We cannot use ubifs_err() macro with DBGKEY() and DBGKEY1(), because this is racy and holding dbg_lock is needed. Use dbg_err() instead, which does have the lock held. Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
		
			
				
	
	
		
			2548 lines
		
	
	
	
		
			69 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2548 lines
		
	
	
	
		
			69 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * This file is part of UBIFS.
 | 
						|
 *
 | 
						|
 * Copyright (C) 2006-2008 Nokia Corporation
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify it
 | 
						|
 * under the terms of the GNU General Public License version 2 as published by
 | 
						|
 * the Free Software Foundation.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
						|
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
						|
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
						|
 * more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License along with
 | 
						|
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
						|
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 *
 | 
						|
 * Authors: Artem Bityutskiy (Битюцкий Артём)
 | 
						|
 *          Adrian Hunter
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * This file implements most of the debugging stuff which is compiled in only
 | 
						|
 * when it is enabled. But some debugging check functions are implemented in
 | 
						|
 * corresponding subsystem, just because they are closely related and utilize
 | 
						|
 * various local functions of those subsystems.
 | 
						|
 */
 | 
						|
 | 
						|
#define UBIFS_DBG_PRESERVE_UBI
 | 
						|
 | 
						|
#include "ubifs.h"
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/moduleparam.h>
 | 
						|
#include <linux/debugfs.h>
 | 
						|
#include <linux/math64.h>
 | 
						|
 | 
						|
#ifdef CONFIG_UBIFS_FS_DEBUG
 | 
						|
 | 
						|
DEFINE_SPINLOCK(dbg_lock);
 | 
						|
 | 
						|
static char dbg_key_buf0[128];
 | 
						|
static char dbg_key_buf1[128];
 | 
						|
 | 
						|
unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
 | 
						|
unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
 | 
						|
unsigned int ubifs_tst_flags;
 | 
						|
 | 
						|
module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
 | 
						|
module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
 | 
						|
module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
 | 
						|
 | 
						|
MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
 | 
						|
MODULE_PARM_DESC(debug_chks, "Debug check flags");
 | 
						|
MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
 | 
						|
 | 
						|
static const char *get_key_fmt(int fmt)
 | 
						|
{
 | 
						|
	switch (fmt) {
 | 
						|
	case UBIFS_SIMPLE_KEY_FMT:
 | 
						|
		return "simple";
 | 
						|
	default:
 | 
						|
		return "unknown/invalid format";
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static const char *get_key_hash(int hash)
 | 
						|
{
 | 
						|
	switch (hash) {
 | 
						|
	case UBIFS_KEY_HASH_R5:
 | 
						|
		return "R5";
 | 
						|
	case UBIFS_KEY_HASH_TEST:
 | 
						|
		return "test";
 | 
						|
	default:
 | 
						|
		return "unknown/invalid name hash";
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static const char *get_key_type(int type)
 | 
						|
{
 | 
						|
	switch (type) {
 | 
						|
	case UBIFS_INO_KEY:
 | 
						|
		return "inode";
 | 
						|
	case UBIFS_DENT_KEY:
 | 
						|
		return "direntry";
 | 
						|
	case UBIFS_XENT_KEY:
 | 
						|
		return "xentry";
 | 
						|
	case UBIFS_DATA_KEY:
 | 
						|
		return "data";
 | 
						|
	case UBIFS_TRUN_KEY:
 | 
						|
		return "truncate";
 | 
						|
	default:
 | 
						|
		return "unknown/invalid key";
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
 | 
						|
			char *buffer)
 | 
						|
{
 | 
						|
	char *p = buffer;
 | 
						|
	int type = key_type(c, key);
 | 
						|
 | 
						|
	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 | 
						|
		switch (type) {
 | 
						|
		case UBIFS_INO_KEY:
 | 
						|
			sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
 | 
						|
			       get_key_type(type));
 | 
						|
			break;
 | 
						|
		case UBIFS_DENT_KEY:
 | 
						|
		case UBIFS_XENT_KEY:
 | 
						|
			sprintf(p, "(%lu, %s, %#08x)",
 | 
						|
				(unsigned long)key_inum(c, key),
 | 
						|
				get_key_type(type), key_hash(c, key));
 | 
						|
			break;
 | 
						|
		case UBIFS_DATA_KEY:
 | 
						|
			sprintf(p, "(%lu, %s, %u)",
 | 
						|
				(unsigned long)key_inum(c, key),
 | 
						|
				get_key_type(type), key_block(c, key));
 | 
						|
			break;
 | 
						|
		case UBIFS_TRUN_KEY:
 | 
						|
			sprintf(p, "(%lu, %s)",
 | 
						|
				(unsigned long)key_inum(c, key),
 | 
						|
				get_key_type(type));
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			sprintf(p, "(bad key type: %#08x, %#08x)",
 | 
						|
				key->u32[0], key->u32[1]);
 | 
						|
		}
 | 
						|
	} else
 | 
						|
		sprintf(p, "bad key format %d", c->key_fmt);
 | 
						|
}
 | 
						|
 | 
						|
const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
 | 
						|
{
 | 
						|
	/* dbg_lock must be held */
 | 
						|
	sprintf_key(c, key, dbg_key_buf0);
 | 
						|
	return dbg_key_buf0;
 | 
						|
}
 | 
						|
 | 
						|
const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
 | 
						|
{
 | 
						|
	/* dbg_lock must be held */
 | 
						|
	sprintf_key(c, key, dbg_key_buf1);
 | 
						|
	return dbg_key_buf1;
 | 
						|
}
 | 
						|
 | 
						|
const char *dbg_ntype(int type)
 | 
						|
{
 | 
						|
	switch (type) {
 | 
						|
	case UBIFS_PAD_NODE:
 | 
						|
		return "padding node";
 | 
						|
	case UBIFS_SB_NODE:
 | 
						|
		return "superblock node";
 | 
						|
	case UBIFS_MST_NODE:
 | 
						|
		return "master node";
 | 
						|
	case UBIFS_REF_NODE:
 | 
						|
		return "reference node";
 | 
						|
	case UBIFS_INO_NODE:
 | 
						|
		return "inode node";
 | 
						|
	case UBIFS_DENT_NODE:
 | 
						|
		return "direntry node";
 | 
						|
	case UBIFS_XENT_NODE:
 | 
						|
		return "xentry node";
 | 
						|
	case UBIFS_DATA_NODE:
 | 
						|
		return "data node";
 | 
						|
	case UBIFS_TRUN_NODE:
 | 
						|
		return "truncate node";
 | 
						|
	case UBIFS_IDX_NODE:
 | 
						|
		return "indexing node";
 | 
						|
	case UBIFS_CS_NODE:
 | 
						|
		return "commit start node";
 | 
						|
	case UBIFS_ORPH_NODE:
 | 
						|
		return "orphan node";
 | 
						|
	default:
 | 
						|
		return "unknown node";
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static const char *dbg_gtype(int type)
 | 
						|
{
 | 
						|
	switch (type) {
 | 
						|
	case UBIFS_NO_NODE_GROUP:
 | 
						|
		return "no node group";
 | 
						|
	case UBIFS_IN_NODE_GROUP:
 | 
						|
		return "in node group";
 | 
						|
	case UBIFS_LAST_OF_NODE_GROUP:
 | 
						|
		return "last of node group";
 | 
						|
	default:
 | 
						|
		return "unknown";
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
const char *dbg_cstate(int cmt_state)
 | 
						|
{
 | 
						|
	switch (cmt_state) {
 | 
						|
	case COMMIT_RESTING:
 | 
						|
		return "commit resting";
 | 
						|
	case COMMIT_BACKGROUND:
 | 
						|
		return "background commit requested";
 | 
						|
	case COMMIT_REQUIRED:
 | 
						|
		return "commit required";
 | 
						|
	case COMMIT_RUNNING_BACKGROUND:
 | 
						|
		return "BACKGROUND commit running";
 | 
						|
	case COMMIT_RUNNING_REQUIRED:
 | 
						|
		return "commit running and required";
 | 
						|
	case COMMIT_BROKEN:
 | 
						|
		return "broken commit";
 | 
						|
	default:
 | 
						|
		return "unknown commit state";
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void dump_ch(const struct ubifs_ch *ch)
 | 
						|
{
 | 
						|
	printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
 | 
						|
	printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
 | 
						|
	printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
 | 
						|
	       dbg_ntype(ch->node_type));
 | 
						|
	printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
 | 
						|
	       dbg_gtype(ch->group_type));
 | 
						|
	printk(KERN_DEBUG "\tsqnum          %llu\n",
 | 
						|
	       (unsigned long long)le64_to_cpu(ch->sqnum));
 | 
						|
	printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
 | 
						|
}
 | 
						|
 | 
						|
void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
 | 
						|
{
 | 
						|
	const struct ubifs_inode *ui = ubifs_inode(inode);
 | 
						|
 | 
						|
	printk(KERN_DEBUG "Dump in-memory inode:");
 | 
						|
	printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
 | 
						|
	printk(KERN_DEBUG "\tsize           %llu\n",
 | 
						|
	       (unsigned long long)i_size_read(inode));
 | 
						|
	printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
 | 
						|
	printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
 | 
						|
	printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
 | 
						|
	printk(KERN_DEBUG "\tatime          %u.%u\n",
 | 
						|
	       (unsigned int)inode->i_atime.tv_sec,
 | 
						|
	       (unsigned int)inode->i_atime.tv_nsec);
 | 
						|
	printk(KERN_DEBUG "\tmtime          %u.%u\n",
 | 
						|
	       (unsigned int)inode->i_mtime.tv_sec,
 | 
						|
	       (unsigned int)inode->i_mtime.tv_nsec);
 | 
						|
	printk(KERN_DEBUG "\tctime          %u.%u\n",
 | 
						|
	       (unsigned int)inode->i_ctime.tv_sec,
 | 
						|
	       (unsigned int)inode->i_ctime.tv_nsec);
 | 
						|
	printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 | 
						|
	printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
 | 
						|
	printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
 | 
						|
	printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
 | 
						|
	printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
 | 
						|
	printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
 | 
						|
	printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
 | 
						|
	printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
 | 
						|
	       (unsigned long long)ui->synced_i_size);
 | 
						|
	printk(KERN_DEBUG "\tui_size        %llu\n",
 | 
						|
	       (unsigned long long)ui->ui_size);
 | 
						|
	printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
 | 
						|
	printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
 | 
						|
	printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
 | 
						|
	printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
 | 
						|
	printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
 | 
						|
}
 | 
						|
 | 
						|
void dbg_dump_node(const struct ubifs_info *c, const void *node)
 | 
						|
{
 | 
						|
	int i, n;
 | 
						|
	union ubifs_key key;
 | 
						|
	const struct ubifs_ch *ch = node;
 | 
						|
 | 
						|
	if (dbg_failure_mode)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* If the magic is incorrect, just hexdump the first bytes */
 | 
						|
	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 | 
						|
		printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
 | 
						|
		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
 | 
						|
			       (void *)node, UBIFS_CH_SZ, 1);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&dbg_lock);
 | 
						|
	dump_ch(node);
 | 
						|
 | 
						|
	switch (ch->node_type) {
 | 
						|
	case UBIFS_PAD_NODE:
 | 
						|
	{
 | 
						|
		const struct ubifs_pad_node *pad = node;
 | 
						|
 | 
						|
		printk(KERN_DEBUG "\tpad_len        %u\n",
 | 
						|
		       le32_to_cpu(pad->pad_len));
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case UBIFS_SB_NODE:
 | 
						|
	{
 | 
						|
		const struct ubifs_sb_node *sup = node;
 | 
						|
		unsigned int sup_flags = le32_to_cpu(sup->flags);
 | 
						|
 | 
						|
		printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
 | 
						|
		       (int)sup->key_hash, get_key_hash(sup->key_hash));
 | 
						|
		printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
 | 
						|
		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 | 
						|
		printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
 | 
						|
		printk(KERN_DEBUG "\t  big_lpt      %u\n",
 | 
						|
		       !!(sup_flags & UBIFS_FLG_BIGLPT));
 | 
						|
		printk(KERN_DEBUG "\tmin_io_size    %u\n",
 | 
						|
		       le32_to_cpu(sup->min_io_size));
 | 
						|
		printk(KERN_DEBUG "\tleb_size       %u\n",
 | 
						|
		       le32_to_cpu(sup->leb_size));
 | 
						|
		printk(KERN_DEBUG "\tleb_cnt        %u\n",
 | 
						|
		       le32_to_cpu(sup->leb_cnt));
 | 
						|
		printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
 | 
						|
		       le32_to_cpu(sup->max_leb_cnt));
 | 
						|
		printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
 | 
						|
		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 | 
						|
		printk(KERN_DEBUG "\tlog_lebs       %u\n",
 | 
						|
		       le32_to_cpu(sup->log_lebs));
 | 
						|
		printk(KERN_DEBUG "\tlpt_lebs       %u\n",
 | 
						|
		       le32_to_cpu(sup->lpt_lebs));
 | 
						|
		printk(KERN_DEBUG "\torph_lebs      %u\n",
 | 
						|
		       le32_to_cpu(sup->orph_lebs));
 | 
						|
		printk(KERN_DEBUG "\tjhead_cnt      %u\n",
 | 
						|
		       le32_to_cpu(sup->jhead_cnt));
 | 
						|
		printk(KERN_DEBUG "\tfanout         %u\n",
 | 
						|
		       le32_to_cpu(sup->fanout));
 | 
						|
		printk(KERN_DEBUG "\tlsave_cnt      %u\n",
 | 
						|
		       le32_to_cpu(sup->lsave_cnt));
 | 
						|
		printk(KERN_DEBUG "\tdefault_compr  %u\n",
 | 
						|
		       (int)le16_to_cpu(sup->default_compr));
 | 
						|
		printk(KERN_DEBUG "\trp_size        %llu\n",
 | 
						|
		       (unsigned long long)le64_to_cpu(sup->rp_size));
 | 
						|
		printk(KERN_DEBUG "\trp_uid         %u\n",
 | 
						|
		       le32_to_cpu(sup->rp_uid));
 | 
						|
		printk(KERN_DEBUG "\trp_gid         %u\n",
 | 
						|
		       le32_to_cpu(sup->rp_gid));
 | 
						|
		printk(KERN_DEBUG "\tfmt_version    %u\n",
 | 
						|
		       le32_to_cpu(sup->fmt_version));
 | 
						|
		printk(KERN_DEBUG "\ttime_gran      %u\n",
 | 
						|
		       le32_to_cpu(sup->time_gran));
 | 
						|
		printk(KERN_DEBUG "\tUUID           %02X%02X%02X%02X-%02X%02X"
 | 
						|
		       "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
 | 
						|
		       sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
 | 
						|
		       sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
 | 
						|
		       sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
 | 
						|
		       sup->uuid[12], sup->uuid[13], sup->uuid[14],
 | 
						|
		       sup->uuid[15]);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case UBIFS_MST_NODE:
 | 
						|
	{
 | 
						|
		const struct ubifs_mst_node *mst = node;
 | 
						|
 | 
						|
		printk(KERN_DEBUG "\thighest_inum   %llu\n",
 | 
						|
		       (unsigned long long)le64_to_cpu(mst->highest_inum));
 | 
						|
		printk(KERN_DEBUG "\tcommit number  %llu\n",
 | 
						|
		       (unsigned long long)le64_to_cpu(mst->cmt_no));
 | 
						|
		printk(KERN_DEBUG "\tflags          %#x\n",
 | 
						|
		       le32_to_cpu(mst->flags));
 | 
						|
		printk(KERN_DEBUG "\tlog_lnum       %u\n",
 | 
						|
		       le32_to_cpu(mst->log_lnum));
 | 
						|
		printk(KERN_DEBUG "\troot_lnum      %u\n",
 | 
						|
		       le32_to_cpu(mst->root_lnum));
 | 
						|
		printk(KERN_DEBUG "\troot_offs      %u\n",
 | 
						|
		       le32_to_cpu(mst->root_offs));
 | 
						|
		printk(KERN_DEBUG "\troot_len       %u\n",
 | 
						|
		       le32_to_cpu(mst->root_len));
 | 
						|
		printk(KERN_DEBUG "\tgc_lnum        %u\n",
 | 
						|
		       le32_to_cpu(mst->gc_lnum));
 | 
						|
		printk(KERN_DEBUG "\tihead_lnum     %u\n",
 | 
						|
		       le32_to_cpu(mst->ihead_lnum));
 | 
						|
		printk(KERN_DEBUG "\tihead_offs     %u\n",
 | 
						|
		       le32_to_cpu(mst->ihead_offs));
 | 
						|
		printk(KERN_DEBUG "\tindex_size     %llu\n",
 | 
						|
		       (unsigned long long)le64_to_cpu(mst->index_size));
 | 
						|
		printk(KERN_DEBUG "\tlpt_lnum       %u\n",
 | 
						|
		       le32_to_cpu(mst->lpt_lnum));
 | 
						|
		printk(KERN_DEBUG "\tlpt_offs       %u\n",
 | 
						|
		       le32_to_cpu(mst->lpt_offs));
 | 
						|
		printk(KERN_DEBUG "\tnhead_lnum     %u\n",
 | 
						|
		       le32_to_cpu(mst->nhead_lnum));
 | 
						|
		printk(KERN_DEBUG "\tnhead_offs     %u\n",
 | 
						|
		       le32_to_cpu(mst->nhead_offs));
 | 
						|
		printk(KERN_DEBUG "\tltab_lnum      %u\n",
 | 
						|
		       le32_to_cpu(mst->ltab_lnum));
 | 
						|
		printk(KERN_DEBUG "\tltab_offs      %u\n",
 | 
						|
		       le32_to_cpu(mst->ltab_offs));
 | 
						|
		printk(KERN_DEBUG "\tlsave_lnum     %u\n",
 | 
						|
		       le32_to_cpu(mst->lsave_lnum));
 | 
						|
		printk(KERN_DEBUG "\tlsave_offs     %u\n",
 | 
						|
		       le32_to_cpu(mst->lsave_offs));
 | 
						|
		printk(KERN_DEBUG "\tlscan_lnum     %u\n",
 | 
						|
		       le32_to_cpu(mst->lscan_lnum));
 | 
						|
		printk(KERN_DEBUG "\tleb_cnt        %u\n",
 | 
						|
		       le32_to_cpu(mst->leb_cnt));
 | 
						|
		printk(KERN_DEBUG "\tempty_lebs     %u\n",
 | 
						|
		       le32_to_cpu(mst->empty_lebs));
 | 
						|
		printk(KERN_DEBUG "\tidx_lebs       %u\n",
 | 
						|
		       le32_to_cpu(mst->idx_lebs));
 | 
						|
		printk(KERN_DEBUG "\ttotal_free     %llu\n",
 | 
						|
		       (unsigned long long)le64_to_cpu(mst->total_free));
 | 
						|
		printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
 | 
						|
		       (unsigned long long)le64_to_cpu(mst->total_dirty));
 | 
						|
		printk(KERN_DEBUG "\ttotal_used     %llu\n",
 | 
						|
		       (unsigned long long)le64_to_cpu(mst->total_used));
 | 
						|
		printk(KERN_DEBUG "\ttotal_dead     %llu\n",
 | 
						|
		       (unsigned long long)le64_to_cpu(mst->total_dead));
 | 
						|
		printk(KERN_DEBUG "\ttotal_dark     %llu\n",
 | 
						|
		       (unsigned long long)le64_to_cpu(mst->total_dark));
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case UBIFS_REF_NODE:
 | 
						|
	{
 | 
						|
		const struct ubifs_ref_node *ref = node;
 | 
						|
 | 
						|
		printk(KERN_DEBUG "\tlnum           %u\n",
 | 
						|
		       le32_to_cpu(ref->lnum));
 | 
						|
		printk(KERN_DEBUG "\toffs           %u\n",
 | 
						|
		       le32_to_cpu(ref->offs));
 | 
						|
		printk(KERN_DEBUG "\tjhead          %u\n",
 | 
						|
		       le32_to_cpu(ref->jhead));
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case UBIFS_INO_NODE:
 | 
						|
	{
 | 
						|
		const struct ubifs_ino_node *ino = node;
 | 
						|
 | 
						|
		key_read(c, &ino->key, &key);
 | 
						|
		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
 | 
						|
		printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
 | 
						|
		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 | 
						|
		printk(KERN_DEBUG "\tsize           %llu\n",
 | 
						|
		       (unsigned long long)le64_to_cpu(ino->size));
 | 
						|
		printk(KERN_DEBUG "\tnlink          %u\n",
 | 
						|
		       le32_to_cpu(ino->nlink));
 | 
						|
		printk(KERN_DEBUG "\tatime          %lld.%u\n",
 | 
						|
		       (long long)le64_to_cpu(ino->atime_sec),
 | 
						|
		       le32_to_cpu(ino->atime_nsec));
 | 
						|
		printk(KERN_DEBUG "\tmtime          %lld.%u\n",
 | 
						|
		       (long long)le64_to_cpu(ino->mtime_sec),
 | 
						|
		       le32_to_cpu(ino->mtime_nsec));
 | 
						|
		printk(KERN_DEBUG "\tctime          %lld.%u\n",
 | 
						|
		       (long long)le64_to_cpu(ino->ctime_sec),
 | 
						|
		       le32_to_cpu(ino->ctime_nsec));
 | 
						|
		printk(KERN_DEBUG "\tuid            %u\n",
 | 
						|
		       le32_to_cpu(ino->uid));
 | 
						|
		printk(KERN_DEBUG "\tgid            %u\n",
 | 
						|
		       le32_to_cpu(ino->gid));
 | 
						|
		printk(KERN_DEBUG "\tmode           %u\n",
 | 
						|
		       le32_to_cpu(ino->mode));
 | 
						|
		printk(KERN_DEBUG "\tflags          %#x\n",
 | 
						|
		       le32_to_cpu(ino->flags));
 | 
						|
		printk(KERN_DEBUG "\txattr_cnt      %u\n",
 | 
						|
		       le32_to_cpu(ino->xattr_cnt));
 | 
						|
		printk(KERN_DEBUG "\txattr_size     %u\n",
 | 
						|
		       le32_to_cpu(ino->xattr_size));
 | 
						|
		printk(KERN_DEBUG "\txattr_names    %u\n",
 | 
						|
		       le32_to_cpu(ino->xattr_names));
 | 
						|
		printk(KERN_DEBUG "\tcompr_type     %#x\n",
 | 
						|
		       (int)le16_to_cpu(ino->compr_type));
 | 
						|
		printk(KERN_DEBUG "\tdata len       %u\n",
 | 
						|
		       le32_to_cpu(ino->data_len));
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case UBIFS_DENT_NODE:
 | 
						|
	case UBIFS_XENT_NODE:
 | 
						|
	{
 | 
						|
		const struct ubifs_dent_node *dent = node;
 | 
						|
		int nlen = le16_to_cpu(dent->nlen);
 | 
						|
 | 
						|
		key_read(c, &dent->key, &key);
 | 
						|
		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
 | 
						|
		printk(KERN_DEBUG "\tinum           %llu\n",
 | 
						|
		       (unsigned long long)le64_to_cpu(dent->inum));
 | 
						|
		printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
 | 
						|
		printk(KERN_DEBUG "\tnlen           %d\n", nlen);
 | 
						|
		printk(KERN_DEBUG "\tname           ");
 | 
						|
 | 
						|
		if (nlen > UBIFS_MAX_NLEN)
 | 
						|
			printk(KERN_DEBUG "(bad name length, not printing, "
 | 
						|
					  "bad or corrupted node)");
 | 
						|
		else {
 | 
						|
			for (i = 0; i < nlen && dent->name[i]; i++)
 | 
						|
				printk("%c", dent->name[i]);
 | 
						|
		}
 | 
						|
		printk("\n");
 | 
						|
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case UBIFS_DATA_NODE:
 | 
						|
	{
 | 
						|
		const struct ubifs_data_node *dn = node;
 | 
						|
		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 | 
						|
 | 
						|
		key_read(c, &dn->key, &key);
 | 
						|
		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
 | 
						|
		printk(KERN_DEBUG "\tsize           %u\n",
 | 
						|
		       le32_to_cpu(dn->size));
 | 
						|
		printk(KERN_DEBUG "\tcompr_typ      %d\n",
 | 
						|
		       (int)le16_to_cpu(dn->compr_type));
 | 
						|
		printk(KERN_DEBUG "\tdata size      %d\n",
 | 
						|
		       dlen);
 | 
						|
		printk(KERN_DEBUG "\tdata:\n");
 | 
						|
		print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 | 
						|
			       (void *)&dn->data, dlen, 0);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case UBIFS_TRUN_NODE:
 | 
						|
	{
 | 
						|
		const struct ubifs_trun_node *trun = node;
 | 
						|
 | 
						|
		printk(KERN_DEBUG "\tinum           %u\n",
 | 
						|
		       le32_to_cpu(trun->inum));
 | 
						|
		printk(KERN_DEBUG "\told_size       %llu\n",
 | 
						|
		       (unsigned long long)le64_to_cpu(trun->old_size));
 | 
						|
		printk(KERN_DEBUG "\tnew_size       %llu\n",
 | 
						|
		       (unsigned long long)le64_to_cpu(trun->new_size));
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case UBIFS_IDX_NODE:
 | 
						|
	{
 | 
						|
		const struct ubifs_idx_node *idx = node;
 | 
						|
 | 
						|
		n = le16_to_cpu(idx->child_cnt);
 | 
						|
		printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
 | 
						|
		printk(KERN_DEBUG "\tlevel          %d\n",
 | 
						|
		       (int)le16_to_cpu(idx->level));
 | 
						|
		printk(KERN_DEBUG "\tBranches:\n");
 | 
						|
 | 
						|
		for (i = 0; i < n && i < c->fanout - 1; i++) {
 | 
						|
			const struct ubifs_branch *br;
 | 
						|
 | 
						|
			br = ubifs_idx_branch(c, idx, i);
 | 
						|
			key_read(c, &br->key, &key);
 | 
						|
			printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
 | 
						|
			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 | 
						|
			       le32_to_cpu(br->len), DBGKEY(&key));
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case UBIFS_CS_NODE:
 | 
						|
		break;
 | 
						|
	case UBIFS_ORPH_NODE:
 | 
						|
	{
 | 
						|
		const struct ubifs_orph_node *orph = node;
 | 
						|
 | 
						|
		printk(KERN_DEBUG "\tcommit number  %llu\n",
 | 
						|
		       (unsigned long long)
 | 
						|
				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 | 
						|
		printk(KERN_DEBUG "\tlast node flag %llu\n",
 | 
						|
		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 | 
						|
		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 | 
						|
		printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
 | 
						|
		for (i = 0; i < n; i++)
 | 
						|
			printk(KERN_DEBUG "\t  ino %llu\n",
 | 
						|
			       (unsigned long long)le64_to_cpu(orph->inos[i]));
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	default:
 | 
						|
		printk(KERN_DEBUG "node type %d was not recognized\n",
 | 
						|
		       (int)ch->node_type);
 | 
						|
	}
 | 
						|
	spin_unlock(&dbg_lock);
 | 
						|
}
 | 
						|
 | 
						|
void dbg_dump_budget_req(const struct ubifs_budget_req *req)
 | 
						|
{
 | 
						|
	spin_lock(&dbg_lock);
 | 
						|
	printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
 | 
						|
	       req->new_ino, req->dirtied_ino);
 | 
						|
	printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
 | 
						|
	       req->new_ino_d, req->dirtied_ino_d);
 | 
						|
	printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
 | 
						|
	       req->new_page, req->dirtied_page);
 | 
						|
	printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
 | 
						|
	       req->new_dent, req->mod_dent);
 | 
						|
	printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
 | 
						|
	printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
 | 
						|
	       req->data_growth, req->dd_growth);
 | 
						|
	spin_unlock(&dbg_lock);
 | 
						|
}
 | 
						|
 | 
						|
void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
 | 
						|
{
 | 
						|
	spin_lock(&dbg_lock);
 | 
						|
	printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
 | 
						|
	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
 | 
						|
	printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
 | 
						|
	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
 | 
						|
	       lst->total_dirty);
 | 
						|
	printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
 | 
						|
	       "total_dead %lld\n", lst->total_used, lst->total_dark,
 | 
						|
	       lst->total_dead);
 | 
						|
	spin_unlock(&dbg_lock);
 | 
						|
}
 | 
						|
 | 
						|
void dbg_dump_budg(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct rb_node *rb;
 | 
						|
	struct ubifs_bud *bud;
 | 
						|
	struct ubifs_gced_idx_leb *idx_gc;
 | 
						|
	long long available, outstanding, free;
 | 
						|
 | 
						|
	ubifs_assert(spin_is_locked(&c->space_lock));
 | 
						|
	spin_lock(&dbg_lock);
 | 
						|
	printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
 | 
						|
	       "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
 | 
						|
	       c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
 | 
						|
	printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
 | 
						|
	       "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
 | 
						|
	       c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
 | 
						|
	       c->freeable_cnt);
 | 
						|
	printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
 | 
						|
	       "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
 | 
						|
	       c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
 | 
						|
	printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
 | 
						|
	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
 | 
						|
	       atomic_long_read(&c->dirty_zn_cnt),
 | 
						|
	       atomic_long_read(&c->clean_zn_cnt));
 | 
						|
	printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 | 
						|
	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 | 
						|
	printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
 | 
						|
	       c->gc_lnum, c->ihead_lnum);
 | 
						|
	for (i = 0; i < c->jhead_cnt; i++)
 | 
						|
		printk(KERN_DEBUG "\tjhead %d\t LEB %d\n",
 | 
						|
		       c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum);
 | 
						|
	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 | 
						|
		bud = rb_entry(rb, struct ubifs_bud, rb);
 | 
						|
		printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
 | 
						|
	}
 | 
						|
	list_for_each_entry(bud, &c->old_buds, list)
 | 
						|
		printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
 | 
						|
	list_for_each_entry(idx_gc, &c->idx_gc, list)
 | 
						|
		printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
 | 
						|
		       idx_gc->lnum, idx_gc->unmap);
 | 
						|
	printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
 | 
						|
 | 
						|
	/* Print budgeting predictions */
 | 
						|
	available = ubifs_calc_available(c, c->min_idx_lebs);
 | 
						|
	outstanding = c->budg_data_growth + c->budg_dd_growth;
 | 
						|
	if (available > outstanding)
 | 
						|
		free = ubifs_reported_space(c, available - outstanding);
 | 
						|
	else
 | 
						|
		free = 0;
 | 
						|
	printk(KERN_DEBUG "Budgeting predictions:\n");
 | 
						|
	printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
 | 
						|
	       available, outstanding, free);
 | 
						|
	spin_unlock(&dbg_lock);
 | 
						|
}
 | 
						|
 | 
						|
void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 | 
						|
{
 | 
						|
	printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), "
 | 
						|
	       "flags %#x\n", lp->lnum, lp->free, lp->dirty,
 | 
						|
	       c->leb_size - lp->free - lp->dirty, lp->flags);
 | 
						|
}
 | 
						|
 | 
						|
void dbg_dump_lprops(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	int lnum, err;
 | 
						|
	struct ubifs_lprops lp;
 | 
						|
	struct ubifs_lp_stats lst;
 | 
						|
 | 
						|
	printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
 | 
						|
	       current->pid);
 | 
						|
	ubifs_get_lp_stats(c, &lst);
 | 
						|
	dbg_dump_lstats(&lst);
 | 
						|
 | 
						|
	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 | 
						|
		err = ubifs_read_one_lp(c, lnum, &lp);
 | 
						|
		if (err)
 | 
						|
			ubifs_err("cannot read lprops for LEB %d", lnum);
 | 
						|
 | 
						|
		dbg_dump_lprop(c, &lp);
 | 
						|
	}
 | 
						|
	printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
 | 
						|
	       current->pid);
 | 
						|
}
 | 
						|
 | 
						|
void dbg_dump_lpt_info(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	spin_lock(&dbg_lock);
 | 
						|
	printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
 | 
						|
	printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
 | 
						|
	printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
 | 
						|
	printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
 | 
						|
	printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
 | 
						|
	printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
 | 
						|
	printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
 | 
						|
	printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
 | 
						|
	printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
 | 
						|
	printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
 | 
						|
	printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 | 
						|
	printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 | 
						|
	printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
 | 
						|
	printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
 | 
						|
	printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 | 
						|
	printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 | 
						|
	printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 | 
						|
	printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
 | 
						|
	printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
 | 
						|
	printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 | 
						|
	printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
 | 
						|
	       c->nhead_lnum, c->nhead_offs);
 | 
						|
	printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
 | 
						|
	       c->ltab_lnum, c->ltab_offs);
 | 
						|
	if (c->big_lpt)
 | 
						|
		printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
 | 
						|
		       c->lsave_lnum, c->lsave_offs);
 | 
						|
	for (i = 0; i < c->lpt_lebs; i++)
 | 
						|
		printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
 | 
						|
		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
 | 
						|
		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
 | 
						|
	spin_unlock(&dbg_lock);
 | 
						|
}
 | 
						|
 | 
						|
void dbg_dump_leb(const struct ubifs_info *c, int lnum)
 | 
						|
{
 | 
						|
	struct ubifs_scan_leb *sleb;
 | 
						|
	struct ubifs_scan_node *snod;
 | 
						|
 | 
						|
	if (dbg_failure_mode)
 | 
						|
		return;
 | 
						|
 | 
						|
	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
 | 
						|
	       current->pid, lnum);
 | 
						|
	sleb = ubifs_scan(c, lnum, 0, c->dbg->buf);
 | 
						|
	if (IS_ERR(sleb)) {
 | 
						|
		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
 | 
						|
	       sleb->nodes_cnt, sleb->endpt);
 | 
						|
 | 
						|
	list_for_each_entry(snod, &sleb->nodes, list) {
 | 
						|
		cond_resched();
 | 
						|
		printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
 | 
						|
		       snod->offs, snod->len);
 | 
						|
		dbg_dump_node(c, snod->node);
 | 
						|
	}
 | 
						|
 | 
						|
	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
 | 
						|
	       current->pid, lnum);
 | 
						|
	ubifs_scan_destroy(sleb);
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
void dbg_dump_znode(const struct ubifs_info *c,
 | 
						|
		    const struct ubifs_znode *znode)
 | 
						|
{
 | 
						|
	int n;
 | 
						|
	const struct ubifs_zbranch *zbr;
 | 
						|
 | 
						|
	spin_lock(&dbg_lock);
 | 
						|
	if (znode->parent)
 | 
						|
		zbr = &znode->parent->zbranch[znode->iip];
 | 
						|
	else
 | 
						|
		zbr = &c->zroot;
 | 
						|
 | 
						|
	printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
 | 
						|
	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
 | 
						|
	       zbr->len, znode->parent, znode->iip, znode->level,
 | 
						|
	       znode->child_cnt, znode->flags);
 | 
						|
 | 
						|
	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 | 
						|
		spin_unlock(&dbg_lock);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	printk(KERN_DEBUG "zbranches:\n");
 | 
						|
	for (n = 0; n < znode->child_cnt; n++) {
 | 
						|
		zbr = &znode->zbranch[n];
 | 
						|
		if (znode->level > 0)
 | 
						|
			printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
 | 
						|
					  "%s\n", n, zbr->znode, zbr->lnum,
 | 
						|
					  zbr->offs, zbr->len,
 | 
						|
					  DBGKEY(&zbr->key));
 | 
						|
		else
 | 
						|
			printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
 | 
						|
					  "%s\n", n, zbr->znode, zbr->lnum,
 | 
						|
					  zbr->offs, zbr->len,
 | 
						|
					  DBGKEY(&zbr->key));
 | 
						|
	}
 | 
						|
	spin_unlock(&dbg_lock);
 | 
						|
}
 | 
						|
 | 
						|
void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
 | 
						|
	       current->pid, cat, heap->cnt);
 | 
						|
	for (i = 0; i < heap->cnt; i++) {
 | 
						|
		struct ubifs_lprops *lprops = heap->arr[i];
 | 
						|
 | 
						|
		printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
 | 
						|
		       "flags %d\n", i, lprops->lnum, lprops->hpos,
 | 
						|
		       lprops->free, lprops->dirty, lprops->flags);
 | 
						|
	}
 | 
						|
	printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
 | 
						|
}
 | 
						|
 | 
						|
void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 | 
						|
		    struct ubifs_nnode *parent, int iip)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
 | 
						|
	printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
 | 
						|
	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 | 
						|
	printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
 | 
						|
	       pnode->flags, iip, pnode->level, pnode->num);
 | 
						|
	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 | 
						|
		struct ubifs_lprops *lp = &pnode->lprops[i];
 | 
						|
 | 
						|
		printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
 | 
						|
		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void dbg_dump_tnc(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	struct ubifs_znode *znode;
 | 
						|
	int level;
 | 
						|
 | 
						|
	printk(KERN_DEBUG "\n");
 | 
						|
	printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
 | 
						|
	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
 | 
						|
	level = znode->level;
 | 
						|
	printk(KERN_DEBUG "== Level %d ==\n", level);
 | 
						|
	while (znode) {
 | 
						|
		if (level != znode->level) {
 | 
						|
			level = znode->level;
 | 
						|
			printk(KERN_DEBUG "== Level %d ==\n", level);
 | 
						|
		}
 | 
						|
		dbg_dump_znode(c, znode);
 | 
						|
		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
 | 
						|
	}
 | 
						|
	printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
 | 
						|
}
 | 
						|
 | 
						|
static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 | 
						|
		      void *priv)
 | 
						|
{
 | 
						|
	dbg_dump_znode(c, znode);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * dbg_dump_index - dump the on-flash index.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 *
 | 
						|
 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
 | 
						|
 * which dumps only in-memory znodes and does not read znodes which from flash.
 | 
						|
 */
 | 
						|
void dbg_dump_index(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	dbg_walk_index(c, NULL, dump_znode, NULL);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * dbg_check_synced_i_size - check synchronized inode size.
 | 
						|
 * @inode: inode to check
 | 
						|
 *
 | 
						|
 * If inode is clean, synchronized inode size has to be equivalent to current
 | 
						|
 * inode size. This function has to be called only for locked inodes (@i_mutex
 | 
						|
 * has to be locked). Returns %0 if synchronized inode size if correct, and
 | 
						|
 * %-EINVAL if not.
 | 
						|
 */
 | 
						|
int dbg_check_synced_i_size(struct inode *inode)
 | 
						|
{
 | 
						|
	int err = 0;
 | 
						|
	struct ubifs_inode *ui = ubifs_inode(inode);
 | 
						|
 | 
						|
	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
 | 
						|
		return 0;
 | 
						|
	if (!S_ISREG(inode->i_mode))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	mutex_lock(&ui->ui_mutex);
 | 
						|
	spin_lock(&ui->ui_lock);
 | 
						|
	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
 | 
						|
		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
 | 
						|
			  "is clean", ui->ui_size, ui->synced_i_size);
 | 
						|
		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
 | 
						|
			  inode->i_mode, i_size_read(inode));
 | 
						|
		dbg_dump_stack();
 | 
						|
		err = -EINVAL;
 | 
						|
	}
 | 
						|
	spin_unlock(&ui->ui_lock);
 | 
						|
	mutex_unlock(&ui->ui_mutex);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * dbg_check_dir - check directory inode size and link count.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @dir: the directory to calculate size for
 | 
						|
 * @size: the result is returned here
 | 
						|
 *
 | 
						|
 * This function makes sure that directory size and link count are correct.
 | 
						|
 * Returns zero in case of success and a negative error code in case of
 | 
						|
 * failure.
 | 
						|
 *
 | 
						|
 * Note, it is good idea to make sure the @dir->i_mutex is locked before
 | 
						|
 * calling this function.
 | 
						|
 */
 | 
						|
int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
 | 
						|
{
 | 
						|
	unsigned int nlink = 2;
 | 
						|
	union ubifs_key key;
 | 
						|
	struct ubifs_dent_node *dent, *pdent = NULL;
 | 
						|
	struct qstr nm = { .name = NULL };
 | 
						|
	loff_t size = UBIFS_INO_NODE_SZ;
 | 
						|
 | 
						|
	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!S_ISDIR(dir->i_mode))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	lowest_dent_key(c, &key, dir->i_ino);
 | 
						|
	while (1) {
 | 
						|
		int err;
 | 
						|
 | 
						|
		dent = ubifs_tnc_next_ent(c, &key, &nm);
 | 
						|
		if (IS_ERR(dent)) {
 | 
						|
			err = PTR_ERR(dent);
 | 
						|
			if (err == -ENOENT)
 | 
						|
				break;
 | 
						|
			return err;
 | 
						|
		}
 | 
						|
 | 
						|
		nm.name = dent->name;
 | 
						|
		nm.len = le16_to_cpu(dent->nlen);
 | 
						|
		size += CALC_DENT_SIZE(nm.len);
 | 
						|
		if (dent->type == UBIFS_ITYPE_DIR)
 | 
						|
			nlink += 1;
 | 
						|
		kfree(pdent);
 | 
						|
		pdent = dent;
 | 
						|
		key_read(c, &dent->key, &key);
 | 
						|
	}
 | 
						|
	kfree(pdent);
 | 
						|
 | 
						|
	if (i_size_read(dir) != size) {
 | 
						|
		ubifs_err("directory inode %lu has size %llu, "
 | 
						|
			  "but calculated size is %llu", dir->i_ino,
 | 
						|
			  (unsigned long long)i_size_read(dir),
 | 
						|
			  (unsigned long long)size);
 | 
						|
		dump_stack();
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	if (dir->i_nlink != nlink) {
 | 
						|
		ubifs_err("directory inode %lu has nlink %u, but calculated "
 | 
						|
			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
 | 
						|
		dump_stack();
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * dbg_check_key_order - make sure that colliding keys are properly ordered.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @zbr1: first zbranch
 | 
						|
 * @zbr2: following zbranch
 | 
						|
 *
 | 
						|
 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
 | 
						|
 * names of the direntries/xentries which are referred by the keys. This
 | 
						|
 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
 | 
						|
 * sure the name of direntry/xentry referred by @zbr1 is less than
 | 
						|
 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
 | 
						|
 * and a negative error code in case of failure.
 | 
						|
 */
 | 
						|
static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
 | 
						|
			       struct ubifs_zbranch *zbr2)
 | 
						|
{
 | 
						|
	int err, nlen1, nlen2, cmp;
 | 
						|
	struct ubifs_dent_node *dent1, *dent2;
 | 
						|
	union ubifs_key key;
 | 
						|
 | 
						|
	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
 | 
						|
	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
 | 
						|
	if (!dent1)
 | 
						|
		return -ENOMEM;
 | 
						|
	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
 | 
						|
	if (!dent2) {
 | 
						|
		err = -ENOMEM;
 | 
						|
		goto out_free;
 | 
						|
	}
 | 
						|
 | 
						|
	err = ubifs_tnc_read_node(c, zbr1, dent1);
 | 
						|
	if (err)
 | 
						|
		goto out_free;
 | 
						|
	err = ubifs_validate_entry(c, dent1);
 | 
						|
	if (err)
 | 
						|
		goto out_free;
 | 
						|
 | 
						|
	err = ubifs_tnc_read_node(c, zbr2, dent2);
 | 
						|
	if (err)
 | 
						|
		goto out_free;
 | 
						|
	err = ubifs_validate_entry(c, dent2);
 | 
						|
	if (err)
 | 
						|
		goto out_free;
 | 
						|
 | 
						|
	/* Make sure node keys are the same as in zbranch */
 | 
						|
	err = 1;
 | 
						|
	key_read(c, &dent1->key, &key);
 | 
						|
	if (keys_cmp(c, &zbr1->key, &key)) {
 | 
						|
		dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
 | 
						|
			zbr1->offs, DBGKEY(&key));
 | 
						|
		dbg_err("but it should have key %s according to tnc",
 | 
						|
			DBGKEY(&zbr1->key));
 | 
						|
		dbg_dump_node(c, dent1);
 | 
						|
		goto out_free;
 | 
						|
	}
 | 
						|
 | 
						|
	key_read(c, &dent2->key, &key);
 | 
						|
	if (keys_cmp(c, &zbr2->key, &key)) {
 | 
						|
		dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
 | 
						|
			zbr1->offs, DBGKEY(&key));
 | 
						|
		dbg_err("but it should have key %s according to tnc",
 | 
						|
			DBGKEY(&zbr2->key));
 | 
						|
		dbg_dump_node(c, dent2);
 | 
						|
		goto out_free;
 | 
						|
	}
 | 
						|
 | 
						|
	nlen1 = le16_to_cpu(dent1->nlen);
 | 
						|
	nlen2 = le16_to_cpu(dent2->nlen);
 | 
						|
 | 
						|
	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
 | 
						|
	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
 | 
						|
		err = 0;
 | 
						|
		goto out_free;
 | 
						|
	}
 | 
						|
	if (cmp == 0 && nlen1 == nlen2)
 | 
						|
		dbg_err("2 xent/dent nodes with the same name");
 | 
						|
	else
 | 
						|
		dbg_err("bad order of colliding key %s",
 | 
						|
			DBGKEY(&key));
 | 
						|
 | 
						|
	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
 | 
						|
	dbg_dump_node(c, dent1);
 | 
						|
	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
 | 
						|
	dbg_dump_node(c, dent2);
 | 
						|
 | 
						|
out_free:
 | 
						|
	kfree(dent2);
 | 
						|
	kfree(dent1);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * dbg_check_znode - check if znode is all right.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @zbr: zbranch which points to this znode
 | 
						|
 *
 | 
						|
 * This function makes sure that znode referred to by @zbr is all right.
 | 
						|
 * Returns zero if it is, and %-EINVAL if it is not.
 | 
						|
 */
 | 
						|
static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
 | 
						|
{
 | 
						|
	struct ubifs_znode *znode = zbr->znode;
 | 
						|
	struct ubifs_znode *zp = znode->parent;
 | 
						|
	int n, err, cmp;
 | 
						|
 | 
						|
	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 | 
						|
		err = 1;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	if (znode->level < 0) {
 | 
						|
		err = 2;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	if (znode->iip < 0 || znode->iip >= c->fanout) {
 | 
						|
		err = 3;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (zbr->len == 0)
 | 
						|
		/* Only dirty zbranch may have no on-flash nodes */
 | 
						|
		if (!ubifs_zn_dirty(znode)) {
 | 
						|
			err = 4;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
	if (ubifs_zn_dirty(znode)) {
 | 
						|
		/*
 | 
						|
		 * If znode is dirty, its parent has to be dirty as well. The
 | 
						|
		 * order of the operation is important, so we have to have
 | 
						|
		 * memory barriers.
 | 
						|
		 */
 | 
						|
		smp_mb();
 | 
						|
		if (zp && !ubifs_zn_dirty(zp)) {
 | 
						|
			/*
 | 
						|
			 * The dirty flag is atomic and is cleared outside the
 | 
						|
			 * TNC mutex, so znode's dirty flag may now have
 | 
						|
			 * been cleared. The child is always cleared before the
 | 
						|
			 * parent, so we just need to check again.
 | 
						|
			 */
 | 
						|
			smp_mb();
 | 
						|
			if (ubifs_zn_dirty(znode)) {
 | 
						|
				err = 5;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (zp) {
 | 
						|
		const union ubifs_key *min, *max;
 | 
						|
 | 
						|
		if (znode->level != zp->level - 1) {
 | 
						|
			err = 6;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Make sure the 'parent' pointer in our znode is correct */
 | 
						|
		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
 | 
						|
		if (!err) {
 | 
						|
			/* This zbranch does not exist in the parent */
 | 
						|
			err = 7;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (znode->iip >= zp->child_cnt) {
 | 
						|
			err = 8;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (znode->iip != n) {
 | 
						|
			/* This may happen only in case of collisions */
 | 
						|
			if (keys_cmp(c, &zp->zbranch[n].key,
 | 
						|
				     &zp->zbranch[znode->iip].key)) {
 | 
						|
				err = 9;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			n = znode->iip;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Make sure that the first key in our znode is greater than or
 | 
						|
		 * equal to the key in the pointing zbranch.
 | 
						|
		 */
 | 
						|
		min = &zbr->key;
 | 
						|
		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
 | 
						|
		if (cmp == 1) {
 | 
						|
			err = 10;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (n + 1 < zp->child_cnt) {
 | 
						|
			max = &zp->zbranch[n + 1].key;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Make sure the last key in our znode is less or
 | 
						|
			 * equivalent than the the key in zbranch which goes
 | 
						|
			 * after our pointing zbranch.
 | 
						|
			 */
 | 
						|
			cmp = keys_cmp(c, max,
 | 
						|
				&znode->zbranch[znode->child_cnt - 1].key);
 | 
						|
			if (cmp == -1) {
 | 
						|
				err = 11;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/* This may only be root znode */
 | 
						|
		if (zbr != &c->zroot) {
 | 
						|
			err = 12;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure that next key is greater or equivalent then the previous
 | 
						|
	 * one.
 | 
						|
	 */
 | 
						|
	for (n = 1; n < znode->child_cnt; n++) {
 | 
						|
		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
 | 
						|
			       &znode->zbranch[n].key);
 | 
						|
		if (cmp > 0) {
 | 
						|
			err = 13;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		if (cmp == 0) {
 | 
						|
			/* This can only be keys with colliding hash */
 | 
						|
			if (!is_hash_key(c, &znode->zbranch[n].key)) {
 | 
						|
				err = 14;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
 | 
						|
			if (znode->level != 0 || c->replaying)
 | 
						|
				continue;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Colliding keys should follow binary order of
 | 
						|
			 * corresponding xentry/dentry names.
 | 
						|
			 */
 | 
						|
			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
 | 
						|
						  &znode->zbranch[n]);
 | 
						|
			if (err < 0)
 | 
						|
				return err;
 | 
						|
			if (err) {
 | 
						|
				err = 15;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	for (n = 0; n < znode->child_cnt; n++) {
 | 
						|
		if (!znode->zbranch[n].znode &&
 | 
						|
		    (znode->zbranch[n].lnum == 0 ||
 | 
						|
		     znode->zbranch[n].len == 0)) {
 | 
						|
			err = 16;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (znode->zbranch[n].lnum != 0 &&
 | 
						|
		    znode->zbranch[n].len == 0) {
 | 
						|
			err = 17;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (znode->zbranch[n].lnum == 0 &&
 | 
						|
		    znode->zbranch[n].len != 0) {
 | 
						|
			err = 18;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (znode->zbranch[n].lnum == 0 &&
 | 
						|
		    znode->zbranch[n].offs != 0) {
 | 
						|
			err = 19;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (znode->level != 0 && znode->zbranch[n].znode)
 | 
						|
			if (znode->zbranch[n].znode->parent != znode) {
 | 
						|
				err = 20;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
out:
 | 
						|
	ubifs_err("failed, error %d", err);
 | 
						|
	ubifs_msg("dump of the znode");
 | 
						|
	dbg_dump_znode(c, znode);
 | 
						|
	if (zp) {
 | 
						|
		ubifs_msg("dump of the parent znode");
 | 
						|
		dbg_dump_znode(c, zp);
 | 
						|
	}
 | 
						|
	dump_stack();
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * dbg_check_tnc - check TNC tree.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @extra: do extra checks that are possible at start commit
 | 
						|
 *
 | 
						|
 * This function traverses whole TNC tree and checks every znode. Returns zero
 | 
						|
 * if everything is all right and %-EINVAL if something is wrong with TNC.
 | 
						|
 */
 | 
						|
int dbg_check_tnc(struct ubifs_info *c, int extra)
 | 
						|
{
 | 
						|
	struct ubifs_znode *znode;
 | 
						|
	long clean_cnt = 0, dirty_cnt = 0;
 | 
						|
	int err, last;
 | 
						|
 | 
						|
	if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
 | 
						|
	if (!c->zroot.znode)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	znode = ubifs_tnc_postorder_first(c->zroot.znode);
 | 
						|
	while (1) {
 | 
						|
		struct ubifs_znode *prev;
 | 
						|
		struct ubifs_zbranch *zbr;
 | 
						|
 | 
						|
		if (!znode->parent)
 | 
						|
			zbr = &c->zroot;
 | 
						|
		else
 | 
						|
			zbr = &znode->parent->zbranch[znode->iip];
 | 
						|
 | 
						|
		err = dbg_check_znode(c, zbr);
 | 
						|
		if (err)
 | 
						|
			return err;
 | 
						|
 | 
						|
		if (extra) {
 | 
						|
			if (ubifs_zn_dirty(znode))
 | 
						|
				dirty_cnt += 1;
 | 
						|
			else
 | 
						|
				clean_cnt += 1;
 | 
						|
		}
 | 
						|
 | 
						|
		prev = znode;
 | 
						|
		znode = ubifs_tnc_postorder_next(znode);
 | 
						|
		if (!znode)
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the last key of this znode is equivalent to the first key
 | 
						|
		 * of the next znode (collision), then check order of the keys.
 | 
						|
		 */
 | 
						|
		last = prev->child_cnt - 1;
 | 
						|
		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
 | 
						|
		    !keys_cmp(c, &prev->zbranch[last].key,
 | 
						|
			      &znode->zbranch[0].key)) {
 | 
						|
			err = dbg_check_key_order(c, &prev->zbranch[last],
 | 
						|
						  &znode->zbranch[0]);
 | 
						|
			if (err < 0)
 | 
						|
				return err;
 | 
						|
			if (err) {
 | 
						|
				ubifs_msg("first znode");
 | 
						|
				dbg_dump_znode(c, prev);
 | 
						|
				ubifs_msg("second znode");
 | 
						|
				dbg_dump_znode(c, znode);
 | 
						|
				return -EINVAL;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (extra) {
 | 
						|
		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
 | 
						|
			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
 | 
						|
				  atomic_long_read(&c->clean_zn_cnt),
 | 
						|
				  clean_cnt);
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
 | 
						|
			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
 | 
						|
				  atomic_long_read(&c->dirty_zn_cnt),
 | 
						|
				  dirty_cnt);
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * dbg_walk_index - walk the on-flash index.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @leaf_cb: called for each leaf node
 | 
						|
 * @znode_cb: called for each indexing node
 | 
						|
 * @priv: private date which is passed to callbacks
 | 
						|
 *
 | 
						|
 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
 | 
						|
 * node and @znode_cb for each indexing node. Returns zero in case of success
 | 
						|
 * and a negative error code in case of failure.
 | 
						|
 *
 | 
						|
 * It would be better if this function removed every znode it pulled to into
 | 
						|
 * the TNC, so that the behavior more closely matched the non-debugging
 | 
						|
 * behavior.
 | 
						|
 */
 | 
						|
int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
 | 
						|
		   dbg_znode_callback znode_cb, void *priv)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	struct ubifs_zbranch *zbr;
 | 
						|
	struct ubifs_znode *znode, *child;
 | 
						|
 | 
						|
	mutex_lock(&c->tnc_mutex);
 | 
						|
	/* If the root indexing node is not in TNC - pull it */
 | 
						|
	if (!c->zroot.znode) {
 | 
						|
		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
 | 
						|
		if (IS_ERR(c->zroot.znode)) {
 | 
						|
			err = PTR_ERR(c->zroot.znode);
 | 
						|
			c->zroot.znode = NULL;
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We are going to traverse the indexing tree in the postorder manner.
 | 
						|
	 * Go down and find the leftmost indexing node where we are going to
 | 
						|
	 * start from.
 | 
						|
	 */
 | 
						|
	znode = c->zroot.znode;
 | 
						|
	while (znode->level > 0) {
 | 
						|
		zbr = &znode->zbranch[0];
 | 
						|
		child = zbr->znode;
 | 
						|
		if (!child) {
 | 
						|
			child = ubifs_load_znode(c, zbr, znode, 0);
 | 
						|
			if (IS_ERR(child)) {
 | 
						|
				err = PTR_ERR(child);
 | 
						|
				goto out_unlock;
 | 
						|
			}
 | 
						|
			zbr->znode = child;
 | 
						|
		}
 | 
						|
 | 
						|
		znode = child;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Iterate over all indexing nodes */
 | 
						|
	while (1) {
 | 
						|
		int idx;
 | 
						|
 | 
						|
		cond_resched();
 | 
						|
 | 
						|
		if (znode_cb) {
 | 
						|
			err = znode_cb(c, znode, priv);
 | 
						|
			if (err) {
 | 
						|
				ubifs_err("znode checking function returned "
 | 
						|
					  "error %d", err);
 | 
						|
				dbg_dump_znode(c, znode);
 | 
						|
				goto out_dump;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (leaf_cb && znode->level == 0) {
 | 
						|
			for (idx = 0; idx < znode->child_cnt; idx++) {
 | 
						|
				zbr = &znode->zbranch[idx];
 | 
						|
				err = leaf_cb(c, zbr, priv);
 | 
						|
				if (err) {
 | 
						|
					ubifs_err("leaf checking function "
 | 
						|
						  "returned error %d, for leaf "
 | 
						|
						  "at LEB %d:%d",
 | 
						|
						  err, zbr->lnum, zbr->offs);
 | 
						|
					goto out_dump;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (!znode->parent)
 | 
						|
			break;
 | 
						|
 | 
						|
		idx = znode->iip + 1;
 | 
						|
		znode = znode->parent;
 | 
						|
		if (idx < znode->child_cnt) {
 | 
						|
			/* Switch to the next index in the parent */
 | 
						|
			zbr = &znode->zbranch[idx];
 | 
						|
			child = zbr->znode;
 | 
						|
			if (!child) {
 | 
						|
				child = ubifs_load_znode(c, zbr, znode, idx);
 | 
						|
				if (IS_ERR(child)) {
 | 
						|
					err = PTR_ERR(child);
 | 
						|
					goto out_unlock;
 | 
						|
				}
 | 
						|
				zbr->znode = child;
 | 
						|
			}
 | 
						|
			znode = child;
 | 
						|
		} else
 | 
						|
			/*
 | 
						|
			 * This is the last child, switch to the parent and
 | 
						|
			 * continue.
 | 
						|
			 */
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* Go to the lowest leftmost znode in the new sub-tree */
 | 
						|
		while (znode->level > 0) {
 | 
						|
			zbr = &znode->zbranch[0];
 | 
						|
			child = zbr->znode;
 | 
						|
			if (!child) {
 | 
						|
				child = ubifs_load_znode(c, zbr, znode, 0);
 | 
						|
				if (IS_ERR(child)) {
 | 
						|
					err = PTR_ERR(child);
 | 
						|
					goto out_unlock;
 | 
						|
				}
 | 
						|
				zbr->znode = child;
 | 
						|
			}
 | 
						|
			znode = child;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_unlock(&c->tnc_mutex);
 | 
						|
	return 0;
 | 
						|
 | 
						|
out_dump:
 | 
						|
	if (znode->parent)
 | 
						|
		zbr = &znode->parent->zbranch[znode->iip];
 | 
						|
	else
 | 
						|
		zbr = &c->zroot;
 | 
						|
	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
 | 
						|
	dbg_dump_znode(c, znode);
 | 
						|
out_unlock:
 | 
						|
	mutex_unlock(&c->tnc_mutex);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * add_size - add znode size to partially calculated index size.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @znode: znode to add size for
 | 
						|
 * @priv: partially calculated index size
 | 
						|
 *
 | 
						|
 * This is a helper function for 'dbg_check_idx_size()' which is called for
 | 
						|
 * every indexing node and adds its size to the 'long long' variable pointed to
 | 
						|
 * by @priv.
 | 
						|
 */
 | 
						|
static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
 | 
						|
{
 | 
						|
	long long *idx_size = priv;
 | 
						|
	int add;
 | 
						|
 | 
						|
	add = ubifs_idx_node_sz(c, znode->child_cnt);
 | 
						|
	add = ALIGN(add, 8);
 | 
						|
	*idx_size += add;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * dbg_check_idx_size - check index size.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @idx_size: size to check
 | 
						|
 *
 | 
						|
 * This function walks the UBIFS index, calculates its size and checks that the
 | 
						|
 * size is equivalent to @idx_size. Returns zero in case of success and a
 | 
						|
 * negative error code in case of failure.
 | 
						|
 */
 | 
						|
int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	long long calc = 0;
 | 
						|
 | 
						|
	if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	err = dbg_walk_index(c, NULL, add_size, &calc);
 | 
						|
	if (err) {
 | 
						|
		ubifs_err("error %d while walking the index", err);
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
 | 
						|
	if (calc != idx_size) {
 | 
						|
		ubifs_err("index size check failed: calculated size is %lld, "
 | 
						|
			  "should be %lld", calc, idx_size);
 | 
						|
		dump_stack();
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * struct fsck_inode - information about an inode used when checking the file-system.
 | 
						|
 * @rb: link in the RB-tree of inodes
 | 
						|
 * @inum: inode number
 | 
						|
 * @mode: inode type, permissions, etc
 | 
						|
 * @nlink: inode link count
 | 
						|
 * @xattr_cnt: count of extended attributes
 | 
						|
 * @references: how many directory/xattr entries refer this inode (calculated
 | 
						|
 *              while walking the index)
 | 
						|
 * @calc_cnt: for directory inode count of child directories
 | 
						|
 * @size: inode size (read from on-flash inode)
 | 
						|
 * @xattr_sz: summary size of all extended attributes (read from on-flash
 | 
						|
 *            inode)
 | 
						|
 * @calc_sz: for directories calculated directory size
 | 
						|
 * @calc_xcnt: count of extended attributes
 | 
						|
 * @calc_xsz: calculated summary size of all extended attributes
 | 
						|
 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
 | 
						|
 *             inode (read from on-flash inode)
 | 
						|
 * @calc_xnms: calculated sum of lengths of all extended attribute names
 | 
						|
 */
 | 
						|
struct fsck_inode {
 | 
						|
	struct rb_node rb;
 | 
						|
	ino_t inum;
 | 
						|
	umode_t mode;
 | 
						|
	unsigned int nlink;
 | 
						|
	unsigned int xattr_cnt;
 | 
						|
	int references;
 | 
						|
	int calc_cnt;
 | 
						|
	long long size;
 | 
						|
	unsigned int xattr_sz;
 | 
						|
	long long calc_sz;
 | 
						|
	long long calc_xcnt;
 | 
						|
	long long calc_xsz;
 | 
						|
	unsigned int xattr_nms;
 | 
						|
	long long calc_xnms;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * struct fsck_data - private FS checking information.
 | 
						|
 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
 | 
						|
 */
 | 
						|
struct fsck_data {
 | 
						|
	struct rb_root inodes;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * add_inode - add inode information to RB-tree of inodes.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @fsckd: FS checking information
 | 
						|
 * @ino: raw UBIFS inode to add
 | 
						|
 *
 | 
						|
 * This is a helper function for 'check_leaf()' which adds information about
 | 
						|
 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
 | 
						|
 * case of success and a negative error code in case of failure.
 | 
						|
 */
 | 
						|
static struct fsck_inode *add_inode(struct ubifs_info *c,
 | 
						|
				    struct fsck_data *fsckd,
 | 
						|
				    struct ubifs_ino_node *ino)
 | 
						|
{
 | 
						|
	struct rb_node **p, *parent = NULL;
 | 
						|
	struct fsck_inode *fscki;
 | 
						|
	ino_t inum = key_inum_flash(c, &ino->key);
 | 
						|
 | 
						|
	p = &fsckd->inodes.rb_node;
 | 
						|
	while (*p) {
 | 
						|
		parent = *p;
 | 
						|
		fscki = rb_entry(parent, struct fsck_inode, rb);
 | 
						|
		if (inum < fscki->inum)
 | 
						|
			p = &(*p)->rb_left;
 | 
						|
		else if (inum > fscki->inum)
 | 
						|
			p = &(*p)->rb_right;
 | 
						|
		else
 | 
						|
			return fscki;
 | 
						|
	}
 | 
						|
 | 
						|
	if (inum > c->highest_inum) {
 | 
						|
		ubifs_err("too high inode number, max. is %lu",
 | 
						|
			  (unsigned long)c->highest_inum);
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
	}
 | 
						|
 | 
						|
	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
 | 
						|
	if (!fscki)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	fscki->inum = inum;
 | 
						|
	fscki->nlink = le32_to_cpu(ino->nlink);
 | 
						|
	fscki->size = le64_to_cpu(ino->size);
 | 
						|
	fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
 | 
						|
	fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
 | 
						|
	fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
 | 
						|
	fscki->mode = le32_to_cpu(ino->mode);
 | 
						|
	if (S_ISDIR(fscki->mode)) {
 | 
						|
		fscki->calc_sz = UBIFS_INO_NODE_SZ;
 | 
						|
		fscki->calc_cnt = 2;
 | 
						|
	}
 | 
						|
	rb_link_node(&fscki->rb, parent, p);
 | 
						|
	rb_insert_color(&fscki->rb, &fsckd->inodes);
 | 
						|
	return fscki;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * search_inode - search inode in the RB-tree of inodes.
 | 
						|
 * @fsckd: FS checking information
 | 
						|
 * @inum: inode number to search
 | 
						|
 *
 | 
						|
 * This is a helper function for 'check_leaf()' which searches inode @inum in
 | 
						|
 * the RB-tree of inodes and returns an inode information pointer or %NULL if
 | 
						|
 * the inode was not found.
 | 
						|
 */
 | 
						|
static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
 | 
						|
{
 | 
						|
	struct rb_node *p;
 | 
						|
	struct fsck_inode *fscki;
 | 
						|
 | 
						|
	p = fsckd->inodes.rb_node;
 | 
						|
	while (p) {
 | 
						|
		fscki = rb_entry(p, struct fsck_inode, rb);
 | 
						|
		if (inum < fscki->inum)
 | 
						|
			p = p->rb_left;
 | 
						|
		else if (inum > fscki->inum)
 | 
						|
			p = p->rb_right;
 | 
						|
		else
 | 
						|
			return fscki;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * read_add_inode - read inode node and add it to RB-tree of inodes.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @fsckd: FS checking information
 | 
						|
 * @inum: inode number to read
 | 
						|
 *
 | 
						|
 * This is a helper function for 'check_leaf()' which finds inode node @inum in
 | 
						|
 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
 | 
						|
 * information pointer in case of success and a negative error code in case of
 | 
						|
 * failure.
 | 
						|
 */
 | 
						|
static struct fsck_inode *read_add_inode(struct ubifs_info *c,
 | 
						|
					 struct fsck_data *fsckd, ino_t inum)
 | 
						|
{
 | 
						|
	int n, err;
 | 
						|
	union ubifs_key key;
 | 
						|
	struct ubifs_znode *znode;
 | 
						|
	struct ubifs_zbranch *zbr;
 | 
						|
	struct ubifs_ino_node *ino;
 | 
						|
	struct fsck_inode *fscki;
 | 
						|
 | 
						|
	fscki = search_inode(fsckd, inum);
 | 
						|
	if (fscki)
 | 
						|
		return fscki;
 | 
						|
 | 
						|
	ino_key_init(c, &key, inum);
 | 
						|
	err = ubifs_lookup_level0(c, &key, &znode, &n);
 | 
						|
	if (!err) {
 | 
						|
		ubifs_err("inode %lu not found in index", (unsigned long)inum);
 | 
						|
		return ERR_PTR(-ENOENT);
 | 
						|
	} else if (err < 0) {
 | 
						|
		ubifs_err("error %d while looking up inode %lu",
 | 
						|
			  err, (unsigned long)inum);
 | 
						|
		return ERR_PTR(err);
 | 
						|
	}
 | 
						|
 | 
						|
	zbr = &znode->zbranch[n];
 | 
						|
	if (zbr->len < UBIFS_INO_NODE_SZ) {
 | 
						|
		ubifs_err("bad node %lu node length %d",
 | 
						|
			  (unsigned long)inum, zbr->len);
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
	}
 | 
						|
 | 
						|
	ino = kmalloc(zbr->len, GFP_NOFS);
 | 
						|
	if (!ino)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	err = ubifs_tnc_read_node(c, zbr, ino);
 | 
						|
	if (err) {
 | 
						|
		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
 | 
						|
			  zbr->lnum, zbr->offs, err);
 | 
						|
		kfree(ino);
 | 
						|
		return ERR_PTR(err);
 | 
						|
	}
 | 
						|
 | 
						|
	fscki = add_inode(c, fsckd, ino);
 | 
						|
	kfree(ino);
 | 
						|
	if (IS_ERR(fscki)) {
 | 
						|
		ubifs_err("error %ld while adding inode %lu node",
 | 
						|
			  PTR_ERR(fscki), (unsigned long)inum);
 | 
						|
		return fscki;
 | 
						|
	}
 | 
						|
 | 
						|
	return fscki;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * check_leaf - check leaf node.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @zbr: zbranch of the leaf node to check
 | 
						|
 * @priv: FS checking information
 | 
						|
 *
 | 
						|
 * This is a helper function for 'dbg_check_filesystem()' which is called for
 | 
						|
 * every single leaf node while walking the indexing tree. It checks that the
 | 
						|
 * leaf node referred from the indexing tree exists, has correct CRC, and does
 | 
						|
 * some other basic validation. This function is also responsible for building
 | 
						|
 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
 | 
						|
 * calculates reference count, size, etc for each inode in order to later
 | 
						|
 * compare them to the information stored inside the inodes and detect possible
 | 
						|
 * inconsistencies. Returns zero in case of success and a negative error code
 | 
						|
 * in case of failure.
 | 
						|
 */
 | 
						|
static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 | 
						|
		      void *priv)
 | 
						|
{
 | 
						|
	ino_t inum;
 | 
						|
	void *node;
 | 
						|
	struct ubifs_ch *ch;
 | 
						|
	int err, type = key_type(c, &zbr->key);
 | 
						|
	struct fsck_inode *fscki;
 | 
						|
 | 
						|
	if (zbr->len < UBIFS_CH_SZ) {
 | 
						|
		ubifs_err("bad leaf length %d (LEB %d:%d)",
 | 
						|
			  zbr->len, zbr->lnum, zbr->offs);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	node = kmalloc(zbr->len, GFP_NOFS);
 | 
						|
	if (!node)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	err = ubifs_tnc_read_node(c, zbr, node);
 | 
						|
	if (err) {
 | 
						|
		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
 | 
						|
			  zbr->lnum, zbr->offs, err);
 | 
						|
		goto out_free;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If this is an inode node, add it to RB-tree of inodes */
 | 
						|
	if (type == UBIFS_INO_KEY) {
 | 
						|
		fscki = add_inode(c, priv, node);
 | 
						|
		if (IS_ERR(fscki)) {
 | 
						|
			err = PTR_ERR(fscki);
 | 
						|
			ubifs_err("error %d while adding inode node", err);
 | 
						|
			goto out_dump;
 | 
						|
		}
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
 | 
						|
	    type != UBIFS_DATA_KEY) {
 | 
						|
		ubifs_err("unexpected node type %d at LEB %d:%d",
 | 
						|
			  type, zbr->lnum, zbr->offs);
 | 
						|
		err = -EINVAL;
 | 
						|
		goto out_free;
 | 
						|
	}
 | 
						|
 | 
						|
	ch = node;
 | 
						|
	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
 | 
						|
		ubifs_err("too high sequence number, max. is %llu",
 | 
						|
			  c->max_sqnum);
 | 
						|
		err = -EINVAL;
 | 
						|
		goto out_dump;
 | 
						|
	}
 | 
						|
 | 
						|
	if (type == UBIFS_DATA_KEY) {
 | 
						|
		long long blk_offs;
 | 
						|
		struct ubifs_data_node *dn = node;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Search the inode node this data node belongs to and insert
 | 
						|
		 * it to the RB-tree of inodes.
 | 
						|
		 */
 | 
						|
		inum = key_inum_flash(c, &dn->key);
 | 
						|
		fscki = read_add_inode(c, priv, inum);
 | 
						|
		if (IS_ERR(fscki)) {
 | 
						|
			err = PTR_ERR(fscki);
 | 
						|
			ubifs_err("error %d while processing data node and "
 | 
						|
				  "trying to find inode node %lu",
 | 
						|
				  err, (unsigned long)inum);
 | 
						|
			goto out_dump;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Make sure the data node is within inode size */
 | 
						|
		blk_offs = key_block_flash(c, &dn->key);
 | 
						|
		blk_offs <<= UBIFS_BLOCK_SHIFT;
 | 
						|
		blk_offs += le32_to_cpu(dn->size);
 | 
						|
		if (blk_offs > fscki->size) {
 | 
						|
			ubifs_err("data node at LEB %d:%d is not within inode "
 | 
						|
				  "size %lld", zbr->lnum, zbr->offs,
 | 
						|
				  fscki->size);
 | 
						|
			err = -EINVAL;
 | 
						|
			goto out_dump;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		int nlen;
 | 
						|
		struct ubifs_dent_node *dent = node;
 | 
						|
		struct fsck_inode *fscki1;
 | 
						|
 | 
						|
		err = ubifs_validate_entry(c, dent);
 | 
						|
		if (err)
 | 
						|
			goto out_dump;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Search the inode node this entry refers to and the parent
 | 
						|
		 * inode node and insert them to the RB-tree of inodes.
 | 
						|
		 */
 | 
						|
		inum = le64_to_cpu(dent->inum);
 | 
						|
		fscki = read_add_inode(c, priv, inum);
 | 
						|
		if (IS_ERR(fscki)) {
 | 
						|
			err = PTR_ERR(fscki);
 | 
						|
			ubifs_err("error %d while processing entry node and "
 | 
						|
				  "trying to find inode node %lu",
 | 
						|
				  err, (unsigned long)inum);
 | 
						|
			goto out_dump;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Count how many direntries or xentries refers this inode */
 | 
						|
		fscki->references += 1;
 | 
						|
 | 
						|
		inum = key_inum_flash(c, &dent->key);
 | 
						|
		fscki1 = read_add_inode(c, priv, inum);
 | 
						|
		if (IS_ERR(fscki1)) {
 | 
						|
			err = PTR_ERR(fscki);
 | 
						|
			ubifs_err("error %d while processing entry node and "
 | 
						|
				  "trying to find parent inode node %lu",
 | 
						|
				  err, (unsigned long)inum);
 | 
						|
			goto out_dump;
 | 
						|
		}
 | 
						|
 | 
						|
		nlen = le16_to_cpu(dent->nlen);
 | 
						|
		if (type == UBIFS_XENT_KEY) {
 | 
						|
			fscki1->calc_xcnt += 1;
 | 
						|
			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
 | 
						|
			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
 | 
						|
			fscki1->calc_xnms += nlen;
 | 
						|
		} else {
 | 
						|
			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
 | 
						|
			if (dent->type == UBIFS_ITYPE_DIR)
 | 
						|
				fscki1->calc_cnt += 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	kfree(node);
 | 
						|
	return 0;
 | 
						|
 | 
						|
out_dump:
 | 
						|
	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
 | 
						|
	dbg_dump_node(c, node);
 | 
						|
out_free:
 | 
						|
	kfree(node);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * free_inodes - free RB-tree of inodes.
 | 
						|
 * @fsckd: FS checking information
 | 
						|
 */
 | 
						|
static void free_inodes(struct fsck_data *fsckd)
 | 
						|
{
 | 
						|
	struct rb_node *this = fsckd->inodes.rb_node;
 | 
						|
	struct fsck_inode *fscki;
 | 
						|
 | 
						|
	while (this) {
 | 
						|
		if (this->rb_left)
 | 
						|
			this = this->rb_left;
 | 
						|
		else if (this->rb_right)
 | 
						|
			this = this->rb_right;
 | 
						|
		else {
 | 
						|
			fscki = rb_entry(this, struct fsck_inode, rb);
 | 
						|
			this = rb_parent(this);
 | 
						|
			if (this) {
 | 
						|
				if (this->rb_left == &fscki->rb)
 | 
						|
					this->rb_left = NULL;
 | 
						|
				else
 | 
						|
					this->rb_right = NULL;
 | 
						|
			}
 | 
						|
			kfree(fscki);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * check_inodes - checks all inodes.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 * @fsckd: FS checking information
 | 
						|
 *
 | 
						|
 * This is a helper function for 'dbg_check_filesystem()' which walks the
 | 
						|
 * RB-tree of inodes after the index scan has been finished, and checks that
 | 
						|
 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
 | 
						|
 * %-EINVAL if not, and a negative error code in case of failure.
 | 
						|
 */
 | 
						|
static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
 | 
						|
{
 | 
						|
	int n, err;
 | 
						|
	union ubifs_key key;
 | 
						|
	struct ubifs_znode *znode;
 | 
						|
	struct ubifs_zbranch *zbr;
 | 
						|
	struct ubifs_ino_node *ino;
 | 
						|
	struct fsck_inode *fscki;
 | 
						|
	struct rb_node *this = rb_first(&fsckd->inodes);
 | 
						|
 | 
						|
	while (this) {
 | 
						|
		fscki = rb_entry(this, struct fsck_inode, rb);
 | 
						|
		this = rb_next(this);
 | 
						|
 | 
						|
		if (S_ISDIR(fscki->mode)) {
 | 
						|
			/*
 | 
						|
			 * Directories have to have exactly one reference (they
 | 
						|
			 * cannot have hardlinks), although root inode is an
 | 
						|
			 * exception.
 | 
						|
			 */
 | 
						|
			if (fscki->inum != UBIFS_ROOT_INO &&
 | 
						|
			    fscki->references != 1) {
 | 
						|
				ubifs_err("directory inode %lu has %d "
 | 
						|
					  "direntries which refer it, but "
 | 
						|
					  "should be 1",
 | 
						|
					  (unsigned long)fscki->inum,
 | 
						|
					  fscki->references);
 | 
						|
				goto out_dump;
 | 
						|
			}
 | 
						|
			if (fscki->inum == UBIFS_ROOT_INO &&
 | 
						|
			    fscki->references != 0) {
 | 
						|
				ubifs_err("root inode %lu has non-zero (%d) "
 | 
						|
					  "direntries which refer it",
 | 
						|
					  (unsigned long)fscki->inum,
 | 
						|
					  fscki->references);
 | 
						|
				goto out_dump;
 | 
						|
			}
 | 
						|
			if (fscki->calc_sz != fscki->size) {
 | 
						|
				ubifs_err("directory inode %lu size is %lld, "
 | 
						|
					  "but calculated size is %lld",
 | 
						|
					  (unsigned long)fscki->inum,
 | 
						|
					  fscki->size, fscki->calc_sz);
 | 
						|
				goto out_dump;
 | 
						|
			}
 | 
						|
			if (fscki->calc_cnt != fscki->nlink) {
 | 
						|
				ubifs_err("directory inode %lu nlink is %d, "
 | 
						|
					  "but calculated nlink is %d",
 | 
						|
					  (unsigned long)fscki->inum,
 | 
						|
					  fscki->nlink, fscki->calc_cnt);
 | 
						|
				goto out_dump;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			if (fscki->references != fscki->nlink) {
 | 
						|
				ubifs_err("inode %lu nlink is %d, but "
 | 
						|
					  "calculated nlink is %d",
 | 
						|
					  (unsigned long)fscki->inum,
 | 
						|
					  fscki->nlink, fscki->references);
 | 
						|
				goto out_dump;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (fscki->xattr_sz != fscki->calc_xsz) {
 | 
						|
			ubifs_err("inode %lu has xattr size %u, but "
 | 
						|
				  "calculated size is %lld",
 | 
						|
				  (unsigned long)fscki->inum, fscki->xattr_sz,
 | 
						|
				  fscki->calc_xsz);
 | 
						|
			goto out_dump;
 | 
						|
		}
 | 
						|
		if (fscki->xattr_cnt != fscki->calc_xcnt) {
 | 
						|
			ubifs_err("inode %lu has %u xattrs, but "
 | 
						|
				  "calculated count is %lld",
 | 
						|
				  (unsigned long)fscki->inum,
 | 
						|
				  fscki->xattr_cnt, fscki->calc_xcnt);
 | 
						|
			goto out_dump;
 | 
						|
		}
 | 
						|
		if (fscki->xattr_nms != fscki->calc_xnms) {
 | 
						|
			ubifs_err("inode %lu has xattr names' size %u, but "
 | 
						|
				  "calculated names' size is %lld",
 | 
						|
				  (unsigned long)fscki->inum, fscki->xattr_nms,
 | 
						|
				  fscki->calc_xnms);
 | 
						|
			goto out_dump;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
out_dump:
 | 
						|
	/* Read the bad inode and dump it */
 | 
						|
	ino_key_init(c, &key, fscki->inum);
 | 
						|
	err = ubifs_lookup_level0(c, &key, &znode, &n);
 | 
						|
	if (!err) {
 | 
						|
		ubifs_err("inode %lu not found in index",
 | 
						|
			  (unsigned long)fscki->inum);
 | 
						|
		return -ENOENT;
 | 
						|
	} else if (err < 0) {
 | 
						|
		ubifs_err("error %d while looking up inode %lu",
 | 
						|
			  err, (unsigned long)fscki->inum);
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
 | 
						|
	zbr = &znode->zbranch[n];
 | 
						|
	ino = kmalloc(zbr->len, GFP_NOFS);
 | 
						|
	if (!ino)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	err = ubifs_tnc_read_node(c, zbr, ino);
 | 
						|
	if (err) {
 | 
						|
		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
 | 
						|
			  zbr->lnum, zbr->offs, err);
 | 
						|
		kfree(ino);
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
 | 
						|
	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
 | 
						|
		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
 | 
						|
	dbg_dump_node(c, ino);
 | 
						|
	kfree(ino);
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * dbg_check_filesystem - check the file-system.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 *
 | 
						|
 * This function checks the file system, namely:
 | 
						|
 * o makes sure that all leaf nodes exist and their CRCs are correct;
 | 
						|
 * o makes sure inode nlink, size, xattr size/count are correct (for all
 | 
						|
 *   inodes).
 | 
						|
 *
 | 
						|
 * The function reads whole indexing tree and all nodes, so it is pretty
 | 
						|
 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
 | 
						|
 * not, and a negative error code in case of failure.
 | 
						|
 */
 | 
						|
int dbg_check_filesystem(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	struct fsck_data fsckd;
 | 
						|
 | 
						|
	if (!(ubifs_chk_flags & UBIFS_CHK_FS))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	fsckd.inodes = RB_ROOT;
 | 
						|
	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
 | 
						|
	if (err)
 | 
						|
		goto out_free;
 | 
						|
 | 
						|
	err = check_inodes(c, &fsckd);
 | 
						|
	if (err)
 | 
						|
		goto out_free;
 | 
						|
 | 
						|
	free_inodes(&fsckd);
 | 
						|
	return 0;
 | 
						|
 | 
						|
out_free:
 | 
						|
	ubifs_err("file-system check failed with error %d", err);
 | 
						|
	dump_stack();
 | 
						|
	free_inodes(&fsckd);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static int invocation_cnt;
 | 
						|
 | 
						|
int dbg_force_in_the_gaps(void)
 | 
						|
{
 | 
						|
	if (!dbg_force_in_the_gaps_enabled)
 | 
						|
		return 0;
 | 
						|
	/* Force in-the-gaps every 8th commit */
 | 
						|
	return !((invocation_cnt++) & 0x7);
 | 
						|
}
 | 
						|
 | 
						|
/* Failure mode for recovery testing */
 | 
						|
 | 
						|
#define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
 | 
						|
 | 
						|
struct failure_mode_info {
 | 
						|
	struct list_head list;
 | 
						|
	struct ubifs_info *c;
 | 
						|
};
 | 
						|
 | 
						|
static LIST_HEAD(fmi_list);
 | 
						|
static DEFINE_SPINLOCK(fmi_lock);
 | 
						|
 | 
						|
static unsigned int next;
 | 
						|
 | 
						|
static int simple_rand(void)
 | 
						|
{
 | 
						|
	if (next == 0)
 | 
						|
		next = current->pid;
 | 
						|
	next = next * 1103515245 + 12345;
 | 
						|
	return (next >> 16) & 32767;
 | 
						|
}
 | 
						|
 | 
						|
static void failure_mode_init(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	struct failure_mode_info *fmi;
 | 
						|
 | 
						|
	fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
 | 
						|
	if (!fmi) {
 | 
						|
		ubifs_err("Failed to register failure mode - no memory");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	fmi->c = c;
 | 
						|
	spin_lock(&fmi_lock);
 | 
						|
	list_add_tail(&fmi->list, &fmi_list);
 | 
						|
	spin_unlock(&fmi_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void failure_mode_exit(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	struct failure_mode_info *fmi, *tmp;
 | 
						|
 | 
						|
	spin_lock(&fmi_lock);
 | 
						|
	list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
 | 
						|
		if (fmi->c == c) {
 | 
						|
			list_del(&fmi->list);
 | 
						|
			kfree(fmi);
 | 
						|
		}
 | 
						|
	spin_unlock(&fmi_lock);
 | 
						|
}
 | 
						|
 | 
						|
static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
 | 
						|
{
 | 
						|
	struct failure_mode_info *fmi;
 | 
						|
 | 
						|
	spin_lock(&fmi_lock);
 | 
						|
	list_for_each_entry(fmi, &fmi_list, list)
 | 
						|
		if (fmi->c->ubi == desc) {
 | 
						|
			struct ubifs_info *c = fmi->c;
 | 
						|
 | 
						|
			spin_unlock(&fmi_lock);
 | 
						|
			return c;
 | 
						|
		}
 | 
						|
	spin_unlock(&fmi_lock);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static int in_failure_mode(struct ubi_volume_desc *desc)
 | 
						|
{
 | 
						|
	struct ubifs_info *c = dbg_find_info(desc);
 | 
						|
 | 
						|
	if (c && dbg_failure_mode)
 | 
						|
		return c->dbg->failure_mode;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
 | 
						|
{
 | 
						|
	struct ubifs_info *c = dbg_find_info(desc);
 | 
						|
	struct ubifs_debug_info *d;
 | 
						|
 | 
						|
	if (!c || !dbg_failure_mode)
 | 
						|
		return 0;
 | 
						|
	d = c->dbg;
 | 
						|
	if (d->failure_mode)
 | 
						|
		return 1;
 | 
						|
	if (!d->fail_cnt) {
 | 
						|
		/* First call - decide delay to failure */
 | 
						|
		if (chance(1, 2)) {
 | 
						|
			unsigned int delay = 1 << (simple_rand() >> 11);
 | 
						|
 | 
						|
			if (chance(1, 2)) {
 | 
						|
				d->fail_delay = 1;
 | 
						|
				d->fail_timeout = jiffies +
 | 
						|
						  msecs_to_jiffies(delay);
 | 
						|
				dbg_rcvry("failing after %ums", delay);
 | 
						|
			} else {
 | 
						|
				d->fail_delay = 2;
 | 
						|
				d->fail_cnt_max = delay;
 | 
						|
				dbg_rcvry("failing after %u calls", delay);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		d->fail_cnt += 1;
 | 
						|
	}
 | 
						|
	/* Determine if failure delay has expired */
 | 
						|
	if (d->fail_delay == 1) {
 | 
						|
		if (time_before(jiffies, d->fail_timeout))
 | 
						|
			return 0;
 | 
						|
	} else if (d->fail_delay == 2)
 | 
						|
		if (d->fail_cnt++ < d->fail_cnt_max)
 | 
						|
			return 0;
 | 
						|
	if (lnum == UBIFS_SB_LNUM) {
 | 
						|
		if (write) {
 | 
						|
			if (chance(1, 2))
 | 
						|
				return 0;
 | 
						|
		} else if (chance(19, 20))
 | 
						|
			return 0;
 | 
						|
		dbg_rcvry("failing in super block LEB %d", lnum);
 | 
						|
	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
 | 
						|
		if (chance(19, 20))
 | 
						|
			return 0;
 | 
						|
		dbg_rcvry("failing in master LEB %d", lnum);
 | 
						|
	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
 | 
						|
		if (write) {
 | 
						|
			if (chance(99, 100))
 | 
						|
				return 0;
 | 
						|
		} else if (chance(399, 400))
 | 
						|
			return 0;
 | 
						|
		dbg_rcvry("failing in log LEB %d", lnum);
 | 
						|
	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
 | 
						|
		if (write) {
 | 
						|
			if (chance(7, 8))
 | 
						|
				return 0;
 | 
						|
		} else if (chance(19, 20))
 | 
						|
			return 0;
 | 
						|
		dbg_rcvry("failing in LPT LEB %d", lnum);
 | 
						|
	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
 | 
						|
		if (write) {
 | 
						|
			if (chance(1, 2))
 | 
						|
				return 0;
 | 
						|
		} else if (chance(9, 10))
 | 
						|
			return 0;
 | 
						|
		dbg_rcvry("failing in orphan LEB %d", lnum);
 | 
						|
	} else if (lnum == c->ihead_lnum) {
 | 
						|
		if (chance(99, 100))
 | 
						|
			return 0;
 | 
						|
		dbg_rcvry("failing in index head LEB %d", lnum);
 | 
						|
	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
 | 
						|
		if (chance(9, 10))
 | 
						|
			return 0;
 | 
						|
		dbg_rcvry("failing in GC head LEB %d", lnum);
 | 
						|
	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
 | 
						|
		   !ubifs_search_bud(c, lnum)) {
 | 
						|
		if (chance(19, 20))
 | 
						|
			return 0;
 | 
						|
		dbg_rcvry("failing in non-bud LEB %d", lnum);
 | 
						|
	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
 | 
						|
		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
 | 
						|
		if (chance(999, 1000))
 | 
						|
			return 0;
 | 
						|
		dbg_rcvry("failing in bud LEB %d commit running", lnum);
 | 
						|
	} else {
 | 
						|
		if (chance(9999, 10000))
 | 
						|
			return 0;
 | 
						|
		dbg_rcvry("failing in bud LEB %d commit not running", lnum);
 | 
						|
	}
 | 
						|
	ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
 | 
						|
	d->failure_mode = 1;
 | 
						|
	dump_stack();
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void cut_data(const void *buf, int len)
 | 
						|
{
 | 
						|
	int flen, i;
 | 
						|
	unsigned char *p = (void *)buf;
 | 
						|
 | 
						|
	flen = (len * (long long)simple_rand()) >> 15;
 | 
						|
	for (i = flen; i < len; i++)
 | 
						|
		p[i] = 0xff;
 | 
						|
}
 | 
						|
 | 
						|
int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
 | 
						|
		 int len, int check)
 | 
						|
{
 | 
						|
	if (in_failure_mode(desc))
 | 
						|
		return -EIO;
 | 
						|
	return ubi_leb_read(desc, lnum, buf, offset, len, check);
 | 
						|
}
 | 
						|
 | 
						|
int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
 | 
						|
		  int offset, int len, int dtype)
 | 
						|
{
 | 
						|
	int err, failing;
 | 
						|
 | 
						|
	if (in_failure_mode(desc))
 | 
						|
		return -EIO;
 | 
						|
	failing = do_fail(desc, lnum, 1);
 | 
						|
	if (failing)
 | 
						|
		cut_data(buf, len);
 | 
						|
	err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	if (failing)
 | 
						|
		return -EIO;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
 | 
						|
		   int len, int dtype)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (do_fail(desc, lnum, 1))
 | 
						|
		return -EIO;
 | 
						|
	err = ubi_leb_change(desc, lnum, buf, len, dtype);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	if (do_fail(desc, lnum, 1))
 | 
						|
		return -EIO;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (do_fail(desc, lnum, 0))
 | 
						|
		return -EIO;
 | 
						|
	err = ubi_leb_erase(desc, lnum);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	if (do_fail(desc, lnum, 0))
 | 
						|
		return -EIO;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (do_fail(desc, lnum, 0))
 | 
						|
		return -EIO;
 | 
						|
	err = ubi_leb_unmap(desc, lnum);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	if (do_fail(desc, lnum, 0))
 | 
						|
		return -EIO;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
 | 
						|
{
 | 
						|
	if (in_failure_mode(desc))
 | 
						|
		return -EIO;
 | 
						|
	return ubi_is_mapped(desc, lnum);
 | 
						|
}
 | 
						|
 | 
						|
int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (do_fail(desc, lnum, 0))
 | 
						|
		return -EIO;
 | 
						|
	err = ubi_leb_map(desc, lnum, dtype);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	if (do_fail(desc, lnum, 0))
 | 
						|
		return -EIO;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ubifs_debugging_init - initialize UBIFS debugging.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 *
 | 
						|
 * This function initializes debugging-related data for the file system.
 | 
						|
 * Returns zero in case of success and a negative error code in case of
 | 
						|
 * failure.
 | 
						|
 */
 | 
						|
int ubifs_debugging_init(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
 | 
						|
	if (!c->dbg)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	c->dbg->buf = vmalloc(c->leb_size);
 | 
						|
	if (!c->dbg->buf)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	failure_mode_init(c);
 | 
						|
	return 0;
 | 
						|
 | 
						|
out:
 | 
						|
	kfree(c->dbg);
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ubifs_debugging_exit - free debugging data.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 */
 | 
						|
void ubifs_debugging_exit(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	failure_mode_exit(c);
 | 
						|
	vfree(c->dbg->buf);
 | 
						|
	kfree(c->dbg);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
 | 
						|
 * contain the stuff specific to particular file-system mounts.
 | 
						|
 */
 | 
						|
static struct dentry *debugfs_rootdir;
 | 
						|
 | 
						|
/**
 | 
						|
 * dbg_debugfs_init - initialize debugfs file-system.
 | 
						|
 *
 | 
						|
 * UBIFS uses debugfs file-system to expose various debugging knobs to
 | 
						|
 * user-space. This function creates "ubifs" directory in the debugfs
 | 
						|
 * file-system. Returns zero in case of success and a negative error code in
 | 
						|
 * case of failure.
 | 
						|
 */
 | 
						|
int dbg_debugfs_init(void)
 | 
						|
{
 | 
						|
	debugfs_rootdir = debugfs_create_dir("ubifs", NULL);
 | 
						|
	if (IS_ERR(debugfs_rootdir)) {
 | 
						|
		int err = PTR_ERR(debugfs_rootdir);
 | 
						|
		ubifs_err("cannot create \"ubifs\" debugfs directory, "
 | 
						|
			  "error %d\n", err);
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
 | 
						|
 */
 | 
						|
void dbg_debugfs_exit(void)
 | 
						|
{
 | 
						|
	debugfs_remove(debugfs_rootdir);
 | 
						|
}
 | 
						|
 | 
						|
static int open_debugfs_file(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	file->private_data = inode->i_private;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
 | 
						|
				  size_t count, loff_t *ppos)
 | 
						|
{
 | 
						|
	struct ubifs_info *c = file->private_data;
 | 
						|
	struct ubifs_debug_info *d = c->dbg;
 | 
						|
 | 
						|
	if (file->f_path.dentry == d->dump_lprops)
 | 
						|
		dbg_dump_lprops(c);
 | 
						|
	else if (file->f_path.dentry == d->dump_budg) {
 | 
						|
		spin_lock(&c->space_lock);
 | 
						|
		dbg_dump_budg(c);
 | 
						|
		spin_unlock(&c->space_lock);
 | 
						|
	} else if (file->f_path.dentry == d->dump_tnc) {
 | 
						|
		mutex_lock(&c->tnc_mutex);
 | 
						|
		dbg_dump_tnc(c);
 | 
						|
		mutex_unlock(&c->tnc_mutex);
 | 
						|
	} else
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	*ppos += count;
 | 
						|
	return count;
 | 
						|
}
 | 
						|
 | 
						|
static const struct file_operations debugfs_fops = {
 | 
						|
	.open = open_debugfs_file,
 | 
						|
	.write = write_debugfs_file,
 | 
						|
	.owner = THIS_MODULE,
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 *
 | 
						|
 * This function creates all debugfs files for this instance of UBIFS. Returns
 | 
						|
 * zero in case of success and a negative error code in case of failure.
 | 
						|
 *
 | 
						|
 * Note, the only reason we have not merged this function with the
 | 
						|
 * 'ubifs_debugging_init()' function is because it is better to initialize
 | 
						|
 * debugfs interfaces at the very end of the mount process, and remove them at
 | 
						|
 * the very beginning of the mount process.
 | 
						|
 */
 | 
						|
int dbg_debugfs_init_fs(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	const char *fname;
 | 
						|
	struct dentry *dent;
 | 
						|
	struct ubifs_debug_info *d = c->dbg;
 | 
						|
 | 
						|
	sprintf(d->debugfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
 | 
						|
	d->debugfs_dir = debugfs_create_dir(d->debugfs_dir_name,
 | 
						|
					      debugfs_rootdir);
 | 
						|
	if (IS_ERR(d->debugfs_dir)) {
 | 
						|
		err = PTR_ERR(d->debugfs_dir);
 | 
						|
		ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
 | 
						|
			  d->debugfs_dir_name, err);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	fname = "dump_lprops";
 | 
						|
	dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
 | 
						|
				   &debugfs_fops);
 | 
						|
	if (IS_ERR(dent))
 | 
						|
		goto out_remove;
 | 
						|
	d->dump_lprops = dent;
 | 
						|
 | 
						|
	fname = "dump_budg";
 | 
						|
	dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
 | 
						|
				   &debugfs_fops);
 | 
						|
	if (IS_ERR(dent))
 | 
						|
		goto out_remove;
 | 
						|
	d->dump_budg = dent;
 | 
						|
 | 
						|
	fname = "dump_tnc";
 | 
						|
	dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
 | 
						|
				   &debugfs_fops);
 | 
						|
	if (IS_ERR(dent))
 | 
						|
		goto out_remove;
 | 
						|
	d->dump_tnc = dent;
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
out_remove:
 | 
						|
	err = PTR_ERR(dent);
 | 
						|
	ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
 | 
						|
		  fname, err);
 | 
						|
	debugfs_remove_recursive(d->debugfs_dir);
 | 
						|
out:
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * dbg_debugfs_exit_fs - remove all debugfs files.
 | 
						|
 * @c: UBIFS file-system description object
 | 
						|
 */
 | 
						|
void dbg_debugfs_exit_fs(struct ubifs_info *c)
 | 
						|
{
 | 
						|
	debugfs_remove_recursive(c->dbg->debugfs_dir);
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_UBIFS_FS_DEBUG */
 |