), 8);
 | 
						|
			offs += node_len;
 | 
						|
			buf += node_len;
 | 
						|
			len -= node_len;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (ret > 0) {
 | 
						|
			/* Padding bytes or a valid padding node */
 | 
						|
			offs += ret;
 | 
						|
			buf += ret;
 | 
						|
			len -= ret;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (ret == SCANNED_EMPTY_SPACE) {
 | 
						|
			if (!is_empty(buf, len)) {
 | 
						|
				if (!is_last_write(c, buf, offs))
 | 
						|
					break;
 | 
						|
				clean_buf(c, &buf, lnum, &offs, &len);
 | 
						|
				need_clean = 1;
 | 
						|
			}
 | 
						|
			empty_chkd = 1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
 | 
						|
			if (is_last_write(c, buf, offs)) {
 | 
						|
				clean_buf(c, &buf, lnum, &offs, &len);
 | 
						|
				need_clean = 1;
 | 
						|
				empty_chkd = 1;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
		if (ret == SCANNED_A_CORRUPT_NODE)
 | 
						|
			if (no_more_nodes(c, buf, len, lnum, offs)) {
 | 
						|
				clean_buf(c, &buf, lnum, &offs, &len);
 | 
						|
				need_clean = 1;
 | 
						|
				empty_chkd = 1;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
		if (quiet) {
 | 
						|
			/* Redo the last scan but noisily */
 | 
						|
			quiet = 0;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		switch (ret) {
 | 
						|
		case SCANNED_GARBAGE:
 | 
						|
			dbg_err("garbage");
 | 
						|
			goto corrupted;
 | 
						|
		case SCANNED_A_CORRUPT_NODE:
 | 
						|
		case SCANNED_A_BAD_PAD_NODE:
 | 
						|
			dbg_err("bad node");
 | 
						|
			goto corrupted;
 | 
						|
		default:
 | 
						|
			dbg_err("unknown");
 | 
						|
			goto corrupted;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (!empty_chkd && !is_empty(buf, len)) {
 | 
						|
		if (is_last_write(c, buf, offs)) {
 | 
						|
			clean_buf(c, &buf, lnum, &offs, &len);
 | 
						|
			need_clean = 1;
 | 
						|
		} else {
 | 
						|
			ubifs_err("corrupt empty space at LEB %d:%d",
 | 
						|
				  lnum, offs);
 | 
						|
			goto corrupted;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Drop nodes from incomplete group */
 | 
						|
	if (grouped && drop_incomplete_group(sleb, &offs)) {
 | 
						|
		buf = sbuf + offs;
 | 
						|
		len = c->leb_size - offs;
 | 
						|
		clean_buf(c, &buf, lnum, &offs, &len);
 | 
						|
		need_clean = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (offs % c->min_io_size) {
 | 
						|
		clean_buf(c, &buf, lnum, &offs, &len);
 | 
						|
		need_clean = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	ubifs_end_scan(c, sleb, lnum, offs);
 | 
						|
 | 
						|
	if (need_clean) {
 | 
						|
		err = fix_unclean_leb(c, sleb, start);
 | 
						|
		if (err)
 | 
						|
			goto error;
 | 
						|
	}
 | 
						|
 | 
						|
	return sleb;
 | 
						|
 | 
						|
corrupted:
 | 
						|
	ubifs_scanned_corruption(c, lnum, offs, buf);
 | 
						|
	err = -EUCLEAN;
 | 
						|
error:
 | 
						|
	ubifs_err("LEB %d scanning failed", lnum);
 | 
						|
	ubifs_scan_destroy(sleb);
 | 
						|
	return ERR_PTR(err);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * get_cs_sqnum - get commit start sequence number.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @lnum: LEB number of commit start node
 | 
						|
 * @offs: offset of commit start node
 | 
						|
 * @cs_sqnum: commit start sequence number is returned here
 | 
						|
 *
 | 
						|
 * This function returns %0 on success and a negative error code on failure.
 | 
						|
 */
 | 
						|
static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
 | 
						|
			unsigned long long *cs_sqnum)
 | 
						|
{
 | 
						|
	struct ubifs_cs_node *cs_node = NULL;
 | 
						|
	int err, ret;
 | 
						|
 | 
						|
	dbg_rcvry("at %d:%d", lnum, offs);
 | 
						|
	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
 | 
						|
	if (!cs_node)
 | 
						|
		return -ENOMEM;
 | 
						|
	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
 | 
						|
		goto out_err;
 | 
						|
	err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
 | 
						|
	if (err && err != -EBADMSG)
 | 
						|
		goto out_free;
 | 
						|
	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
 | 
						|
	if (ret != SCANNED_A_NODE) {
 | 
						|
		dbg_err("Not a valid node");
 | 
						|
		goto out_err;
 | 
						|
	}
 | 
						|
	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
 | 
						|
		dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
 | 
						|
		goto out_err;
 | 
						|
	}
 | 
						|
	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
 | 
						|
		dbg_err("CS node cmt_no %llu != current cmt_no %llu",
 | 
						|
			(unsigned long long)le64_to_cpu(cs_node->cmt_no),
 | 
						|
			c->cmt_no);
 | 
						|
		goto out_err;
 | 
						|
	}
 | 
						|
	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
 | 
						|
	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
 | 
						|
	kfree(cs_node);
 | 
						|
	return 0;
 | 
						|
 | 
						|
out_err:
 | 
						|
	err = -EINVAL;
 | 
						|
out_free:
 | 
						|
	ubifs_err("failed to get CS sqnum");
 | 
						|
	kfree(cs_node);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ubifs_recover_log_leb - scan and recover a log LEB.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @lnum: LEB number
 | 
						|
 * @offs: offset
 | 
						|
 * @sbuf: LEB-sized buffer to use
 | 
						|
 *
 | 
						|
 * This function does a scan of a LEB, but caters for errors that might have
 | 
						|
 * been caused by the unclean unmount from which we are attempting to recover.
 | 
						|
 *
 | 
						|
 * This function returns %0 on success and a negative error code on failure.
 | 
						|
 */
 | 
						|
struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
 | 
						|
					     int offs, void *sbuf)
 | 
						|
{
 | 
						|
	struct ubifs_scan_leb *sleb;
 | 
						|
	int next_lnum;
 | 
						|
 | 
						|
	dbg_rcvry("LEB %d", lnum);
 | 
						|
	next_lnum = lnum + 1;
 | 
						|
	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
 | 
						|
		next_lnum = UBIFS_LOG_LNUM;
 | 
						|
	if (next_lnum != c->ltail_lnum) {
 | 
						|
		/*
 | 
						|
		 * We can only recover at the end of the log, so check that the
 | 
						|
		 * next log LEB is empty or out of date.
 | 
						|
		 */
 | 
						|
		sleb = ubifs_scan(c, next_lnum, 0, sbuf);
 | 
						|
		if (IS_ERR(sleb))
 | 
						|
			return sleb;
 | 
						|
		if (sleb->nodes_cnt) {
 | 
						|
			struct ubifs_scan_node *snod;
 | 
						|
			unsigned long long cs_sqnum = c->cs_sqnum;
 | 
						|
 | 
						|
			snod = list_entry(sleb->nodes.next,
 | 
						|
					  struct ubifs_scan_node, list);
 | 
						|
			if (cs_sqnum == 0) {
 | 
						|
				int err;
 | 
						|
 | 
						|
				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
 | 
						|
				if (err) {
 | 
						|
					ubifs_scan_destroy(sleb);
 | 
						|
					return ERR_PTR(err);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if (snod->sqnum > cs_sqnum) {
 | 
						|
				ubifs_err("unrecoverable log corruption "
 | 
						|
					  "in LEB %d", lnum);
 | 
						|
				ubifs_scan_destroy(sleb);
 | 
						|
				return ERR_PTR(-EUCLEAN);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		ubifs_scan_destroy(sleb);
 | 
						|
	}
 | 
						|
	return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * recover_head - recover a head.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @lnum: LEB number of head to recover
 | 
						|
 * @offs: offset of head to recover
 | 
						|
 * @sbuf: LEB-sized buffer to use
 | 
						|
 *
 | 
						|
 * This function ensures that there is no data on the flash at a head location.
 | 
						|
 *
 | 
						|
 * This function returns %0 on success and a negative error code on failure.
 | 
						|
 */
 | 
						|
static int recover_head(const struct ubifs_info *c, int lnum, int offs,
 | 
						|
			void *sbuf)
 | 
						|
{
 | 
						|
	int len, err, need_clean = 0;
 | 
						|
 | 
						|
	if (c->min_io_size > 1)
 | 
						|
		len = c->min_io_size;
 | 
						|
	else
 | 
						|
		len = 512;
 | 
						|
	if (offs + len > c->leb_size)
 | 
						|
		len = c->leb_size - offs;
 | 
						|
 | 
						|
	if (!len)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Read at the head location and check it is empty flash */
 | 
						|
	err = ubi_read(c->ubi, lnum, sbuf, offs, len);
 | 
						|
	if (err)
 | 
						|
		need_clean = 1;
 | 
						|
	else {
 | 
						|
		uint8_t *p = sbuf;
 | 
						|
 | 
						|
		while (len--)
 | 
						|
			if (*p++ != 0xff) {
 | 
						|
				need_clean = 1;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
	}
 | 
						|
 | 
						|
	if (need_clean) {
 | 
						|
		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
 | 
						|
		if (offs == 0)
 | 
						|
			return ubifs_leb_unmap(c, lnum);
 | 
						|
		err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
 | 
						|
		if (err)
 | 
						|
			return err;
 | 
						|
		return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ubifs_recover_inl_heads - recover index and LPT heads.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @sbuf: LEB-sized buffer to use
 | 
						|
 *
 | 
						|
 * This function ensures that there is no data on the flash at the index and
 | 
						|
 * LPT head locations.
 | 
						|
 *
 | 
						|
 * This deals with the recovery of a half-completed journal commit. UBIFS is
 | 
						|
 * careful never to overwrite the last version of the index or the LPT. Because
 | 
						|
 * the index and LPT are wandering trees, data from a half-completed commit will
 | 
						|
 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
 | 
						|
 * assumed to be empty and will be unmapped anyway before use, or in the index
 | 
						|
 * and LPT heads.
 | 
						|
 *
 | 
						|
 * This function returns %0 on success and a negative error code on failure.
 | 
						|
 */
 | 
						|
int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw);
 | 
						|
 | 
						|
	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
 | 
						|
	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
 | 
						|
	err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *  clean_an_unclean_leb - read and write a LEB to remove corruption.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @ucleb: unclean LEB information
 | 
						|
 * @sbuf: LEB-sized buffer to use
 | 
						|
 *
 | 
						|
 * This function reads a LEB up to a point pre-determined by the mount recovery,
 | 
						|
 * checks the nodes, and writes the result back to the flash, thereby cleaning
 | 
						|
 * off any following corruption, or non-fatal ECC errors.
 | 
						|
 *
 | 
						|
 * This function returns %0 on success and a negative error code on failure.
 | 
						|
 */
 | 
						|
static int clean_an_unclean_leb(const struct ubifs_info *c,
 | 
						|
				struct ubifs_unclean_leb *ucleb, void *sbuf)
 | 
						|
{
 | 
						|
	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
 | 
						|
	void *buf = sbuf;
 | 
						|
 | 
						|
	dbg_rcvry("LEB %d len %d", lnum, len);
 | 
						|
 | 
						|
	if (len == 0) {
 | 
						|
		/* Nothing to read, just unmap it */
 | 
						|
		err = ubifs_leb_unmap(c, lnum);
 | 
						|
		if (err)
 | 
						|
			return err;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	err = ubi_read(c->ubi, lnum, buf, offs, len);
 | 
						|
	if (err && err != -EBADMSG)
 | 
						|
		return err;
 | 
						|
 | 
						|
	while (len >= 8) {
 | 
						|
		int ret;
 | 
						|
 | 
						|
		cond_resched();
 | 
						|
 | 
						|
		/* Scan quietly until there is an error */
 | 
						|
		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
 | 
						|
 | 
						|
		if (ret == SCANNED_A_NODE) {
 | 
						|
			/* A valid node, and not a padding node */
 | 
						|
			struct ubifs_ch *ch = buf;
 | 
						|
			int node_len;
 | 
						|
 | 
						|
			node_len = ALIGN(le32_to_cpu(ch->len), 8);
 | 
						|
			offs += node_len;
 | 
						|
			buf += node_len;
 | 
						|
			len -= node_len;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (ret > 0) {
 | 
						|
			/* Padding bytes or a valid padding node */
 | 
						|
			offs += ret;
 | 
						|
			buf += ret;
 | 
						|
			len -= ret;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (ret == SCANNED_EMPTY_SPACE) {
 | 
						|
			ubifs_err("unexpected empty space at %d:%d",
 | 
						|
				  lnum, offs);
 | 
						|
			return -EUCLEAN;
 | 
						|
		}
 | 
						|
 | 
						|
		if (quiet) {
 | 
						|
			/* Redo the last scan but noisily */
 | 
						|
			quiet = 0;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		ubifs_scanned_corruption(c, lnum, offs, buf);
 | 
						|
		return -EUCLEAN;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Pad to min_io_size */
 | 
						|
	len = ALIGN(ucleb->endpt, c->min_io_size);
 | 
						|
	if (len > ucleb->endpt) {
 | 
						|
		int pad_len = len - ALIGN(ucleb->endpt, 8);
 | 
						|
 | 
						|
		if (pad_len > 0) {
 | 
						|
			buf = c->sbuf + len - pad_len;
 | 
						|
			ubifs_pad(c, buf, pad_len);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Write back the LEB atomically */
 | 
						|
	err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	dbg_rcvry("cleaned LEB %d", lnum);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @sbuf: LEB-sized buffer to use
 | 
						|
 *
 | 
						|
 * This function cleans a LEB identified during recovery that needs to be
 | 
						|
 * written but was not because UBIFS was mounted read-only. This happens when
 | 
						|
 * remounting to read-write mode.
 | 
						|
 *
 | 
						|
 * This function returns %0 on success and a negative error code on failure.
 | 
						|
 */
 | 
						|
int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
 | 
						|
{
 | 
						|
	dbg_rcvry("recovery");
 | 
						|
	while (!list_empty(&c->unclean_leb_list)) {
 | 
						|
		struct ubifs_unclean_leb *ucleb;
 | 
						|
		int err;
 | 
						|
 | 
						|
		ucleb = list_entry(c->unclean_leb_list.next,
 | 
						|
				   struct ubifs_unclean_leb, list);
 | 
						|
		err = clean_an_unclean_leb(c, ucleb, sbuf);
 | 
						|
		if (err)
 | 
						|
			return err;
 | 
						|
		list_del(&ucleb->list);
 | 
						|
		kfree(ucleb);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 *
 | 
						|
 * Out-of-place garbage collection requires always one empty LEB with which to
 | 
						|
 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
 | 
						|
 * written to the master node on unmounting. In the case of an unclean unmount
 | 
						|
 * the value of gc_lnum recorded in the master node is out of date and cannot
 | 
						|
 * be used. Instead, recovery must allocate an empty LEB for this purpose.
 | 
						|
 * However, there may not be enough empty space, in which case it must be
 | 
						|
 * possible to GC the dirtiest LEB into the GC head LEB.
 | 
						|
 *
 | 
						|
 * This function also runs the commit which causes the TNC updates from
 | 
						|
 * size-recovery and orphans to be written to the flash. That is important to
 | 
						|
 * ensure correct replay order for subsequent mounts.
 | 
						|
 *
 | 
						|
 * This function returns %0 on success and a negative error code on failure.
 | 
						|
 */
 | 
						|
int ubifs_rcvry_gc_commit(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 | 
						|
	struct ubifs_lprops lp;
 | 
						|
	int lnum, err;
 | 
						|
 | 
						|
	c->gc_lnum = -1;
 | 
						|
	if (wbuf->lnum == -1) {
 | 
						|
		dbg_rcvry("no GC head LEB");
 | 
						|
		goto find_free;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * See whether the used space in the dirtiest LEB fits in the GC head
 | 
						|
	 * LEB.
 | 
						|
	 */
 | 
						|
	if (wbuf->offs == c->leb_size) {
 | 
						|
		dbg_rcvry("no room in GC head LEB");
 | 
						|
		goto find_free;
 | 
						|
	}
 | 
						|
	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
 | 
						|
	if (err) {
 | 
						|
		if (err == -ENOSPC)
 | 
						|
			dbg_err("could not find a dirty LEB");
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
	ubifs_assert(!(lp.flags & LPROPS_INDEX));
 | 
						|
	lnum = lp.lnum;
 | 
						|
	if (lp.free + lp.dirty == c->leb_size) {
 | 
						|
		/* An empty LEB was returned */
 | 
						|
		if (lp.free != c->leb_size) {
 | 
						|
			err = ubifs_change_one_lp(c, lnum, c->leb_size,
 | 
						|
						  0, 0, 0, 0);
 | 
						|
			if (err)
 | 
						|
				return err;
 | 
						|
		}
 | 
						|
		err = ubifs_leb_unmap(c, lnum);
 | 
						|
		if (err)
 | 
						|
			return err;
 | 
						|
		c->gc_lnum = lnum;
 | 
						|
		dbg_rcvry("allocated LEB %d for GC", lnum);
 | 
						|
		/* Run the commit */
 | 
						|
		dbg_rcvry("committing");
 | 
						|
		return ubifs_run_commit(c);
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * There was no empty LEB so the used space in the dirtiest LEB must fit
 | 
						|
	 * in the GC head LEB.
 | 
						|
	 */
 | 
						|
	if (lp.free + lp.dirty < wbuf->offs) {
 | 
						|
		dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d",
 | 
						|
			  lnum, wbuf->lnum, wbuf->offs);
 | 
						|
		err = ubifs_return_leb(c, lnum);
 | 
						|
		if (err)
 | 
						|
			return err;
 | 
						|
		goto find_free;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * We run the commit before garbage collection otherwise subsequent
 | 
						|
	 * mounts will see the GC and orphan deletion in a different order.
 | 
						|
	 */
 | 
						|
	dbg_rcvry("committing");
 | 
						|
	err = ubifs_run_commit(c);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	/*
 | 
						|
	 * The data in the dirtiest LEB fits in the GC head LEB, so do the GC
 | 
						|
	 * - use locking to keep 'ubifs_assert()' happy.
 | 
						|
	 */
 | 
						|
	dbg_rcvry("GC'ing LEB %d", lnum);
 | 
						|
	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 | 
						|
	err = ubifs_garbage_collect_leb(c, &lp);
 | 
						|
	if (err >= 0) {
 | 
						|
		int err2 = ubifs_wbuf_sync_nolock(wbuf);
 | 
						|
 | 
						|
		if (err2)
 | 
						|
			err = err2;
 | 
						|
	}
 | 
						|
	mutex_unlock(&wbuf->io_mutex);
 | 
						|
	if (err < 0) {
 | 
						|
		dbg_err("GC failed, error %d", err);
 | 
						|
		if (err == -EAGAIN)
 | 
						|
			err = -EINVAL;
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
	if (err != LEB_RETAINED) {
 | 
						|
		dbg_err("GC returned %d", err);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	err = ubifs_leb_unmap(c, c->gc_lnum);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	dbg_rcvry("allocated LEB %d for GC", lnum);
 | 
						|
	return 0;
 | 
						|
 | 
						|
find_free:
 | 
						|
	/*
 | 
						|
	 * There is no GC head LEB or the free space in the GC head LEB is too
 | 
						|
	 * small. Allocate gc_lnum by calling 'ubifs_find_free_leb_for_idx()' so
 | 
						|
	 * GC is not run.
 | 
						|
	 */
 | 
						|
	lnum = ubifs_find_free_leb_for_idx(c);
 | 
						|
	if (lnum < 0) {
 | 
						|
		dbg_err("could not find an empty LEB");
 | 
						|
		return lnum;
 | 
						|
	}
 | 
						|
	/* And reset the index flag */
 | 
						|
	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
 | 
						|
				  LPROPS_INDEX, 0);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	c->gc_lnum = lnum;
 | 
						|
	dbg_rcvry("allocated LEB %d for GC", lnum);
 | 
						|
	/* Run the commit */
 | 
						|
	dbg_rcvry("committing");
 | 
						|
	return ubifs_run_commit(c);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * struct size_entry - inode size information for recovery.
 | 
						|
 * @rb: link in the RB-tree of sizes
 | 
						|
 * @inum: inode number
 | 
						|
 * @i_size: size on inode
 | 
						|
 * @d_size: maximum size based on data nodes
 | 
						|
 * @exists: indicates whether the inode exists
 | 
						|
 * @inode: inode if pinned in memory awaiting rw mode to fix it
 | 
						|
 */
 | 
						|
struct size_entry {
 | 
						|
	struct rb_node rb;
 | 
						|
	ino_t inum;
 | 
						|
	loff_t i_size;
 | 
						|
	loff_t d_size;
 | 
						|
	int exists;
 | 
						|
	struct inode *inode;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * add_ino - add an entry to the size tree.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @inum: inode number
 | 
						|
 * @i_size: size on inode
 | 
						|
 * @d_size: maximum size based on data nodes
 | 
						|
 * @exists: indicates whether the inode exists
 | 
						|
 */
 | 
						|
static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
 | 
						|
		   loff_t d_size, int exists)
 | 
						|
{
 | 
						|
	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
 | 
						|
	struct size_entry *e;
 | 
						|
 | 
						|
	while (*p) {
 | 
						|
		parent = *p;
 | 
						|
		e = rb_entry(parent, struct size_entry, rb);
 | 
						|
		if (inum < e->inum)
 | 
						|
			p = &(*p)->rb_left;
 | 
						|
		else
 | 
						|
			p = &(*p)->rb_right;
 | 
						|
	}
 | 
						|
 | 
						|
	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
 | 
						|
	if (!e)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	e->inum = inum;
 | 
						|
	e->i_size = i_size;
 | 
						|
	e->d_size = d_size;
 | 
						|
	e->exists = exists;
 | 
						|
 | 
						|
	rb_link_node(&e->rb, parent, p);
 | 
						|
	rb_insert_color(&e->rb, &c->size_tree);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * find_ino - find an entry on the size tree.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @inum: inode number
 | 
						|
 */
 | 
						|
static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
 | 
						|
{
 | 
						|
	struct rb_node *p = c->size_tree.rb_node;
 | 
						|
	struct size_entry *e;
 | 
						|
 | 
						|
	while (p) {
 | 
						|
		e = rb_entry(p, struct size_entry, rb);
 | 
						|
		if (inum < e->inum)
 | 
						|
			p = p->rb_left;
 | 
						|
		else if (inum > e->inum)
 | 
						|
			p = p->rb_right;
 | 
						|
		else
 | 
						|
			return e;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * remove_ino - remove an entry from the size tree.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @inum: inode number
 | 
						|
 */
 | 
						|
static void remove_ino(struct ubifs_info *c, ino_t inum)
 | 
						|
{
 | 
						|
	struct size_entry *e = find_ino(c, inum);
 | 
						|
 | 
						|
	if (!e)
 | 
						|
		return;
 | 
						|
	rb_erase(&e->rb, &c->size_tree);
 | 
						|
	kfree(e);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ubifs_destroy_size_tree - free resources related to the size tree.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 */
 | 
						|
void ubifs_destroy_size_tree(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	struct rb_node *this = c->size_tree.rb_node;
 | 
						|
	struct size_entry *e;
 | 
						|
 | 
						|
	while (this) {
 | 
						|
		if (this->rb_left) {
 | 
						|
			this = this->rb_left;
 | 
						|
			continue;
 | 
						|
		} else if (this->rb_right) {
 | 
						|
			this = this->rb_right;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		e = rb_entry(this, struct size_entry, rb);
 | 
						|
		if (e->inode)
 | 
						|
			iput(e->inode);
 | 
						|
		this = rb_parent(this);
 | 
						|
		if (this) {
 | 
						|
			if (this->rb_left == &e->rb)
 | 
						|
				this->rb_left = NULL;
 | 
						|
			else
 | 
						|
				this->rb_right = NULL;
 | 
						|
		}
 | 
						|
		kfree(e);
 | 
						|
	}
 | 
						|
	c->size_tree = RB_ROOT;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @key: node key
 | 
						|
 * @deletion: node is for a deletion
 | 
						|
 * @new_size: inode size
 | 
						|
 *
 | 
						|
 * This function has two purposes:
 | 
						|
 *     1) to ensure there are no data nodes that fall outside the inode size
 | 
						|
 *     2) to ensure there are no data nodes for inodes that do not exist
 | 
						|
 * To accomplish those purposes, a rb-tree is constructed containing an entry
 | 
						|
 * for each inode number in the journal that has not been deleted, and recording
 | 
						|
 * the size from the inode node, the maximum size of any data node (also altered
 | 
						|
 * by truncations) and a flag indicating a inode number for which no inode node
 | 
						|
 * was present in the journal.
 | 
						|
 *
 | 
						|
 * Note that there is still the possibility that there are data nodes that have
 | 
						|
 * been committed that are beyond the inode size, however the only way to find
 | 
						|
 * them would be to scan the entire index. Alternatively, some provision could
 | 
						|
 * be made to record the size of inodes at the start of commit, which would seem
 | 
						|
 * very cumbersome for a scenario that is quite unlikely and the only negative
 | 
						|
 * consequence of which is wasted space.
 | 
						|
 *
 | 
						|
 * This functions returns %0 on success and a negative error code on failure.
 | 
						|
 */
 | 
						|
int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
 | 
						|
			     int deletion, loff_t new_size)
 | 
						|
{
 | 
						|
	ino_t inum = key_inum(c, key);
 | 
						|
	struct size_entry *e;
 | 
						|
	int err;
 | 
						|
 | 
						|
	switch (key_type(c, key)) {
 | 
						|
	case UBIFS_INO_KEY:
 | 
						|
		if (deletion)
 | 
						|
			remove_ino(c, inum);
 | 
						|
		else {
 | 
						|
			e = find_ino(c, inum);
 | 
						|
			if (e) {
 | 
						|
				e->i_size = new_size;
 | 
						|
				e->exists = 1;
 | 
						|
			} else {
 | 
						|
				err = add_ino(c, inum, new_size, 0, 1);
 | 
						|
				if (err)
 | 
						|
					return err;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case UBIFS_DATA_KEY:
 | 
						|
		e = find_ino(c, inum);
 | 
						|
		if (e) {
 | 
						|
			if (new_size > e->d_size)
 | 
						|
				e->d_size = new_size;
 | 
						|
		} else {
 | 
						|
			err = add_ino(c, inum, 0, new_size, 0);
 | 
						|
			if (err)
 | 
						|
				return err;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case UBIFS_TRUN_KEY:
 | 
						|
		e = find_ino(c, inum);
 | 
						|
		if (e)
 | 
						|
			e->d_size = new_size;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * fix_size_in_place - fix inode size in place on flash.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @e: inode size information for recovery
 | 
						|
 */
 | 
						|
static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
 | 
						|
{
 | 
						|
	struct ubifs_ino_node *ino = c->sbuf;
 | 
						|
	unsigned char *p;
 | 
						|
	union ubifs_key key;
 | 
						|
	int err, lnum, offs, len;
 | 
						|
	loff_t i_size;
 | 
						|
	uint32_t crc;
 | 
						|
 | 
						|
	/* Locate the inode node LEB number and offset */
 | 
						|
	ino_key_init(c, &key, e->inum);
 | 
						|
	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
 | 
						|
	if (err)
 | 
						|
		goto out;
 | 
						|
	/*
 | 
						|
	 * If the size recorded on the inode node is greater than the size that
 | 
						|
	 * was calculated from nodes in the journal then don't change the inode.
 | 
						|
	 */
 | 
						|
	i_size = le64_to_cpu(ino->size);
 | 
						|
	if (i_size >= e->d_size)
 | 
						|
		return 0;
 | 
						|
	/* Read the LEB */
 | 
						|
	err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size);
 | 
						|
	if (err)
 | 
						|
		goto out;
 | 
						|
	/* Change the size field and recalculate the CRC */
 | 
						|
	ino = c->sbuf + offs;
 | 
						|
	ino->size = cpu_to_le64(e->d_size);
 | 
						|
	len = le32_to_cpu(ino->ch.len);
 | 
						|
	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
 | 
						|
	ino->ch.crc = cpu_to_le32(crc);
 | 
						|
	/* Work out where data in the LEB ends and free space begins */
 | 
						|
	p = c->sbuf;
 | 
						|
	len = c->leb_size - 1;
 | 
						|
	while (p[len] == 0xff)
 | 
						|
		len -= 1;
 | 
						|
	len = ALIGN(len + 1, c->min_io_size);
 | 
						|
	/* Atomically write the fixed LEB back again */
 | 
						|
	err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN);
 | 
						|
	if (err)
 | 
						|
		goto out;
 | 
						|
	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ",
 | 
						|
		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
 | 
						|
	return 0;
 | 
						|
 | 
						|
out:
 | 
						|
	ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
 | 
						|
		   (unsigned long)e->inum, e->i_size, e->d_size, err);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ubifs_recover_size - recover inode size.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 *
 | 
						|
 * This function attempts to fix inode size discrepancies identified by the
 | 
						|
 * 'ubifs_recover_size_accum()' function.
 | 
						|
 *
 | 
						|
 * This functions returns %0 on success and a negative error code on failure.
 | 
						|
 */
 | 
						|
int ubifs_recover_size(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	struct rb_node *this = rb_first(&c->size_tree);
 | 
						|
 | 
						|
	while (this) {
 | 
						|
		struct size_entry *e;
 | 
						|
		int err;
 | 
						|
 | 
						|
		e = rb_entry(this, struct size_entry, rb);
 | 
						|
		if (!e->exists) {
 | 
						|
			union ubifs_key key;
 | 
						|
 | 
						|
			ino_key_init(c, &key, e->inum);
 | 
						|
			err = ubifs_tnc_lookup(c, &key, c->sbuf);
 | 
						|
			if (err && err != -ENOENT)
 | 
						|
				return err;
 | 
						|
			if (err == -ENOENT) {
 | 
						|
				/* Remove data nodes that have no inode */
 | 
						|
				dbg_rcvry("removing ino %lu",
 | 
						|
					  (unsigned long)e->inum);
 | 
						|
				err = ubifs_tnc_remove_ino(c, e->inum);
 | 
						|
				if (err)
 | 
						|
					return err;
 | 
						|
			} else {
 | 
						|
				struct ubifs_ino_node *ino = c->sbuf;
 | 
						|
 | 
						|
				e->exists = 1;
 | 
						|
				e->i_size = le64_to_cpu(ino->size);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (e->exists && e->i_size < e->d_size) {
 | 
						|
			if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) {
 | 
						|
				/* Fix the inode size and pin it in memory */
 | 
						|
				struct inode *inode;
 | 
						|
 | 
						|
				inode = ubifs_iget(c->vfs_sb, e->inum);
 | 
						|
				if (IS_ERR(inode))
 | 
						|
					return PTR_ERR(inode);
 | 
						|
				if (inode->i_size < e->d_size) {
 | 
						|
					dbg_rcvry("ino %lu size %lld -> %lld",
 | 
						|
						  (unsigned long)e->inum,
 | 
						|
						  e->d_size, inode->i_size);
 | 
						|
					inode->i_size = e->d_size;
 | 
						|
					ubifs_inode(inode)->ui_size = e->d_size;
 | 
						|
					e->inode = inode;
 | 
						|
					this = rb_next(this);
 | 
						|
					continue;
 | 
						|
				}
 | 
						|
				iput(inode);
 | 
						|
			} else {
 | 
						|
				/* Fix the size in place */
 | 
						|
				err = fix_size_in_place(c, e);
 | 
						|
				if (err)
 | 
						|
					return err;
 | 
						|
				if (e->inode)
 | 
						|
					iput(e->inode);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		this = rb_next(this);
 | 
						|
		rb_erase(&e->rb, &c->size_tree);
 | 
						|
		kfree(e);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 |