2063 lines
		
	
	
	
		
			55 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2063 lines
		
	
	
	
		
			55 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * SPI init/core code
 | 
						|
 *
 | 
						|
 * Copyright (C) 2005 David Brownell
 | 
						|
 * Copyright (C) 2008 Secret Lab Technologies Ltd.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/kmod.h>
 | 
						|
#include <linux/device.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/cache.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/of_device.h>
 | 
						|
#include <linux/of_irq.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/mod_devicetable.h>
 | 
						|
#include <linux/spi/spi.h>
 | 
						|
#include <linux/of_gpio.h>
 | 
						|
#include <linux/pm_runtime.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/sched/rt.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/kthread.h>
 | 
						|
#include <linux/ioport.h>
 | 
						|
#include <linux/acpi.h>
 | 
						|
 | 
						|
#define CREATE_TRACE_POINTS
 | 
						|
#include <trace/events/spi.h>
 | 
						|
 | 
						|
static void spidev_release(struct device *dev)
 | 
						|
{
 | 
						|
	struct spi_device	*spi = to_spi_device(dev);
 | 
						|
 | 
						|
	/* spi masters may cleanup for released devices */
 | 
						|
	if (spi->master->cleanup)
 | 
						|
		spi->master->cleanup(spi);
 | 
						|
 | 
						|
	spi_master_put(spi->master);
 | 
						|
	kfree(spi);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t
 | 
						|
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
 | 
						|
{
 | 
						|
	const struct spi_device	*spi = to_spi_device(dev);
 | 
						|
 | 
						|
	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
 | 
						|
}
 | 
						|
static DEVICE_ATTR_RO(modalias);
 | 
						|
 | 
						|
static struct attribute *spi_dev_attrs[] = {
 | 
						|
	&dev_attr_modalias.attr,
 | 
						|
	NULL,
 | 
						|
};
 | 
						|
ATTRIBUTE_GROUPS(spi_dev);
 | 
						|
 | 
						|
/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 | 
						|
 * and the sysfs version makes coldplug work too.
 | 
						|
 */
 | 
						|
 | 
						|
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 | 
						|
						const struct spi_device *sdev)
 | 
						|
{
 | 
						|
	while (id->name[0]) {
 | 
						|
		if (!strcmp(sdev->modalias, id->name))
 | 
						|
			return id;
 | 
						|
		id++;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 | 
						|
{
 | 
						|
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 | 
						|
 | 
						|
	return spi_match_id(sdrv->id_table, sdev);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_get_device_id);
 | 
						|
 | 
						|
static int spi_match_device(struct device *dev, struct device_driver *drv)
 | 
						|
{
 | 
						|
	const struct spi_device	*spi = to_spi_device(dev);
 | 
						|
	const struct spi_driver	*sdrv = to_spi_driver(drv);
 | 
						|
 | 
						|
	/* Attempt an OF style match */
 | 
						|
	if (of_driver_match_device(dev, drv))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/* Then try ACPI */
 | 
						|
	if (acpi_driver_match_device(dev, drv))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (sdrv->id_table)
 | 
						|
		return !!spi_match_id(sdrv->id_table, spi);
 | 
						|
 | 
						|
	return strcmp(spi->modalias, drv->name) == 0;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 | 
						|
{
 | 
						|
	const struct spi_device		*spi = to_spi_device(dev);
 | 
						|
 | 
						|
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_PM_SLEEP
 | 
						|
static int spi_legacy_suspend(struct device *dev, pm_message_t message)
 | 
						|
{
 | 
						|
	int			value = 0;
 | 
						|
	struct spi_driver	*drv = to_spi_driver(dev->driver);
 | 
						|
 | 
						|
	/* suspend will stop irqs and dma; no more i/o */
 | 
						|
	if (drv) {
 | 
						|
		if (drv->suspend)
 | 
						|
			value = drv->suspend(to_spi_device(dev), message);
 | 
						|
		else
 | 
						|
			dev_dbg(dev, "... can't suspend\n");
 | 
						|
	}
 | 
						|
	return value;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_legacy_resume(struct device *dev)
 | 
						|
{
 | 
						|
	int			value = 0;
 | 
						|
	struct spi_driver	*drv = to_spi_driver(dev->driver);
 | 
						|
 | 
						|
	/* resume may restart the i/o queue */
 | 
						|
	if (drv) {
 | 
						|
		if (drv->resume)
 | 
						|
			value = drv->resume(to_spi_device(dev));
 | 
						|
		else
 | 
						|
			dev_dbg(dev, "... can't resume\n");
 | 
						|
	}
 | 
						|
	return value;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_pm_suspend(struct device *dev)
 | 
						|
{
 | 
						|
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 | 
						|
 | 
						|
	if (pm)
 | 
						|
		return pm_generic_suspend(dev);
 | 
						|
	else
 | 
						|
		return spi_legacy_suspend(dev, PMSG_SUSPEND);
 | 
						|
}
 | 
						|
 | 
						|
static int spi_pm_resume(struct device *dev)
 | 
						|
{
 | 
						|
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 | 
						|
 | 
						|
	if (pm)
 | 
						|
		return pm_generic_resume(dev);
 | 
						|
	else
 | 
						|
		return spi_legacy_resume(dev);
 | 
						|
}
 | 
						|
 | 
						|
static int spi_pm_freeze(struct device *dev)
 | 
						|
{
 | 
						|
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 | 
						|
 | 
						|
	if (pm)
 | 
						|
		return pm_generic_freeze(dev);
 | 
						|
	else
 | 
						|
		return spi_legacy_suspend(dev, PMSG_FREEZE);
 | 
						|
}
 | 
						|
 | 
						|
static int spi_pm_thaw(struct device *dev)
 | 
						|
{
 | 
						|
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 | 
						|
 | 
						|
	if (pm)
 | 
						|
		return pm_generic_thaw(dev);
 | 
						|
	else
 | 
						|
		return spi_legacy_resume(dev);
 | 
						|
}
 | 
						|
 | 
						|
static int spi_pm_poweroff(struct device *dev)
 | 
						|
{
 | 
						|
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 | 
						|
 | 
						|
	if (pm)
 | 
						|
		return pm_generic_poweroff(dev);
 | 
						|
	else
 | 
						|
		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
 | 
						|
}
 | 
						|
 | 
						|
static int spi_pm_restore(struct device *dev)
 | 
						|
{
 | 
						|
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 | 
						|
 | 
						|
	if (pm)
 | 
						|
		return pm_generic_restore(dev);
 | 
						|
	else
 | 
						|
		return spi_legacy_resume(dev);
 | 
						|
}
 | 
						|
#else
 | 
						|
#define spi_pm_suspend	NULL
 | 
						|
#define spi_pm_resume	NULL
 | 
						|
#define spi_pm_freeze	NULL
 | 
						|
#define spi_pm_thaw	NULL
 | 
						|
#define spi_pm_poweroff	NULL
 | 
						|
#define spi_pm_restore	NULL
 | 
						|
#endif
 | 
						|
 | 
						|
static const struct dev_pm_ops spi_pm = {
 | 
						|
	.suspend = spi_pm_suspend,
 | 
						|
	.resume = spi_pm_resume,
 | 
						|
	.freeze = spi_pm_freeze,
 | 
						|
	.thaw = spi_pm_thaw,
 | 
						|
	.poweroff = spi_pm_poweroff,
 | 
						|
	.restore = spi_pm_restore,
 | 
						|
	SET_RUNTIME_PM_OPS(
 | 
						|
		pm_generic_runtime_suspend,
 | 
						|
		pm_generic_runtime_resume,
 | 
						|
		NULL
 | 
						|
	)
 | 
						|
};
 | 
						|
 | 
						|
struct bus_type spi_bus_type = {
 | 
						|
	.name		= "spi",
 | 
						|
	.dev_groups	= spi_dev_groups,
 | 
						|
	.match		= spi_match_device,
 | 
						|
	.uevent		= spi_uevent,
 | 
						|
	.pm		= &spi_pm,
 | 
						|
};
 | 
						|
EXPORT_SYMBOL_GPL(spi_bus_type);
 | 
						|
 | 
						|
 | 
						|
static int spi_drv_probe(struct device *dev)
 | 
						|
{
 | 
						|
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 | 
						|
	struct spi_device		*spi = to_spi_device(dev);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	acpi_dev_pm_attach(&spi->dev, true);
 | 
						|
	ret = sdrv->probe(spi);
 | 
						|
	if (ret)
 | 
						|
		acpi_dev_pm_detach(&spi->dev, true);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_drv_remove(struct device *dev)
 | 
						|
{
 | 
						|
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 | 
						|
	struct spi_device		*spi = to_spi_device(dev);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = sdrv->remove(spi);
 | 
						|
	acpi_dev_pm_detach(&spi->dev, true);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void spi_drv_shutdown(struct device *dev)
 | 
						|
{
 | 
						|
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 | 
						|
 | 
						|
	sdrv->shutdown(to_spi_device(dev));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_register_driver - register a SPI driver
 | 
						|
 * @sdrv: the driver to register
 | 
						|
 * Context: can sleep
 | 
						|
 */
 | 
						|
int spi_register_driver(struct spi_driver *sdrv)
 | 
						|
{
 | 
						|
	sdrv->driver.bus = &spi_bus_type;
 | 
						|
	if (sdrv->probe)
 | 
						|
		sdrv->driver.probe = spi_drv_probe;
 | 
						|
	if (sdrv->remove)
 | 
						|
		sdrv->driver.remove = spi_drv_remove;
 | 
						|
	if (sdrv->shutdown)
 | 
						|
		sdrv->driver.shutdown = spi_drv_shutdown;
 | 
						|
	return driver_register(&sdrv->driver);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_register_driver);
 | 
						|
 | 
						|
/*-------------------------------------------------------------------------*/
 | 
						|
 | 
						|
/* SPI devices should normally not be created by SPI device drivers; that
 | 
						|
 * would make them board-specific.  Similarly with SPI master drivers.
 | 
						|
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 | 
						|
 * with other readonly (flashable) information about mainboard devices.
 | 
						|
 */
 | 
						|
 | 
						|
struct boardinfo {
 | 
						|
	struct list_head	list;
 | 
						|
	struct spi_board_info	board_info;
 | 
						|
};
 | 
						|
 | 
						|
static LIST_HEAD(board_list);
 | 
						|
static LIST_HEAD(spi_master_list);
 | 
						|
 | 
						|
/*
 | 
						|
 * Used to protect add/del opertion for board_info list and
 | 
						|
 * spi_master list, and their matching process
 | 
						|
 */
 | 
						|
static DEFINE_MUTEX(board_lock);
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_alloc_device - Allocate a new SPI device
 | 
						|
 * @master: Controller to which device is connected
 | 
						|
 * Context: can sleep
 | 
						|
 *
 | 
						|
 * Allows a driver to allocate and initialize a spi_device without
 | 
						|
 * registering it immediately.  This allows a driver to directly
 | 
						|
 * fill the spi_device with device parameters before calling
 | 
						|
 * spi_add_device() on it.
 | 
						|
 *
 | 
						|
 * Caller is responsible to call spi_add_device() on the returned
 | 
						|
 * spi_device structure to add it to the SPI master.  If the caller
 | 
						|
 * needs to discard the spi_device without adding it, then it should
 | 
						|
 * call spi_dev_put() on it.
 | 
						|
 *
 | 
						|
 * Returns a pointer to the new device, or NULL.
 | 
						|
 */
 | 
						|
struct spi_device *spi_alloc_device(struct spi_master *master)
 | 
						|
{
 | 
						|
	struct spi_device	*spi;
 | 
						|
	struct device		*dev = master->dev.parent;
 | 
						|
 | 
						|
	if (!spi_master_get(master))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 | 
						|
	if (!spi) {
 | 
						|
		dev_err(dev, "cannot alloc spi_device\n");
 | 
						|
		spi_master_put(master);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	spi->master = master;
 | 
						|
	spi->dev.parent = &master->dev;
 | 
						|
	spi->dev.bus = &spi_bus_type;
 | 
						|
	spi->dev.release = spidev_release;
 | 
						|
	spi->cs_gpio = -ENOENT;
 | 
						|
	device_initialize(&spi->dev);
 | 
						|
	return spi;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_alloc_device);
 | 
						|
 | 
						|
static void spi_dev_set_name(struct spi_device *spi)
 | 
						|
{
 | 
						|
	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 | 
						|
 | 
						|
	if (adev) {
 | 
						|
		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 | 
						|
		     spi->chip_select);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 | 
						|
 * @spi: spi_device to register
 | 
						|
 *
 | 
						|
 * Companion function to spi_alloc_device.  Devices allocated with
 | 
						|
 * spi_alloc_device can be added onto the spi bus with this function.
 | 
						|
 *
 | 
						|
 * Returns 0 on success; negative errno on failure
 | 
						|
 */
 | 
						|
int spi_add_device(struct spi_device *spi)
 | 
						|
{
 | 
						|
	static DEFINE_MUTEX(spi_add_lock);
 | 
						|
	struct spi_master *master = spi->master;
 | 
						|
	struct device *dev = master->dev.parent;
 | 
						|
	struct device *d;
 | 
						|
	int status;
 | 
						|
 | 
						|
	/* Chipselects are numbered 0..max; validate. */
 | 
						|
	if (spi->chip_select >= master->num_chipselect) {
 | 
						|
		dev_err(dev, "cs%d >= max %d\n",
 | 
						|
			spi->chip_select,
 | 
						|
			master->num_chipselect);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Set the bus ID string */
 | 
						|
	spi_dev_set_name(spi);
 | 
						|
 | 
						|
	/* We need to make sure there's no other device with this
 | 
						|
	 * chipselect **BEFORE** we call setup(), else we'll trash
 | 
						|
	 * its configuration.  Lock against concurrent add() calls.
 | 
						|
	 */
 | 
						|
	mutex_lock(&spi_add_lock);
 | 
						|
 | 
						|
	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
 | 
						|
	if (d != NULL) {
 | 
						|
		dev_err(dev, "chipselect %d already in use\n",
 | 
						|
				spi->chip_select);
 | 
						|
		put_device(d);
 | 
						|
		status = -EBUSY;
 | 
						|
		goto done;
 | 
						|
	}
 | 
						|
 | 
						|
	if (master->cs_gpios)
 | 
						|
		spi->cs_gpio = master->cs_gpios[spi->chip_select];
 | 
						|
 | 
						|
	/* Drivers may modify this initial i/o setup, but will
 | 
						|
	 * normally rely on the device being setup.  Devices
 | 
						|
	 * using SPI_CS_HIGH can't coexist well otherwise...
 | 
						|
	 */
 | 
						|
	status = spi_setup(spi);
 | 
						|
	if (status < 0) {
 | 
						|
		dev_err(dev, "can't setup %s, status %d\n",
 | 
						|
				dev_name(&spi->dev), status);
 | 
						|
		goto done;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Device may be bound to an active driver when this returns */
 | 
						|
	status = device_add(&spi->dev);
 | 
						|
	if (status < 0)
 | 
						|
		dev_err(dev, "can't add %s, status %d\n",
 | 
						|
				dev_name(&spi->dev), status);
 | 
						|
	else
 | 
						|
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 | 
						|
 | 
						|
done:
 | 
						|
	mutex_unlock(&spi_add_lock);
 | 
						|
	return status;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_add_device);
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_new_device - instantiate one new SPI device
 | 
						|
 * @master: Controller to which device is connected
 | 
						|
 * @chip: Describes the SPI device
 | 
						|
 * Context: can sleep
 | 
						|
 *
 | 
						|
 * On typical mainboards, this is purely internal; and it's not needed
 | 
						|
 * after board init creates the hard-wired devices.  Some development
 | 
						|
 * platforms may not be able to use spi_register_board_info though, and
 | 
						|
 * this is exported so that for example a USB or parport based adapter
 | 
						|
 * driver could add devices (which it would learn about out-of-band).
 | 
						|
 *
 | 
						|
 * Returns the new device, or NULL.
 | 
						|
 */
 | 
						|
struct spi_device *spi_new_device(struct spi_master *master,
 | 
						|
				  struct spi_board_info *chip)
 | 
						|
{
 | 
						|
	struct spi_device	*proxy;
 | 
						|
	int			status;
 | 
						|
 | 
						|
	/* NOTE:  caller did any chip->bus_num checks necessary.
 | 
						|
	 *
 | 
						|
	 * Also, unless we change the return value convention to use
 | 
						|
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 | 
						|
	 * suggests syslogged diagnostics are best here (ugh).
 | 
						|
	 */
 | 
						|
 | 
						|
	proxy = spi_alloc_device(master);
 | 
						|
	if (!proxy)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 | 
						|
 | 
						|
	proxy->chip_select = chip->chip_select;
 | 
						|
	proxy->max_speed_hz = chip->max_speed_hz;
 | 
						|
	proxy->mode = chip->mode;
 | 
						|
	proxy->irq = chip->irq;
 | 
						|
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 | 
						|
	proxy->dev.platform_data = (void *) chip->platform_data;
 | 
						|
	proxy->controller_data = chip->controller_data;
 | 
						|
	proxy->controller_state = NULL;
 | 
						|
 | 
						|
	status = spi_add_device(proxy);
 | 
						|
	if (status < 0) {
 | 
						|
		spi_dev_put(proxy);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	return proxy;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_new_device);
 | 
						|
 | 
						|
static void spi_match_master_to_boardinfo(struct spi_master *master,
 | 
						|
				struct spi_board_info *bi)
 | 
						|
{
 | 
						|
	struct spi_device *dev;
 | 
						|
 | 
						|
	if (master->bus_num != bi->bus_num)
 | 
						|
		return;
 | 
						|
 | 
						|
	dev = spi_new_device(master, bi);
 | 
						|
	if (!dev)
 | 
						|
		dev_err(master->dev.parent, "can't create new device for %s\n",
 | 
						|
			bi->modalias);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_register_board_info - register SPI devices for a given board
 | 
						|
 * @info: array of chip descriptors
 | 
						|
 * @n: how many descriptors are provided
 | 
						|
 * Context: can sleep
 | 
						|
 *
 | 
						|
 * Board-specific early init code calls this (probably during arch_initcall)
 | 
						|
 * with segments of the SPI device table.  Any device nodes are created later,
 | 
						|
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 | 
						|
 * this table of devices forever, so that reloading a controller driver will
 | 
						|
 * not make Linux forget about these hard-wired devices.
 | 
						|
 *
 | 
						|
 * Other code can also call this, e.g. a particular add-on board might provide
 | 
						|
 * SPI devices through its expansion connector, so code initializing that board
 | 
						|
 * would naturally declare its SPI devices.
 | 
						|
 *
 | 
						|
 * The board info passed can safely be __initdata ... but be careful of
 | 
						|
 * any embedded pointers (platform_data, etc), they're copied as-is.
 | 
						|
 */
 | 
						|
int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 | 
						|
{
 | 
						|
	struct boardinfo *bi;
 | 
						|
	int i;
 | 
						|
 | 
						|
	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 | 
						|
	if (!bi)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	for (i = 0; i < n; i++, bi++, info++) {
 | 
						|
		struct spi_master *master;
 | 
						|
 | 
						|
		memcpy(&bi->board_info, info, sizeof(*info));
 | 
						|
		mutex_lock(&board_lock);
 | 
						|
		list_add_tail(&bi->list, &board_list);
 | 
						|
		list_for_each_entry(master, &spi_master_list, list)
 | 
						|
			spi_match_master_to_boardinfo(master, &bi->board_info);
 | 
						|
		mutex_unlock(&board_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*-------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static void spi_set_cs(struct spi_device *spi, bool enable)
 | 
						|
{
 | 
						|
	if (spi->mode & SPI_CS_HIGH)
 | 
						|
		enable = !enable;
 | 
						|
 | 
						|
	if (spi->cs_gpio >= 0)
 | 
						|
		gpio_set_value(spi->cs_gpio, !enable);
 | 
						|
	else if (spi->master->set_cs)
 | 
						|
		spi->master->set_cs(spi, !enable);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * spi_transfer_one_message - Default implementation of transfer_one_message()
 | 
						|
 *
 | 
						|
 * This is a standard implementation of transfer_one_message() for
 | 
						|
 * drivers which impelment a transfer_one() operation.  It provides
 | 
						|
 * standard handling of delays and chip select management.
 | 
						|
 */
 | 
						|
static int spi_transfer_one_message(struct spi_master *master,
 | 
						|
				    struct spi_message *msg)
 | 
						|
{
 | 
						|
	struct spi_transfer *xfer;
 | 
						|
	bool cur_cs = true;
 | 
						|
	bool keep_cs = false;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	spi_set_cs(msg->spi, true);
 | 
						|
 | 
						|
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 | 
						|
		trace_spi_transfer_start(msg, xfer);
 | 
						|
 | 
						|
		reinit_completion(&master->xfer_completion);
 | 
						|
 | 
						|
		ret = master->transfer_one(master, msg->spi, xfer);
 | 
						|
		if (ret < 0) {
 | 
						|
			dev_err(&msg->spi->dev,
 | 
						|
				"SPI transfer failed: %d\n", ret);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (ret > 0)
 | 
						|
			wait_for_completion(&master->xfer_completion);
 | 
						|
 | 
						|
		trace_spi_transfer_stop(msg, xfer);
 | 
						|
 | 
						|
		if (msg->status != -EINPROGRESS)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		if (xfer->delay_usecs)
 | 
						|
			udelay(xfer->delay_usecs);
 | 
						|
 | 
						|
		if (xfer->cs_change) {
 | 
						|
			if (list_is_last(&xfer->transfer_list,
 | 
						|
					 &msg->transfers)) {
 | 
						|
				keep_cs = true;
 | 
						|
			} else {
 | 
						|
				cur_cs = !cur_cs;
 | 
						|
				spi_set_cs(msg->spi, cur_cs);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		msg->actual_length += xfer->len;
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	if (ret != 0 || !keep_cs)
 | 
						|
		spi_set_cs(msg->spi, false);
 | 
						|
 | 
						|
	if (msg->status == -EINPROGRESS)
 | 
						|
		msg->status = ret;
 | 
						|
 | 
						|
	spi_finalize_current_message(master);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_finalize_current_transfer - report completion of a transfer
 | 
						|
 *
 | 
						|
 * Called by SPI drivers using the core transfer_one_message()
 | 
						|
 * implementation to notify it that the current interrupt driven
 | 
						|
 * transfer has finised and the next one may be scheduled.
 | 
						|
 */
 | 
						|
void spi_finalize_current_transfer(struct spi_master *master)
 | 
						|
{
 | 
						|
	complete(&master->xfer_completion);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_pump_messages - kthread work function which processes spi message queue
 | 
						|
 * @work: pointer to kthread work struct contained in the master struct
 | 
						|
 *
 | 
						|
 * This function checks if there is any spi message in the queue that
 | 
						|
 * needs processing and if so call out to the driver to initialize hardware
 | 
						|
 * and transfer each message.
 | 
						|
 *
 | 
						|
 */
 | 
						|
static void spi_pump_messages(struct kthread_work *work)
 | 
						|
{
 | 
						|
	struct spi_master *master =
 | 
						|
		container_of(work, struct spi_master, pump_messages);
 | 
						|
	unsigned long flags;
 | 
						|
	bool was_busy = false;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* Lock queue and check for queue work */
 | 
						|
	spin_lock_irqsave(&master->queue_lock, flags);
 | 
						|
	if (list_empty(&master->queue) || !master->running) {
 | 
						|
		if (!master->busy) {
 | 
						|
			spin_unlock_irqrestore(&master->queue_lock, flags);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		master->busy = false;
 | 
						|
		spin_unlock_irqrestore(&master->queue_lock, flags);
 | 
						|
		if (master->unprepare_transfer_hardware &&
 | 
						|
		    master->unprepare_transfer_hardware(master))
 | 
						|
			dev_err(&master->dev,
 | 
						|
				"failed to unprepare transfer hardware\n");
 | 
						|
		if (master->auto_runtime_pm) {
 | 
						|
			pm_runtime_mark_last_busy(master->dev.parent);
 | 
						|
			pm_runtime_put_autosuspend(master->dev.parent);
 | 
						|
		}
 | 
						|
		trace_spi_master_idle(master);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Make sure we are not already running a message */
 | 
						|
	if (master->cur_msg) {
 | 
						|
		spin_unlock_irqrestore(&master->queue_lock, flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	/* Extract head of queue */
 | 
						|
	master->cur_msg =
 | 
						|
	    list_entry(master->queue.next, struct spi_message, queue);
 | 
						|
 | 
						|
	list_del_init(&master->cur_msg->queue);
 | 
						|
	if (master->busy)
 | 
						|
		was_busy = true;
 | 
						|
	else
 | 
						|
		master->busy = true;
 | 
						|
	spin_unlock_irqrestore(&master->queue_lock, flags);
 | 
						|
 | 
						|
	if (!was_busy && master->auto_runtime_pm) {
 | 
						|
		ret = pm_runtime_get_sync(master->dev.parent);
 | 
						|
		if (ret < 0) {
 | 
						|
			dev_err(&master->dev, "Failed to power device: %d\n",
 | 
						|
				ret);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (!was_busy)
 | 
						|
		trace_spi_master_busy(master);
 | 
						|
 | 
						|
	if (!was_busy && master->prepare_transfer_hardware) {
 | 
						|
		ret = master->prepare_transfer_hardware(master);
 | 
						|
		if (ret) {
 | 
						|
			dev_err(&master->dev,
 | 
						|
				"failed to prepare transfer hardware\n");
 | 
						|
 | 
						|
			if (master->auto_runtime_pm)
 | 
						|
				pm_runtime_put(master->dev.parent);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	trace_spi_message_start(master->cur_msg);
 | 
						|
 | 
						|
	if (master->prepare_message) {
 | 
						|
		ret = master->prepare_message(master, master->cur_msg);
 | 
						|
		if (ret) {
 | 
						|
			dev_err(&master->dev,
 | 
						|
				"failed to prepare message: %d\n", ret);
 | 
						|
			master->cur_msg->status = ret;
 | 
						|
			spi_finalize_current_message(master);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		master->cur_msg_prepared = true;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = master->transfer_one_message(master, master->cur_msg);
 | 
						|
	if (ret) {
 | 
						|
		dev_err(&master->dev,
 | 
						|
			"failed to transfer one message from queue\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int spi_init_queue(struct spi_master *master)
 | 
						|
{
 | 
						|
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&master->queue);
 | 
						|
	spin_lock_init(&master->queue_lock);
 | 
						|
 | 
						|
	master->running = false;
 | 
						|
	master->busy = false;
 | 
						|
 | 
						|
	init_kthread_worker(&master->kworker);
 | 
						|
	master->kworker_task = kthread_run(kthread_worker_fn,
 | 
						|
					   &master->kworker, "%s",
 | 
						|
					   dev_name(&master->dev));
 | 
						|
	if (IS_ERR(master->kworker_task)) {
 | 
						|
		dev_err(&master->dev, "failed to create message pump task\n");
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
	init_kthread_work(&master->pump_messages, spi_pump_messages);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Master config will indicate if this controller should run the
 | 
						|
	 * message pump with high (realtime) priority to reduce the transfer
 | 
						|
	 * latency on the bus by minimising the delay between a transfer
 | 
						|
	 * request and the scheduling of the message pump thread. Without this
 | 
						|
	 * setting the message pump thread will remain at default priority.
 | 
						|
	 */
 | 
						|
	if (master->rt) {
 | 
						|
		dev_info(&master->dev,
 | 
						|
			"will run message pump with realtime priority\n");
 | 
						|
		sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_get_next_queued_message() - called by driver to check for queued
 | 
						|
 * messages
 | 
						|
 * @master: the master to check for queued messages
 | 
						|
 *
 | 
						|
 * If there are more messages in the queue, the next message is returned from
 | 
						|
 * this call.
 | 
						|
 */
 | 
						|
struct spi_message *spi_get_next_queued_message(struct spi_master *master)
 | 
						|
{
 | 
						|
	struct spi_message *next;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	/* get a pointer to the next message, if any */
 | 
						|
	spin_lock_irqsave(&master->queue_lock, flags);
 | 
						|
	if (list_empty(&master->queue))
 | 
						|
		next = NULL;
 | 
						|
	else
 | 
						|
		next = list_entry(master->queue.next,
 | 
						|
				  struct spi_message, queue);
 | 
						|
	spin_unlock_irqrestore(&master->queue_lock, flags);
 | 
						|
 | 
						|
	return next;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_finalize_current_message() - the current message is complete
 | 
						|
 * @master: the master to return the message to
 | 
						|
 *
 | 
						|
 * Called by the driver to notify the core that the message in the front of the
 | 
						|
 * queue is complete and can be removed from the queue.
 | 
						|
 */
 | 
						|
void spi_finalize_current_message(struct spi_master *master)
 | 
						|
{
 | 
						|
	struct spi_message *mesg;
 | 
						|
	unsigned long flags;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	spin_lock_irqsave(&master->queue_lock, flags);
 | 
						|
	mesg = master->cur_msg;
 | 
						|
	master->cur_msg = NULL;
 | 
						|
 | 
						|
	queue_kthread_work(&master->kworker, &master->pump_messages);
 | 
						|
	spin_unlock_irqrestore(&master->queue_lock, flags);
 | 
						|
 | 
						|
	if (master->cur_msg_prepared && master->unprepare_message) {
 | 
						|
		ret = master->unprepare_message(master, mesg);
 | 
						|
		if (ret) {
 | 
						|
			dev_err(&master->dev,
 | 
						|
				"failed to unprepare message: %d\n", ret);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	master->cur_msg_prepared = false;
 | 
						|
 | 
						|
	mesg->state = NULL;
 | 
						|
	if (mesg->complete)
 | 
						|
		mesg->complete(mesg->context);
 | 
						|
 | 
						|
	trace_spi_message_done(mesg);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_finalize_current_message);
 | 
						|
 | 
						|
static int spi_start_queue(struct spi_master *master)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&master->queue_lock, flags);
 | 
						|
 | 
						|
	if (master->running || master->busy) {
 | 
						|
		spin_unlock_irqrestore(&master->queue_lock, flags);
 | 
						|
		return -EBUSY;
 | 
						|
	}
 | 
						|
 | 
						|
	master->running = true;
 | 
						|
	master->cur_msg = NULL;
 | 
						|
	spin_unlock_irqrestore(&master->queue_lock, flags);
 | 
						|
 | 
						|
	queue_kthread_work(&master->kworker, &master->pump_messages);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_stop_queue(struct spi_master *master)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned limit = 500;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	spin_lock_irqsave(&master->queue_lock, flags);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is a bit lame, but is optimized for the common execution path.
 | 
						|
	 * A wait_queue on the master->busy could be used, but then the common
 | 
						|
	 * execution path (pump_messages) would be required to call wake_up or
 | 
						|
	 * friends on every SPI message. Do this instead.
 | 
						|
	 */
 | 
						|
	while ((!list_empty(&master->queue) || master->busy) && limit--) {
 | 
						|
		spin_unlock_irqrestore(&master->queue_lock, flags);
 | 
						|
		msleep(10);
 | 
						|
		spin_lock_irqsave(&master->queue_lock, flags);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!list_empty(&master->queue) || master->busy)
 | 
						|
		ret = -EBUSY;
 | 
						|
	else
 | 
						|
		master->running = false;
 | 
						|
 | 
						|
	spin_unlock_irqrestore(&master->queue_lock, flags);
 | 
						|
 | 
						|
	if (ret) {
 | 
						|
		dev_warn(&master->dev,
 | 
						|
			 "could not stop message queue\n");
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_destroy_queue(struct spi_master *master)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = spi_stop_queue(master);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * flush_kthread_worker will block until all work is done.
 | 
						|
	 * If the reason that stop_queue timed out is that the work will never
 | 
						|
	 * finish, then it does no good to call flush/stop thread, so
 | 
						|
	 * return anyway.
 | 
						|
	 */
 | 
						|
	if (ret) {
 | 
						|
		dev_err(&master->dev, "problem destroying queue\n");
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	flush_kthread_worker(&master->kworker);
 | 
						|
	kthread_stop(master->kworker_task);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_queued_transfer - transfer function for queued transfers
 | 
						|
 * @spi: spi device which is requesting transfer
 | 
						|
 * @msg: spi message which is to handled is queued to driver queue
 | 
						|
 */
 | 
						|
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
 | 
						|
{
 | 
						|
	struct spi_master *master = spi->master;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&master->queue_lock, flags);
 | 
						|
 | 
						|
	if (!master->running) {
 | 
						|
		spin_unlock_irqrestore(&master->queue_lock, flags);
 | 
						|
		return -ESHUTDOWN;
 | 
						|
	}
 | 
						|
	msg->actual_length = 0;
 | 
						|
	msg->status = -EINPROGRESS;
 | 
						|
 | 
						|
	list_add_tail(&msg->queue, &master->queue);
 | 
						|
	if (!master->busy)
 | 
						|
		queue_kthread_work(&master->kworker, &master->pump_messages);
 | 
						|
 | 
						|
	spin_unlock_irqrestore(&master->queue_lock, flags);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int spi_master_initialize_queue(struct spi_master *master)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	master->queued = true;
 | 
						|
	master->transfer = spi_queued_transfer;
 | 
						|
	if (!master->transfer_one_message)
 | 
						|
		master->transfer_one_message = spi_transfer_one_message;
 | 
						|
 | 
						|
	/* Initialize and start queue */
 | 
						|
	ret = spi_init_queue(master);
 | 
						|
	if (ret) {
 | 
						|
		dev_err(&master->dev, "problem initializing queue\n");
 | 
						|
		goto err_init_queue;
 | 
						|
	}
 | 
						|
	ret = spi_start_queue(master);
 | 
						|
	if (ret) {
 | 
						|
		dev_err(&master->dev, "problem starting queue\n");
 | 
						|
		goto err_start_queue;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
err_start_queue:
 | 
						|
err_init_queue:
 | 
						|
	spi_destroy_queue(master);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*-------------------------------------------------------------------------*/
 | 
						|
 | 
						|
#if defined(CONFIG_OF)
 | 
						|
/**
 | 
						|
 * of_register_spi_devices() - Register child devices onto the SPI bus
 | 
						|
 * @master:	Pointer to spi_master device
 | 
						|
 *
 | 
						|
 * Registers an spi_device for each child node of master node which has a 'reg'
 | 
						|
 * property.
 | 
						|
 */
 | 
						|
static void of_register_spi_devices(struct spi_master *master)
 | 
						|
{
 | 
						|
	struct spi_device *spi;
 | 
						|
	struct device_node *nc;
 | 
						|
	int rc;
 | 
						|
	u32 value;
 | 
						|
 | 
						|
	if (!master->dev.of_node)
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_available_child_of_node(master->dev.of_node, nc) {
 | 
						|
		/* Alloc an spi_device */
 | 
						|
		spi = spi_alloc_device(master);
 | 
						|
		if (!spi) {
 | 
						|
			dev_err(&master->dev, "spi_device alloc error for %s\n",
 | 
						|
				nc->full_name);
 | 
						|
			spi_dev_put(spi);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Select device driver */
 | 
						|
		if (of_modalias_node(nc, spi->modalias,
 | 
						|
				     sizeof(spi->modalias)) < 0) {
 | 
						|
			dev_err(&master->dev, "cannot find modalias for %s\n",
 | 
						|
				nc->full_name);
 | 
						|
			spi_dev_put(spi);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Device address */
 | 
						|
		rc = of_property_read_u32(nc, "reg", &value);
 | 
						|
		if (rc) {
 | 
						|
			dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
 | 
						|
				nc->full_name, rc);
 | 
						|
			spi_dev_put(spi);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		spi->chip_select = value;
 | 
						|
 | 
						|
		/* Mode (clock phase/polarity/etc.) */
 | 
						|
		if (of_find_property(nc, "spi-cpha", NULL))
 | 
						|
			spi->mode |= SPI_CPHA;
 | 
						|
		if (of_find_property(nc, "spi-cpol", NULL))
 | 
						|
			spi->mode |= SPI_CPOL;
 | 
						|
		if (of_find_property(nc, "spi-cs-high", NULL))
 | 
						|
			spi->mode |= SPI_CS_HIGH;
 | 
						|
		if (of_find_property(nc, "spi-3wire", NULL))
 | 
						|
			spi->mode |= SPI_3WIRE;
 | 
						|
 | 
						|
		/* Device DUAL/QUAD mode */
 | 
						|
		if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
 | 
						|
			switch (value) {
 | 
						|
			case 1:
 | 
						|
				break;
 | 
						|
			case 2:
 | 
						|
				spi->mode |= SPI_TX_DUAL;
 | 
						|
				break;
 | 
						|
			case 4:
 | 
						|
				spi->mode |= SPI_TX_QUAD;
 | 
						|
				break;
 | 
						|
			default:
 | 
						|
				dev_err(&master->dev,
 | 
						|
					"spi-tx-bus-width %d not supported\n",
 | 
						|
					value);
 | 
						|
				spi_dev_put(spi);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
 | 
						|
			switch (value) {
 | 
						|
			case 1:
 | 
						|
				break;
 | 
						|
			case 2:
 | 
						|
				spi->mode |= SPI_RX_DUAL;
 | 
						|
				break;
 | 
						|
			case 4:
 | 
						|
				spi->mode |= SPI_RX_QUAD;
 | 
						|
				break;
 | 
						|
			default:
 | 
						|
				dev_err(&master->dev,
 | 
						|
					"spi-rx-bus-width %d not supported\n",
 | 
						|
					value);
 | 
						|
				spi_dev_put(spi);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* Device speed */
 | 
						|
		rc = of_property_read_u32(nc, "spi-max-frequency", &value);
 | 
						|
		if (rc) {
 | 
						|
			dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
 | 
						|
				nc->full_name, rc);
 | 
						|
			spi_dev_put(spi);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		spi->max_speed_hz = value;
 | 
						|
 | 
						|
		/* IRQ */
 | 
						|
		spi->irq = irq_of_parse_and_map(nc, 0);
 | 
						|
 | 
						|
		/* Store a pointer to the node in the device structure */
 | 
						|
		of_node_get(nc);
 | 
						|
		spi->dev.of_node = nc;
 | 
						|
 | 
						|
		/* Register the new device */
 | 
						|
		request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
 | 
						|
		rc = spi_add_device(spi);
 | 
						|
		if (rc) {
 | 
						|
			dev_err(&master->dev, "spi_device register error %s\n",
 | 
						|
				nc->full_name);
 | 
						|
			spi_dev_put(spi);
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
}
 | 
						|
#else
 | 
						|
static void of_register_spi_devices(struct spi_master *master) { }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_ACPI
 | 
						|
static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
 | 
						|
{
 | 
						|
	struct spi_device *spi = data;
 | 
						|
 | 
						|
	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
 | 
						|
		struct acpi_resource_spi_serialbus *sb;
 | 
						|
 | 
						|
		sb = &ares->data.spi_serial_bus;
 | 
						|
		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
 | 
						|
			spi->chip_select = sb->device_selection;
 | 
						|
			spi->max_speed_hz = sb->connection_speed;
 | 
						|
 | 
						|
			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
 | 
						|
				spi->mode |= SPI_CPHA;
 | 
						|
			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
 | 
						|
				spi->mode |= SPI_CPOL;
 | 
						|
			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
 | 
						|
				spi->mode |= SPI_CS_HIGH;
 | 
						|
		}
 | 
						|
	} else if (spi->irq < 0) {
 | 
						|
		struct resource r;
 | 
						|
 | 
						|
		if (acpi_dev_resource_interrupt(ares, 0, &r))
 | 
						|
			spi->irq = r.start;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Always tell the ACPI core to skip this resource */
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
 | 
						|
				       void *data, void **return_value)
 | 
						|
{
 | 
						|
	struct spi_master *master = data;
 | 
						|
	struct list_head resource_list;
 | 
						|
	struct acpi_device *adev;
 | 
						|
	struct spi_device *spi;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (acpi_bus_get_device(handle, &adev))
 | 
						|
		return AE_OK;
 | 
						|
	if (acpi_bus_get_status(adev) || !adev->status.present)
 | 
						|
		return AE_OK;
 | 
						|
 | 
						|
	spi = spi_alloc_device(master);
 | 
						|
	if (!spi) {
 | 
						|
		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
 | 
						|
			dev_name(&adev->dev));
 | 
						|
		return AE_NO_MEMORY;
 | 
						|
	}
 | 
						|
 | 
						|
	ACPI_COMPANION_SET(&spi->dev, adev);
 | 
						|
	spi->irq = -1;
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&resource_list);
 | 
						|
	ret = acpi_dev_get_resources(adev, &resource_list,
 | 
						|
				     acpi_spi_add_resource, spi);
 | 
						|
	acpi_dev_free_resource_list(&resource_list);
 | 
						|
 | 
						|
	if (ret < 0 || !spi->max_speed_hz) {
 | 
						|
		spi_dev_put(spi);
 | 
						|
		return AE_OK;
 | 
						|
	}
 | 
						|
 | 
						|
	adev->power.flags.ignore_parent = true;
 | 
						|
	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
 | 
						|
	if (spi_add_device(spi)) {
 | 
						|
		adev->power.flags.ignore_parent = false;
 | 
						|
		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
 | 
						|
			dev_name(&adev->dev));
 | 
						|
		spi_dev_put(spi);
 | 
						|
	}
 | 
						|
 | 
						|
	return AE_OK;
 | 
						|
}
 | 
						|
 | 
						|
static void acpi_register_spi_devices(struct spi_master *master)
 | 
						|
{
 | 
						|
	acpi_status status;
 | 
						|
	acpi_handle handle;
 | 
						|
 | 
						|
	handle = ACPI_HANDLE(master->dev.parent);
 | 
						|
	if (!handle)
 | 
						|
		return;
 | 
						|
 | 
						|
	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
 | 
						|
				     acpi_spi_add_device, NULL,
 | 
						|
				     master, NULL);
 | 
						|
	if (ACPI_FAILURE(status))
 | 
						|
		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void acpi_register_spi_devices(struct spi_master *master) {}
 | 
						|
#endif /* CONFIG_ACPI */
 | 
						|
 | 
						|
static void spi_master_release(struct device *dev)
 | 
						|
{
 | 
						|
	struct spi_master *master;
 | 
						|
 | 
						|
	master = container_of(dev, struct spi_master, dev);
 | 
						|
	kfree(master);
 | 
						|
}
 | 
						|
 | 
						|
static struct class spi_master_class = {
 | 
						|
	.name		= "spi_master",
 | 
						|
	.owner		= THIS_MODULE,
 | 
						|
	.dev_release	= spi_master_release,
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_alloc_master - allocate SPI master controller
 | 
						|
 * @dev: the controller, possibly using the platform_bus
 | 
						|
 * @size: how much zeroed driver-private data to allocate; the pointer to this
 | 
						|
 *	memory is in the driver_data field of the returned device,
 | 
						|
 *	accessible with spi_master_get_devdata().
 | 
						|
 * Context: can sleep
 | 
						|
 *
 | 
						|
 * This call is used only by SPI master controller drivers, which are the
 | 
						|
 * only ones directly touching chip registers.  It's how they allocate
 | 
						|
 * an spi_master structure, prior to calling spi_register_master().
 | 
						|
 *
 | 
						|
 * This must be called from context that can sleep.  It returns the SPI
 | 
						|
 * master structure on success, else NULL.
 | 
						|
 *
 | 
						|
 * The caller is responsible for assigning the bus number and initializing
 | 
						|
 * the master's methods before calling spi_register_master(); and (after errors
 | 
						|
 * adding the device) calling spi_master_put() and kfree() to prevent a memory
 | 
						|
 * leak.
 | 
						|
 */
 | 
						|
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
 | 
						|
{
 | 
						|
	struct spi_master	*master;
 | 
						|
 | 
						|
	if (!dev)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
 | 
						|
	if (!master)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	device_initialize(&master->dev);
 | 
						|
	master->bus_num = -1;
 | 
						|
	master->num_chipselect = 1;
 | 
						|
	master->dev.class = &spi_master_class;
 | 
						|
	master->dev.parent = get_device(dev);
 | 
						|
	spi_master_set_devdata(master, &master[1]);
 | 
						|
 | 
						|
	return master;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_alloc_master);
 | 
						|
 | 
						|
#ifdef CONFIG_OF
 | 
						|
static int of_spi_register_master(struct spi_master *master)
 | 
						|
{
 | 
						|
	int nb, i, *cs;
 | 
						|
	struct device_node *np = master->dev.of_node;
 | 
						|
 | 
						|
	if (!np)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	nb = of_gpio_named_count(np, "cs-gpios");
 | 
						|
	master->num_chipselect = max_t(int, nb, master->num_chipselect);
 | 
						|
 | 
						|
	/* Return error only for an incorrectly formed cs-gpios property */
 | 
						|
	if (nb == 0 || nb == -ENOENT)
 | 
						|
		return 0;
 | 
						|
	else if (nb < 0)
 | 
						|
		return nb;
 | 
						|
 | 
						|
	cs = devm_kzalloc(&master->dev,
 | 
						|
			  sizeof(int) * master->num_chipselect,
 | 
						|
			  GFP_KERNEL);
 | 
						|
	master->cs_gpios = cs;
 | 
						|
 | 
						|
	if (!master->cs_gpios)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	for (i = 0; i < master->num_chipselect; i++)
 | 
						|
		cs[i] = -ENOENT;
 | 
						|
 | 
						|
	for (i = 0; i < nb; i++)
 | 
						|
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
static int of_spi_register_master(struct spi_master *master)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_register_master - register SPI master controller
 | 
						|
 * @master: initialized master, originally from spi_alloc_master()
 | 
						|
 * Context: can sleep
 | 
						|
 *
 | 
						|
 * SPI master controllers connect to their drivers using some non-SPI bus,
 | 
						|
 * such as the platform bus.  The final stage of probe() in that code
 | 
						|
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 | 
						|
 *
 | 
						|
 * SPI controllers use board specific (often SOC specific) bus numbers,
 | 
						|
 * and board-specific addressing for SPI devices combines those numbers
 | 
						|
 * with chip select numbers.  Since SPI does not directly support dynamic
 | 
						|
 * device identification, boards need configuration tables telling which
 | 
						|
 * chip is at which address.
 | 
						|
 *
 | 
						|
 * This must be called from context that can sleep.  It returns zero on
 | 
						|
 * success, else a negative error code (dropping the master's refcount).
 | 
						|
 * After a successful return, the caller is responsible for calling
 | 
						|
 * spi_unregister_master().
 | 
						|
 */
 | 
						|
int spi_register_master(struct spi_master *master)
 | 
						|
{
 | 
						|
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
 | 
						|
	struct device		*dev = master->dev.parent;
 | 
						|
	struct boardinfo	*bi;
 | 
						|
	int			status = -ENODEV;
 | 
						|
	int			dynamic = 0;
 | 
						|
 | 
						|
	if (!dev)
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	status = of_spi_register_master(master);
 | 
						|
	if (status)
 | 
						|
		return status;
 | 
						|
 | 
						|
	/* even if it's just one always-selected device, there must
 | 
						|
	 * be at least one chipselect
 | 
						|
	 */
 | 
						|
	if (master->num_chipselect == 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if ((master->bus_num < 0) && master->dev.of_node)
 | 
						|
		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
 | 
						|
 | 
						|
	/* convention:  dynamically assigned bus IDs count down from the max */
 | 
						|
	if (master->bus_num < 0) {
 | 
						|
		/* FIXME switch to an IDR based scheme, something like
 | 
						|
		 * I2C now uses, so we can't run out of "dynamic" IDs
 | 
						|
		 */
 | 
						|
		master->bus_num = atomic_dec_return(&dyn_bus_id);
 | 
						|
		dynamic = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock_init(&master->bus_lock_spinlock);
 | 
						|
	mutex_init(&master->bus_lock_mutex);
 | 
						|
	master->bus_lock_flag = 0;
 | 
						|
	init_completion(&master->xfer_completion);
 | 
						|
 | 
						|
	/* register the device, then userspace will see it.
 | 
						|
	 * registration fails if the bus ID is in use.
 | 
						|
	 */
 | 
						|
	dev_set_name(&master->dev, "spi%u", master->bus_num);
 | 
						|
	status = device_add(&master->dev);
 | 
						|
	if (status < 0)
 | 
						|
		goto done;
 | 
						|
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
 | 
						|
			dynamic ? " (dynamic)" : "");
 | 
						|
 | 
						|
	/* If we're using a queued driver, start the queue */
 | 
						|
	if (master->transfer)
 | 
						|
		dev_info(dev, "master is unqueued, this is deprecated\n");
 | 
						|
	else {
 | 
						|
		status = spi_master_initialize_queue(master);
 | 
						|
		if (status) {
 | 
						|
			device_del(&master->dev);
 | 
						|
			goto done;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_lock(&board_lock);
 | 
						|
	list_add_tail(&master->list, &spi_master_list);
 | 
						|
	list_for_each_entry(bi, &board_list, list)
 | 
						|
		spi_match_master_to_boardinfo(master, &bi->board_info);
 | 
						|
	mutex_unlock(&board_lock);
 | 
						|
 | 
						|
	/* Register devices from the device tree and ACPI */
 | 
						|
	of_register_spi_devices(master);
 | 
						|
	acpi_register_spi_devices(master);
 | 
						|
done:
 | 
						|
	return status;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_register_master);
 | 
						|
 | 
						|
static void devm_spi_unregister(struct device *dev, void *res)
 | 
						|
{
 | 
						|
	spi_unregister_master(*(struct spi_master **)res);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * dev_spi_register_master - register managed SPI master controller
 | 
						|
 * @dev:    device managing SPI master
 | 
						|
 * @master: initialized master, originally from spi_alloc_master()
 | 
						|
 * Context: can sleep
 | 
						|
 *
 | 
						|
 * Register a SPI device as with spi_register_master() which will
 | 
						|
 * automatically be unregister
 | 
						|
 */
 | 
						|
int devm_spi_register_master(struct device *dev, struct spi_master *master)
 | 
						|
{
 | 
						|
	struct spi_master **ptr;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
 | 
						|
	if (!ptr)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ret = spi_register_master(master);
 | 
						|
	if (!ret) {
 | 
						|
		*ptr = master;
 | 
						|
		devres_add(dev, ptr);
 | 
						|
	} else {
 | 
						|
		devres_free(ptr);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(devm_spi_register_master);
 | 
						|
 | 
						|
static int __unregister(struct device *dev, void *null)
 | 
						|
{
 | 
						|
	spi_unregister_device(to_spi_device(dev));
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_unregister_master - unregister SPI master controller
 | 
						|
 * @master: the master being unregistered
 | 
						|
 * Context: can sleep
 | 
						|
 *
 | 
						|
 * This call is used only by SPI master controller drivers, which are the
 | 
						|
 * only ones directly touching chip registers.
 | 
						|
 *
 | 
						|
 * This must be called from context that can sleep.
 | 
						|
 */
 | 
						|
void spi_unregister_master(struct spi_master *master)
 | 
						|
{
 | 
						|
	int dummy;
 | 
						|
 | 
						|
	if (master->queued) {
 | 
						|
		if (spi_destroy_queue(master))
 | 
						|
			dev_err(&master->dev, "queue remove failed\n");
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_lock(&board_lock);
 | 
						|
	list_del(&master->list);
 | 
						|
	mutex_unlock(&board_lock);
 | 
						|
 | 
						|
	dummy = device_for_each_child(&master->dev, NULL, __unregister);
 | 
						|
	device_unregister(&master->dev);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_unregister_master);
 | 
						|
 | 
						|
int spi_master_suspend(struct spi_master *master)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* Basically no-ops for non-queued masters */
 | 
						|
	if (!master->queued)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	ret = spi_stop_queue(master);
 | 
						|
	if (ret)
 | 
						|
		dev_err(&master->dev, "queue stop failed\n");
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_master_suspend);
 | 
						|
 | 
						|
int spi_master_resume(struct spi_master *master)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!master->queued)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	ret = spi_start_queue(master);
 | 
						|
	if (ret)
 | 
						|
		dev_err(&master->dev, "queue restart failed\n");
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_master_resume);
 | 
						|
 | 
						|
static int __spi_master_match(struct device *dev, const void *data)
 | 
						|
{
 | 
						|
	struct spi_master *m;
 | 
						|
	const u16 *bus_num = data;
 | 
						|
 | 
						|
	m = container_of(dev, struct spi_master, dev);
 | 
						|
	return m->bus_num == *bus_num;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_busnum_to_master - look up master associated with bus_num
 | 
						|
 * @bus_num: the master's bus number
 | 
						|
 * Context: can sleep
 | 
						|
 *
 | 
						|
 * This call may be used with devices that are registered after
 | 
						|
 * arch init time.  It returns a refcounted pointer to the relevant
 | 
						|
 * spi_master (which the caller must release), or NULL if there is
 | 
						|
 * no such master registered.
 | 
						|
 */
 | 
						|
struct spi_master *spi_busnum_to_master(u16 bus_num)
 | 
						|
{
 | 
						|
	struct device		*dev;
 | 
						|
	struct spi_master	*master = NULL;
 | 
						|
 | 
						|
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
 | 
						|
				__spi_master_match);
 | 
						|
	if (dev)
 | 
						|
		master = container_of(dev, struct spi_master, dev);
 | 
						|
	/* reference got in class_find_device */
 | 
						|
	return master;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_busnum_to_master);
 | 
						|
 | 
						|
 | 
						|
/*-------------------------------------------------------------------------*/
 | 
						|
 | 
						|
/* Core methods for SPI master protocol drivers.  Some of the
 | 
						|
 * other core methods are currently defined as inline functions.
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_setup - setup SPI mode and clock rate
 | 
						|
 * @spi: the device whose settings are being modified
 | 
						|
 * Context: can sleep, and no requests are queued to the device
 | 
						|
 *
 | 
						|
 * SPI protocol drivers may need to update the transfer mode if the
 | 
						|
 * device doesn't work with its default.  They may likewise need
 | 
						|
 * to update clock rates or word sizes from initial values.  This function
 | 
						|
 * changes those settings, and must be called from a context that can sleep.
 | 
						|
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 | 
						|
 * effect the next time the device is selected and data is transferred to
 | 
						|
 * or from it.  When this function returns, the spi device is deselected.
 | 
						|
 *
 | 
						|
 * Note that this call will fail if the protocol driver specifies an option
 | 
						|
 * that the underlying controller or its driver does not support.  For
 | 
						|
 * example, not all hardware supports wire transfers using nine bit words,
 | 
						|
 * LSB-first wire encoding, or active-high chipselects.
 | 
						|
 */
 | 
						|
int spi_setup(struct spi_device *spi)
 | 
						|
{
 | 
						|
	unsigned	bad_bits;
 | 
						|
	int		status = 0;
 | 
						|
 | 
						|
	/* check mode to prevent that DUAL and QUAD set at the same time
 | 
						|
	 */
 | 
						|
	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
 | 
						|
		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
 | 
						|
		dev_err(&spi->dev,
 | 
						|
		"setup: can not select dual and quad at the same time\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
 | 
						|
	 */
 | 
						|
	if ((spi->mode & SPI_3WIRE) && (spi->mode &
 | 
						|
		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
 | 
						|
		return -EINVAL;
 | 
						|
	/* help drivers fail *cleanly* when they need options
 | 
						|
	 * that aren't supported with their current master
 | 
						|
	 */
 | 
						|
	bad_bits = spi->mode & ~spi->master->mode_bits;
 | 
						|
	if (bad_bits) {
 | 
						|
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
 | 
						|
			bad_bits);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!spi->bits_per_word)
 | 
						|
		spi->bits_per_word = 8;
 | 
						|
 | 
						|
	if (spi->master->setup)
 | 
						|
		status = spi->master->setup(spi);
 | 
						|
 | 
						|
	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
 | 
						|
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
 | 
						|
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
 | 
						|
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
 | 
						|
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
 | 
						|
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
 | 
						|
			spi->bits_per_word, spi->max_speed_hz,
 | 
						|
			status);
 | 
						|
 | 
						|
	return status;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_setup);
 | 
						|
 | 
						|
static int __spi_async(struct spi_device *spi, struct spi_message *message)
 | 
						|
{
 | 
						|
	struct spi_master *master = spi->master;
 | 
						|
	struct spi_transfer *xfer;
 | 
						|
 | 
						|
	message->spi = spi;
 | 
						|
 | 
						|
	trace_spi_message_submit(message);
 | 
						|
 | 
						|
	if (list_empty(&message->transfers))
 | 
						|
		return -EINVAL;
 | 
						|
	if (!message->complete)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* Half-duplex links include original MicroWire, and ones with
 | 
						|
	 * only one data pin like SPI_3WIRE (switches direction) or where
 | 
						|
	 * either MOSI or MISO is missing.  They can also be caused by
 | 
						|
	 * software limitations.
 | 
						|
	 */
 | 
						|
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
 | 
						|
			|| (spi->mode & SPI_3WIRE)) {
 | 
						|
		unsigned flags = master->flags;
 | 
						|
 | 
						|
		list_for_each_entry(xfer, &message->transfers, transfer_list) {
 | 
						|
			if (xfer->rx_buf && xfer->tx_buf)
 | 
						|
				return -EINVAL;
 | 
						|
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
 | 
						|
				return -EINVAL;
 | 
						|
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
 | 
						|
				return -EINVAL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Set transfer bits_per_word and max speed as spi device default if
 | 
						|
	 * it is not set for this transfer.
 | 
						|
	 * Set transfer tx_nbits and rx_nbits as single transfer default
 | 
						|
	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
 | 
						|
	 */
 | 
						|
	list_for_each_entry(xfer, &message->transfers, transfer_list) {
 | 
						|
		message->frame_length += xfer->len;
 | 
						|
		if (!xfer->bits_per_word)
 | 
						|
			xfer->bits_per_word = spi->bits_per_word;
 | 
						|
		if (!xfer->speed_hz) {
 | 
						|
			xfer->speed_hz = spi->max_speed_hz;
 | 
						|
			if (master->max_speed_hz &&
 | 
						|
			    xfer->speed_hz > master->max_speed_hz)
 | 
						|
				xfer->speed_hz = master->max_speed_hz;
 | 
						|
		}
 | 
						|
 | 
						|
		if (master->bits_per_word_mask) {
 | 
						|
			/* Only 32 bits fit in the mask */
 | 
						|
			if (xfer->bits_per_word > 32)
 | 
						|
				return -EINVAL;
 | 
						|
			if (!(master->bits_per_word_mask &
 | 
						|
					BIT(xfer->bits_per_word - 1)))
 | 
						|
				return -EINVAL;
 | 
						|
		}
 | 
						|
 | 
						|
		if (xfer->speed_hz && master->min_speed_hz &&
 | 
						|
		    xfer->speed_hz < master->min_speed_hz)
 | 
						|
			return -EINVAL;
 | 
						|
		if (xfer->speed_hz && master->max_speed_hz &&
 | 
						|
		    xfer->speed_hz > master->max_speed_hz)
 | 
						|
			return -EINVAL;
 | 
						|
 | 
						|
		if (xfer->tx_buf && !xfer->tx_nbits)
 | 
						|
			xfer->tx_nbits = SPI_NBITS_SINGLE;
 | 
						|
		if (xfer->rx_buf && !xfer->rx_nbits)
 | 
						|
			xfer->rx_nbits = SPI_NBITS_SINGLE;
 | 
						|
		/* check transfer tx/rx_nbits:
 | 
						|
		 * 1. keep the value is not out of single, dual and quad
 | 
						|
		 * 2. keep tx/rx_nbits is contained by mode in spi_device
 | 
						|
		 * 3. if SPI_3WIRE, tx/rx_nbits should be in single
 | 
						|
		 */
 | 
						|
		if (xfer->tx_buf) {
 | 
						|
			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
 | 
						|
				xfer->tx_nbits != SPI_NBITS_DUAL &&
 | 
						|
				xfer->tx_nbits != SPI_NBITS_QUAD)
 | 
						|
				return -EINVAL;
 | 
						|
			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
 | 
						|
				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
 | 
						|
				return -EINVAL;
 | 
						|
			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
 | 
						|
				!(spi->mode & SPI_TX_QUAD))
 | 
						|
				return -EINVAL;
 | 
						|
			if ((spi->mode & SPI_3WIRE) &&
 | 
						|
				(xfer->tx_nbits != SPI_NBITS_SINGLE))
 | 
						|
				return -EINVAL;
 | 
						|
		}
 | 
						|
		/* check transfer rx_nbits */
 | 
						|
		if (xfer->rx_buf) {
 | 
						|
			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
 | 
						|
				xfer->rx_nbits != SPI_NBITS_DUAL &&
 | 
						|
				xfer->rx_nbits != SPI_NBITS_QUAD)
 | 
						|
				return -EINVAL;
 | 
						|
			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
 | 
						|
				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
 | 
						|
				return -EINVAL;
 | 
						|
			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
 | 
						|
				!(spi->mode & SPI_RX_QUAD))
 | 
						|
				return -EINVAL;
 | 
						|
			if ((spi->mode & SPI_3WIRE) &&
 | 
						|
				(xfer->rx_nbits != SPI_NBITS_SINGLE))
 | 
						|
				return -EINVAL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	message->status = -EINPROGRESS;
 | 
						|
	return master->transfer(spi, message);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_async - asynchronous SPI transfer
 | 
						|
 * @spi: device with which data will be exchanged
 | 
						|
 * @message: describes the data transfers, including completion callback
 | 
						|
 * Context: any (irqs may be blocked, etc)
 | 
						|
 *
 | 
						|
 * This call may be used in_irq and other contexts which can't sleep,
 | 
						|
 * as well as from task contexts which can sleep.
 | 
						|
 *
 | 
						|
 * The completion callback is invoked in a context which can't sleep.
 | 
						|
 * Before that invocation, the value of message->status is undefined.
 | 
						|
 * When the callback is issued, message->status holds either zero (to
 | 
						|
 * indicate complete success) or a negative error code.  After that
 | 
						|
 * callback returns, the driver which issued the transfer request may
 | 
						|
 * deallocate the associated memory; it's no longer in use by any SPI
 | 
						|
 * core or controller driver code.
 | 
						|
 *
 | 
						|
 * Note that although all messages to a spi_device are handled in
 | 
						|
 * FIFO order, messages may go to different devices in other orders.
 | 
						|
 * Some device might be higher priority, or have various "hard" access
 | 
						|
 * time requirements, for example.
 | 
						|
 *
 | 
						|
 * On detection of any fault during the transfer, processing of
 | 
						|
 * the entire message is aborted, and the device is deselected.
 | 
						|
 * Until returning from the associated message completion callback,
 | 
						|
 * no other spi_message queued to that device will be processed.
 | 
						|
 * (This rule applies equally to all the synchronous transfer calls,
 | 
						|
 * which are wrappers around this core asynchronous primitive.)
 | 
						|
 */
 | 
						|
int spi_async(struct spi_device *spi, struct spi_message *message)
 | 
						|
{
 | 
						|
	struct spi_master *master = spi->master;
 | 
						|
	int ret;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 | 
						|
 | 
						|
	if (master->bus_lock_flag)
 | 
						|
		ret = -EBUSY;
 | 
						|
	else
 | 
						|
		ret = __spi_async(spi, message);
 | 
						|
 | 
						|
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_async);
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_async_locked - version of spi_async with exclusive bus usage
 | 
						|
 * @spi: device with which data will be exchanged
 | 
						|
 * @message: describes the data transfers, including completion callback
 | 
						|
 * Context: any (irqs may be blocked, etc)
 | 
						|
 *
 | 
						|
 * This call may be used in_irq and other contexts which can't sleep,
 | 
						|
 * as well as from task contexts which can sleep.
 | 
						|
 *
 | 
						|
 * The completion callback is invoked in a context which can't sleep.
 | 
						|
 * Before that invocation, the value of message->status is undefined.
 | 
						|
 * When the callback is issued, message->status holds either zero (to
 | 
						|
 * indicate complete success) or a negative error code.  After that
 | 
						|
 * callback returns, the driver which issued the transfer request may
 | 
						|
 * deallocate the associated memory; it's no longer in use by any SPI
 | 
						|
 * core or controller driver code.
 | 
						|
 *
 | 
						|
 * Note that although all messages to a spi_device are handled in
 | 
						|
 * FIFO order, messages may go to different devices in other orders.
 | 
						|
 * Some device might be higher priority, or have various "hard" access
 | 
						|
 * time requirements, for example.
 | 
						|
 *
 | 
						|
 * On detection of any fault during the transfer, processing of
 | 
						|
 * the entire message is aborted, and the device is deselected.
 | 
						|
 * Until returning from the associated message completion callback,
 | 
						|
 * no other spi_message queued to that device will be processed.
 | 
						|
 * (This rule applies equally to all the synchronous transfer calls,
 | 
						|
 * which are wrappers around this core asynchronous primitive.)
 | 
						|
 */
 | 
						|
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
 | 
						|
{
 | 
						|
	struct spi_master *master = spi->master;
 | 
						|
	int ret;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 | 
						|
 | 
						|
	ret = __spi_async(spi, message);
 | 
						|
 | 
						|
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
 | 
						|
 | 
						|
	return ret;
 | 
						|
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_async_locked);
 | 
						|
 | 
						|
 | 
						|
/*-------------------------------------------------------------------------*/
 | 
						|
 | 
						|
/* Utility methods for SPI master protocol drivers, layered on
 | 
						|
 * top of the core.  Some other utility methods are defined as
 | 
						|
 * inline functions.
 | 
						|
 */
 | 
						|
 | 
						|
static void spi_complete(void *arg)
 | 
						|
{
 | 
						|
	complete(arg);
 | 
						|
}
 | 
						|
 | 
						|
static int __spi_sync(struct spi_device *spi, struct spi_message *message,
 | 
						|
		      int bus_locked)
 | 
						|
{
 | 
						|
	DECLARE_COMPLETION_ONSTACK(done);
 | 
						|
	int status;
 | 
						|
	struct spi_master *master = spi->master;
 | 
						|
 | 
						|
	message->complete = spi_complete;
 | 
						|
	message->context = &done;
 | 
						|
 | 
						|
	if (!bus_locked)
 | 
						|
		mutex_lock(&master->bus_lock_mutex);
 | 
						|
 | 
						|
	status = spi_async_locked(spi, message);
 | 
						|
 | 
						|
	if (!bus_locked)
 | 
						|
		mutex_unlock(&master->bus_lock_mutex);
 | 
						|
 | 
						|
	if (status == 0) {
 | 
						|
		wait_for_completion(&done);
 | 
						|
		status = message->status;
 | 
						|
	}
 | 
						|
	message->context = NULL;
 | 
						|
	return status;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_sync - blocking/synchronous SPI data transfers
 | 
						|
 * @spi: device with which data will be exchanged
 | 
						|
 * @message: describes the data transfers
 | 
						|
 * Context: can sleep
 | 
						|
 *
 | 
						|
 * This call may only be used from a context that may sleep.  The sleep
 | 
						|
 * is non-interruptible, and has no timeout.  Low-overhead controller
 | 
						|
 * drivers may DMA directly into and out of the message buffers.
 | 
						|
 *
 | 
						|
 * Note that the SPI device's chip select is active during the message,
 | 
						|
 * and then is normally disabled between messages.  Drivers for some
 | 
						|
 * frequently-used devices may want to minimize costs of selecting a chip,
 | 
						|
 * by leaving it selected in anticipation that the next message will go
 | 
						|
 * to the same chip.  (That may increase power usage.)
 | 
						|
 *
 | 
						|
 * Also, the caller is guaranteeing that the memory associated with the
 | 
						|
 * message will not be freed before this call returns.
 | 
						|
 *
 | 
						|
 * It returns zero on success, else a negative error code.
 | 
						|
 */
 | 
						|
int spi_sync(struct spi_device *spi, struct spi_message *message)
 | 
						|
{
 | 
						|
	return __spi_sync(spi, message, 0);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_sync);
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 | 
						|
 * @spi: device with which data will be exchanged
 | 
						|
 * @message: describes the data transfers
 | 
						|
 * Context: can sleep
 | 
						|
 *
 | 
						|
 * This call may only be used from a context that may sleep.  The sleep
 | 
						|
 * is non-interruptible, and has no timeout.  Low-overhead controller
 | 
						|
 * drivers may DMA directly into and out of the message buffers.
 | 
						|
 *
 | 
						|
 * This call should be used by drivers that require exclusive access to the
 | 
						|
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
 | 
						|
 * be released by a spi_bus_unlock call when the exclusive access is over.
 | 
						|
 *
 | 
						|
 * It returns zero on success, else a negative error code.
 | 
						|
 */
 | 
						|
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
 | 
						|
{
 | 
						|
	return __spi_sync(spi, message, 1);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_sync_locked);
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 | 
						|
 * @master: SPI bus master that should be locked for exclusive bus access
 | 
						|
 * Context: can sleep
 | 
						|
 *
 | 
						|
 * This call may only be used from a context that may sleep.  The sleep
 | 
						|
 * is non-interruptible, and has no timeout.
 | 
						|
 *
 | 
						|
 * This call should be used by drivers that require exclusive access to the
 | 
						|
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 | 
						|
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 | 
						|
 * and spi_async_locked calls when the SPI bus lock is held.
 | 
						|
 *
 | 
						|
 * It returns zero on success, else a negative error code.
 | 
						|
 */
 | 
						|
int spi_bus_lock(struct spi_master *master)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	mutex_lock(&master->bus_lock_mutex);
 | 
						|
 | 
						|
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 | 
						|
	master->bus_lock_flag = 1;
 | 
						|
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
 | 
						|
 | 
						|
	/* mutex remains locked until spi_bus_unlock is called */
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_bus_lock);
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 | 
						|
 * @master: SPI bus master that was locked for exclusive bus access
 | 
						|
 * Context: can sleep
 | 
						|
 *
 | 
						|
 * This call may only be used from a context that may sleep.  The sleep
 | 
						|
 * is non-interruptible, and has no timeout.
 | 
						|
 *
 | 
						|
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 | 
						|
 * call.
 | 
						|
 *
 | 
						|
 * It returns zero on success, else a negative error code.
 | 
						|
 */
 | 
						|
int spi_bus_unlock(struct spi_master *master)
 | 
						|
{
 | 
						|
	master->bus_lock_flag = 0;
 | 
						|
 | 
						|
	mutex_unlock(&master->bus_lock_mutex);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_bus_unlock);
 | 
						|
 | 
						|
/* portable code must never pass more than 32 bytes */
 | 
						|
#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
 | 
						|
 | 
						|
static u8	*buf;
 | 
						|
 | 
						|
/**
 | 
						|
 * spi_write_then_read - SPI synchronous write followed by read
 | 
						|
 * @spi: device with which data will be exchanged
 | 
						|
 * @txbuf: data to be written (need not be dma-safe)
 | 
						|
 * @n_tx: size of txbuf, in bytes
 | 
						|
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 | 
						|
 * @n_rx: size of rxbuf, in bytes
 | 
						|
 * Context: can sleep
 | 
						|
 *
 | 
						|
 * This performs a half duplex MicroWire style transaction with the
 | 
						|
 * device, sending txbuf and then reading rxbuf.  The return value
 | 
						|
 * is zero for success, else a negative errno status code.
 | 
						|
 * This call may only be used from a context that may sleep.
 | 
						|
 *
 | 
						|
 * Parameters to this routine are always copied using a small buffer;
 | 
						|
 * portable code should never use this for more than 32 bytes.
 | 
						|
 * Performance-sensitive or bulk transfer code should instead use
 | 
						|
 * spi_{async,sync}() calls with dma-safe buffers.
 | 
						|
 */
 | 
						|
int spi_write_then_read(struct spi_device *spi,
 | 
						|
		const void *txbuf, unsigned n_tx,
 | 
						|
		void *rxbuf, unsigned n_rx)
 | 
						|
{
 | 
						|
	static DEFINE_MUTEX(lock);
 | 
						|
 | 
						|
	int			status;
 | 
						|
	struct spi_message	message;
 | 
						|
	struct spi_transfer	x[2];
 | 
						|
	u8			*local_buf;
 | 
						|
 | 
						|
	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
 | 
						|
	 * copying here, (as a pure convenience thing), but we can
 | 
						|
	 * keep heap costs out of the hot path unless someone else is
 | 
						|
	 * using the pre-allocated buffer or the transfer is too large.
 | 
						|
	 */
 | 
						|
	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
 | 
						|
		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
 | 
						|
				    GFP_KERNEL | GFP_DMA);
 | 
						|
		if (!local_buf)
 | 
						|
			return -ENOMEM;
 | 
						|
	} else {
 | 
						|
		local_buf = buf;
 | 
						|
	}
 | 
						|
 | 
						|
	spi_message_init(&message);
 | 
						|
	memset(x, 0, sizeof(x));
 | 
						|
	if (n_tx) {
 | 
						|
		x[0].len = n_tx;
 | 
						|
		spi_message_add_tail(&x[0], &message);
 | 
						|
	}
 | 
						|
	if (n_rx) {
 | 
						|
		x[1].len = n_rx;
 | 
						|
		spi_message_add_tail(&x[1], &message);
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy(local_buf, txbuf, n_tx);
 | 
						|
	x[0].tx_buf = local_buf;
 | 
						|
	x[1].rx_buf = local_buf + n_tx;
 | 
						|
 | 
						|
	/* do the i/o */
 | 
						|
	status = spi_sync(spi, &message);
 | 
						|
	if (status == 0)
 | 
						|
		memcpy(rxbuf, x[1].rx_buf, n_rx);
 | 
						|
 | 
						|
	if (x[0].tx_buf == buf)
 | 
						|
		mutex_unlock(&lock);
 | 
						|
	else
 | 
						|
		kfree(local_buf);
 | 
						|
 | 
						|
	return status;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(spi_write_then_read);
 | 
						|
 | 
						|
/*-------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static int __init spi_init(void)
 | 
						|
{
 | 
						|
	int	status;
 | 
						|
 | 
						|
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
 | 
						|
	if (!buf) {
 | 
						|
		status = -ENOMEM;
 | 
						|
		goto err0;
 | 
						|
	}
 | 
						|
 | 
						|
	status = bus_register(&spi_bus_type);
 | 
						|
	if (status < 0)
 | 
						|
		goto err1;
 | 
						|
 | 
						|
	status = class_register(&spi_master_class);
 | 
						|
	if (status < 0)
 | 
						|
		goto err2;
 | 
						|
	return 0;
 | 
						|
 | 
						|
err2:
 | 
						|
	bus_unregister(&spi_bus_type);
 | 
						|
err1:
 | 
						|
	kfree(buf);
 | 
						|
	buf = NULL;
 | 
						|
err0:
 | 
						|
	return status;
 | 
						|
}
 | 
						|
 | 
						|
/* board_info is normally registered in arch_initcall(),
 | 
						|
 * but even essential drivers wait till later
 | 
						|
 *
 | 
						|
 * REVISIT only boardinfo really needs static linking. the rest (device and
 | 
						|
 * driver registration) _could_ be dynamically linked (modular) ... costs
 | 
						|
 * include needing to have boardinfo data structures be much more public.
 | 
						|
 */
 | 
						|
postcore_initcall(spi_init);
 | 
						|
 |