Right now, the migration code in migrate_page_copy() uses copy_huge_page()
for hugetlbfs and thp pages:
       if (PageHuge(page) || PageTransHuge(page))
                copy_huge_page(newpage, page);
So, yay for code reuse.  But:
  void copy_huge_page(struct page *dst, struct page *src)
  {
        struct hstate *h = page_hstate(src);
and a non-hugetlbfs page has no page_hstate().  This works 99% of the
time because page_hstate() determines the hstate from the page order
alone.  Since the page order of a THP page matches the default hugetlbfs
page order, it works.
But, if you change the default huge page size on the boot command-line
(say default_hugepagesz=1G), then we might not even *have* a 2MB hstate
so page_hstate() returns null and copy_huge_page() oopses pretty fast
since copy_huge_page() dereferences the hstate:
  void copy_huge_page(struct page *dst, struct page *src)
  {
        struct hstate *h = page_hstate(src);
        if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
  ...
Mel noticed that the migration code is really the only user of these
functions.  This moves all the copy code over to migrate.c and makes
copy_huge_page() work for THP by checking for it explicitly.
I believe the bug was introduced in commit b32967ff10 ("mm: numa: Add
THP migration for the NUMA working set scanning fault case")
[akpm@linux-foundation.org: fix coding-style and comment text, per Naoya Horiguchi]
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			1833 lines
		
	
	
	
		
			46 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1833 lines
		
	
	
	
		
			46 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Memory Migration functionality - linux/mm/migration.c
 | 
						|
 *
 | 
						|
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 | 
						|
 *
 | 
						|
 * Page migration was first developed in the context of the memory hotplug
 | 
						|
 * project. The main authors of the migration code are:
 | 
						|
 *
 | 
						|
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 | 
						|
 * Hirokazu Takahashi <taka@valinux.co.jp>
 | 
						|
 * Dave Hansen <haveblue@us.ibm.com>
 | 
						|
 * Christoph Lameter
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/migrate.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/swapops.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/buffer_head.h>
 | 
						|
#include <linux/mm_inline.h>
 | 
						|
#include <linux/nsproxy.h>
 | 
						|
#include <linux/pagevec.h>
 | 
						|
#include <linux/ksm.h>
 | 
						|
#include <linux/rmap.h>
 | 
						|
#include <linux/topology.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/cpuset.h>
 | 
						|
#include <linux/writeback.h>
 | 
						|
#include <linux/mempolicy.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/security.h>
 | 
						|
#include <linux/memcontrol.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/hugetlb.h>
 | 
						|
#include <linux/hugetlb_cgroup.h>
 | 
						|
#include <linux/gfp.h>
 | 
						|
#include <linux/balloon_compaction.h>
 | 
						|
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
 | 
						|
#define CREATE_TRACE_POINTS
 | 
						|
#include <trace/events/migrate.h>
 | 
						|
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * migrate_prep() needs to be called before we start compiling a list of pages
 | 
						|
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 | 
						|
 * undesirable, use migrate_prep_local()
 | 
						|
 */
 | 
						|
int migrate_prep(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Clear the LRU lists so pages can be isolated.
 | 
						|
	 * Note that pages may be moved off the LRU after we have
 | 
						|
	 * drained them. Those pages will fail to migrate like other
 | 
						|
	 * pages that may be busy.
 | 
						|
	 */
 | 
						|
	lru_add_drain_all();
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
 | 
						|
int migrate_prep_local(void)
 | 
						|
{
 | 
						|
	lru_add_drain();
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add isolated pages on the list back to the LRU under page lock
 | 
						|
 * to avoid leaking evictable pages back onto unevictable list.
 | 
						|
 */
 | 
						|
void putback_lru_pages(struct list_head *l)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	struct page *page2;
 | 
						|
 | 
						|
	list_for_each_entry_safe(page, page2, l, lru) {
 | 
						|
		list_del(&page->lru);
 | 
						|
		dec_zone_page_state(page, NR_ISOLATED_ANON +
 | 
						|
				page_is_file_cache(page));
 | 
						|
			putback_lru_page(page);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Put previously isolated pages back onto the appropriate lists
 | 
						|
 * from where they were once taken off for compaction/migration.
 | 
						|
 *
 | 
						|
 * This function shall be used instead of putback_lru_pages(),
 | 
						|
 * whenever the isolated pageset has been built by isolate_migratepages_range()
 | 
						|
 */
 | 
						|
void putback_movable_pages(struct list_head *l)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	struct page *page2;
 | 
						|
 | 
						|
	list_for_each_entry_safe(page, page2, l, lru) {
 | 
						|
		if (unlikely(PageHuge(page))) {
 | 
						|
			putback_active_hugepage(page);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		list_del(&page->lru);
 | 
						|
		dec_zone_page_state(page, NR_ISOLATED_ANON +
 | 
						|
				page_is_file_cache(page));
 | 
						|
		if (unlikely(isolated_balloon_page(page)))
 | 
						|
			balloon_page_putback(page);
 | 
						|
		else
 | 
						|
			putback_lru_page(page);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Restore a potential migration pte to a working pte entry
 | 
						|
 */
 | 
						|
static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
 | 
						|
				 unsigned long addr, void *old)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	swp_entry_t entry;
 | 
						|
 	pmd_t *pmd;
 | 
						|
	pte_t *ptep, pte;
 | 
						|
 	spinlock_t *ptl;
 | 
						|
 | 
						|
	if (unlikely(PageHuge(new))) {
 | 
						|
		ptep = huge_pte_offset(mm, addr);
 | 
						|
		if (!ptep)
 | 
						|
			goto out;
 | 
						|
		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
 | 
						|
	} else {
 | 
						|
		pmd = mm_find_pmd(mm, addr);
 | 
						|
		if (!pmd)
 | 
						|
			goto out;
 | 
						|
		if (pmd_trans_huge(*pmd))
 | 
						|
			goto out;
 | 
						|
 | 
						|
		ptep = pte_offset_map(pmd, addr);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Peek to check is_swap_pte() before taking ptlock?  No, we
 | 
						|
		 * can race mremap's move_ptes(), which skips anon_vma lock.
 | 
						|
		 */
 | 
						|
 | 
						|
		ptl = pte_lockptr(mm, pmd);
 | 
						|
	}
 | 
						|
 | 
						|
 	spin_lock(ptl);
 | 
						|
	pte = *ptep;
 | 
						|
	if (!is_swap_pte(pte))
 | 
						|
		goto unlock;
 | 
						|
 | 
						|
	entry = pte_to_swp_entry(pte);
 | 
						|
 | 
						|
	if (!is_migration_entry(entry) ||
 | 
						|
	    migration_entry_to_page(entry) != old)
 | 
						|
		goto unlock;
 | 
						|
 | 
						|
	get_page(new);
 | 
						|
	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
 | 
						|
	if (pte_swp_soft_dirty(*ptep))
 | 
						|
		pte = pte_mksoft_dirty(pte);
 | 
						|
	if (is_write_migration_entry(entry))
 | 
						|
		pte = pte_mkwrite(pte);
 | 
						|
#ifdef CONFIG_HUGETLB_PAGE
 | 
						|
	if (PageHuge(new)) {
 | 
						|
		pte = pte_mkhuge(pte);
 | 
						|
		pte = arch_make_huge_pte(pte, vma, new, 0);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	flush_dcache_page(new);
 | 
						|
	set_pte_at(mm, addr, ptep, pte);
 | 
						|
 | 
						|
	if (PageHuge(new)) {
 | 
						|
		if (PageAnon(new))
 | 
						|
			hugepage_add_anon_rmap(new, vma, addr);
 | 
						|
		else
 | 
						|
			page_dup_rmap(new);
 | 
						|
	} else if (PageAnon(new))
 | 
						|
		page_add_anon_rmap(new, vma, addr);
 | 
						|
	else
 | 
						|
		page_add_file_rmap(new);
 | 
						|
 | 
						|
	/* No need to invalidate - it was non-present before */
 | 
						|
	update_mmu_cache(vma, addr, ptep);
 | 
						|
unlock:
 | 
						|
	pte_unmap_unlock(ptep, ptl);
 | 
						|
out:
 | 
						|
	return SWAP_AGAIN;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get rid of all migration entries and replace them by
 | 
						|
 * references to the indicated page.
 | 
						|
 */
 | 
						|
static void remove_migration_ptes(struct page *old, struct page *new)
 | 
						|
{
 | 
						|
	rmap_walk(new, remove_migration_pte, old);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Something used the pte of a page under migration. We need to
 | 
						|
 * get to the page and wait until migration is finished.
 | 
						|
 * When we return from this function the fault will be retried.
 | 
						|
 */
 | 
						|
static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 | 
						|
				spinlock_t *ptl)
 | 
						|
{
 | 
						|
	pte_t pte;
 | 
						|
	swp_entry_t entry;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	spin_lock(ptl);
 | 
						|
	pte = *ptep;
 | 
						|
	if (!is_swap_pte(pte))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	entry = pte_to_swp_entry(pte);
 | 
						|
	if (!is_migration_entry(entry))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	page = migration_entry_to_page(entry);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Once radix-tree replacement of page migration started, page_count
 | 
						|
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
 | 
						|
	 * against a page without get_page().
 | 
						|
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
 | 
						|
	 * will occur again.
 | 
						|
	 */
 | 
						|
	if (!get_page_unless_zero(page))
 | 
						|
		goto out;
 | 
						|
	pte_unmap_unlock(ptep, ptl);
 | 
						|
	wait_on_page_locked(page);
 | 
						|
	put_page(page);
 | 
						|
	return;
 | 
						|
out:
 | 
						|
	pte_unmap_unlock(ptep, ptl);
 | 
						|
}
 | 
						|
 | 
						|
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 | 
						|
				unsigned long address)
 | 
						|
{
 | 
						|
	spinlock_t *ptl = pte_lockptr(mm, pmd);
 | 
						|
	pte_t *ptep = pte_offset_map(pmd, address);
 | 
						|
	__migration_entry_wait(mm, ptep, ptl);
 | 
						|
}
 | 
						|
 | 
						|
void migration_entry_wait_huge(struct vm_area_struct *vma,
 | 
						|
		struct mm_struct *mm, pte_t *pte)
 | 
						|
{
 | 
						|
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 | 
						|
	__migration_entry_wait(mm, pte, ptl);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_BLOCK
 | 
						|
/* Returns true if all buffers are successfully locked */
 | 
						|
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 | 
						|
							enum migrate_mode mode)
 | 
						|
{
 | 
						|
	struct buffer_head *bh = head;
 | 
						|
 | 
						|
	/* Simple case, sync compaction */
 | 
						|
	if (mode != MIGRATE_ASYNC) {
 | 
						|
		do {
 | 
						|
			get_bh(bh);
 | 
						|
			lock_buffer(bh);
 | 
						|
			bh = bh->b_this_page;
 | 
						|
 | 
						|
		} while (bh != head);
 | 
						|
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 | 
						|
	do {
 | 
						|
		get_bh(bh);
 | 
						|
		if (!trylock_buffer(bh)) {
 | 
						|
			/*
 | 
						|
			 * We failed to lock the buffer and cannot stall in
 | 
						|
			 * async migration. Release the taken locks
 | 
						|
			 */
 | 
						|
			struct buffer_head *failed_bh = bh;
 | 
						|
			put_bh(failed_bh);
 | 
						|
			bh = head;
 | 
						|
			while (bh != failed_bh) {
 | 
						|
				unlock_buffer(bh);
 | 
						|
				put_bh(bh);
 | 
						|
				bh = bh->b_this_page;
 | 
						|
			}
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
 | 
						|
		bh = bh->b_this_page;
 | 
						|
	} while (bh != head);
 | 
						|
	return true;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 | 
						|
							enum migrate_mode mode)
 | 
						|
{
 | 
						|
	return true;
 | 
						|
}
 | 
						|
#endif /* CONFIG_BLOCK */
 | 
						|
 | 
						|
/*
 | 
						|
 * Replace the page in the mapping.
 | 
						|
 *
 | 
						|
 * The number of remaining references must be:
 | 
						|
 * 1 for anonymous pages without a mapping
 | 
						|
 * 2 for pages with a mapping
 | 
						|
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 | 
						|
 */
 | 
						|
int migrate_page_move_mapping(struct address_space *mapping,
 | 
						|
		struct page *newpage, struct page *page,
 | 
						|
		struct buffer_head *head, enum migrate_mode mode)
 | 
						|
{
 | 
						|
	int expected_count = 0;
 | 
						|
	void **pslot;
 | 
						|
 | 
						|
	if (!mapping) {
 | 
						|
		/* Anonymous page without mapping */
 | 
						|
		if (page_count(page) != 1)
 | 
						|
			return -EAGAIN;
 | 
						|
		return MIGRATEPAGE_SUCCESS;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock_irq(&mapping->tree_lock);
 | 
						|
 | 
						|
	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 | 
						|
 					page_index(page));
 | 
						|
 | 
						|
	expected_count = 2 + page_has_private(page);
 | 
						|
	if (page_count(page) != expected_count ||
 | 
						|
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 | 
						|
		spin_unlock_irq(&mapping->tree_lock);
 | 
						|
		return -EAGAIN;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!page_freeze_refs(page, expected_count)) {
 | 
						|
		spin_unlock_irq(&mapping->tree_lock);
 | 
						|
		return -EAGAIN;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In the async migration case of moving a page with buffers, lock the
 | 
						|
	 * buffers using trylock before the mapping is moved. If the mapping
 | 
						|
	 * was moved, we later failed to lock the buffers and could not move
 | 
						|
	 * the mapping back due to an elevated page count, we would have to
 | 
						|
	 * block waiting on other references to be dropped.
 | 
						|
	 */
 | 
						|
	if (mode == MIGRATE_ASYNC && head &&
 | 
						|
			!buffer_migrate_lock_buffers(head, mode)) {
 | 
						|
		page_unfreeze_refs(page, expected_count);
 | 
						|
		spin_unlock_irq(&mapping->tree_lock);
 | 
						|
		return -EAGAIN;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now we know that no one else is looking at the page.
 | 
						|
	 */
 | 
						|
	get_page(newpage);	/* add cache reference */
 | 
						|
	if (PageSwapCache(page)) {
 | 
						|
		SetPageSwapCache(newpage);
 | 
						|
		set_page_private(newpage, page_private(page));
 | 
						|
	}
 | 
						|
 | 
						|
	radix_tree_replace_slot(pslot, newpage);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Drop cache reference from old page by unfreezing
 | 
						|
	 * to one less reference.
 | 
						|
	 * We know this isn't the last reference.
 | 
						|
	 */
 | 
						|
	page_unfreeze_refs(page, expected_count - 1);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If moved to a different zone then also account
 | 
						|
	 * the page for that zone. Other VM counters will be
 | 
						|
	 * taken care of when we establish references to the
 | 
						|
	 * new page and drop references to the old page.
 | 
						|
	 *
 | 
						|
	 * Note that anonymous pages are accounted for
 | 
						|
	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
 | 
						|
	 * are mapped to swap space.
 | 
						|
	 */
 | 
						|
	__dec_zone_page_state(page, NR_FILE_PAGES);
 | 
						|
	__inc_zone_page_state(newpage, NR_FILE_PAGES);
 | 
						|
	if (!PageSwapCache(page) && PageSwapBacked(page)) {
 | 
						|
		__dec_zone_page_state(page, NR_SHMEM);
 | 
						|
		__inc_zone_page_state(newpage, NR_SHMEM);
 | 
						|
	}
 | 
						|
	spin_unlock_irq(&mapping->tree_lock);
 | 
						|
 | 
						|
	return MIGRATEPAGE_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The expected number of remaining references is the same as that
 | 
						|
 * of migrate_page_move_mapping().
 | 
						|
 */
 | 
						|
int migrate_huge_page_move_mapping(struct address_space *mapping,
 | 
						|
				   struct page *newpage, struct page *page)
 | 
						|
{
 | 
						|
	int expected_count;
 | 
						|
	void **pslot;
 | 
						|
 | 
						|
	if (!mapping) {
 | 
						|
		if (page_count(page) != 1)
 | 
						|
			return -EAGAIN;
 | 
						|
		return MIGRATEPAGE_SUCCESS;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock_irq(&mapping->tree_lock);
 | 
						|
 | 
						|
	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 | 
						|
					page_index(page));
 | 
						|
 | 
						|
	expected_count = 2 + page_has_private(page);
 | 
						|
	if (page_count(page) != expected_count ||
 | 
						|
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 | 
						|
		spin_unlock_irq(&mapping->tree_lock);
 | 
						|
		return -EAGAIN;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!page_freeze_refs(page, expected_count)) {
 | 
						|
		spin_unlock_irq(&mapping->tree_lock);
 | 
						|
		return -EAGAIN;
 | 
						|
	}
 | 
						|
 | 
						|
	get_page(newpage);
 | 
						|
 | 
						|
	radix_tree_replace_slot(pslot, newpage);
 | 
						|
 | 
						|
	page_unfreeze_refs(page, expected_count - 1);
 | 
						|
 | 
						|
	spin_unlock_irq(&mapping->tree_lock);
 | 
						|
	return MIGRATEPAGE_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 | 
						|
 * arithmetic will work across the entire page.  We need something more
 | 
						|
 * specialized.
 | 
						|
 */
 | 
						|
static void __copy_gigantic_page(struct page *dst, struct page *src,
 | 
						|
				int nr_pages)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct page *dst_base = dst;
 | 
						|
	struct page *src_base = src;
 | 
						|
 | 
						|
	for (i = 0; i < nr_pages; ) {
 | 
						|
		cond_resched();
 | 
						|
		copy_highpage(dst, src);
 | 
						|
 | 
						|
		i++;
 | 
						|
		dst = mem_map_next(dst, dst_base, i);
 | 
						|
		src = mem_map_next(src, src_base, i);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void copy_huge_page(struct page *dst, struct page *src)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int nr_pages;
 | 
						|
 | 
						|
	if (PageHuge(src)) {
 | 
						|
		/* hugetlbfs page */
 | 
						|
		struct hstate *h = page_hstate(src);
 | 
						|
		nr_pages = pages_per_huge_page(h);
 | 
						|
 | 
						|
		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 | 
						|
			__copy_gigantic_page(dst, src, nr_pages);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/* thp page */
 | 
						|
		BUG_ON(!PageTransHuge(src));
 | 
						|
		nr_pages = hpage_nr_pages(src);
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < nr_pages; i++) {
 | 
						|
		cond_resched();
 | 
						|
		copy_highpage(dst + i, src + i);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Copy the page to its new location
 | 
						|
 */
 | 
						|
void migrate_page_copy(struct page *newpage, struct page *page)
 | 
						|
{
 | 
						|
	int cpupid;
 | 
						|
 | 
						|
	if (PageHuge(page) || PageTransHuge(page))
 | 
						|
		copy_huge_page(newpage, page);
 | 
						|
	else
 | 
						|
		copy_highpage(newpage, page);
 | 
						|
 | 
						|
	if (PageError(page))
 | 
						|
		SetPageError(newpage);
 | 
						|
	if (PageReferenced(page))
 | 
						|
		SetPageReferenced(newpage);
 | 
						|
	if (PageUptodate(page))
 | 
						|
		SetPageUptodate(newpage);
 | 
						|
	if (TestClearPageActive(page)) {
 | 
						|
		VM_BUG_ON(PageUnevictable(page));
 | 
						|
		SetPageActive(newpage);
 | 
						|
	} else if (TestClearPageUnevictable(page))
 | 
						|
		SetPageUnevictable(newpage);
 | 
						|
	if (PageChecked(page))
 | 
						|
		SetPageChecked(newpage);
 | 
						|
	if (PageMappedToDisk(page))
 | 
						|
		SetPageMappedToDisk(newpage);
 | 
						|
 | 
						|
	if (PageDirty(page)) {
 | 
						|
		clear_page_dirty_for_io(page);
 | 
						|
		/*
 | 
						|
		 * Want to mark the page and the radix tree as dirty, and
 | 
						|
		 * redo the accounting that clear_page_dirty_for_io undid,
 | 
						|
		 * but we can't use set_page_dirty because that function
 | 
						|
		 * is actually a signal that all of the page has become dirty.
 | 
						|
		 * Whereas only part of our page may be dirty.
 | 
						|
		 */
 | 
						|
		if (PageSwapBacked(page))
 | 
						|
			SetPageDirty(newpage);
 | 
						|
		else
 | 
						|
			__set_page_dirty_nobuffers(newpage);
 | 
						|
 	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Copy NUMA information to the new page, to prevent over-eager
 | 
						|
	 * future migrations of this same page.
 | 
						|
	 */
 | 
						|
	cpupid = page_cpupid_xchg_last(page, -1);
 | 
						|
	page_cpupid_xchg_last(newpage, cpupid);
 | 
						|
 | 
						|
	mlock_migrate_page(newpage, page);
 | 
						|
	ksm_migrate_page(newpage, page);
 | 
						|
	/*
 | 
						|
	 * Please do not reorder this without considering how mm/ksm.c's
 | 
						|
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 | 
						|
	 */
 | 
						|
	ClearPageSwapCache(page);
 | 
						|
	ClearPagePrivate(page);
 | 
						|
	set_page_private(page, 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If any waiters have accumulated on the new page then
 | 
						|
	 * wake them up.
 | 
						|
	 */
 | 
						|
	if (PageWriteback(newpage))
 | 
						|
		end_page_writeback(newpage);
 | 
						|
}
 | 
						|
 | 
						|
/************************************************************
 | 
						|
 *                    Migration functions
 | 
						|
 ***********************************************************/
 | 
						|
 | 
						|
/* Always fail migration. Used for mappings that are not movable */
 | 
						|
int fail_migrate_page(struct address_space *mapping,
 | 
						|
			struct page *newpage, struct page *page)
 | 
						|
{
 | 
						|
	return -EIO;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(fail_migrate_page);
 | 
						|
 | 
						|
/*
 | 
						|
 * Common logic to directly migrate a single page suitable for
 | 
						|
 * pages that do not use PagePrivate/PagePrivate2.
 | 
						|
 *
 | 
						|
 * Pages are locked upon entry and exit.
 | 
						|
 */
 | 
						|
int migrate_page(struct address_space *mapping,
 | 
						|
		struct page *newpage, struct page *page,
 | 
						|
		enum migrate_mode mode)
 | 
						|
{
 | 
						|
	int rc;
 | 
						|
 | 
						|
	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 | 
						|
 | 
						|
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
 | 
						|
 | 
						|
	if (rc != MIGRATEPAGE_SUCCESS)
 | 
						|
		return rc;
 | 
						|
 | 
						|
	migrate_page_copy(newpage, page);
 | 
						|
	return MIGRATEPAGE_SUCCESS;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(migrate_page);
 | 
						|
 | 
						|
#ifdef CONFIG_BLOCK
 | 
						|
/*
 | 
						|
 * Migration function for pages with buffers. This function can only be used
 | 
						|
 * if the underlying filesystem guarantees that no other references to "page"
 | 
						|
 * exist.
 | 
						|
 */
 | 
						|
int buffer_migrate_page(struct address_space *mapping,
 | 
						|
		struct page *newpage, struct page *page, enum migrate_mode mode)
 | 
						|
{
 | 
						|
	struct buffer_head *bh, *head;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	if (!page_has_buffers(page))
 | 
						|
		return migrate_page(mapping, newpage, page, mode);
 | 
						|
 | 
						|
	head = page_buffers(page);
 | 
						|
 | 
						|
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
 | 
						|
 | 
						|
	if (rc != MIGRATEPAGE_SUCCESS)
 | 
						|
		return rc;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In the async case, migrate_page_move_mapping locked the buffers
 | 
						|
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
 | 
						|
	 * need to be locked now
 | 
						|
	 */
 | 
						|
	if (mode != MIGRATE_ASYNC)
 | 
						|
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 | 
						|
 | 
						|
	ClearPagePrivate(page);
 | 
						|
	set_page_private(newpage, page_private(page));
 | 
						|
	set_page_private(page, 0);
 | 
						|
	put_page(page);
 | 
						|
	get_page(newpage);
 | 
						|
 | 
						|
	bh = head;
 | 
						|
	do {
 | 
						|
		set_bh_page(bh, newpage, bh_offset(bh));
 | 
						|
		bh = bh->b_this_page;
 | 
						|
 | 
						|
	} while (bh != head);
 | 
						|
 | 
						|
	SetPagePrivate(newpage);
 | 
						|
 | 
						|
	migrate_page_copy(newpage, page);
 | 
						|
 | 
						|
	bh = head;
 | 
						|
	do {
 | 
						|
		unlock_buffer(bh);
 | 
						|
 		put_bh(bh);
 | 
						|
		bh = bh->b_this_page;
 | 
						|
 | 
						|
	} while (bh != head);
 | 
						|
 | 
						|
	return MIGRATEPAGE_SUCCESS;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(buffer_migrate_page);
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Writeback a page to clean the dirty state
 | 
						|
 */
 | 
						|
static int writeout(struct address_space *mapping, struct page *page)
 | 
						|
{
 | 
						|
	struct writeback_control wbc = {
 | 
						|
		.sync_mode = WB_SYNC_NONE,
 | 
						|
		.nr_to_write = 1,
 | 
						|
		.range_start = 0,
 | 
						|
		.range_end = LLONG_MAX,
 | 
						|
		.for_reclaim = 1
 | 
						|
	};
 | 
						|
	int rc;
 | 
						|
 | 
						|
	if (!mapping->a_ops->writepage)
 | 
						|
		/* No write method for the address space */
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (!clear_page_dirty_for_io(page))
 | 
						|
		/* Someone else already triggered a write */
 | 
						|
		return -EAGAIN;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A dirty page may imply that the underlying filesystem has
 | 
						|
	 * the page on some queue. So the page must be clean for
 | 
						|
	 * migration. Writeout may mean we loose the lock and the
 | 
						|
	 * page state is no longer what we checked for earlier.
 | 
						|
	 * At this point we know that the migration attempt cannot
 | 
						|
	 * be successful.
 | 
						|
	 */
 | 
						|
	remove_migration_ptes(page, page);
 | 
						|
 | 
						|
	rc = mapping->a_ops->writepage(page, &wbc);
 | 
						|
 | 
						|
	if (rc != AOP_WRITEPAGE_ACTIVATE)
 | 
						|
		/* unlocked. Relock */
 | 
						|
		lock_page(page);
 | 
						|
 | 
						|
	return (rc < 0) ? -EIO : -EAGAIN;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Default handling if a filesystem does not provide a migration function.
 | 
						|
 */
 | 
						|
static int fallback_migrate_page(struct address_space *mapping,
 | 
						|
	struct page *newpage, struct page *page, enum migrate_mode mode)
 | 
						|
{
 | 
						|
	if (PageDirty(page)) {
 | 
						|
		/* Only writeback pages in full synchronous migration */
 | 
						|
		if (mode != MIGRATE_SYNC)
 | 
						|
			return -EBUSY;
 | 
						|
		return writeout(mapping, page);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Buffers may be managed in a filesystem specific way.
 | 
						|
	 * We must have no buffers or drop them.
 | 
						|
	 */
 | 
						|
	if (page_has_private(page) &&
 | 
						|
	    !try_to_release_page(page, GFP_KERNEL))
 | 
						|
		return -EAGAIN;
 | 
						|
 | 
						|
	return migrate_page(mapping, newpage, page, mode);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Move a page to a newly allocated page
 | 
						|
 * The page is locked and all ptes have been successfully removed.
 | 
						|
 *
 | 
						|
 * The new page will have replaced the old page if this function
 | 
						|
 * is successful.
 | 
						|
 *
 | 
						|
 * Return value:
 | 
						|
 *   < 0 - error code
 | 
						|
 *  MIGRATEPAGE_SUCCESS - success
 | 
						|
 */
 | 
						|
static int move_to_new_page(struct page *newpage, struct page *page,
 | 
						|
				int remap_swapcache, enum migrate_mode mode)
 | 
						|
{
 | 
						|
	struct address_space *mapping;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Block others from accessing the page when we get around to
 | 
						|
	 * establishing additional references. We are the only one
 | 
						|
	 * holding a reference to the new page at this point.
 | 
						|
	 */
 | 
						|
	if (!trylock_page(newpage))
 | 
						|
		BUG();
 | 
						|
 | 
						|
	/* Prepare mapping for the new page.*/
 | 
						|
	newpage->index = page->index;
 | 
						|
	newpage->mapping = page->mapping;
 | 
						|
	if (PageSwapBacked(page))
 | 
						|
		SetPageSwapBacked(newpage);
 | 
						|
 | 
						|
	mapping = page_mapping(page);
 | 
						|
	if (!mapping)
 | 
						|
		rc = migrate_page(mapping, newpage, page, mode);
 | 
						|
	else if (mapping->a_ops->migratepage)
 | 
						|
		/*
 | 
						|
		 * Most pages have a mapping and most filesystems provide a
 | 
						|
		 * migratepage callback. Anonymous pages are part of swap
 | 
						|
		 * space which also has its own migratepage callback. This
 | 
						|
		 * is the most common path for page migration.
 | 
						|
		 */
 | 
						|
		rc = mapping->a_ops->migratepage(mapping,
 | 
						|
						newpage, page, mode);
 | 
						|
	else
 | 
						|
		rc = fallback_migrate_page(mapping, newpage, page, mode);
 | 
						|
 | 
						|
	if (rc != MIGRATEPAGE_SUCCESS) {
 | 
						|
		newpage->mapping = NULL;
 | 
						|
	} else {
 | 
						|
		if (remap_swapcache)
 | 
						|
			remove_migration_ptes(page, newpage);
 | 
						|
		page->mapping = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	unlock_page(newpage);
 | 
						|
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static int __unmap_and_move(struct page *page, struct page *newpage,
 | 
						|
				int force, enum migrate_mode mode)
 | 
						|
{
 | 
						|
	int rc = -EAGAIN;
 | 
						|
	int remap_swapcache = 1;
 | 
						|
	struct mem_cgroup *mem;
 | 
						|
	struct anon_vma *anon_vma = NULL;
 | 
						|
 | 
						|
	if (!trylock_page(page)) {
 | 
						|
		if (!force || mode == MIGRATE_ASYNC)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * It's not safe for direct compaction to call lock_page.
 | 
						|
		 * For example, during page readahead pages are added locked
 | 
						|
		 * to the LRU. Later, when the IO completes the pages are
 | 
						|
		 * marked uptodate and unlocked. However, the queueing
 | 
						|
		 * could be merging multiple pages for one bio (e.g.
 | 
						|
		 * mpage_readpages). If an allocation happens for the
 | 
						|
		 * second or third page, the process can end up locking
 | 
						|
		 * the same page twice and deadlocking. Rather than
 | 
						|
		 * trying to be clever about what pages can be locked,
 | 
						|
		 * avoid the use of lock_page for direct compaction
 | 
						|
		 * altogether.
 | 
						|
		 */
 | 
						|
		if (current->flags & PF_MEMALLOC)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		lock_page(page);
 | 
						|
	}
 | 
						|
 | 
						|
	/* charge against new page */
 | 
						|
	mem_cgroup_prepare_migration(page, newpage, &mem);
 | 
						|
 | 
						|
	if (PageWriteback(page)) {
 | 
						|
		/*
 | 
						|
		 * Only in the case of a full synchronous migration is it
 | 
						|
		 * necessary to wait for PageWriteback. In the async case,
 | 
						|
		 * the retry loop is too short and in the sync-light case,
 | 
						|
		 * the overhead of stalling is too much
 | 
						|
		 */
 | 
						|
		if (mode != MIGRATE_SYNC) {
 | 
						|
			rc = -EBUSY;
 | 
						|
			goto uncharge;
 | 
						|
		}
 | 
						|
		if (!force)
 | 
						|
			goto uncharge;
 | 
						|
		wait_on_page_writeback(page);
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 | 
						|
	 * we cannot notice that anon_vma is freed while we migrates a page.
 | 
						|
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
 | 
						|
	 * of migration. File cache pages are no problem because of page_lock()
 | 
						|
	 * File Caches may use write_page() or lock_page() in migration, then,
 | 
						|
	 * just care Anon page here.
 | 
						|
	 */
 | 
						|
	if (PageAnon(page) && !PageKsm(page)) {
 | 
						|
		/*
 | 
						|
		 * Only page_lock_anon_vma_read() understands the subtleties of
 | 
						|
		 * getting a hold on an anon_vma from outside one of its mms.
 | 
						|
		 */
 | 
						|
		anon_vma = page_get_anon_vma(page);
 | 
						|
		if (anon_vma) {
 | 
						|
			/*
 | 
						|
			 * Anon page
 | 
						|
			 */
 | 
						|
		} else if (PageSwapCache(page)) {
 | 
						|
			/*
 | 
						|
			 * We cannot be sure that the anon_vma of an unmapped
 | 
						|
			 * swapcache page is safe to use because we don't
 | 
						|
			 * know in advance if the VMA that this page belonged
 | 
						|
			 * to still exists. If the VMA and others sharing the
 | 
						|
			 * data have been freed, then the anon_vma could
 | 
						|
			 * already be invalid.
 | 
						|
			 *
 | 
						|
			 * To avoid this possibility, swapcache pages get
 | 
						|
			 * migrated but are not remapped when migration
 | 
						|
			 * completes
 | 
						|
			 */
 | 
						|
			remap_swapcache = 0;
 | 
						|
		} else {
 | 
						|
			goto uncharge;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(balloon_page_movable(page))) {
 | 
						|
		/*
 | 
						|
		 * A ballooned page does not need any special attention from
 | 
						|
		 * physical to virtual reverse mapping procedures.
 | 
						|
		 * Skip any attempt to unmap PTEs or to remap swap cache,
 | 
						|
		 * in order to avoid burning cycles at rmap level, and perform
 | 
						|
		 * the page migration right away (proteced by page lock).
 | 
						|
		 */
 | 
						|
		rc = balloon_page_migrate(newpage, page, mode);
 | 
						|
		goto uncharge;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Corner case handling:
 | 
						|
	 * 1. When a new swap-cache page is read into, it is added to the LRU
 | 
						|
	 * and treated as swapcache but it has no rmap yet.
 | 
						|
	 * Calling try_to_unmap() against a page->mapping==NULL page will
 | 
						|
	 * trigger a BUG.  So handle it here.
 | 
						|
	 * 2. An orphaned page (see truncate_complete_page) might have
 | 
						|
	 * fs-private metadata. The page can be picked up due to memory
 | 
						|
	 * offlining.  Everywhere else except page reclaim, the page is
 | 
						|
	 * invisible to the vm, so the page can not be migrated.  So try to
 | 
						|
	 * free the metadata, so the page can be freed.
 | 
						|
	 */
 | 
						|
	if (!page->mapping) {
 | 
						|
		VM_BUG_ON(PageAnon(page));
 | 
						|
		if (page_has_private(page)) {
 | 
						|
			try_to_free_buffers(page);
 | 
						|
			goto uncharge;
 | 
						|
		}
 | 
						|
		goto skip_unmap;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Establish migration ptes or remove ptes */
 | 
						|
	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 | 
						|
 | 
						|
skip_unmap:
 | 
						|
	if (!page_mapped(page))
 | 
						|
		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
 | 
						|
 | 
						|
	if (rc && remap_swapcache)
 | 
						|
		remove_migration_ptes(page, page);
 | 
						|
 | 
						|
	/* Drop an anon_vma reference if we took one */
 | 
						|
	if (anon_vma)
 | 
						|
		put_anon_vma(anon_vma);
 | 
						|
 | 
						|
uncharge:
 | 
						|
	mem_cgroup_end_migration(mem, page, newpage,
 | 
						|
				 (rc == MIGRATEPAGE_SUCCESS ||
 | 
						|
				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
 | 
						|
	unlock_page(page);
 | 
						|
out:
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Obtain the lock on page, remove all ptes and migrate the page
 | 
						|
 * to the newly allocated page in newpage.
 | 
						|
 */
 | 
						|
static int unmap_and_move(new_page_t get_new_page, unsigned long private,
 | 
						|
			struct page *page, int force, enum migrate_mode mode)
 | 
						|
{
 | 
						|
	int rc = 0;
 | 
						|
	int *result = NULL;
 | 
						|
	struct page *newpage = get_new_page(page, private, &result);
 | 
						|
 | 
						|
	if (!newpage)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	if (page_count(page) == 1) {
 | 
						|
		/* page was freed from under us. So we are done. */
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(PageTransHuge(page)))
 | 
						|
		if (unlikely(split_huge_page(page)))
 | 
						|
			goto out;
 | 
						|
 | 
						|
	rc = __unmap_and_move(page, newpage, force, mode);
 | 
						|
 | 
						|
	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
 | 
						|
		/*
 | 
						|
		 * A ballooned page has been migrated already.
 | 
						|
		 * Now, it's the time to wrap-up counters,
 | 
						|
		 * handle the page back to Buddy and return.
 | 
						|
		 */
 | 
						|
		dec_zone_page_state(page, NR_ISOLATED_ANON +
 | 
						|
				    page_is_file_cache(page));
 | 
						|
		balloon_page_free(page);
 | 
						|
		return MIGRATEPAGE_SUCCESS;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	if (rc != -EAGAIN) {
 | 
						|
		/*
 | 
						|
		 * A page that has been migrated has all references
 | 
						|
		 * removed and will be freed. A page that has not been
 | 
						|
		 * migrated will have kepts its references and be
 | 
						|
		 * restored.
 | 
						|
		 */
 | 
						|
		list_del(&page->lru);
 | 
						|
		dec_zone_page_state(page, NR_ISOLATED_ANON +
 | 
						|
				page_is_file_cache(page));
 | 
						|
		putback_lru_page(page);
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Move the new page to the LRU. If migration was not successful
 | 
						|
	 * then this will free the page.
 | 
						|
	 */
 | 
						|
	putback_lru_page(newpage);
 | 
						|
	if (result) {
 | 
						|
		if (rc)
 | 
						|
			*result = rc;
 | 
						|
		else
 | 
						|
			*result = page_to_nid(newpage);
 | 
						|
	}
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Counterpart of unmap_and_move_page() for hugepage migration.
 | 
						|
 *
 | 
						|
 * This function doesn't wait the completion of hugepage I/O
 | 
						|
 * because there is no race between I/O and migration for hugepage.
 | 
						|
 * Note that currently hugepage I/O occurs only in direct I/O
 | 
						|
 * where no lock is held and PG_writeback is irrelevant,
 | 
						|
 * and writeback status of all subpages are counted in the reference
 | 
						|
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 | 
						|
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 | 
						|
 * This means that when we try to migrate hugepage whose subpages are
 | 
						|
 * doing direct I/O, some references remain after try_to_unmap() and
 | 
						|
 * hugepage migration fails without data corruption.
 | 
						|
 *
 | 
						|
 * There is also no race when direct I/O is issued on the page under migration,
 | 
						|
 * because then pte is replaced with migration swap entry and direct I/O code
 | 
						|
 * will wait in the page fault for migration to complete.
 | 
						|
 */
 | 
						|
static int unmap_and_move_huge_page(new_page_t get_new_page,
 | 
						|
				unsigned long private, struct page *hpage,
 | 
						|
				int force, enum migrate_mode mode)
 | 
						|
{
 | 
						|
	int rc = 0;
 | 
						|
	int *result = NULL;
 | 
						|
	struct page *new_hpage = get_new_page(hpage, private, &result);
 | 
						|
	struct anon_vma *anon_vma = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Movability of hugepages depends on architectures and hugepage size.
 | 
						|
	 * This check is necessary because some callers of hugepage migration
 | 
						|
	 * like soft offline and memory hotremove don't walk through page
 | 
						|
	 * tables or check whether the hugepage is pmd-based or not before
 | 
						|
	 * kicking migration.
 | 
						|
	 */
 | 
						|
	if (!hugepage_migration_support(page_hstate(hpage)))
 | 
						|
		return -ENOSYS;
 | 
						|
 | 
						|
	if (!new_hpage)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	rc = -EAGAIN;
 | 
						|
 | 
						|
	if (!trylock_page(hpage)) {
 | 
						|
		if (!force || mode != MIGRATE_SYNC)
 | 
						|
			goto out;
 | 
						|
		lock_page(hpage);
 | 
						|
	}
 | 
						|
 | 
						|
	if (PageAnon(hpage))
 | 
						|
		anon_vma = page_get_anon_vma(hpage);
 | 
						|
 | 
						|
	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 | 
						|
 | 
						|
	if (!page_mapped(hpage))
 | 
						|
		rc = move_to_new_page(new_hpage, hpage, 1, mode);
 | 
						|
 | 
						|
	if (rc)
 | 
						|
		remove_migration_ptes(hpage, hpage);
 | 
						|
 | 
						|
	if (anon_vma)
 | 
						|
		put_anon_vma(anon_vma);
 | 
						|
 | 
						|
	if (!rc)
 | 
						|
		hugetlb_cgroup_migrate(hpage, new_hpage);
 | 
						|
 | 
						|
	unlock_page(hpage);
 | 
						|
out:
 | 
						|
	if (rc != -EAGAIN)
 | 
						|
		putback_active_hugepage(hpage);
 | 
						|
	put_page(new_hpage);
 | 
						|
	if (result) {
 | 
						|
		if (rc)
 | 
						|
			*result = rc;
 | 
						|
		else
 | 
						|
			*result = page_to_nid(new_hpage);
 | 
						|
	}
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * migrate_pages - migrate the pages specified in a list, to the free pages
 | 
						|
 *		   supplied as the target for the page migration
 | 
						|
 *
 | 
						|
 * @from:		The list of pages to be migrated.
 | 
						|
 * @get_new_page:	The function used to allocate free pages to be used
 | 
						|
 *			as the target of the page migration.
 | 
						|
 * @private:		Private data to be passed on to get_new_page()
 | 
						|
 * @mode:		The migration mode that specifies the constraints for
 | 
						|
 *			page migration, if any.
 | 
						|
 * @reason:		The reason for page migration.
 | 
						|
 *
 | 
						|
 * The function returns after 10 attempts or if no pages are movable any more
 | 
						|
 * because the list has become empty or no retryable pages exist any more.
 | 
						|
 * The caller should call putback_lru_pages() to return pages to the LRU
 | 
						|
 * or free list only if ret != 0.
 | 
						|
 *
 | 
						|
 * Returns the number of pages that were not migrated, or an error code.
 | 
						|
 */
 | 
						|
int migrate_pages(struct list_head *from, new_page_t get_new_page,
 | 
						|
		unsigned long private, enum migrate_mode mode, int reason)
 | 
						|
{
 | 
						|
	int retry = 1;
 | 
						|
	int nr_failed = 0;
 | 
						|
	int nr_succeeded = 0;
 | 
						|
	int pass = 0;
 | 
						|
	struct page *page;
 | 
						|
	struct page *page2;
 | 
						|
	int swapwrite = current->flags & PF_SWAPWRITE;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	if (!swapwrite)
 | 
						|
		current->flags |= PF_SWAPWRITE;
 | 
						|
 | 
						|
	for(pass = 0; pass < 10 && retry; pass++) {
 | 
						|
		retry = 0;
 | 
						|
 | 
						|
		list_for_each_entry_safe(page, page2, from, lru) {
 | 
						|
			cond_resched();
 | 
						|
 | 
						|
			if (PageHuge(page))
 | 
						|
				rc = unmap_and_move_huge_page(get_new_page,
 | 
						|
						private, page, pass > 2, mode);
 | 
						|
			else
 | 
						|
				rc = unmap_and_move(get_new_page, private,
 | 
						|
						page, pass > 2, mode);
 | 
						|
 | 
						|
			switch(rc) {
 | 
						|
			case -ENOMEM:
 | 
						|
				goto out;
 | 
						|
			case -EAGAIN:
 | 
						|
				retry++;
 | 
						|
				break;
 | 
						|
			case MIGRATEPAGE_SUCCESS:
 | 
						|
				nr_succeeded++;
 | 
						|
				break;
 | 
						|
			default:
 | 
						|
				/* Permanent failure */
 | 
						|
				nr_failed++;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	rc = nr_failed + retry;
 | 
						|
out:
 | 
						|
	if (nr_succeeded)
 | 
						|
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
 | 
						|
	if (nr_failed)
 | 
						|
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
 | 
						|
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
 | 
						|
 | 
						|
	if (!swapwrite)
 | 
						|
		current->flags &= ~PF_SWAPWRITE;
 | 
						|
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
/*
 | 
						|
 * Move a list of individual pages
 | 
						|
 */
 | 
						|
struct page_to_node {
 | 
						|
	unsigned long addr;
 | 
						|
	struct page *page;
 | 
						|
	int node;
 | 
						|
	int status;
 | 
						|
};
 | 
						|
 | 
						|
static struct page *new_page_node(struct page *p, unsigned long private,
 | 
						|
		int **result)
 | 
						|
{
 | 
						|
	struct page_to_node *pm = (struct page_to_node *)private;
 | 
						|
 | 
						|
	while (pm->node != MAX_NUMNODES && pm->page != p)
 | 
						|
		pm++;
 | 
						|
 | 
						|
	if (pm->node == MAX_NUMNODES)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	*result = &pm->status;
 | 
						|
 | 
						|
	if (PageHuge(p))
 | 
						|
		return alloc_huge_page_node(page_hstate(compound_head(p)),
 | 
						|
					pm->node);
 | 
						|
	else
 | 
						|
		return alloc_pages_exact_node(pm->node,
 | 
						|
				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Move a set of pages as indicated in the pm array. The addr
 | 
						|
 * field must be set to the virtual address of the page to be moved
 | 
						|
 * and the node number must contain a valid target node.
 | 
						|
 * The pm array ends with node = MAX_NUMNODES.
 | 
						|
 */
 | 
						|
static int do_move_page_to_node_array(struct mm_struct *mm,
 | 
						|
				      struct page_to_node *pm,
 | 
						|
				      int migrate_all)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	struct page_to_node *pp;
 | 
						|
	LIST_HEAD(pagelist);
 | 
						|
 | 
						|
	down_read(&mm->mmap_sem);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Build a list of pages to migrate
 | 
						|
	 */
 | 
						|
	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
 | 
						|
		struct vm_area_struct *vma;
 | 
						|
		struct page *page;
 | 
						|
 | 
						|
		err = -EFAULT;
 | 
						|
		vma = find_vma(mm, pp->addr);
 | 
						|
		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
 | 
						|
			goto set_status;
 | 
						|
 | 
						|
		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
 | 
						|
 | 
						|
		err = PTR_ERR(page);
 | 
						|
		if (IS_ERR(page))
 | 
						|
			goto set_status;
 | 
						|
 | 
						|
		err = -ENOENT;
 | 
						|
		if (!page)
 | 
						|
			goto set_status;
 | 
						|
 | 
						|
		/* Use PageReserved to check for zero page */
 | 
						|
		if (PageReserved(page))
 | 
						|
			goto put_and_set;
 | 
						|
 | 
						|
		pp->page = page;
 | 
						|
		err = page_to_nid(page);
 | 
						|
 | 
						|
		if (err == pp->node)
 | 
						|
			/*
 | 
						|
			 * Node already in the right place
 | 
						|
			 */
 | 
						|
			goto put_and_set;
 | 
						|
 | 
						|
		err = -EACCES;
 | 
						|
		if (page_mapcount(page) > 1 &&
 | 
						|
				!migrate_all)
 | 
						|
			goto put_and_set;
 | 
						|
 | 
						|
		if (PageHuge(page)) {
 | 
						|
			isolate_huge_page(page, &pagelist);
 | 
						|
			goto put_and_set;
 | 
						|
		}
 | 
						|
 | 
						|
		err = isolate_lru_page(page);
 | 
						|
		if (!err) {
 | 
						|
			list_add_tail(&page->lru, &pagelist);
 | 
						|
			inc_zone_page_state(page, NR_ISOLATED_ANON +
 | 
						|
					    page_is_file_cache(page));
 | 
						|
		}
 | 
						|
put_and_set:
 | 
						|
		/*
 | 
						|
		 * Either remove the duplicate refcount from
 | 
						|
		 * isolate_lru_page() or drop the page ref if it was
 | 
						|
		 * not isolated.
 | 
						|
		 */
 | 
						|
		put_page(page);
 | 
						|
set_status:
 | 
						|
		pp->status = err;
 | 
						|
	}
 | 
						|
 | 
						|
	err = 0;
 | 
						|
	if (!list_empty(&pagelist)) {
 | 
						|
		err = migrate_pages(&pagelist, new_page_node,
 | 
						|
				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
 | 
						|
		if (err)
 | 
						|
			putback_movable_pages(&pagelist);
 | 
						|
	}
 | 
						|
 | 
						|
	up_read(&mm->mmap_sem);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Migrate an array of page address onto an array of nodes and fill
 | 
						|
 * the corresponding array of status.
 | 
						|
 */
 | 
						|
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
 | 
						|
			 unsigned long nr_pages,
 | 
						|
			 const void __user * __user *pages,
 | 
						|
			 const int __user *nodes,
 | 
						|
			 int __user *status, int flags)
 | 
						|
{
 | 
						|
	struct page_to_node *pm;
 | 
						|
	unsigned long chunk_nr_pages;
 | 
						|
	unsigned long chunk_start;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = -ENOMEM;
 | 
						|
	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
 | 
						|
	if (!pm)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	migrate_prep();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Store a chunk of page_to_node array in a page,
 | 
						|
	 * but keep the last one as a marker
 | 
						|
	 */
 | 
						|
	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
 | 
						|
 | 
						|
	for (chunk_start = 0;
 | 
						|
	     chunk_start < nr_pages;
 | 
						|
	     chunk_start += chunk_nr_pages) {
 | 
						|
		int j;
 | 
						|
 | 
						|
		if (chunk_start + chunk_nr_pages > nr_pages)
 | 
						|
			chunk_nr_pages = nr_pages - chunk_start;
 | 
						|
 | 
						|
		/* fill the chunk pm with addrs and nodes from user-space */
 | 
						|
		for (j = 0; j < chunk_nr_pages; j++) {
 | 
						|
			const void __user *p;
 | 
						|
			int node;
 | 
						|
 | 
						|
			err = -EFAULT;
 | 
						|
			if (get_user(p, pages + j + chunk_start))
 | 
						|
				goto out_pm;
 | 
						|
			pm[j].addr = (unsigned long) p;
 | 
						|
 | 
						|
			if (get_user(node, nodes + j + chunk_start))
 | 
						|
				goto out_pm;
 | 
						|
 | 
						|
			err = -ENODEV;
 | 
						|
			if (node < 0 || node >= MAX_NUMNODES)
 | 
						|
				goto out_pm;
 | 
						|
 | 
						|
			if (!node_state(node, N_MEMORY))
 | 
						|
				goto out_pm;
 | 
						|
 | 
						|
			err = -EACCES;
 | 
						|
			if (!node_isset(node, task_nodes))
 | 
						|
				goto out_pm;
 | 
						|
 | 
						|
			pm[j].node = node;
 | 
						|
		}
 | 
						|
 | 
						|
		/* End marker for this chunk */
 | 
						|
		pm[chunk_nr_pages].node = MAX_NUMNODES;
 | 
						|
 | 
						|
		/* Migrate this chunk */
 | 
						|
		err = do_move_page_to_node_array(mm, pm,
 | 
						|
						 flags & MPOL_MF_MOVE_ALL);
 | 
						|
		if (err < 0)
 | 
						|
			goto out_pm;
 | 
						|
 | 
						|
		/* Return status information */
 | 
						|
		for (j = 0; j < chunk_nr_pages; j++)
 | 
						|
			if (put_user(pm[j].status, status + j + chunk_start)) {
 | 
						|
				err = -EFAULT;
 | 
						|
				goto out_pm;
 | 
						|
			}
 | 
						|
	}
 | 
						|
	err = 0;
 | 
						|
 | 
						|
out_pm:
 | 
						|
	free_page((unsigned long)pm);
 | 
						|
out:
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine the nodes of an array of pages and store it in an array of status.
 | 
						|
 */
 | 
						|
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
 | 
						|
				const void __user **pages, int *status)
 | 
						|
{
 | 
						|
	unsigned long i;
 | 
						|
 | 
						|
	down_read(&mm->mmap_sem);
 | 
						|
 | 
						|
	for (i = 0; i < nr_pages; i++) {
 | 
						|
		unsigned long addr = (unsigned long)(*pages);
 | 
						|
		struct vm_area_struct *vma;
 | 
						|
		struct page *page;
 | 
						|
		int err = -EFAULT;
 | 
						|
 | 
						|
		vma = find_vma(mm, addr);
 | 
						|
		if (!vma || addr < vma->vm_start)
 | 
						|
			goto set_status;
 | 
						|
 | 
						|
		page = follow_page(vma, addr, 0);
 | 
						|
 | 
						|
		err = PTR_ERR(page);
 | 
						|
		if (IS_ERR(page))
 | 
						|
			goto set_status;
 | 
						|
 | 
						|
		err = -ENOENT;
 | 
						|
		/* Use PageReserved to check for zero page */
 | 
						|
		if (!page || PageReserved(page))
 | 
						|
			goto set_status;
 | 
						|
 | 
						|
		err = page_to_nid(page);
 | 
						|
set_status:
 | 
						|
		*status = err;
 | 
						|
 | 
						|
		pages++;
 | 
						|
		status++;
 | 
						|
	}
 | 
						|
 | 
						|
	up_read(&mm->mmap_sem);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine the nodes of a user array of pages and store it in
 | 
						|
 * a user array of status.
 | 
						|
 */
 | 
						|
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
 | 
						|
			 const void __user * __user *pages,
 | 
						|
			 int __user *status)
 | 
						|
{
 | 
						|
#define DO_PAGES_STAT_CHUNK_NR 16
 | 
						|
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
 | 
						|
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
 | 
						|
 | 
						|
	while (nr_pages) {
 | 
						|
		unsigned long chunk_nr;
 | 
						|
 | 
						|
		chunk_nr = nr_pages;
 | 
						|
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
 | 
						|
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
 | 
						|
 | 
						|
		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
 | 
						|
			break;
 | 
						|
 | 
						|
		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
 | 
						|
 | 
						|
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
 | 
						|
			break;
 | 
						|
 | 
						|
		pages += chunk_nr;
 | 
						|
		status += chunk_nr;
 | 
						|
		nr_pages -= chunk_nr;
 | 
						|
	}
 | 
						|
	return nr_pages ? -EFAULT : 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Move a list of pages in the address space of the currently executing
 | 
						|
 * process.
 | 
						|
 */
 | 
						|
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
 | 
						|
		const void __user * __user *, pages,
 | 
						|
		const int __user *, nodes,
 | 
						|
		int __user *, status, int, flags)
 | 
						|
{
 | 
						|
	const struct cred *cred = current_cred(), *tcred;
 | 
						|
	struct task_struct *task;
 | 
						|
	struct mm_struct *mm;
 | 
						|
	int err;
 | 
						|
	nodemask_t task_nodes;
 | 
						|
 | 
						|
	/* Check flags */
 | 
						|
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
 | 
						|
		return -EPERM;
 | 
						|
 | 
						|
	/* Find the mm_struct */
 | 
						|
	rcu_read_lock();
 | 
						|
	task = pid ? find_task_by_vpid(pid) : current;
 | 
						|
	if (!task) {
 | 
						|
		rcu_read_unlock();
 | 
						|
		return -ESRCH;
 | 
						|
	}
 | 
						|
	get_task_struct(task);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check if this process has the right to modify the specified
 | 
						|
	 * process. The right exists if the process has administrative
 | 
						|
	 * capabilities, superuser privileges or the same
 | 
						|
	 * userid as the target process.
 | 
						|
	 */
 | 
						|
	tcred = __task_cred(task);
 | 
						|
	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
 | 
						|
	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
 | 
						|
	    !capable(CAP_SYS_NICE)) {
 | 
						|
		rcu_read_unlock();
 | 
						|
		err = -EPERM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
 	err = security_task_movememory(task);
 | 
						|
 	if (err)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	task_nodes = cpuset_mems_allowed(task);
 | 
						|
	mm = get_task_mm(task);
 | 
						|
	put_task_struct(task);
 | 
						|
 | 
						|
	if (!mm)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (nodes)
 | 
						|
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
 | 
						|
				    nodes, status, flags);
 | 
						|
	else
 | 
						|
		err = do_pages_stat(mm, nr_pages, pages, status);
 | 
						|
 | 
						|
	mmput(mm);
 | 
						|
	return err;
 | 
						|
 | 
						|
out:
 | 
						|
	put_task_struct(task);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Call migration functions in the vma_ops that may prepare
 | 
						|
 * memory in a vm for migration. migration functions may perform
 | 
						|
 * the migration for vmas that do not have an underlying page struct.
 | 
						|
 */
 | 
						|
int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
 | 
						|
	const nodemask_t *from, unsigned long flags)
 | 
						|
{
 | 
						|
 	struct vm_area_struct *vma;
 | 
						|
 	int err = 0;
 | 
						|
 | 
						|
	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
 | 
						|
 		if (vma->vm_ops && vma->vm_ops->migrate) {
 | 
						|
 			err = vma->vm_ops->migrate(vma, to, from, flags);
 | 
						|
 			if (err)
 | 
						|
 				break;
 | 
						|
 		}
 | 
						|
 	}
 | 
						|
 	return err;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA_BALANCING
 | 
						|
/*
 | 
						|
 * Returns true if this is a safe migration target node for misplaced NUMA
 | 
						|
 * pages. Currently it only checks the watermarks which crude
 | 
						|
 */
 | 
						|
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
 | 
						|
				   unsigned long nr_migrate_pages)
 | 
						|
{
 | 
						|
	int z;
 | 
						|
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
 | 
						|
		struct zone *zone = pgdat->node_zones + z;
 | 
						|
 | 
						|
		if (!populated_zone(zone))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!zone_reclaimable(zone))
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
 | 
						|
		if (!zone_watermark_ok(zone, 0,
 | 
						|
				       high_wmark_pages(zone) +
 | 
						|
				       nr_migrate_pages,
 | 
						|
				       0, 0))
 | 
						|
			continue;
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static struct page *alloc_misplaced_dst_page(struct page *page,
 | 
						|
					   unsigned long data,
 | 
						|
					   int **result)
 | 
						|
{
 | 
						|
	int nid = (int) data;
 | 
						|
	struct page *newpage;
 | 
						|
 | 
						|
	newpage = alloc_pages_exact_node(nid,
 | 
						|
					 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
 | 
						|
					  __GFP_NOMEMALLOC | __GFP_NORETRY |
 | 
						|
					  __GFP_NOWARN) &
 | 
						|
					 ~GFP_IOFS, 0);
 | 
						|
	if (newpage)
 | 
						|
		page_cpupid_xchg_last(newpage, page_cpupid_last(page));
 | 
						|
 | 
						|
	return newpage;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * page migration rate limiting control.
 | 
						|
 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
 | 
						|
 * window of time. Default here says do not migrate more than 1280M per second.
 | 
						|
 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
 | 
						|
 * as it is faults that reset the window, pte updates will happen unconditionally
 | 
						|
 * if there has not been a fault since @pteupdate_interval_millisecs after the
 | 
						|
 * throttle window closed.
 | 
						|
 */
 | 
						|
static unsigned int migrate_interval_millisecs __read_mostly = 100;
 | 
						|
static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
 | 
						|
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
 | 
						|
 | 
						|
/* Returns true if NUMA migration is currently rate limited */
 | 
						|
bool migrate_ratelimited(int node)
 | 
						|
{
 | 
						|
	pg_data_t *pgdat = NODE_DATA(node);
 | 
						|
 | 
						|
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
 | 
						|
				msecs_to_jiffies(pteupdate_interval_millisecs)))
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
 | 
						|
		return false;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/* Returns true if the node is migrate rate-limited after the update */
 | 
						|
bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
 | 
						|
{
 | 
						|
	bool rate_limited = false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Rate-limit the amount of data that is being migrated to a node.
 | 
						|
	 * Optimal placement is no good if the memory bus is saturated and
 | 
						|
	 * all the time is being spent migrating!
 | 
						|
	 */
 | 
						|
	spin_lock(&pgdat->numabalancing_migrate_lock);
 | 
						|
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
 | 
						|
		pgdat->numabalancing_migrate_nr_pages = 0;
 | 
						|
		pgdat->numabalancing_migrate_next_window = jiffies +
 | 
						|
			msecs_to_jiffies(migrate_interval_millisecs);
 | 
						|
	}
 | 
						|
	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
 | 
						|
		rate_limited = true;
 | 
						|
	else
 | 
						|
		pgdat->numabalancing_migrate_nr_pages += nr_pages;
 | 
						|
	spin_unlock(&pgdat->numabalancing_migrate_lock);
 | 
						|
	
 | 
						|
	return rate_limited;
 | 
						|
}
 | 
						|
 | 
						|
int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
 | 
						|
{
 | 
						|
	int page_lru;
 | 
						|
 | 
						|
	VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
 | 
						|
 | 
						|
	/* Avoid migrating to a node that is nearly full */
 | 
						|
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (isolate_lru_page(page))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * migrate_misplaced_transhuge_page() skips page migration's usual
 | 
						|
	 * check on page_count(), so we must do it here, now that the page
 | 
						|
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
 | 
						|
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
 | 
						|
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
 | 
						|
	 */
 | 
						|
	if (PageTransHuge(page) && page_count(page) != 3) {
 | 
						|
		putback_lru_page(page);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	page_lru = page_is_file_cache(page);
 | 
						|
	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
 | 
						|
				hpage_nr_pages(page));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Isolating the page has taken another reference, so the
 | 
						|
	 * caller's reference can be safely dropped without the page
 | 
						|
	 * disappearing underneath us during migration.
 | 
						|
	 */
 | 
						|
	put_page(page);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Attempt to migrate a misplaced page to the specified destination
 | 
						|
 * node. Caller is expected to have an elevated reference count on
 | 
						|
 * the page that will be dropped by this function before returning.
 | 
						|
 */
 | 
						|
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
 | 
						|
			   int node)
 | 
						|
{
 | 
						|
	pg_data_t *pgdat = NODE_DATA(node);
 | 
						|
	int isolated;
 | 
						|
	int nr_remaining;
 | 
						|
	LIST_HEAD(migratepages);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Don't migrate file pages that are mapped in multiple processes
 | 
						|
	 * with execute permissions as they are probably shared libraries.
 | 
						|
	 */
 | 
						|
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
 | 
						|
	    (vma->vm_flags & VM_EXEC))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Rate-limit the amount of data that is being migrated to a node.
 | 
						|
	 * Optimal placement is no good if the memory bus is saturated and
 | 
						|
	 * all the time is being spent migrating!
 | 
						|
	 */
 | 
						|
	if (numamigrate_update_ratelimit(pgdat, 1))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	isolated = numamigrate_isolate_page(pgdat, page);
 | 
						|
	if (!isolated)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	list_add(&page->lru, &migratepages);
 | 
						|
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
 | 
						|
				     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
 | 
						|
	if (nr_remaining) {
 | 
						|
		putback_lru_pages(&migratepages);
 | 
						|
		isolated = 0;
 | 
						|
	} else
 | 
						|
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
 | 
						|
	BUG_ON(!list_empty(&migratepages));
 | 
						|
	return isolated;
 | 
						|
 | 
						|
out:
 | 
						|
	put_page(page);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* CONFIG_NUMA_BALANCING */
 | 
						|
 | 
						|
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
 | 
						|
/*
 | 
						|
 * Migrates a THP to a given target node. page must be locked and is unlocked
 | 
						|
 * before returning.
 | 
						|
 */
 | 
						|
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
 | 
						|
				struct vm_area_struct *vma,
 | 
						|
				pmd_t *pmd, pmd_t entry,
 | 
						|
				unsigned long address,
 | 
						|
				struct page *page, int node)
 | 
						|
{
 | 
						|
	spinlock_t *ptl;
 | 
						|
	unsigned long haddr = address & HPAGE_PMD_MASK;
 | 
						|
	pg_data_t *pgdat = NODE_DATA(node);
 | 
						|
	int isolated = 0;
 | 
						|
	struct page *new_page = NULL;
 | 
						|
	struct mem_cgroup *memcg = NULL;
 | 
						|
	int page_lru = page_is_file_cache(page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Rate-limit the amount of data that is being migrated to a node.
 | 
						|
	 * Optimal placement is no good if the memory bus is saturated and
 | 
						|
	 * all the time is being spent migrating!
 | 
						|
	 */
 | 
						|
	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
 | 
						|
		goto out_dropref;
 | 
						|
 | 
						|
	new_page = alloc_pages_node(node,
 | 
						|
		(GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
 | 
						|
	if (!new_page)
 | 
						|
		goto out_fail;
 | 
						|
 | 
						|
	page_cpupid_xchg_last(new_page, page_cpupid_last(page));
 | 
						|
 | 
						|
	isolated = numamigrate_isolate_page(pgdat, page);
 | 
						|
	if (!isolated) {
 | 
						|
		put_page(new_page);
 | 
						|
		goto out_fail;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Prepare a page as a migration target */
 | 
						|
	__set_page_locked(new_page);
 | 
						|
	SetPageSwapBacked(new_page);
 | 
						|
 | 
						|
	/* anon mapping, we can simply copy page->mapping to the new page: */
 | 
						|
	new_page->mapping = page->mapping;
 | 
						|
	new_page->index = page->index;
 | 
						|
	migrate_page_copy(new_page, page);
 | 
						|
	WARN_ON(PageLRU(new_page));
 | 
						|
 | 
						|
	/* Recheck the target PMD */
 | 
						|
	ptl = pmd_lock(mm, pmd);
 | 
						|
	if (unlikely(!pmd_same(*pmd, entry))) {
 | 
						|
		spin_unlock(ptl);
 | 
						|
 | 
						|
		/* Reverse changes made by migrate_page_copy() */
 | 
						|
		if (TestClearPageActive(new_page))
 | 
						|
			SetPageActive(page);
 | 
						|
		if (TestClearPageUnevictable(new_page))
 | 
						|
			SetPageUnevictable(page);
 | 
						|
		mlock_migrate_page(page, new_page);
 | 
						|
 | 
						|
		unlock_page(new_page);
 | 
						|
		put_page(new_page);		/* Free it */
 | 
						|
 | 
						|
		/* Retake the callers reference and putback on LRU */
 | 
						|
		get_page(page);
 | 
						|
		putback_lru_page(page);
 | 
						|
		mod_zone_page_state(page_zone(page),
 | 
						|
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
 | 
						|
		goto out_fail;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Traditional migration needs to prepare the memcg charge
 | 
						|
	 * transaction early to prevent the old page from being
 | 
						|
	 * uncharged when installing migration entries.  Here we can
 | 
						|
	 * save the potential rollback and start the charge transfer
 | 
						|
	 * only when migration is already known to end successfully.
 | 
						|
	 */
 | 
						|
	mem_cgroup_prepare_migration(page, new_page, &memcg);
 | 
						|
 | 
						|
	entry = mk_pmd(new_page, vma->vm_page_prot);
 | 
						|
	entry = pmd_mknonnuma(entry);
 | 
						|
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 | 
						|
	entry = pmd_mkhuge(entry);
 | 
						|
 | 
						|
	pmdp_clear_flush(vma, haddr, pmd);
 | 
						|
	set_pmd_at(mm, haddr, pmd, entry);
 | 
						|
	page_add_new_anon_rmap(new_page, vma, haddr);
 | 
						|
	update_mmu_cache_pmd(vma, address, &entry);
 | 
						|
	page_remove_rmap(page);
 | 
						|
	/*
 | 
						|
	 * Finish the charge transaction under the page table lock to
 | 
						|
	 * prevent split_huge_page() from dividing up the charge
 | 
						|
	 * before it's fully transferred to the new page.
 | 
						|
	 */
 | 
						|
	mem_cgroup_end_migration(memcg, page, new_page, true);
 | 
						|
	spin_unlock(ptl);
 | 
						|
 | 
						|
	unlock_page(new_page);
 | 
						|
	unlock_page(page);
 | 
						|
	put_page(page);			/* Drop the rmap reference */
 | 
						|
	put_page(page);			/* Drop the LRU isolation reference */
 | 
						|
 | 
						|
	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
 | 
						|
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
 | 
						|
 | 
						|
	mod_zone_page_state(page_zone(page),
 | 
						|
			NR_ISOLATED_ANON + page_lru,
 | 
						|
			-HPAGE_PMD_NR);
 | 
						|
	return isolated;
 | 
						|
 | 
						|
out_fail:
 | 
						|
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
 | 
						|
out_dropref:
 | 
						|
	entry = pmd_mknonnuma(entry);
 | 
						|
	set_pmd_at(mm, haddr, pmd, entry);
 | 
						|
	update_mmu_cache_pmd(vma, address, &entry);
 | 
						|
 | 
						|
	unlock_page(page);
 | 
						|
	put_page(page);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* CONFIG_NUMA_BALANCING */
 | 
						|
 | 
						|
#endif /* CONFIG_NUMA */
 |